WO2023036130A1 - 测温结构、充电装置及机动车辆 - Google Patents
测温结构、充电装置及机动车辆 Download PDFInfo
- Publication number
- WO2023036130A1 WO2023036130A1 PCT/CN2022/117273 CN2022117273W WO2023036130A1 WO 2023036130 A1 WO2023036130 A1 WO 2023036130A1 CN 2022117273 W CN2022117273 W CN 2022117273W WO 2023036130 A1 WO2023036130 A1 WO 2023036130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature measuring
- temperature
- structure according
- measuring element
- measuring structure
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 49
- 230000007246 mechanism Effects 0.000 claims abstract description 38
- 238000012360 testing method Methods 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 238000007906 compression Methods 0.000 claims description 10
- 230000006835 compression Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 238000009529 body temperature measurement Methods 0.000 abstract description 19
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
- B60L53/16—Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/14—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
- G01K1/143—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K5/00—Measuring temperature based on the expansion or contraction of a material
- G01K5/48—Measuring temperature based on the expansion or contraction of a material the material being a solid
- G01K5/56—Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid
- G01K5/62—Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the application relates to the field of electrical connection, in particular to a temperature measuring structure, a charging device and a motor vehicle.
- the charging gun head and the charging stand of new energy vehicles will have a test object with a plug-in structure, and the test object is fixed on the charging gun head or the terminal holder of the charging stand.
- the current at the object under test increases rapidly, and the calorific value rises sharply. Therefore, for safety reasons, many manufacturers will install temperature measuring devices at the object under test.
- Contact temperature measurement is simple, reliable, and has high measurement accuracy.
- the temperature measurement element must be in contact with the measured object to measure the temperature. After installation, the measured object needs to maintain a certain pressure with the temperature sensor in order to measure the temperature of the measured object more accurately.
- the current processing method is to install and charge After the terminal, an external force is applied to form a pressure between the object under test and the temperature sensor, but the additional components will make the already limited space inside the charging device more cramped, and will also make the internal temperature of the charging device higher, so , a new solution is urgently needed in the prior art to solve the above problems.
- the application provides a temperature measurement structure, including a temperature measurement element, a bracket and an elastic reset mechanism;
- the temperature measuring element is movably connected with the bracket, the reset mechanism provides pressure to at least partially contact the temperature measuring element with the measured object, and the temperature measuring element measures the temperature of the measured object.
- the present application provides a charging device, the charging device includes an object under test and the above-mentioned temperature measuring structure.
- the present application provides a motor vehicle, which includes the above-mentioned temperature measuring structure.
- the beneficial effect of the present application is that the reset mechanism can make the temperature measuring element exert pressure on the object to be measured, so that the temperature measuring element and the object to be measured can be attached more closely to obtain more accurate temperature measurement data.
- the reset mechanism is installed before the object to be measured, so the process is more reasonable and the production efficiency is improved. After the object under test is installed, there is no need to install the temperature measuring element, which saves the space inside the charging device and avoids damage to the device caused by the reduction of heat dissipation effect caused by too many devices.
- the elastic component has the function of data transmission, and can directly transmit the data of the temperature measuring element, without worrying about the problem that the circuit of the temperature measuring element is not easy to set.
- Fig. 1 is a side view of a temperature measuring structure of the present application when no object to be measured is installed.
- Fig. 2 is a side sectional view of a temperature measuring structure of the present application.
- FIG. 3 is a structural schematic diagram of a temperature measuring unit of a temperature measuring structure in the present application.
- Fig. 4 is a structural schematic diagram of a temperature measuring structure groove and an elastic element of the present application.
- FIG. 5 is a structural schematic diagram of a temperature measuring structure with a torsion spring in the present application.
- FIG. 6 is a structural schematic diagram of a torsion spring with a temperature measuring structure in the present application.
- FIG. 7 is a structural schematic diagram of a temperature measuring structure with a compression spring in the present application.
- FIG. 8 is another structural schematic diagram of a temperature measuring structure with a compression spring in the present application.
- 1-temperature measuring element 11-detection surface, 12-side, 13-rotating shaft, 2-bracket, 21-groove, 3-measured object, 4-elastic element, 5-torsion spring, 6-compression spring.
- the present application provides a temperature measuring structure, as shown in Figure 1 and Figure 2, including a temperature measuring element 1, a bracket 2 and an elastic reset mechanism;
- the temperature measuring element 1 is movably connected with the support 2 , and the reset mechanism provides pressure to make the temperature measuring element 1 at least partly abut against the measured object 3 , and the temperature measuring element 1 measures the temperature of the measured object 3 .
- One end of the temperature measuring element 1 is movably connected with the bracket 2, and the object 3 to be measured is in contact with the temperature measuring element 1, as shown in FIG. 2 .
- the measured object 3 presses the temperature measuring element 1, and the reset mechanism is squeezed at the same time to deform and generate elastic force to make the temperature measuring element 1 and the measured object 3 abut more tightly. In this way, the temperature value of the measured object 3 measured by the temperature measuring element 1 is more accurate and closer to the real value.
- the temperature measuring element 1 has a detection surface 11 capable of measuring temperature and two side surfaces 12 adjacent to the detection surface 11 , as shown in FIG. 3 .
- Rotating shafts 13 are respectively arranged on the side surfaces 12 .
- Grooves 21 are provided on the surface of the bracket 2 opposite to the two side surfaces 12 ; as shown in FIG. 4 , the rotating shaft 13 is movably arranged in the grooves 21 .
- the detection surface 11 is attached to the measured object 3 to collect the temperature of the measured object 3.
- the rotating shaft 13 is movably arranged in the groove 21, and the temperature measuring element 1 can rotate around the rotating shaft 13.
- the groove 21 is in the shape of a round hole, and the rotating shaft 13 is configured to rotate in the groove 21 .
- the groove 21 is designed as a circular hole, which is more conducive to the smooth rotation of the rotating shaft 13 .
- the groove 21 is in the shape of a long hole, and the rotating shaft 13 is configured to translate in the groove 21 .
- the relative position of the temperature measuring element 1 and the support 2 can be adjusted by the translation of the rotating shaft 13 of the temperature measuring element 1 in the groove 21 so that the temperature measuring element 1 and the support 2 form different angles to obtain different elastic forces of the reset mechanism.
- the temperature measuring element 1 has a detection surface 11 capable of measuring temperature, a contact surface is provided on the object 3 to be tested, and the detection surface 11 is in matching contact with the contact surface.
- the detection surface 11 matches the shape of the contact surface, so that the measured temperature is more accurate.
- the detection surface 11 forms a certain angle with the contact surface in a natural state.
- the natural state means that the measured object 3 does not press the temperature measuring element 1 , and the reset mechanism does not apply force to make the temperature measuring element 1 and the measured object 3 stick together.
- the detection surface 11 forms a certain angle with the contact surface in a natural state. After the object 3 is assembled, it will press the detection surface 11 to make the angle between the detection surface 11 and the contact surface smaller. At this time, the reset mechanism will The applied force is used to make the temperature measuring element 1 stick to the measured object 3, so that the measured temperature is more accurate.
- the included angle between the detection surface 11 and the contact surface in a natural state is 1°-45°. Since the temperature measuring surface 11 of the temperature measuring element 1 is closely and continuously attached to the surface of the measured object 3 during final assembly, the temperature measuring element 1 is pressed by the measured object 3 at this time, causing the temperature measuring surface 11 to contact the contact surface. The included angle becomes smaller, and the temperature-measuring element 1 relies on the reaction force of the reset mechanism to make the temperature-measuring surface 11 exert pressure on the measured object 3. The greater the angle change, the greater the applied pressure.
- the inventor selected the same size and specification Bracket 2, the same temperature measuring element 1, different angles between the temperature measuring surface 11 and the contact surface, and test the pressure applied when the angle between the temperature measuring surface 11 and the contact surface is pressed to 0°, and the temperature measuring element 1 Measure the temperature drift value of the temperature of the measured object 3, and record it in Table 1.
- the pressure measurement method is to use a precision push-pull force gauge to touch the measurement end to the highest end of the temperature measurement surface 11, and then read the precision push-pull when the angle between the temperature measurement surface 11 and the first surface 21 is pressed from the initial angle to 0° The value displayed on the force gauge.
- the method of measuring the temperature drift value adopts another precision temperature sensor, which is precisely attached to the object under test 3, and if necessary, smears thermal conductive silicon grease on the attached surface to make the temperature measurement more accurate. Then, at different angles between the temperature measuring surface 11 and the first surface 21, read the displayed temperature values of the precision temperature sensor and the temperature measuring element 1 respectively, and make the difference to obtain the absolute value, which is the temperature drift value of the current angle.
- the pressure is 5N-98N. If the pressure is too small, the temperature measuring surface 11 and the measured object 3 cannot be closely bonded. If the pressure is too high, the temperature measuring element 1 will be damaged. If the temperature drift value is less than 10K, it is a qualified value. If the temperature drift value is greater than 10K, the actual temperature of the measured object 3 is quite different from the temperature measured by the temperature measuring element 1, which cannot reflect the actual temperature of the measured object 3 in time.
- the temperature control system The temperature of the system cannot be adjusted in time, resulting in excessive temperature rise of the system and failure of functions.
- Table 1 The influence of the angle between the temperature measuring surface and the contact surface on the pressure applied to the temperature measuring surface and the temperature drift value of the measured object
- the temperature drift value of the temperature measuring object 3 measured by the temperature measuring element 1 is greater than 10K.
- the actual temperature of the measuring object 3 and the temperature measuring The measured temperature of the component 1 has a large difference, which cannot reflect the actual temperature of the measured object 3 in time.
- the larger the angle the smaller the temperature drift value, which is different from the common perception of the public. It is not that the contact surface is parallel and the temperature measurement is more accurate, but that the contact surface has a variable angle, and there is a relative pressure after the contact is flattened. The gap of the contact surface becomes smaller, and the temperature drift value is smaller. Therefore, the inventors set the angle between the detection surface 11 and the contact surface to be 1°-45° in a natural state.
- the distance between the detection surface 11 and the contact surface gradually decreases along the direction in which the object under test 3 is assembled. That is to say, a certain angle is formed between the detection surface 11 and the contact surface, and the object under test 3 contacts with the detection surface 11 from the side with a larger distance, which is beneficial to the assembly of the object under test 3 .
- the temperature measuring element 1 has a detection surface 11 capable of measuring temperature, a contact surface is provided on the object 3 to be measured, and the contact area between the detection surface 11 and the contact surface accounts for 0.1%-95% of the contact surface area.
- the area of the detection surface 11 in contact with the contact surface accounts for 1%-85% of the area of the contact surface.
- the inventor selects the measured object 3 of the same size and different contact areas of the detection surface 11 and the contact surface to measure the temperature of the measured object 3, and uses The same reset mechanism makes the detection surface 11 contact with the contact surface, and the measured object 3 is set to the same temperature, then uses the temperature measuring element 1 to measure the temperature of the measured object 3 and takes the absolute value of the difference with the actual temperature, the absolute value is greater than 2°C is unqualified, and the results are recorded in Table 2.
- Table 2 The influence of the proportion of the contact area between the detection surface and the contact surface on the temperature measurement effect
- the inventor sets the contact area between the detection surface 11 and the contact surface to be 0.1%-95%, as can be seen from Table 2.
- the area of the surface 11 in contact with the contact surface accounts for more than or equal to 1% of the contact surface area, better temperature measurement results can be obtained, and it is also very ideal when it is less than or equal to 85%.
- the contact area accounts for 1%-85% of the contact surface area.
- the temperature measuring element 1 also has a back surface 14 opposite to the detection surface 11, the back surface 14 is set opposite to the bracket 2, and the reset mechanism is set between the bracket 2 and the between 14 on the back. That is to say, one end of the reset mechanism is connected to the bracket 2, and the other end is connected to the back surface 14 of the temperature measuring element 1, so as to support the temperature measuring element 1 and apply pressure.
- the reset mechanism is a torsion spring 5 arranged on the rotating shaft 13, as shown in Figure 5 and Figure 6, one end of the torsion spring 5 is connected to the bracket 2, and the other end is connected to the 14 connections on the back.
- the torsion spring 5 is sleeved on the rotating shaft 13, one end of the torsion spring 5 is fixed on the bracket 2, and the other end is connected with the temperature measuring element 1, so that when the temperature measuring element 1 is in the working position, the torsion spring 5 is compressed, and the torsion spring
- the elastic force of 5 makes the temperature measuring element 1 exert pressure on the measured object 3 .
- the reset mechanism is an elastic element 4 , as shown in FIG. 4 , one end of the elastic element 4 is connected to the bracket 2 , and the other end is connected to the back surface 14 .
- the elastic element 4 has elastic force so that there is pressure between the temperature measuring element 1 and the measured object 3 .
- the elastic element 4 can obtain a larger moment and thus a better elastic force.
- the elastic element 4 is a rubber elastic body or a compression spring 6, as shown in FIG. 7 .
- Either the rubber elastic body or the compression spring 6 can provide elastic force to the temperature measuring element 1 .
- the temperature measuring element 1 has a detection surface 11 capable of measuring temperature, a contact surface is provided on the measured object 3 , and the detection surface 11 is parallel to the contact surface in a natural state. Only when the object under test 3 is installed, the contact surface is attached to the detection surface 11 .
- both ends of the detection surface 11 have guiding slopes.
- the guide slope makes it easier to assemble the object under test 3 .
- the compression spring 6 is electrically connected with the temperature measuring element 1 for transmitting the data of the temperature measuring element 1 . That is to say, the compression spring 6 itself has the function of outputting data.
- One end of the compression spring 6 is electrically connected to the temperature measuring element 1, the other end is connected to the data line or the circuit board, and then connected to the temperature acquisition device, thus avoiding the internal layout of the charging device caused by separately setting the data line from the temperature measuring element 1 overcomplicated question.
- the temperature measuring element 1 collects the temperature of the object 3 to be measured, it transmits the temperature to the temperature collecting device through the elastic component capable of outputting data.
- the pressure provided by the reset mechanism is 5N-98N.
- the inventor conducted relevant tests.
- the inventor selected the same object 3 to be measured, and the same temperature measuring element 1 was set on the same bracket 2 .
- the test sensor is selected to be set on the measured object 3 and closely attached to the measured object 3. Different reset mechanisms are selected, and the elastic forces provided by different reset mechanisms are different.
- the pressure between the temperature measuring device 1 and the measured object 3 It is also different.
- the temperature value x collected by the temperature element 1 is used to calculate the ratio of x/y, if it is greater than 99.95%, it is an ideal state. The results are shown in Table 3.
- the temperature measuring element 1 is an NTC temperature sensor or a PTC temperature sensor.
- the advantage of using these two temperature sensors is that they are small in size and can measure gaps that cannot be measured by other thermometers; they are easy to use, and the resistance value can be arbitrarily selected from 0.1 to 100k ⁇ ; they are easy to process into complex shapes, can be mass-produced, and have good stability. , Strong overload capacity, suitable for conversion joints, which require small size and stable performance.
- the temperature measuring element 1 is a bimetallic temperature sensor.
- the bimetal temperature sensor is composed of two metals with different expansion coefficients. When the temperature changes, the metal with a large expansion coefficient will bend, which has better vibration resistance and is suitable for electric vehicles.
- the deformation of the metal of the bimetallic temperature sensor is less than or equal to 1mm.
- the inventor conducted a related test.
- the test method is set for the measured object 3 For the same temperature, choose the same bracket and the same reset mechanism, choose bimetallic temperature sensors with different metal deformations, record the temperature values measured in different situations and take the absolute value of the difference with the real temperature, the absolute value is less than or equal to 0.2 °C is qualified.
- Table 4 The results are shown in Table 4.
- the present application discloses a charging device, the charging device includes the above-mentioned temperature measuring structure. Further, when the charging device is assembled, the reset mechanism provides pressure to make the temperature measuring element 1 abut against the object under test 3 , and the temperature measuring element 1 measures the temperature of the object under test 3 .
- the present application also discloses a motor vehicle, which includes the above-mentioned temperature measuring structure.
- the thermometric structure is adapted to detect the temperature of the interior components of the motor vehicle.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
一种测温结构、充电装置及机动车辆。该测温结构包括测温元件(1)、支架(2)和具有弹性的复位机构;该测温元件(1)与该支架(2)活动连接,该复位机构提供压力使该测温元件(1)至少部分与被测物(3)抵接,该测温元件(1)测量该被测物(3)的温度。在一些的实施方式中,该测温元件(1)具有可测量温度的检测面(11),和与该检测面(11)相邻的两个侧面(12),该侧面(12)上各设置转轴(13),该支架(2)与两个该侧面(12)相对的面上设置凹槽(21),该转轴(13)活动设置在该凹槽(21)内。复位机构能够使测温元件(1)具有施加在被测物(3)上的压力,这样使测温元件(1)和被测物(3)的贴合更紧密,以获得更准确的测温数据。
Description
本发明要求2021年9月7日递交的申请号为202122151871.1、发明名称为“测温结构、充电装置及机动车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电气连接领域,具体的是一种测温结构、充电装置及机动车辆。
当前新能源汽车的充电枪头和充电座都会有对插结构的被测物,被测物固定在充电枪头或者充电座的端子卡座上。当汽车充电时,被测物处的电流迅速增大,发热量急剧升高,因此为了安全起见,很多厂家会在被测物处设置测温装置。接触式测温简单、可靠,且测量精度高。但是测温元件必须与被测物接触后才能进行测温,安装后的被测物需要和温度传感器保持一定的压力,才能更准确的测量被测物的温度,目前的加工方式为安装好充电端子后,再施加外力使被测物和温度传感器间形成压力,但是额外增加的部件会使充电设备内部本来就十分有限的空间更加局促,也会使充电设备内部工作时的温度更高,因此,现有技术中亟需一种新的方案来解决上述问题。
发明内容
为了能够使被测物在安装后立刻具有和温度传感器之间的压力,一方面,本申请提供了一种测温结构,包括测温元件、支架和具有弹性的复位机构;
所述测温元件与所述支架活动连接,所述复位机构提供压力使所述测温元件至少部分与被测物抵接,所述测温元件测量所述被测物的温度。
另一方面,本申请提供了一种充电装置,所述充电装置包括被测物和如上所述的测温结构。
又一方面,本申请提供了一种机动车辆,所述机动车辆包括如上所述的测温结构。
本申请的有益效果是:复位机构能够使测温元件具有施加在被测物上的压力,这样使测温元件和被测物的贴合更紧密,以获得更准确的测温数据。并且复位机构是先于被测物安装,其工序更加合理,提高了生产效率。安装好被测物后,无需再安装测温元 件,节省了充电设备内部的空间,避免器件过多导致的散热效果降低引发的器件损坏。在一些实施例中,弹性部件具有数据传输的功能,可以直接将测温元件的数据传递出去,不用担心测温元件的线路不容易设置的问题。
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本申请一种测温结构没有安装被测物时的侧视图。
图2为本申请一种测温结构的侧视剖视图。
图3为本申请一种测温结构的测温单元的结构示意图。
图4为本申请一种测温结构凹槽和弹性元件的结构示意图。
图5为本申请一种测温结构带有扭簧的结构示意图。
图6为本申请一种测温结构的扭簧的结构示意图。
图7为本申请一种测温结构带有压缩弹簧的结构示意图。
图8为本申请一种测温结构带有压缩弹簧的另一种结构示意图。
图中,1-测温元件、11-检测面、12-侧面、13-转轴、2-支架、21-凹槽、3-被测物、4-弹性元件、5-扭簧、6-压缩弹簧。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
一方面,本申请提供了一种测温结构,如图1和图2所示,包括测温元件1、支架2和具有弹性的复位机构;
测温元件1与支架2活动连接,复位机构提供压力使测温元件1至少部分与被测物3抵接,测温元件1测量被测物3的温度。
测温元件1一端与支架2活动连接,被测物3与测温元件1抵接,如图2所示。当被测物3处于工作位置时,被测物3挤压测温元件1,复位机构同时受到挤压而发生形变并产生弹力使测温元件1与被测物3抵接更紧密。这样,测温元件1所测量的被测物3的温度值更准确,更接近真实值。
在一些实施例中,测温元件1具有可测量温度的检测面11和与检测面11相邻的两个侧面12,如图3所示。侧面12上各设置转轴13。支架2与两个所述侧面12相对的面上设置凹槽21;如图4所示,转轴13活动设置在所述凹槽21内。检测面11与被测物3贴合用于采集被测物3的温度,转轴13活动设置在凹槽21内,测温元件1就可以以转轴13为轴转动,当测量被测物3的温度时,被测物3压迫检测面11并与检测面11贴合,采集的温度值更准确。
进一步的,凹槽21为圆孔状,转轴13构造为在凹槽21内转动。凹槽21设计成圆孔状更有利于转轴13的平滑转动。
在另一些实施方式中,如图8所示,凹槽21为长条孔状,转轴13构造为在凹槽21内平移。测温元件1的转轴13在凹槽21内平移可以调节测温元件1与支架2的相对位置,使测温元件1与支架2形成不同的角度,来获得复位机构不同的弹性力。
在一些实施例中,测温元件1具有可测量温度的检测面11,被测物3上设置接触面,检测面11与接触面匹配接触。检测面11与接触面的形状相匹配,使测量的温度更准确。
在一些实施例中,检测面11在自然状态下与接触面呈一定的夹角。自然状态是指被测物3没有挤压测温元件1,复位机构也没有施加力用于使测温元件1与被测物3贴合。检测面11在自然状态下与接触面呈一定的夹角,在被测物3进行装配后,就会压迫检测面11,使检测面11与接触面的夹角变小,此时复位机构会施加力用于使测温元件1与被测物3贴合,使测量的温度更准确。
在一些实施例中,检测面11在自然状态下与接触面的夹角为1°-45°。由于在最终装配时,测温元件1的测温面11紧密且持续的贴合在被测物3表面,此时测温元件1被被测物3挤压,导致测温面11与接触面的夹角变小,测温元件1依靠复位机构的反作用力,使测温面11向被测物3施加压力,角度变化越大,施加的压力也就越大。
为了验证测温面11与接触面的夹角对测温面11向被测物3施加压力,以及测温元件1测量被测物3温度的温飘值的影响,发明人选用相同尺寸规格的支架2,相同的测温元件1,不同的测温面11与接触面的夹角,并测试将测温面11与接触面的夹角压到0°时施加的压力,以及测温元件1测量被测物3温度的温飘值,并记录在表1中。
压力的测量方法,使用精密推拉力计,将测量端抵接测温面11最高端,然后将测温面11与第一表面21的夹角,从初始角度压到0°时读取精密推拉力计上显示的数值。
温飘值的测量方法,采用另外的精密温度传感器,精密贴附在被测物3上,必要时在贴附面涂抹导热硅脂,使测温更准确。然后在测温面11与第一表面21不同的夹角状态下,分别读取精密温度传感器和测温元件1的显示温度值,并做差取绝对值,为当前角度的温飘值。
在本实施例中,压力在5N-98N为合格,压力过小,无法使测温面11和被测物3紧密贴合,压力过大,会导致测温元件1损坏。温飘值小于10K为合格值,温飘值大于10K,则被测物3的实际温度,与测温元件1的测量温度差异较大,无法及时体现被测物3的实际温度,温控系统无法及时对系统的温度进行调节,导致系统温升过高引发功能失效。
表1:测温面与接触面的夹角对测温面向被测物施加压力和温飘值的影响
根据表1可以看出,在测温面11与接触面的夹角角度大于45°时,测温面11与接触面的夹角压到0°时施加的压力超过98N,此时测温元件1受到的压力过大,极容易造成损坏。在测温面11与接触面的夹角角度小于1°时,测温面11与接触面的夹角压到0°时施加的压力小于5N,此时测温面11和被测物3无法紧密贴合,也无法准确的测量到被测物3的实际温度。另外,测温面11与第一表面21的夹角压到0°时,测温元件1测量被测物3温度的温飘值大于10K,此时被测物3的实际温度,与测温元件1的测量温度差异较大,无法及时体现被测物3的实际温度。而角度越大,温飘值越小,这与公众的平常认知不同,不是接触面平行,测温更准确,而是接触面呈可变化的角度,在接触压平后有相对压力存在,使接触面的缝隙变小,温飘值更小。因此,发明人设定检测面11在自然状态下与接触面的夹角为1°-45°。
在一些实施例中,检测面11与接触面的距离沿被测物3装配的方向逐渐变小。也就是说检测面11与接触面之间形成一定角度,被测物3从距离较大的一侧开始与检测面11接触,有利于被测物3的装配。
在一些实施例中,测温元件1具有可测量温度的检测面11,被测物3上设置接触面,检测面11与接触面接触的面积,占接触面面积的0.1%-95%。
进一步的,所述检测面11与所述接触面接触的面积,占所述接触面面积的1%-85%。
为了验证检测面11与接触面接触的面积对测温效果的影响,发明人选用相同尺寸的被测物3,不同检测面11与接触面接触的面积来测量被测物3的温度,并以相同的复位机构使检测面11与接触面接触,被测物3设定为相同的温度,然后使用测温元件1测量被测物3的温度并与实际温度做差取绝对值,绝对值大于2℃为不合格,结果记录在表2中。
表2:检测面与接触面接触的面积占比对测温效果的影响
从表2可以看出,检测面11与接触面接触的面积占接触面面积小于0.1%时,温差超过2℃,当检测面11与接触面接触的面积占接触面面积大于95%后,测温元件1测量的温度与实际温度相同,继续增大接触面积已经没有必要,因此发明人设定检测面11与接触面接触的面积为0.1%-95%,从表2中可以看出当检测面11与接触面接触的面积占接触面面积大于等于1%后,能获得更好的测温效果,而小于等于85%时也是非常理想的情况,因此发明人进一步优选检测面11与接触面接触的面积占接触面面积为1%-85%。
在一些实施例中,所述测温元件1还具有与所述检测面11相对的背面14,所述背面14与所述支架2相对设置,所述复位机构设置在所述支架2与所述背面14之间。也就是说复位机构一端与支架2连接,另一端与所述测温元件1的背面14连接,从而起到支撑测温元件1进而施加压力的作用。
在一些实施例中,所述复位机构为设置在所述转轴13上的扭簧5,如图5和图6所示,所述扭簧5一端与所述支架2连接,另一端与所述背面14连接。扭簧5套设在转轴13上,扭簧5的一端固定在支架2上,另一端与测温元件1连接,这样,当测温元件1处于工作位置时,压缩了扭簧5,扭簧5的弹力使测温元件1具有施加在被测物3上的压力。
在一些实施例中,所述复位机构为弹性元件4,如图4所示,所述弹性元件4一端与所述支架2连接,另一端与所述背面14连接。弹性元件4具有弹性力使测温元件1和被测物3间具有压力。
进一步的,所述弹性元件4的位置与所述转轴13的位置有一定距离。这样弹性元件4就能获得更大的力矩从而获得更好的弹性力。
所述弹性元件4为橡胶弹性体或压缩弹簧6,如图7所示。不论是橡胶弹性体或压缩弹簧6都能提供弹性力给测温元件1。
在一些实施例中,测温元件1具有可测量温度的检测面11,被测物3上设置接触面,检测面11在自然状态下与接触面呈平行状态。只有当被测物3被安装后,接触面才与检测面11贴合在一起。
在一些实施例中,检测面11两端具有导向斜面。导向斜面使被测物3更容易装配。
进一步的,压缩弹簧6与测温元件1电性连接,用于传输测温元件1的数据。也就是说压缩弹簧6本身具有输出数据的功能。压缩弹簧6一端与测温元件1电性连接,另一端和数据线或电路板连接,再连接温度采集装置,这样就避免了从测温元件1上单独设置数据线所造成的充电设备内部布局过于复杂的问题。测温元件1采集到被测物3的温度后通过能够输出数据的弹性部件最终发送给温度采集装置。
在一些实施例中,复位机构提供的压力为5N-98N。
为了测试复位机构提供的压力对测温元件1准确度的影响,发明人做了相关测试。发明人选用相同的被测物3,相同的测温元件1设置在相同的支架2上。选用测试传感器设置在被测物3上且与被测物3紧密贴合,选用不同的复位机构,不同的复位机构提供的弹力也不相同,测温装置1与被测物3之间的压力也不相同,当被测物3工作后,被测物3温度开始升高,经过20分钟,温度趋于稳定,这时同时记录测试传感器所采集的温度值y和不同的复位机构连接的测温元件1所采集的温度值x,计算x/y的比值,大于99.95%为理想状态。结果如表3所示。
表3:复位机构提供的压力对测温元件准确度的影响
从表3可知,当复位机构的弹性力小于5N后,测温元件1所采集的温度值与测试传感器所采集的温度值相差过大,其比值小于理想值99.95%,所以发明人选用的复位机构的弹性力大于5N,当复位机构的弹性力大于等于98N后,测温元件1测量的温度已经非常接近测试传感器测量的温度,再施加更大的力对比值已经没有影响,而且弹性力更大的复位机构会导致被测物3的安装更加困难,因此发明人选用复位机构提供的压力为5N-98N。
在一些实施方式中,测温元件1为NTC温度传感器或PTC温度传感器。采用这两种温度传感器的好处是体积小,能够测量其他温度计无法测量的空隙;使用方便,电阻值可在0.1~100kΩ间任意选择;易加工成复杂的形状,可大批量生产,稳定性好、过载能力强,适用于转换接头这种要求体积小,性能稳定的产品中。
在一些实施方式中,测温元件1为双金属温度传感器。双金属温度传感器由两种不同膨胀系数的金属构成,当温度变化时,膨胀系数大的金属发生弯曲,具有较好的抗振动性,适合用于电动汽车。
更进一步的,外界的温度变化量为1℃时,双金属温度传感器的金属的形变量小于等于1mm。形变量越小的双金属温度传感器其测温效果越准确,因此发明人选用的双金属温度传感器的金属的形变量小于等于1mm。
金属的形变量越小,双金属温度传感器测得的温度值越接近真实值,为了验证金属的形变量与测温的值的关系,发明人行了相关测试,测试方法为被测物3设定为相同的温度,选择相同的支架和相同的复位机构,选用不同的金属形变量的双金属温度传感器,记录不同情况测得的温度值并与真实温度做差取绝对值,绝对值小于等于0.2℃为合格。结果如表4所示。
表4:不同金属形变量的双金属温度传感器对测温效果的影响
金属形变(mm) | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.95 | 1 | 1.05 |
差值(℃) | 0.1 | 0.1 | 0.11 | 0.12 | 0.13 | 0.14 | 0.16 | 0.18 | 0.2 | 0.2 | 0.21 |
从表4可知,当双金属温度传感器的金属形变量在大于1mm后,测得的温度值与实际温度值相差过大,为不合格,所以发明人选用的双金属温度传感器在外界的温度变化量为1℃时,其金属的形变量小于等于1mm。
另一方面,本申请公开了一种充电装置,所述充电装置包括如上所述的测温结构。进一步的,所述充电装置在组装时,所述复位机构提供压力使所述测温元件1与被测物3抵接,所述测温元件1测量所述被测物3的温度。
本申请同时公开了一种机动车辆,所述机动车辆包括如上所述的测温结构。所述测温结构适合检测所述机动车辆内部零部件的温度。
以上所述,仅为本申请的具体实施例,不能以其限定申请实施的范围,所以其等同组件的置换,或依本申请专利保护范围所作的等同变化与修饰,都应仍属于本专利涵盖的范畴。另外,本申请中的技术特征与技术特征之间、技术特征与技术方案、技术方案与技术方案之间均可以自由组合使用。
Claims (25)
- 一种测温结构,其特征在于:包括测温元件、支架和具有弹性的复位机构;所述测温元件与所述支架活动连接,所述复位机构提供压力使所述测温元件至少部分与被测物抵接,所述测温元件测量所述被测物的温度。
- 根据权利要求1所述的测温结构,其特征在于:所述测温元件具有可测量温度的检测面,和与所述检测面相邻的两个侧面,所述侧面上各设置转轴,所述支架与两个所述侧面相对的面上设置凹槽,所述转轴活动设置在所述凹槽内。
- 根据权利要求2所述的测温结构,其特征在于:所述凹槽为圆孔状,所述转轴构造为在所述凹槽内转动。
- 根据权利要求2所述的测温结构,其特征在于:所述凹槽为长条孔状,所述转轴构造为在所述凹槽内平移。
- 根据权利要求1所述的测温结构,其特征在于:所述测温元件具有可测量温度的检测面,所述被测物上设置接触面,所述检测面与所述接触面匹配接触。
- 根据权利要求5所述的测温结构,其特征在于:所述检测面在自然状态下与所述接触面具有夹角。
- 根据权利要求6所述的测温结构,其特征在于:所述检测面在自然状态下与所述接触面的夹角为1°-45°。
- 根据权利要求6所述的测温结构,其特征在于:所述检测面与所述接触面的距离,沿所述被测物装配的方向逐渐变小。
- 根据权利要求1所述的测温结构,其特征在于:所述测温元件具有可测量温度的检测面,所述被测物上设置接触面,所述检测面与所述接触面接触的面积,占所述接触面面积的0.1%-95%。
- 根据权利要求9所述的测温结构,其特征在于:所述检测面与所述接触面接触的面积,占所述接触面面积的1%-85%。
- 根据权利要求2所述的测温结构,其特征在于:所述测温元件还具有与所述检测面相对的背面,所述背面与所述支架相对设置,所述复位机构设置在所述支架与所述背面之间。
- 根据权利要求11所述的测温结构,其特征在于:所述复位机构为设置在所述转轴上的扭簧,所述扭簧一端与所述支架连接,另一端与所述背面连接。
- 根据权利要求11所述的测温结构,其特征在于:所述复位机构为弹性元件,所 述弹性元件一端与所述支架连接,另一端与所述背面连接。
- 根据权利要求13所述的测温结构,其特征在于:所述弹性元件位置与所述转轴位置有距离。
- 根据权利要求13所述的测温结构,其特征在于:所述弹性元件为橡胶弹性体或压缩弹簧。
- 根据权利要求1所述的测温结构,其特征在于:所述测温元件具有可测量温度的检测面,所述被测物上设置接触面,所述检测面在自然状态下与所述接触面呈平行状态。
- 根据权利要求16所述的测温结构,其特征在于:所述检测面两端具有导向斜面。
- 根据权利要求15所述的测温结构,其特征在于:所述压缩弹簧与所述测温元件电性连接,用于传输所述测温元件的数据。
- 根据权利要求1所述的测温结构,其特征在于:所述复位机构提供的压力为5N-98N。
- 根据权利要求1所述的测温结构,其特征在于:所述测温元件为NTC温度传感器或PTC温度传感器。
- 根据权利要求1所述的测温结构,其特征在于:所述测温元件为双金属温度传感器。
- 根据权利要求21所述的测温结构,其特征在于:外界的温度变化量为1℃时,所述双金属温度传感器的金属的形变量小于等于1mm。
- 一种充电装置,其特征在于:所述充电装置包括被测物和权利要求1-22任一项所述的测温结构。
- 根据权利要求23所述的充电装置,其特征在于:所述充电装置在组装时,所述复位机构提供压力使所述测温元件与所述被测物抵接,所述测温元件测量所述被测物的温度。
- 一种机动车辆,其特征在于:所述机动车辆包括权利要求1-22任一项所述测温结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122151871.1 | 2021-09-07 | ||
CN202122151871.1U CN215893824U (zh) | 2021-09-07 | 2021-09-07 | 测温结构、充电装置及机动车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023036130A1 true WO2023036130A1 (zh) | 2023-03-16 |
Family
ID=80341260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/117273 WO2023036130A1 (zh) | 2021-09-07 | 2022-09-06 | 测温结构、充电装置及机动车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN215893824U (zh) |
WO (1) | WO2023036130A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN215893824U (zh) * | 2021-09-07 | 2022-02-22 | 长春捷翼汽车零部件有限公司 | 测温结构、充电装置及机动车辆 |
WO2023202549A1 (zh) * | 2022-04-21 | 2023-10-26 | 长春捷翼汽车科技股份有限公司 | 一种测温结构、一种端子固定座及一种充电装置 |
CN114935408A (zh) * | 2022-04-21 | 2022-08-23 | 长春捷翼汽车零部件有限公司 | 一种测温结构及一种充电装置 |
CN219347993U (zh) * | 2023-01-11 | 2023-07-14 | 长春捷翼汽车科技股份有限公司 | 一种可调节角度的温感组件及一种充电装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017110940A (ja) * | 2015-12-14 | 2017-06-22 | トヨタ自動車株式会社 | 測温機構 |
CN206890950U (zh) * | 2017-05-27 | 2018-01-16 | 合肥华凌股份有限公司 | 一种冰箱、冰箱内胆组件及测温模块 |
CN209014341U (zh) * | 2018-10-30 | 2019-06-21 | 合肥欣奕华智能机器有限公司 | 一种支架及温度检测装置 |
CN213022017U (zh) * | 2020-08-12 | 2021-04-20 | 孝感华工高理电子有限公司 | 电芯温度传感器以及电池 |
CN113639889A (zh) * | 2021-09-07 | 2021-11-12 | 长春捷翼汽车零部件有限公司 | 测温结构、充电装置及机动车辆 |
CN215893824U (zh) * | 2021-09-07 | 2022-02-22 | 长春捷翼汽车零部件有限公司 | 测温结构、充电装置及机动车辆 |
CN216283996U (zh) * | 2021-09-07 | 2022-04-12 | 长春捷翼汽车零部件有限公司 | 测温结构,充电装置及机动车辆 |
-
2021
- 2021-09-07 CN CN202122151871.1U patent/CN215893824U/zh active Active
-
2022
- 2022-09-06 WO PCT/CN2022/117273 patent/WO2023036130A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017110940A (ja) * | 2015-12-14 | 2017-06-22 | トヨタ自動車株式会社 | 測温機構 |
CN206890950U (zh) * | 2017-05-27 | 2018-01-16 | 合肥华凌股份有限公司 | 一种冰箱、冰箱内胆组件及测温模块 |
CN209014341U (zh) * | 2018-10-30 | 2019-06-21 | 合肥欣奕华智能机器有限公司 | 一种支架及温度检测装置 |
CN213022017U (zh) * | 2020-08-12 | 2021-04-20 | 孝感华工高理电子有限公司 | 电芯温度传感器以及电池 |
CN113639889A (zh) * | 2021-09-07 | 2021-11-12 | 长春捷翼汽车零部件有限公司 | 测温结构、充电装置及机动车辆 |
CN215893824U (zh) * | 2021-09-07 | 2022-02-22 | 长春捷翼汽车零部件有限公司 | 测温结构、充电装置及机动车辆 |
CN216283996U (zh) * | 2021-09-07 | 2022-04-12 | 长春捷翼汽车零部件有限公司 | 测温结构,充电装置及机动车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN215893824U (zh) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023036130A1 (zh) | 测温结构、充电装置及机动车辆 | |
WO2023036129A1 (zh) | 测温结构、充电装置及机动车辆 | |
WO2023098643A1 (zh) | 一种可移动式的测温结构及充电装置 | |
JP5035428B2 (ja) | 電池温度測定装置および電池温度測定方法、電池の製造方法 | |
WO2024140959A1 (zh) | 一种端子测温结构及一种连接器 | |
WO2023125141A1 (zh) | 一种端子测温结构 | |
WO2023125140A1 (zh) | 一种端子测温结构 | |
JP2024531302A (ja) | 測温構造、充電装置及び自動車 | |
CN201016946Y (zh) | 一种导热材料参数测试装置 | |
CN101246136A (zh) | 表面加工多晶硅薄膜热膨胀系数的电测试方法 | |
CN216283996U (zh) | 测温结构,充电装置及机动车辆 | |
CN213812634U (zh) | 温度传感器结构和充电连接装置 | |
CN208238969U (zh) | 温度传感器导热组件及连接器 | |
CN213022017U (zh) | 电芯温度传感器以及电池 | |
CN216283995U (zh) | 测温结构、充电装置及机动车辆 | |
CN116164873B (zh) | 一种六维力传感器的温度补偿方法及装置 | |
CN110641447A (zh) | 一种刹车盘温度检测装置及其检测方法 | |
TWI785743B (zh) | 具浮動調整功能的測試裝置 | |
CN215811321U (zh) | 一种测温结构、充电装置和机动车辆 | |
CN213209979U (zh) | 一种铝合金散热片散热性能测试装置 | |
WO2023168798A1 (zh) | 一种热电势探头 | |
CN209485555U (zh) | 一种热双金属温度计结构 | |
CN113295406A (zh) | 一种分动器总成离合器轴向压力标定装置及其标定方法 | |
CN112903130A (zh) | 一种用于高温报警的传感器装置 | |
CN221350310U (zh) | 一种温度传感控制装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22866593 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22866593 Country of ref document: EP Kind code of ref document: A1 |