WO2023098643A1 - 一种可移动式的测温结构及充电装置 - Google Patents
一种可移动式的测温结构及充电装置 Download PDFInfo
- Publication number
- WO2023098643A1 WO2023098643A1 PCT/CN2022/134897 CN2022134897W WO2023098643A1 WO 2023098643 A1 WO2023098643 A1 WO 2023098643A1 CN 2022134897 W CN2022134897 W CN 2022134897W WO 2023098643 A1 WO2023098643 A1 WO 2023098643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature measuring
- temperature
- measured object
- movable
- structure according
- Prior art date
Links
- 238000009529 body temperature measurement Methods 0.000 title abstract description 34
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 210000005069 ears Anatomy 0.000 claims 1
- 239000002184 metal Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 101100493706 Caenorhabditis elegans bath-38 gene Proteins 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/14—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
- G01K1/143—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
Definitions
- the present application relates to the field of electrical connection, and more specifically, to a movable temperature measuring structure and a charging device.
- the charging gun head and the charging stand of new energy vehicles will have a charging terminal with a plug-in structure, and the charging terminal is fixed on the charging gun head or the terminal card seat of the charging stand.
- the current at the charging terminal increases rapidly, and the calorific value rises sharply. Therefore, for safety reasons, many manufacturers will install a temperature measuring device at the charging terminal.
- the contact temperature measuring device is simple, reliable and has high measurement accuracy. However, the temperature measuring device must be in contact with the measured medium before it can measure the temperature. Since the measured object of the charging device is generally subject to vibration, it will also drive the temperature measuring element to shift. At this time, there will be a gap between the measured object and the temperature measuring element.
- the relative angle changes, so that the measured object and the temperature measuring element are not close in real time, resulting in a large error in the measured temperature, which will deviate from the actual temperature, resulting in the inability to monitor the accurate temperature of the charging device in real time, and also It will make the temperature adjustment measures of the temperature control system invalid. In severe cases, the temperature of the measured object in the charging device will rise sharply without power failure, and safety accidents such as charging equipment burning will occur.
- the purpose of this application is to provide a new technical solution for a movable temperature measuring structure.
- a movable temperature measuring structure including:
- the bracket is arranged on the bottom plate and can be displaced relative to the bottom plate, and the bracket can follow the movement of the measured object, so that the measured object and the temperature measuring element are always in surface contact .
- the temperature measuring element is a cylinder
- the temperature measuring element includes a temperature measuring surface in contact with the measured object, an upper end surface adjacent to the temperature measuring surface, and a Two hanging lugs arranged opposite to each other, the two hanging lugs are located on both sides of the temperature measuring surface, the bracket is provided with a temperature measuring cavity and grooves on both sides above the temperature measuring cavity, the measuring The temperature element is accommodated in the temperature measurement chamber, the lug is arranged in the groove, and the temperature measurement chamber is provided with a temperature measurement contact surface.
- the side of the mounting lug close to the temperature measuring surface and the side of the groove are pressed into contact with each other, so that the temperature measuring surface protrudes from the temperature measuring contact surface and is in contact with the temperature measuring surface.
- the temperature contact surface is at a certain angle.
- a temperature measuring bath is arranged on the support, and the temperature measuring bath communicates with the temperature measuring cavity through the temperature measuring contact surface, at least part of the measured object is arranged in the temperature measuring bath, and Contact with the temperature measuring surface.
- the force applied by the temperature measuring surface to the measured object is 5N-98N.
- a guide angle is provided at the side end of the temperature measuring bath, and the object to be tested enters the temperature measuring bath through the guide angle.
- a shrapnel is provided on the opposite side of the temperature measuring bath to the temperature measuring cavity, one end of the shrapnel is fixed on the bracket, and the other end is a free end, which extends into the inside of the temperature measuring bath and contacts the temperature measuring bath. The object under test is contacted.
- the force applied by the shrapnel to the measured object is 5N-98N.
- a charging device which is the above-mentioned movable temperature measuring structure.
- the bracket can be displaced relative to the bottom plate, so that the temperature measuring element installed on the bracket can follow the movement of the measured object, so that the temperature measuring element and the measured object can be closely attached in real time, ensuring that the temperature measured by the temperature measuring element is consistent with the measured object
- the actual temperature of the measured object is the closest, so as to realize the accurate detection of the working temperature of the measured object, and avoid the situation that the temperature measuring surface and the measured object are separated during the subsequent use of the temperature measuring element, or the temperature measuring surface and the measured object are separated. The situation where the test object cannot be continuously attached, resulting in inaccurate temperature measurement.
- the elastic force can be applied to the measured object, so that the measured object and the temperature measuring element can be further attached to ensure that the two can be connected in real time, and the temperature measuring element can accurately measure the temperature of the measured object.
- the side of the mounting lug close to the temperature measuring surface and the side of the groove are squeezed and contacted with each other, and the side of the hanging lug and the side of the groove interfere at the joint, making the temperature measuring surface protrude from the temperature measuring contact surface.
- the temperature measuring surface of the temperature measuring element can exert a certain force on the measured object, so that the measured object and the temperature measuring element are more firmly connected.
- Fig. 1 is the schematic diagram of the temperature measuring structure of the present application
- Fig. 2 is the sectional view of the temperature measuring structure of the present application
- Fig. 3 is the schematic diagram of the bracket in the temperature measuring structure of the present application.
- Fig. 4 is another schematic diagram of the bracket in the temperature measurement structure of the present application.
- a movable temperature measuring structure of the present disclosure includes,
- the relative displacement between the bracket 3 and the bottom plate 4 can occur, so that the temperature measuring element 2 installed on the bracket 3 can follow the movement of the measured object 1, so that the temperature measuring element 2 and the measured object 1 can be closely attached in real time, ensuring the measurement
- the temperature measured by the temperature element 2 is the closest to the actual temperature of the measured object 1, so as to realize the accurate detection of the working temperature of the measured object 1, and avoid the occurrence of temperature measuring element 2 and the measured object 1 in the subsequent use process.
- the temperature measuring element 2 is an NTC temperature sensor or a PTC temperature sensor.
- the advantage of using these two temperature sensors is that they are small in size and can measure gaps that cannot be measured by other thermometers; they are easy to use, and the resistance value can be arbitrarily selected from 0.1 to 100k ⁇ ; they are easy to process into complex shapes, can be mass-produced, and have good stability. , Strong overload capacity, suitable for conversion joints, which require small size and stable performance.
- the temperature measuring element 2 is a bimetallic temperature sensor.
- the bimetal temperature sensor is composed of two metals with different expansion coefficients. When the temperature changes, the metal with a large expansion coefficient will bend, which has better vibration resistance and is suitable for electric vehicles.
- the deformation of the metal of the bimetallic temperature sensor is less than or equal to 1mm.
- the test method is that the measured object 1 is set Set to the same temperature, choose the same bracket and the same reset mechanism, choose bimetallic temperature sensors with different metal deformation, record the temperature values measured in different situations and take the absolute value of the difference with the real temperature, the absolute value is less than or equal to 0.2°C is acceptable. The results are shown in Table 1.
- Table 1 Effects of bimetallic temperature sensors with different metal deformations on the temperature measurement effect
- the temperature measuring element 2 is a cylinder, and the temperature measuring element 2 includes a temperature measuring surface 21 in contact with the measured object 1 , and the temperature measuring element 2 is in contact with the measured object 1 .
- the lug 23 of the temperature measuring element 2 can be set in the groove 322, so that the temperature measuring element 2 can be firmly set in the temperature measuring cavity 321 to prevent
- the temperature measuring element 2 breaks away from the support 3 and is separated from the object 1 to be measured. This makes the connection between the temperature measuring element 2 and the measured object 1 more firm.
- the side of the hanging lug 23 close to the temperature measuring surface 21 and the side of the groove 322 are squeezed into contact with each other, so that the temperature measuring surface 21 protrudes from the temperature measuring contact surface 323, and It forms a certain angle with the temperature measuring contact surface 323 .
- the side of the lug 23 close to the temperature measuring surface 21 and the side of the groove 322 are squeezed into contact with each other, and the side of the lug 23 interferes with the side of the groove 322 at the joint, so that the temperature measuring surface 21 Protruding from the temperature-measuring contact surface 323 , the temperature-measuring surface 21 of the temperature-measuring element 2 can apply a certain force to the measured object 1 , so that the measured object 1 and the temperature-measuring element 2 are more firmly connected.
- a hook 39 is provided on the side of the temperature measuring cavity 321 opposite to the temperature measuring surface 21 , and the hook 39 includes a contact surface, which contacts the upper end surface 22 and prevents the temperature measuring element 2 from detaching from the temperature measuring cavity 321 .
- a reinforcing rib 33 is also provided on the other side of the hook 39.
- the included angle between the temperature measuring surface 21 and the temperature measuring contact surface 323 is 1°-45°. Since the temperature measuring surface 21 of the temperature measuring element 2 is closely and continuously attached to the surface of the measured object 1 during final assembly, at this time, since the side of the lug 23 close to the temperature measuring surface 21 and the side of the groove 322 Extruded and contacted with each other, interference occurs at the connection between the side of the hanging ear 23 and the side of the groove 322, so that the temperature measuring surface 21 protrudes from the temperature measuring contact surface 323 and forms a shape with the temperature measuring contact surface 323. Therefore, the temperature measuring surface 21 of the temperature measuring element 2 exerts force on the measured object 1, and the greater the angle, the greater the pressure applied.
- the inventor selected the same The size of the temperature measurement chamber 321, the groove 322 of the same size is set on the temperature measurement chamber 321, and the same temperature measurement element 2, only the distance between the hanging ear 23 and the temperature measuring surface 21 is adjusted while maintaining the body size of the hanging ear 23 Constant, the smaller the distance between the hanging ear 23 and the temperature measuring surface 21, the larger the angle between the temperature measuring surface 21 and the temperature measuring contact surface 323, and test the different values of the angle between the temperature measuring surface 21 and the temperature measuring contact surface 323
- the pressure measurement method is to use a precision push-pull gauge to touch the measurement end to the highest end of the temperature measurement surface 21, and then read the precision when the angle between the temperature measurement surface 21 and the temperature measurement contact surface 323 is pressed from the initial angle to 0°. The value displayed on the force gauge.
- the method of measuring the temperature drift value adopts another precision temperature sensor, which is precisely attached to the measured object 1, and if necessary, apply thermal conductive silicon grease on the attached surface to make the temperature measurement more accurate. Then, at different angles between the temperature measuring surface 21 and the temperature measuring contact surface 323, respectively read the displayed temperature values of the precision temperature sensor and the temperature measuring element 2, and make the difference to obtain the absolute value, which is the temperature drift value of the current angle.
- the pressure is 5N-98N. If the pressure is too small, the temperature measuring surface 21 cannot be closely attached to the object 1 to be tested. If the pressure is too high, the temperature measuring element 2 will be damaged.
- the temperature drift value less than 10K is a qualified value, and the temperature drift value is greater than 10K, the actual temperature of the measured object 1 is quite different from the temperature measured by the temperature measuring element 2, which cannot reflect the actual temperature of the measured object 1 in time.
- the temperature of the system installed with the temperature measuring structure cannot be adjusted in time, which leads to the failure of the function due to the high temperature rise of the system
- Table 2 The influence of the angle between the temperature measuring surface and the temperature measuring contact surface on the pressure applied to the temperature measuring surface and the temperature drift value of the measured object
- the temperature drift value measured by the temperature measuring element 2 of the temperature of the measured object 1 is greater than 10K.
- the actual temperature of the measured object 1 is different from the measured temperature
- the measured temperature of the temperature element 2 has a large difference, which cannot reflect the actual temperature of the measured object 1 in time.
- the larger the angle the smaller the temperature drift value, which is different from the common perception of the public. It is not that the contact surface is parallel and the temperature measurement is more accurate, but that the contact surface has a variable angle, and there is a relative pressure after the contact is flattened. The gap of the contact surface becomes smaller, and the temperature drift value is smaller. Therefore, the inventors set the angle between the temperature measuring surface 21 and the temperature measuring contact surface 323 to be 1°-45° in a natural state.
- the temperature-measuring element 2 has a temperature-measuring surface 21 that can measure temperature, and the detected surface 11 is set on the object 1 to be measured. %-95%.
- the area of the temperature measuring surface 21 in contact with the detected surface 11 accounts for 1%-85% of the area of the detected surface 11 .
- the inventor selects the measured object 1 of the same size and different contact areas of the temperature measuring surface 21 and the detected surface 11 to measure the measured object 1, and use the same reset mechanism to make the temperature measuring surface 21 contact with the detected surface 11, set the measured object 1 to the same temperature, then use the temperature measuring element 2 to measure the temperature of the measured object 1 and compare it with the actual temperature Take the absolute value of the difference, and the absolute value greater than 2°C is unqualified, and the results are recorded in Table 3.
- Table 3 The influence of the proportion of the contact area between the temperature measuring surface 21 and the detected surface 11 on the temperature measurement effect
- a temperature measuring tank 38 is set on the support 3, and the temperature measuring tank 38 communicates with the temperature measuring chamber 321 through the temperature measuring contact surface 323, and at least part of the measured object 1 is set in the measuring chamber 321. In the temperature bath 38, it is in contact with the temperature measuring surface 21.
- the measured object 1 can be firmly fixed on the support 3, and the contact between the temperature measuring element 2 and the measured object 1 can be realized through the temperature measuring contact surface 323, and the measured object 1 can be realized. It is continuously attached to the temperature measuring element 2.
- the force applied by the temperature measuring surface 21 to the measured object 1 is 5N-98N.
- the inventor selected the same measured object 1 and temperature measuring element 2, and measured
- the temperature surface 21 applies different pressures to the measured object 1, and the temperature rise value detected by the temperature measuring element 2 and the damage of the temperature measuring element 2 are tested under different pressure conditions.
- the temperature rise value greater than 12K is unqualified , the temperature measuring element 2 is damaged as unqualified.
- the detection method of the temperature rise value is to apply the same heat to the measured object 1 to keep the temperature consistent, then read the temperature detected by the temperature measuring element 2 in contact with the measured object 1, and make a difference with the initial temperature to obtain the temperature rise value , recorded in Table 4.
- the detection method for the damage of the temperature measuring element 2 is to carry out 50 pressure experiments under the condition that the measured object 1 exerts different pressures on the temperature measuring element 2, and observe the damage of the temperature measuring element 2.
- Table 4 Effects of different pressures applied to the measured object 1 by the temperature measuring surface 21 on the temperature rise
- the temperature measuring bath 38 is provided with a guide angle 31 at the side end, and the object 1 to be tested enters the temperature measuring bath 38 through the guide angle 31 .
- the object 1 to be tested can be inserted into the temperature measuring tank 38 conveniently and quickly, which is convenient for operation.
- the side of the temperature measuring tank 38 opposite to the temperature measuring cavity 321 is provided with a shrapnel 35, one end of the shrapnel 35 is fixed on the bracket 3, and the other end is a free end, extending into the temperature measuring chamber 321.
- the inside of the groove 38 is in contact with the object 1 to be measured.
- an elastic force can be applied to the measured object 1, so that the measured object 1 and the temperature measuring element 2 can be further adhered to ensure that the two can be connected in real time, and ensure that the temperature measuring element 2 can accurately measure the measured temperature. Measure the temperature of object 1.
- the force applied by the elastic piece 35 to the object under test 1 is 5N-98N.
- the inventor selected the same measured object 1 and the temperature measuring element 2, and the shrapnel 35 pair
- the object under test 1 applies different pressures to test the temperature rise value detected by the temperature measuring element 2 and the damage of the temperature measuring element 2 under different pressure conditions.
- the temperature rise value greater than 12K is unqualified, and the shrapnel 35 is damaged is unqualified.
- the detection method of the temperature rise value is to apply the same heat to the measured object 1 to keep the temperature consistent, then read the temperature detected by the temperature measuring element 2 in contact with the measured object 1, and make a difference with the initial temperature to obtain the temperature rise value , recorded in Table 5.
- the detection method for the damage of the temperature measuring element 2 is to carry out 50 pressure application experiments under the condition that the shrapnel 35 exerts different pressures on the temperature measuring element 2 , and observe the damage of the temperature measuring element 2 .
- Table 5 The effect of different pressures on the temperature rise value of the test object 1 applied by the shrapnel 35
- the surface of the bracket 3 close to the bottom plate 4 is the bottom surface 371
- the bottom surface 371 is also provided with positioning pins 36
- the bottom plate 4 is provided with positioning holes 41
- the positioning pin 36 passes through the positioning hole 41
- the inner diameter of the positioning hole 41 is larger than the diameter of the positioning pin 36 .
- the bracket 3 can follow the vibration of the measured object 1 Move to realize the real-time close connection between the measured object 1 and the temperature measuring element 2, to ensure that the temperature measuring element 2 can measure the temperature of the measured object 1 most accurately, and prevent the temperature measuring element 2 from being able to accurately measure the temperature of the measured object 1. Burning accidents and equipment damage occurred.
- the bracket 3 also includes a temperature measuring cavity 321 and a temperature measuring contact surface 323, a fixing hook 34 is arranged on the outside of the temperature measuring cavity 321 opposite to the temperature measuring contact surface 323, and a fixed hook 34 is arranged on the bottom plate 4.
- a fixed shaft 42 is provided, the fixed hook 34 is sleeved on the fixed shaft 42 , and the fixed shaft 42 can move up, down, left, and right inside the fixed hook 34 .
- the fixed shaft 42 can move up, down, left, and right in the fixed hook 34, and it can also be realized that when the measured object 1 vibrates, the support 3 can move following the vibration of the measured object 1, realizing the vibration of the measured object 1. 1 and the temperature measuring element 2 are closely connected in real time to ensure that the temperature measuring element 2 can measure the temperature of the measured object 1 most accurately, and prevent the occurrence of combustion accidents and equipment damage due to the inability of the temperature measuring element 2 to accurately measure the temperature of the measured object 1 .
- a support protrusion 37 is provided on the bottom surface 371 , the support protrusion 37 protrudes from the bottom surface 371 , and the support protrusion 37 is in contact with the upper surface of the bottom plate 4 .
- the stability of the connection between the bracket 3 and the base plate 4 can be increased.
- the fixed shaft 42 includes a tripod 421 set up on both sides and a rotating shaft 422 connecting the two tripods 421, and the fixed hook 34 includes a guide groove 341, a fixing hole 342 and is opposite to the guide groove 341.
- the minimum opening distance of the guide groove 341 is smaller than the diameter of the rotating shaft 422
- the inner diameter of the fixing hole 342 is larger than the diameter of the rotating shaft 422 .
- the inner diameter of the fixing hole 342 is larger than the diameter of the rotating shaft 422, so that the rotating shaft 422 can be fixed in the fixing hole 342, so as to prevent the bracket 3 from falling off when the bracket 3 vibrates with the measured object 1, and ensure that the measured object 1 is in close contact with the measured object 1.
- the temperature element 2 is tightly attached to ensure that the temperature measurement element 2 can accurately measure the temperature of the measured object 1 .
- the rotating shaft 422 can be guaranteed to move up, down, left, and right in the fixing hole 342, and the support 3 can follow the measured object when the measured object 1 vibrates. 1’s vibration and movement, realizing the close connection between the measured object 1 and the temperature measuring element 2 in real time.
- the bottom plate 4 is provided with a through hole 43, the outer wall of the hook 34 is fixed on both sides of the guide groove 341, and it abuts against the top of the inner wall of the through hole 43, so that the two side walls of the guide groove 341 are placed in the through hole 43, and the bracket 3 In the process of following the movement of the measured object 1, the bracket 3 can be prevented from detaching from the bottom plate 4.
- the fixing hook 34 can be prevented from being split into two parts during the process of the rotating shaft 422 being pressed into the fixing hole 342 through the guide groove 341 .
- a charging device comprising the movable temperature measuring structure described in any one of the embodiments.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
一种可移动式的测温结构及充电装置,包括,被测物(1)、测温元件(2)、支架(3)和底板(4),其中,至少部分被测物(1)和测温元件(2)安装在支架(3)内,且被测物(1)与测温元件(2)至少一个面接触连接;支架(3)设置在底板(4)上,并可与底板(4)发生相对位移,支架(3)可跟随被测物(1)移动,使得被测物(1)与测温元件(2)始终保持面接触。根据可移动式的测温结构,通过支架(3)可与底板(4)发生相对位移,从而使得安装在支架(3)上测温元件(2)能够跟随被测物(1)移动,使得测温元件(2)与被测物(1)实时贴紧,保证测温元件(2)所测的温度与被测物(1)的实际温度最为接近,从而实现准确检测被测物(1)的工作温度。
Description
本申请要求享有2021年11月30日递交、申请号为202122962391.3、发明名称为“一种可移动式的测温结构及充电装置”的中国专利的优先权,该专利的所有内容在此全部引入。
本申请涉及电气连接领域,更具体地,涉及一种可移动式的测温结构及充电装置。
当前新能源汽车的充电枪头和充电座都会有对插结构的充电端子,充电端子固定在充电枪头或者充电座的端子卡座上。当汽车充电时,充电端子处的电流迅速增大,发热量急剧升高,因此为了安全起见,很多厂家会在充电端子处设置测温装置。接触式测温装置简单、可靠,且测量精度高。但是测温装置必须与被测介质接触后才能进行测温,由于充电装置的被测物一般都会受到振动,也会带动测温元件发生位移,此时被测物和测温元件之间会发生相对的角度变化,从而使被测物与测温元件之间不是实时紧贴,导致测量的温度有较大的误差,与实际温度会有偏差,造成无法实时监控到充电装置的准确温度,也会使温控系统的调温措施失效,严重时会导致充电装置的被测物温度急剧升高而没有断电,发生充电设备燃烧等安全事故。
因此,测温结构领域急需一种可跟随被测物振动而移动式的测温结构,能够使得被测物与测温元件始终紧贴,能够实时的检测被测物的实际温度。
发明内容
本申请的目的是提供一种可移动式的测温结构的新技术方案。
根据本申请第一方面,提供了一种可移动式的测温结构,包括,
被测物、测温元件、支架和底板,其中,至少部分所述被测物和所述测温元件安装在所述支架内,且所述被测物与所述测温元件至少一个面接触连接;所述支架设置在所述底板上,并可与所述底板发生相对位移,所述支架可跟随所述被测物移动,使得所述被测物与所述测温元件始终保持面接触。
可选地,所述测温元件为柱体,所述测温元件包括与所述被测物接触的测温面,与所述测温面相邻的上端面,以及在所述上端面的两边相对设置的两个挂耳,两所述挂耳 位于所述测温面的两侧,所述支架设置有测温腔体和所述测温腔体上方两侧的凹槽,所述测温元件被容纳在所述测温腔体中,所述挂耳设置在所述凹槽中,所述测温腔体设置有测温接触面。
可选地,所述挂耳靠近所述测温面的侧边与所述凹槽的侧边相互挤压接触,使所述测温面突出于所述测温接触面,并与所述测温接触面呈一定角度。
可选地,所述支架上设置测温槽,所述测温槽通过所述测温接触面与所述测温腔体相连通,至少部分被测物设置在所述测温槽内,并与测温面接触连接。
可选地,所述测温面施加给所述被测物的力为5N-98N。
可选地,所述测温槽在侧边端部设置导向角,所述被测物经所述导向角进入到所述测温槽内。
可选地,所述测温槽与所述测温腔体相对的一面设置弹片,所述弹片一端固定在所述支架上,另一端为自由端,伸入到所述测温槽内部与所述被测物抵接。
可选地,所述弹片施加给所述被测物的力为5N-98N。
根据本申请第二方面,提供一种充电装置,如上所述的可移动式的测温结构。
根据本公开的一种可移动式的测温结构及充电装置,具有如下效果:
1、通过支架可与底板发生相对位移,从而使得安装在支架上测温元件能够跟随被测物移动,使得测温元件与被测物实时贴紧,保证测温元件所测的温度,与被测物的实际温度最为接近,从而实现准确检测被测物的工作温度,避免了测温元件在后续使用过程中,出现测温面与被测物相分离的情况,或者出现测温面与被测物不能持续贴合的情况,导致不能准确测量温度。
2、通过设置弹片,可对被测物施加弹力,使得被测物与测温元件能够进一步贴紧,保证二者能够实时连接,保证测温元件能够准确的测量出被测物的温度。
3、通过挂耳靠近测温面的侧边与凹槽的侧边相互挤压接触,挂耳侧边与凹槽侧边在连接处发生干涉,使得测温面凸出于测温接触面,使得测温元件的测温面能够施加一定的力给被测物上,使得被测物与测温元件更为牢固的连接。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1为本申请测温结构的示意图;
图2为本申请测温结构的剖面图;
图3为本申请测温结构中的支架示意图;
图4为本申请测温结构中的支架的另一示意图。
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
本公开的一种可移动式的测温结构,如图1至图4所示,包括,
被测物1、测温元件2、支架3和底板4,其中,至少部分所述被测物1和所述测温元件2安装在所述支架3内,且所述被测物1与所述测温元件2至少一个面接触连接;所述支架3设置在所述底板4上,并可与所述底板4发生相对位移,所述支架3可跟随所述被测物1移动,使得所述被测物1与所述测温元件2始终保持面接触。
具体实施时,通过支架3可与底板4发生相对位移,从而使得安装在支架3上测温元件2能够跟随被测物1移动,使得测温元件2与被测物1实时贴紧,保证测温元件2所测的温度,与被测物1的实际温度最为接近,从而实现准确检测被测物1的工作温度,避免了测温元件2在后续使用过程中,出现测温元件2与被测物1相分离的情况,或者出现测温元件2与被测物1不能持续贴合的情况,导致不能准确测量温度。方便使用者或温度监控系统实时检测被测物1温度,避免因被测物1温度过高,发生燃烧导致人员伤亡或者财产损失。
具体实施时,测温元件2为NTC温度传感器或PTC温度传感器。采用这两种温度传感器的好处是体积小,能够测量其他温度计无法测量的空隙;使用方便,电阻值可在0.1~100kΩ间任意选择;易加工成复杂的形状,可大批量生产,稳定性好、过载能力强,适用于转换接头这种要求体积小,性能稳定的产品中。
具体实施时,测温元件2为双金属温度传感器。双金属温度传感器由两种不同膨胀系数的金属构成,当温度变化时,膨胀系数大的金属发生弯曲,具有较好的抗振动性,适合用于电动汽车。
更进一步的,外界的温度变化量为1℃时,双金属温度传感器的金属的形变量小于等于1mm。形变量越小的双金属温度传感器其测温效果越准确,因此发明人选用的双金属温度传感器的金属的形变量小于等于1mm。
金属的形变量越小,双金属温度传感器测得的温度值越接近真实值,为了验证金属的形变量与测温的值的关系,发明人进行了相关测试,测试方法为被测物1设定为相同的温度,选择相同的支架和相同的复位机构,选用不同的金属形变量的双金属温度传感器,记录不同情况测得的温度值并与真实温度做差取绝对值,绝对值小于等于0.2℃为合格。结果如表1所示。
表1:不同金属形变量的双金属温度传感器对测温效果的影响
金属形变(mm) | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.95 | 1 | 1.05 |
差值(℃) | 0.1 | 0.1 | 0.11 | 0.12 | 0.13 | 0.14 | 0.16 | 0.18 | 0.2 | 0.2 | 0.21 |
从表1可知,当双金属温度传感器的金属形变量在大于1mm后,测得的温度值与实际温度值相差过大,为不合格,所以发明人选用的双金属温度传感器在外界的温度变化量为1℃时,其金属的形变量小于等于1mm。
本公开的可移动式的测温结构一实施方式中,所述测温元件2为柱体,所述测温元件2包括与所述被测物1接触的测温面21,与所述测温面21相邻的上端面22,以及在所述上端面22的两边相对设置的两个挂耳23,两所述挂耳23位于所述测温面21的两侧,所述支架3设置有测温腔体321和所述测温腔体321上方两侧的凹槽322,所述测温元件2被容纳在所述测温腔体321中,所述挂耳23设置在所述凹槽322中,所述测温腔体321设置有测温接触面323。
具体实施时,通过设置测温腔体321及凹槽322,可通过测温元件2的挂耳23设置在凹槽322中,实现将测温元件2牢固的设置测温腔体321中,防止测温元件2脱离支架3,与被测物1分离。使得测温元件2与被测物1之间的连接更为牢固。
进一步的,所述挂耳23靠近所述测温面21的侧边与所述凹槽322的侧边相互挤压接触,使所述测温面21突出于所述测温接触面323,并与所述测温接触面323呈一定角度。
具体实施时,通过挂耳23靠近测温面21的侧边与凹槽322的侧边相互挤压接触,挂耳23侧边与凹槽322侧边在连接处发生干涉,使得测温面21凸出于测温接触面323,使得测温元件2的测温面21能够施加一定的力给被测物1,使得被测物1与测温元件2更为牢固的连接。
具体实施时,测温腔体321与测温面21相对的一面设置挂钩39,挂钩39包含接触面,接触面与上端面22接触并阻止测温元件2脱离测温腔体321。在挂钩39的另一侧,还设置加强筋33。通过设置挂钩39,限制测温元件2脱离测温腔体321,可将测温元件2更牢固的固定在测温腔体321内,防止测温元件2从测温腔体321内脱离,可将测温元件2根据需要在更多的环境下使用。
具体实施时,测温面21与测温接触面323的夹角为1°-45°。由于在最终装配时,测温元件2的测温面21紧密且持续的贴合在被测物1表面,此时,由于挂耳23靠近测温面21的侧边与凹槽322的侧边相互挤压接触,在挂耳23侧边与凹槽322侧边相互连接处发生干涉,使所述测温面21突出于所述测温接触面323,并与所述测温接触面323呈一定角度,所以,测温元件2的测温面21对被测物1的施加作用力,且角度越大,施加的压力也就越大。
为了验证测温面21与测温接触面323的夹角对测温面21向被测物1施加压力,对测温元件2测量被测物1温度的温飘值的影响,发明人选用相同尺寸测温腔体321,测温腔体321上设置相同尺寸的凹槽322,相同的测温元件2,只对挂耳23靠近测温面21的距离做出调整同时保持挂耳23本体尺寸不变,挂耳23靠近测温面21的距离越小,测温面21与测温接触面323的夹角越大,并测试将测温面21与测温接触面323的夹角不同值时施加的压力,以及测温元件2测量被测物1温度的温飘值,并记录在表2中。
压力的测量方法,使用精密推拉力计,将测量端抵接测温面21最高端,然后将测温面21与测温接触面323的夹角,从初始角度压到0°时读取精密推拉力计上显示的数值。
温飘值的测量方法,采用另外的精密温度传感器,精密贴附在被测物1上,必要时在贴附面涂抹导热硅脂,使测温更准确。然后在测温面21与测温接触面323不同的夹角 状态下,分别读取精密温度传感器和测温元件2的显示温度值,并做差取绝对值,为当前角度的温飘值。
在本实施例中,压力在5N-98N为合格,压力过小,无法使测温面21和被测物1紧密贴合,压力过大,会导致测温元件2损坏。温飘值小于10K为合格值,温飘值大于10K,则被测物1的实际温度,与测温元件2的测量温度差异较大,无法及时体现被测物1的实际温度,温控系统无法及时对安装有测温结构的系统的温度进行调节,导致系统温升过高引发功能失效
表2:测温面与测温接触面的夹角对测温面向被测物施加压力和温飘值的影响
根据表2可以看出,在测温面21与测温接触面323的夹角角度大于45°时,测温面21与测温接触面323的夹角压到0°时施加的压力超过98N,此时测温元件2受到的压力过大,极容易造成损坏。在测温面21与测温接触面323的夹角角度小于1°时,测温面21与接触面的夹角压到0°时施加的压力小于5N,此时测温面21与测温接触面323无法紧密贴合,也无法准确的测量到被测物1的实际温度。另外,测温面21与测温接触面323的夹角压到0°时,测温元件2测量被测物1温度的温飘值大于10K,此时被测物1的实际温度,与测温元件2的测量温度差异较大,无法及时体现被测物1的实际温度。而角度越大,温飘值越小,这与公众的平常认知不同,不是接触面平行,测温更准确,而是接触面呈可变化的角度,在接触压平后有相对压力存在,使接触面的缝隙变小,温飘值更小。因此,发明人设定测温面21在自然状态下与测温接触面323的夹角为1°-45°。
具体实施时,测温元件2具有可测量温度的测温面21,被测物1上设置被检测面11,测温面21与被检测面11接触的面积,占被检测面11面积的0.1%-95%。
进一步的,所述测温面21与所述被检测面11接触的面积,占所述被检测面11面积的1%-85%。
为了验证测温面21与被检测面11接触的面积对测温效果的影响,发明人选用相同尺寸的被测物1,不同测温面21与被检测面11接触的面积来测量被测物1的温度,并以相同的复位机构使测温面21与被检测面11接触,被测物1设定为相同的温度,然后使用测温元件2测量被测物1的温度并与实际温度做差取绝对值,绝对值大于2℃为不合格,结果记录在表3中。
表3:测温面21与被检测面11接触的面积占比对测温效果的影响
从表3可以看出,测温面21与被检测面11接触的面积占被检测面11面积小于0.1%时,温差超过2℃,当测温面21与被检测面11接触的面积占被检测面11面积大于95%后,测温元件2测量的温度与实际温度相同,继续增大接触面积已经没有必要,因此发明人设定测温面21与被检测面11接触的面积为0.1%-95%,从表3中可以看出当测温面21与被检测面11接触的面积占被检测面11面积大于等于1%后,能获得更好的测温效果,而小于等于85%时也是非常理想的情况,因此发明人进一步优选测温面21与被检测面11接触的面积占被检测面11面积为1%-85%。
进一步的,所述支架3上设置测温槽38,所述测温槽38通过所述测温接触面323与所述测温腔体321相连通,至少部分被测物1设置在所述测温槽38内,并与测温面21接触连接。
具体实施时,通过设置测温槽38,可将被测物1牢固的固定在支架3上,并通过测温接触面323实现测温元件2与被测物1的接触,实现被测物1与测温元件2持续贴合。
进一步的,所述测温面21施加给所述被测物1的力为5N-98N。
为了验证测温面21对被测物1的施加的压力大小对测温元件2检测结果及测温元件2损坏情况的影响,发明人选用了相同的被测物1和测温元件2,测温面21对被测物1施加不同的压力,测试不同压力情况下,测温元件2检测到的温升值和测温元件2损坏的情况,在本实施例中,温升值大于12K为不合格,测温元件2损坏为不合格。
温升值的检测方式为,将被测物1施加同样的热量使其温度保持一致,然后读取与被测物1接触的测温元件2检测到的温度,并与初始温度做差获得温升值,记录到表4中。
测温元件2损坏情况的检测方式为,在被测物1对测温元件2施加不同压力的情况下,进行50次施压实验,观测测温元件2损坏情况。
表4:测温面21施加给被测物1不同压力对温升值的影响
从上表4可以看出,当测温面21对被测物1的压力小于5N时,测温元件2检测到的温升值超过要求值,不符合标准要求。而当测温面21对被测物1的压力大于98N时,测温元件2损坏次数达到2次以上,也不符合标准要求,因此,发明人设定被测物3对测温元件2产生压力为5N-98N。
进一步的,所述测温槽38在侧边端部设置导向角31,所述被测物1经所述导向角31进入到所述测温槽38内。
具体实施时,通过在测温槽38在侧边端部设置导向角31,可方便快捷的将被测物1插入测温槽38中,方便操作。
进一步的,所述测温槽38与所述测温腔体321相对的一面设置弹片35,所述弹片35一端固定在所述支架3上,另一端为自由端,伸入到所述测温槽38内部与所述被测物1抵接。
具体实施时,通过设置弹片,可对被测物1施加弹力,使得被测物1与测温元件2能够进一步贴紧,保证二者能够实时连接,保证测温元件2能够准确的测量出被测物1的温度。
进一步的,所述弹片35施加给所述被测物1的力为5N-98N。
为了验证弹片35对被测物1的施加的压力大小对测温元件2检测结果及测温元件2损坏情况的影响,发明人选用了相同的被测物1和测温元件2,弹片35对被测物1施加 不同的压力,测试不同压力情况下,测温元件2检测到的温升值和测温元件2损坏的情况,在本实施例中,温升值大于12K为不合格,弹片35损坏为不合格。
温升值的检测方式为,将被测物1施加同样的热量使其温度保持一致,然后读取与被测物1接触的测温元件2检测到的温度,并与初始温度做差获得温升值,记录到表5中。
测温元件2损坏情况的检测方式为,在弹片35对测温元件2施加不同压力的情况下,进行50次施压实验,观测测温元件2损坏情况。
表5:弹片35施加给被测物1不同压力对温升值的影响
从上表5可以看出,当弹片35对被测物1的压力小于5N时,测温元件2检测到的温升值超过要求值,不符合标准要求。而当弹片35对被测物1的压力大于98N时,测温元件2损坏次数达到1次以上,也不符合标准要求,因此,发明人设定被测物3对测温元件2产生压力为5N-98N。
本公开的可移动式的测温结构一实施方式中,所述支架3靠近所述底板4的面为底面371,所述底面371上还设置定位销36,所述底板4上设置定位孔41,所述定位销36穿设所述定位孔41,所述定位孔41的内径大于所述定位销36的直径。
具体实施时,通过设置定位销36与定位孔41,以及定位孔41的内径大于定位销36的直径,可实现在被测物1振动的情况下,支架3可跟随被测物1的振动而移动,实现被测物1与测温元件2实时贴紧连接,保证测温元件2测得被测物1的温度最为准确,防止因测温元件2不能准确测量出被测物1的温度,发生燃烧事故以及设备毁损。
进一步的,所述支架3还包括测温腔体321以及测温接触面323,所述测温腔体321与所述测温接触面323相对的一面外侧设置固定挂钩34,所述底板4上设置固定轴42,所述固定挂钩34套接所述固定轴42,所述固定轴42可在所述固定挂钩34内上下左右移动。
具体实施时,通过固定轴42可在所述固定挂钩34内上下左右移动,也可实现在被测物1振动的情况下,支架3可跟随被测物1的振动而移动,实现被测物1与测温元件2实时贴紧连接,保证测温元件2测得被测物1的温度最为准确,防止因测温元件2不能准确测量出被测物1的温度,发生燃烧事故以及设备毁损。
进一步的,所述底面371上设置支撑凸起37,所述支撑凸起37突出于所述底面371,所述支撑凸起37与所述底板4的上表面接触。
具体实施时,通过在底面371上设置支撑凸起37,以及支撑凸起37与所述底板4的上表面抵接,可增加支架3与底板4连接的稳定性。
进一步的,所述固定轴42包括设立在两侧的三角架421和连接两个三角架421的旋转轴422,所述固定挂钩34包括引导槽341、固定孔342和与所述引导槽341相对设置的豁口343,所述引导槽341最小开口距离小于所述旋转轴422的直径,所述固定孔342的内径大于旋转轴422的直径。
具体实施时,固定孔342的内径大于旋转轴422的直径,可将旋转轴422固定在固定孔342内,防止支架3跟随被测物1震动时,支架3脱落,保证被测物1与测温元件2实施贴紧,保证测温元件2准确的测量被测物1的温度。通过将固定孔342的内径设置为大于旋转轴422的外径,可保证旋转轴422在固定孔342内上下左右移动,可实现在被测物1振动的情况下,支架3可跟随被测物1的振动而移动,实现被测物1与测温元件2实时贴紧连接。
具体实施时,底板4上设置有通孔43,引导槽341两侧固定挂钩34外壁,抵接在通孔43内壁顶端,使得引导槽341两侧壁部分置于通孔43中,在支架3跟随被测物1运动的过程中,可防止支架3脱离底板4。
具体实施时,通过设置豁口343,可在旋转轴422经引导槽341压进固定孔342中的过程中,防止固定挂钩34被分裂成两部分。
一种充电装置,包括实施例中任一项所述的可移动式的测温结构。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。
Claims (13)
- 一种可移动式的测温结构,其特征在于,包括,被测物(1)、测温元件(2)、支架(3)和底板(4),其中,至少部分所述被测物(1)和所述测温元件(2)安装在所述支架(3)内,且所述被测物(1)与所述测温元件(2)至少一个面接触连接;所述支架(3)设置在所述底板(4)上,并可与所述底板(4)发生相对位移,所述支架(3)可跟随所述被测物(1)移动,使得所述被测物(1)与所述测温元件(2)始终保持面接触。
- 根据权利要求1所述的可移动式的测温结构,其特征在于,所述测温元件(2)为柱体,所述测温元件(2)包括与所述被测物(1)接触的测温面(21),与所述测温面(21)相邻的上端面(22),以及在所述上端面(22)的两边相对设置的两个挂耳(23),两所述挂耳(23)位于所述测温面(21)的两侧,所述支架(3)设置有测温腔体(321)和所述测温腔体(321)上方两侧的凹槽(322),所述测温元件(2)被容纳在所述测温腔体(321)中,所述挂耳(23)设置在所述凹槽(322)中,所述测温腔体(321)设置有测温接触面(323)。
- 根据权利要求2所述的可移动式的测温结构,其特征在于,所述挂耳(23)靠近所述测温面(21)的侧边与所述凹槽(322)的侧边相互挤压接触,使所述测温面(21)突出于所述测温接触面(323),并与所述测温接触面(323)呈一定角度。
- 根据权利要求3所述的可移动式的测温结构,其特征在于,所述支架(3)上设置测温槽(38),所述测温槽(38)通过所述测温接触面(323)与所述测温腔体(321)相连通,至少部分被测物(1)设置在所述测温槽(38)内,并与测温面(21)接触连接。
- 根据权利要求4所述的可移动式的测温结构,其特征在于,所述测温面(21)施加给所述被测物(1)的力为5N-98N。
- 根据权利要求4所述的可移动式的测温结构,其特征在于,所述测温槽(38)在侧边端部设置导向角(31),所述被测物(1)经所述导向角(31)进入到所述测温槽(38)内。
- 根据权利要求4所述的可移动式的测温结构,其特征在于,所述测温槽(38)与所述测温腔体(321)相对的一面设置弹片(35),所述弹片(35)一端固定在所述支架(3)上,另一端为自由端,伸入到所述测温槽(38)内部与所述被测物(1)抵接。
- 根据权利要求7所述的可移动式的测温结构,其特征在于,所述弹片(35)施加给所述被测物(1)的力为5N-98N。
- 根据权利要求1所述的可移动式的测温结构,其特征在于,所述支架(3)靠近所述底板(4)的面为底面(371),所述底面(371)上还设置定位销(36),所述底板(4)上设置定位孔(41),所述定位销(36)穿设所述定位孔(41),所述定位孔(41)的内径大于所述定位销(36)的直径。
- 根据权利要求9所述的可移动式的测温结构,其特征在于,所述支架(3)还包括测温腔体(321)以及测温接触面(323),所述测温腔体(321)与所述测温接触面(323)相对的一面外侧设置固定挂钩(34),所述底板(4)上设置固定轴(42),所述固定挂钩(34)套接所述固定轴(42),所述固定轴(42)可在所述固定挂钩(34)内上下左右移动。
- 根据权利要求9所述的可移动式的测温结构,其特征在于,所述底面(371)上设置支撑凸起(37),所述支撑凸起(37)突出于所述底面(371),所述支撑凸起(37)与所述底板(4)的上表面接触。
- 根据权利要求10所述的可移动式的测温结构,其特征在于,所述固定轴(42)包括设立在两侧的三角架(421)和连接两个三角架(421)的旋转轴(422),所述固定挂钩(34)包括引导槽(341)、固定孔(342)和与所述引导槽(341)相对设置的豁口(343),所述引导槽(341)最小开口距离小于所述旋转轴(422)的直径,所述固定孔(342)的内径大于旋转轴(422)的直径。
- 一种充电装置,包括权利要求1-12任一项所述的可移动式的测温结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122962391.3 | 2021-11-30 | ||
CN202122962391.3U CN216695324U (zh) | 2021-11-30 | 2021-11-30 | 一种可移动式的测温结构及充电装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023098643A1 true WO2023098643A1 (zh) | 2023-06-08 |
Family
ID=81836802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/134897 WO2023098643A1 (zh) | 2021-11-30 | 2022-11-29 | 一种可移动式的测温结构及充电装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN216695324U (zh) |
WO (1) | WO2023098643A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN216695324U (zh) * | 2021-11-30 | 2022-06-07 | 长春捷翼汽车零部件有限公司 | 一种可移动式的测温结构及充电装置 |
CN219347993U (zh) * | 2023-01-11 | 2023-07-14 | 长春捷翼汽车科技股份有限公司 | 一种可调节角度的温感组件及一种充电装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2654832A1 (fr) * | 1989-11-21 | 1991-05-24 | Electricite De France | Support d'extensometre a contact, notamment pour une machine d'essai en traction d'une eprouvette. |
CN203349934U (zh) * | 2013-06-18 | 2013-12-18 | 国家电网公司 | 一种gis设备触头温度监测试验装置 |
JP2017026513A (ja) * | 2015-07-24 | 2017-02-02 | 株式会社鷺宮製作所 | 表面温度測定センサ |
DE102019211809A1 (de) * | 2019-08-06 | 2021-02-11 | Robert Bosch Gmbh | Temperaturmessvorrichtung |
CN212721828U (zh) * | 2020-06-22 | 2021-03-16 | 佛山市知贝电器有限公司 | 一种温度检测机构、温度检测装置以及电器设备 |
CN113588114A (zh) * | 2021-08-16 | 2021-11-02 | 长春捷翼汽车零部件有限公司 | 一种测温结构、充电装置和机动车辆 |
CN113639889A (zh) * | 2021-09-07 | 2021-11-12 | 长春捷翼汽车零部件有限公司 | 测温结构、充电装置及机动车辆 |
CN216695324U (zh) * | 2021-11-30 | 2022-06-07 | 长春捷翼汽车零部件有限公司 | 一种可移动式的测温结构及充电装置 |
-
2021
- 2021-11-30 CN CN202122962391.3U patent/CN216695324U/zh active Active
-
2022
- 2022-11-29 WO PCT/CN2022/134897 patent/WO2023098643A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2654832A1 (fr) * | 1989-11-21 | 1991-05-24 | Electricite De France | Support d'extensometre a contact, notamment pour une machine d'essai en traction d'une eprouvette. |
CN203349934U (zh) * | 2013-06-18 | 2013-12-18 | 国家电网公司 | 一种gis设备触头温度监测试验装置 |
JP2017026513A (ja) * | 2015-07-24 | 2017-02-02 | 株式会社鷺宮製作所 | 表面温度測定センサ |
DE102019211809A1 (de) * | 2019-08-06 | 2021-02-11 | Robert Bosch Gmbh | Temperaturmessvorrichtung |
CN212721828U (zh) * | 2020-06-22 | 2021-03-16 | 佛山市知贝电器有限公司 | 一种温度检测机构、温度检测装置以及电器设备 |
CN113588114A (zh) * | 2021-08-16 | 2021-11-02 | 长春捷翼汽车零部件有限公司 | 一种测温结构、充电装置和机动车辆 |
CN113639889A (zh) * | 2021-09-07 | 2021-11-12 | 长春捷翼汽车零部件有限公司 | 测温结构、充电装置及机动车辆 |
CN216695324U (zh) * | 2021-11-30 | 2022-06-07 | 长春捷翼汽车零部件有限公司 | 一种可移动式的测温结构及充电装置 |
Also Published As
Publication number | Publication date |
---|---|
CN216695324U (zh) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023098643A1 (zh) | 一种可移动式的测温结构及充电装置 | |
WO2023036130A1 (zh) | 测温结构、充电装置及机动车辆 | |
JP7376875B2 (ja) | 測定対象物の熱伝導に関する物性値の測定方法および測定システム | |
WO2023036129A1 (zh) | 测温结构、充电装置及机动车辆 | |
JP5509195B2 (ja) | 熱伝導測定装置及び熱伝導測定方法 | |
CN112254872B (zh) | 一种真空隔热腔高温压力传感器 | |
EP4390348A1 (en) | Temperature measurement structure, charging apparatus and motor vehicle | |
CN216283996U (zh) | 测温结构,充电装置及机动车辆 | |
WO2023125140A1 (zh) | 一种端子测温结构 | |
WO2024140959A1 (zh) | 一种端子测温结构及一种连接器 | |
JP5379760B2 (ja) | 熱伝導測定装置及び熱伝導測定方法 | |
EP4130694A1 (en) | A temperature sensor assembly | |
CN116164873B (zh) | 一种六维力传感器的温度补偿方法及装置 | |
WO2018122698A1 (en) | High accuracy pressure transducer with improved temperature stability | |
JP5101361B2 (ja) | 圧力センサ | |
US5068635A (en) | Stress sensor having deformable ceramic hollow member | |
CN216283995U (zh) | 测温结构、充电装置及机动车辆 | |
WO2023168798A1 (zh) | 一种热电势探头 | |
JP6075398B2 (ja) | 温度センサ及び温度センサの製造方法 | |
JP2013156122A (ja) | 加熱装置 | |
JP7375933B2 (ja) | 温度測定装置、方法およびプログラム | |
CN216846323U (zh) | 一种多功能传感器 | |
RU2657133C1 (ru) | Тензорезисторный преобразователь перемещений | |
CN114935115B (zh) | 一种流体管道用集成式测温结构及封装方法 | |
KR102405786B1 (ko) | 보일러 화염측 상태감지 장치 및 이를 이용한 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22900447 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |