WO2023036067A1 - 一种气体扩散层及其制备方法 - Google Patents

一种气体扩散层及其制备方法 Download PDF

Info

Publication number
WO2023036067A1
WO2023036067A1 PCT/CN2022/116942 CN2022116942W WO2023036067A1 WO 2023036067 A1 WO2023036067 A1 WO 2023036067A1 CN 2022116942 W CN2022116942 W CN 2022116942W WO 2023036067 A1 WO2023036067 A1 WO 2023036067A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
gas diffusion
cutting
metal
preparation
Prior art date
Application number
PCT/CN2022/116942
Other languages
English (en)
French (fr)
Inventor
毛学伟
林卫兵
滕彪
Original Assignee
氢克新能源技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 氢克新能源技术(上海)有限公司 filed Critical 氢克新能源技术(上海)有限公司
Priority to AU2022341395A priority Critical patent/AU2022341395A1/en
Publication of WO2023036067A1 publication Critical patent/WO2023036067A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of hydrogen production by electrolysis of water, in particular to a gas diffusion layer and a preparation method thereof.
  • Hydrogen production by electrolysis is considered as a new type of energy storage method, and it is also one of the methods capable of large-scale consumption of renewable energy, which has been unanimously recognized in the world.
  • the methods of electrolytic hydrogen production are mainly divided into traditional alkaline electrolysis of water and emerging solid electrolyte (SPE) electrolysis of water to produce hydrogen, and SPE electrolysis of water for hydrogen production has high efficiency, miniaturized equipment, rapid start and stop, no pollution, It has the advantages of high purity of hydrogen production, so it is competitive in the new energy power generation scenario that accommodates extremely fluctuating fluctuations.
  • SPE solid electrolyte
  • the main components of the SPE electrolyzer are bipolar plates, gas diffusion layers (cathode and anode), and membrane electrodes.
  • the main function of the gas diffusion layer is to support the membrane electrode, conduct electricity, divert gas and liquid, etc. Due to the strong oxidation of the anode oxygen evolution reaction during the water electrolysis reaction, the gas diffusion layer and the bipolar plate of the SPE electrolyzer Titanium material is mostly used.
  • the gas diffusion layer for the existing SPE electrolyzer mainly adopts titanium fiber felt board, and the titanium fiber felt board has the following problems as the gas diffusion layer:
  • the titanium fiber felt board is sintered after lapping of titanium fibers, the internal voids are messy, and the fluid diversion effect is poor;
  • the surface microstructure of the titanium fiber felt board is also in a disorderly state. On the interface with the membrane electrode, the contact efficiency is not high, and the contact surface resistance is large, which affects the efficiency of the electrolysis water reaction.
  • the invention provides a gas diffusion layer and a preparation method thereof, which can solve the problems of poor flow diversion effect, low contact efficiency and high contact surface resistance of the existing titanium fiber mat.
  • a method for preparing a gas diffusion layer comprising the following steps:
  • step S2 cutting the thin metal plate with the elongated groove formed in step S1, and cutting it into a required shape;
  • step S3 superimposing several thin metal plates cut in step S2, and adhering to and firmly connecting adjacent metal thin plates to form a metal block with a regular pore structure inside;
  • step S4 Cutting the metal block in step S3 along its cross-section, the cutting thickness matches the thickness of the required gas diffusion layer, and cutting to form a sheet structure regularly covered with micropores as the gas diffusion layer.
  • step S1 includes the following steps:
  • step S12 Roll the thin metal plate with the forme roll prepared in step S11, and process side-by-side strip-shaped grooves on one side surface of the thin metal plate.
  • the grooves on the plate roll are arranged side by side along the axial or circumferential direction of the plate roll.
  • the elongated grooves on the surface of the metal sheet in step S1 are formed by laser processing or etching processing, ultrasonic electro-engraving processing or electric discharge processing.
  • the thin metal plate is made of titanium metal or titanium alloy.
  • it further includes performing surface coating treatment on the gas diffusion layer after step S4, and the surface coating treatment is passivation anticorrosion treatment and hydrophilic treatment.
  • a gas diffusion layer is also provided, and the gas diffusion layer is prepared by the preparation method described in the first aspect.
  • the preparation method has high efficiency, and can prepare a gas diffusion layer with a flat surface and regularly arranged conduction holes, which can be more fully in contact with the membrane electrode, reduce the contact surface resistance, and improve the electrolysis efficiency; Improve the diversion efficiency of gas and liquid; so this application is an important innovation for the irregular internal pore structure of the gas diffusion layer used in the previous SPE electrolyzer, which can greatly improve the diversion effect of the gas diffusion layer on the fluid, and can also Improve the contact efficiency between the gas diffusion layer and the membrane electrode.
  • Fig. 1 is the flow chart of preparation method of the present invention
  • Fig. 2 is a schematic diagram of stacking metal sheets in step S3 in the preparation method of the present invention.
  • step S3 is a schematic diagram of the metal block formed in step S3 in the preparation method of the present invention.
  • Fig. 4 is a schematic structural view of an embodiment of the gas diffusion layer of the present invention.
  • Fig. 5 is a schematic structural view of another embodiment of the gas diffusion layer of the present invention.
  • the present invention provides to achieve the above purpose and solve the problems of poor flow diversion effect, low contact efficiency and large contact surface resistance of the existing titanium fiber felt board.
  • the present invention provides the following technical solutions:
  • Step S1 process side-by-side strip-shaped grooves on one side of the metal sheet, and the strip-shaped grooves are used to form micropores on the gas diffusion layer.
  • An important indicator of the gas diffusion layer is the porosity, which is the micropores.
  • the ratio of the area of the hole to the area of the gas diffusion layer, and the size of the strip groove and the thickness of the metal sheet will affect the porosity of the gas diffusion layer.
  • the final porosity of the gas diffusion layer is 12.5%.
  • the cross-sectional shape of the elongated groove has many options. As a preferred design, it can be designed as a rectangle or a square, or it can be designed as a semicircle, triangle or trapezoid. Depending on the specific requirements of the layer, different shapes of elongated grooves are selected.
  • the application provides a more efficient molding method in terms of the molding method of the elongated grooves, specifically engraving side-by-side grooves on the smooth-surfaced version roller; and then using the A good version roller rolls the metal sheet, and processes side-by-side long strip grooves on one side of the metal sheet.
  • the grooves on the version roller are used to form beams between the long strip grooves. Install the surface-engraved plate roller on the roller press to roll the metal sheet, so that a large number of elongated grooves can be formed at one time.
  • the grooves on the plate roll are arranged side by side along the axial or circumferential direction of the plate roll, and the elongated grooves can be formed by rolling.
  • the thin metal plate is preferably made of titanium metal or titanium alloy, and those skilled in the art may also use other metal materials or alloy materials with better corrosion resistance.
  • Step S2 cutting the thin metal plate with the elongated groove formed in step S1, and cutting it into a desired shape, such as cutting into a rectangle of 200 mm ⁇ 500 mm, and there are many ways of cutting, such as punching with an edge trimmer, Wire cutting can also be used.
  • Step S3 superimpose several pieces of metal sheets cut in step S2, the number of superimposed metal sheets can be adjusted according to the requirements of the gas diffusion layer, and the adjacent metal sheets are close to each other And make a firm connection, specifically, the beams formed by the long strip grooves on the lower metal sheet are closely attached to the smooth back of the upper metal sheet.
  • High temperature welding technology can be used, and the metal sheets can be firmly connected. Together, form a metal block with a regular pore structure inside, such as a metal block with a size of 200mm ⁇ 500mm ⁇ 500mm.
  • other methods can also be used to connect the metal sheets, such as ultrasonic welding, resistance welding, laser welding and so on.
  • Step S4 cutting the metal block in step S3 along its cross-section, the thickness of the cutting matches the thickness of the required gas diffusion layer, such as 0.5 mm in thickness, and cutting it to form a thin sheet structure whose surface is regularly covered with micropores as
  • the gas diffusion layer is cut according to a metal block of 200mm ⁇ 500mm ⁇ 500mm, and hundreds of gas diffusion layers with a size of 500mm ⁇ 500mm ⁇ 0.5mm can be obtained.
  • the formed gas diffusion layer has a micropore density of several per square meter. Millions to billions, excellent diversion effect on fluid.
  • step S5 may also be added, specifically performing surface coating treatment on the gas diffusion layer, and the surface coating treatment mainly includes passivation anticorrosion treatment and hydrophilic treatment.
  • the present application provides a gas diffusion layer, as shown in Figure 4, the gas diffusion layer is prepared by the preparation method described in Example 1, the specific structure includes a thin plate main body, the thin plate The main body is regularly arranged with several micropores that run through the main body of the thin plate.
  • the thickness of the main body of the thin plate is preferably 200-800 microns.
  • the micropores are arranged in a rectangular array, or as shown in Figure 5, the micropores
  • the microholes are arranged in several rows, and the microholes in adjacent rows are staggered, so that the microholes can be more uniform, and the utilization rate of the area can be improved for the main body of the special-shaped thin plate.
  • This application adopts a brand-new preparation method, which has high efficiency and can prepare a gas diffusion layer with a smooth surface and regularly arranged conduction flow holes, which can be more fully in contact with the membrane electrode, reduce the contact surface resistance, and improve the electrolysis efficiency; Maximize the diversion efficiency of gas and liquid; so this application is an important innovation to the irregular internal pore structure of the gas diffusion layer used in the SPE electrolyzer, which can greatly improve the diversion effect of the gas diffusion layer on the fluid, and at the same time The contact efficiency between the gas diffusion layer and the membrane electrode can also be improved.
  • the gas diffusion layer produced by the method of the present application can also be used in the fields of physical and chemical reactions that need to fully disperse or collect fluids, including but not limited to fuel cells, and it can also reflect the The performance advantages of the gas diffusion layer of the present application.
  • connection and “fixation” should be understood in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.

Abstract

本发明公开了一种气体扩散层及其制备方法,包括以下步骤S1、在一金属薄板的一侧表面加工出并排的长条形凹槽;S2、对具有长条凹槽的金属薄板进行切割,切割成需要的形状;S3、将若干块切割好的金属薄板进行叠加,相邻的金属薄板之间紧贴并进行牢固连接,形成内部有规则孔隙结构的金属块;S4、对金属块沿着其横截面进行切割,切割的厚度与需要的气体扩散层的厚度相配,切割下来形成表面规则地布满微孔的薄片结构作为气体扩散层。本发明可以解决现有的钛纤维毡板导流效果较差、接触效率不高、接触面电阻较大的问题。

Description

一种气体扩散层及其制备方法 技术领域
本发明涉及电解水制氢领域,具体为一种气体扩散层及其制备方法。
背景技术
电解制氢被认为是一种新型的储能方式,也是能够大规模消纳可再生能源的方法之一,在世界上取得了一致认可。电解制氢的方式主要分为传统的碱性电解水制氢和新兴的固态电解质(SPE)电解水制氢,而SPE电解水制氢具有效率高、装置小型化、启停迅速、无污染、产氢纯度高等优势,因此在消纳波动性极大的新能源发电场景中有竞争力。
SPE电解槽的主要零部件有双极板、气体扩散层(阴阳极)、膜电极。气体扩散层主要功能是支护膜电极、导电、气体和液体的导流等,由于水电解反应过程中,阳极析氧反应产生的强氧化性,所以SPE电解槽的气体扩散层以及双极板多采用钛金属材质。现有SPE电解槽用气体扩散层主要是采用钛纤维毡板,钛纤维毡板作为气体扩散层存在以下问题:
1、钛纤维毡板是采用钛纤维搭接之后烧结而成,内部空隙杂乱,对流体的导流效果较差;
2、钛纤维毡板的表面微观结构也呈现出杂乱无章的状态,在与膜电极接触的界面上,接触效率不高,接触面电阻较大,影响电解水反应的效率。
为了解决上述问题需要一种表面平整且具有规则孔隙的新的气体扩散层来满足接触率和导流效率的要求。
发明内容
本发明提供了一种气体扩散层及其制备方法,可以解决现有的钛纤维毡板导流效果较差、接触效率不高、接触面电阻较大的问题。
为实现上述目的,第一方面,在本申请的实施例中,提供如下技术方案:一种气体扩散层的制备方法,包括以下步骤:
S1、在金属薄板的一侧表面加工出并排的长条形凹槽;
S2、对步骤S1中成型的具有长条凹槽的金属薄板进行切割,切割成需要的形状;
S3、将若干块步骤S2中切割好的金属薄板进行叠加,相邻的金属薄板之间紧贴并进行牢固连接,形成内部有规则孔隙结构的金属块;
S4、对步骤S3中的金属块沿着其横截面进行切割,切割的厚度与需要的气体扩散层的厚度相配,切割下来形成表面规则地布满微孔的薄片结构作为气体扩散层。
作为优选,其中,步骤S1中包括以下步骤:
S11、版辊制作:在表面光滑的版辊上雕刻出并排的沟槽;
S12、使用步骤S11中制作好的版辊对金属薄板进行辊压,在金属薄板的一侧表面加工出并排的长条形凹槽。
作为优选,所述的版辊上的沟槽沿着版辊的轴向或者周向并排布置。
作为优选,步骤S1中金属薄板表面的长条形凹槽采用激光加工或蚀刻加工或超声波电雕加工或电火花加工形成。
作为优选,所述的金属薄板为钛金属或钛合金制成。
作为优选,还包括在步骤S4后对气体扩散层进行表面涂层处理,所述的表面涂层处理为钝化防腐处理及亲水性处理。
第二方面,在本申请的实施例中,还提供了一种气体扩散层,该气体扩散层由第一方面中所述制备方法制备得到。
与现有技术相比,本发明的有益效果是:
采用全新的制备方法,制备方法效率高,可以制备出表面平整且具有规则排列的导流通孔的气体扩散层,可以与膜电极接触更充分,降低接触面电阻,提高电解效率;可以最大限度的提高对气体和液体的导流效率;所以本申请是对以往SPE电解槽用气体扩散层的非规则内部孔隙结构的一次重要革新, 可大大提高气体扩散层对流体的导流效果,同时也可以提高气体扩散层与膜电极的接触效率。
附图说明
图1为本发明的制备方法的流程图;
图2为本发明的制备方法中步骤S3中金属薄板叠加示意图;
图3为本发明的制备方法中步骤S3中形成的金属块的示意图;
图4为本发明的气体扩散层的一种实施方式的结构示意图;
图5为本发明的气体扩散层的另一种实施方式的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供为实现上述目的,解决现有的钛纤维毡板导流效果较差、接触效率不高、接触面电阻较大的问题,本发明提供如下技术方案:
实施例1:
如图1所示,提供一种气体扩散层的制备方法,包括以下步骤:
步骤S1、在金属薄板的一侧表面加工出并排的长条形凹槽,长条形凹槽用于形成气体扩散层上的微孔,气体扩散层有一个重要指标,就是孔隙率,就是微孔的面积占气体扩散层面积的比率,而长条形凹槽的尺寸以及金属薄板的厚度则都会影响到气体扩散层的孔隙率,设长条形凹槽的深度为a,长条形凹槽的宽度为b,相邻的长条形凹槽之间的距离为c,金属薄板的总厚度为d,通过设置这四个参数的比例,就可以得到一定孔隙率的气体扩散层,如a:b:c:d=1:1:1:2,则气体扩散层最终的孔隙率为25%;也可以将四个参数设置为a:b:c:d=1:2:2:4,则气体扩散层最终的孔隙率为12.5%;再者将四个参数设置为a:b:c:d=1:1:2:2,则气体扩散层最终的孔隙率为12.5%。
在本实施例中,长条形凹槽的截面形状具有多种选择,作为优选可以设计为长方形或者正方形,也可以设计呈半圆形或三角形或梯形等形状,本领域技术人员可以根据气体扩散层的具体使用要求来选择不同的长条形凹槽的形状。
在本实施例中,在长条形凹槽的成型方式上,本申请提供了一种效率较高的成型方式,具体为先在表面光滑的版辊上雕刻出并排的沟槽;然后使用制作好的版辊对金属薄板进行辊压,在金属薄板的一侧表面加工出并排的长条形凹槽,其中版辊上的沟槽是用于成型长条形凹槽之间的梁,通过在压辊机上安装表面雕花的版辊对金属薄板进行辊压,就可以一次性完成大数量的长条形凹槽的成型。
其中,所述的版辊上的沟槽沿着版辊的轴向或者周向并排布置,都可以通过辊压完成长条形凹槽的成型。
当然,在实际应用过程中,对于金属薄板上的长条形凹槽的成型方式还有很多种,如激光加工或蚀刻加工或超声波电雕加工或电火花加工,本领域技术人员可以根据需要进行自行选择。
在本实施例中,所述的金属薄板优选为钛金属或钛合金制成,本领域技术人员也可以采用其他防腐性较好的金属材料或合金材料。
步骤S2、对步骤S1中成型的具有长条凹槽的金属薄板进行切割,切割成需要的形状,如可以切割呈200mm×500mm长方形,切割的方式也有很多种,如切边机进行冲切,也可以采用线切割。
步骤S3、如图2-3所示,将若干块步骤S2中切割好的金属薄板进行叠加,金属薄板叠加的数量可以根据气体扩散层的要求进行调整,而相邻的金属薄板之间紧贴并进行牢固连接,具体来说就是位于下层的金属薄板上长条形凹槽形成的梁与位于上层的金属薄板的光滑背面进行紧贴,可以采用高温熔接工艺,金属薄板之间可以牢固连接在一起,形成内部有规则孔隙结构的 金属块,如尺寸为200mm×500mm×500mm的金属块。当然,在实际应用过程中,也可以采用其他的方式将金属薄板连接起来,如超声波焊接、电阻焊、激光焊等等。
步骤S4、对步骤S3中的金属块沿着其横截面进行切割,切割的厚度与需要的气体扩散层的厚度相配,如厚度0.5mm,切割下来形成表面规则地布满微孔的薄片结构作为气体扩散层,按照200mm×500mm×500mm的金属块进行切割,则可以得到数百片规格为500mm×500mm×0.5mm的气体扩散层,成型的气体扩散层,微孔的密度可以达到每平米数百万个到数十亿个,对流体的导流效果优异。
在步骤S4后,还可以增加步骤S5,具体为对气体扩散层进行表面涂层处理,该表面涂层处理主要为钝化防腐处理及亲水性处理。
实施例2:
在本申请的实施例中,本申请提供了一种气体扩散层,如图4所示,该气体扩散层由实施例1中所述制备方法制备得到,具体结构包括薄板主体,所述的薄板主体上呈规则排列有若干个贯穿薄板主体的微孔,薄板主体的厚度优选为200-800微米,如图4所示,微孔采用矩形阵列排列布置,也可以如图5所示,微孔排列呈若干行,相邻行的微孔呈错位布置,这样可以使微孔更加均匀,对于异形的薄板主体可以提高面积的利用率。
本申请采用全新的制备方法,制备方法效率高,可以制备出表面平整且具有规则排列的导流通孔的气体扩散层,可以与膜电极接触更充分,降低接触面电阻,提高电解效率;可以最大限度的提高对气体和液体的导流效率;所以本申请是对以往SPE电解槽用气体扩散层的非规则内部孔隙结构的一次重要革新,可大大提高气体扩散层对流体的导流效果,同时也可以提高气体扩散层与膜电极的接触效率。
另外,需要补充说明的是:利用本申请方法制作出的气体扩散层也可用 于包括但不限于燃料电池等需要将流体充分分散或收集的物理化学反应领域,在这些领域应用时也能体现出本申请的气体扩散层的性能优势。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后......)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体地限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。

Claims (7)

  1. 一种气体扩散层的制备方法,其特征在于,包括以下步骤:
    S1、在一金属薄板的一侧表面加工出并排的长条形凹槽;
    S2、对步骤S1中成型的具有长条凹槽的金属薄板进行切割,切割成需要的形状;
    S3、将若干块步骤S2中切割好的金属薄板进行叠加,相邻的金属薄板之间紧贴并进行牢固连接,形成内部有规则孔隙结构的金属块;
    S4、对步骤S3中的金属块沿着其横截面进行切割,切割的厚度与需要的气体扩散层的厚度相配,切割下来形成表面规则地布满微孔的薄片结构作为气体扩散层。
  2. 根据权利要求1所述的气体扩散层的制备方法,其特征在于:
    步骤S1中包括以下步骤:
    S11、版辊制作:在表面光滑的版辊上雕刻出并排的沟槽;
    S12、使用步骤S11中制作好的版辊对金属薄板进行辊压,在金属薄板的一侧表面加工出并排的长条形凹槽。
  3. 根据权利要求2所述的气体扩散层的制备方法,其特征在于:所述的版辊上的沟槽沿着版辊的轴向或者周向并排布置。
  4. 根据权利要求1所述的气体扩散层的制备方法,其特征在于:步骤S1中金属薄板表面的长条形凹槽采用激光加工或蚀刻加工或超声波电雕加工或电火花加工形成。
  5. 根据权利要求1所述的气体扩散层的制备方法,其特征在于:所述的金属薄板为钛金属或钛合金制成。
  6. 根据权利要求1所述的气体扩散层的制备方法,其特征在于:还包括在步骤S4后对气体扩散层进行表面涂层处理,所述的表面涂层处理为钝化防腐处理及亲水性处理。
  7. 一种气体扩散层,其特征在于,由权利要求1-6中任一项所述制备方 法制备得到。
PCT/CN2022/116942 2021-09-09 2022-09-05 一种气体扩散层及其制备方法 WO2023036067A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022341395A AU2022341395A1 (en) 2021-09-09 2022-09-05 Porous transport layer and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111056797.3A CN113789537B (zh) 2021-09-09 2021-09-09 一种气体扩散层及其制备方法
CN202111056797.3 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023036067A1 true WO2023036067A1 (zh) 2023-03-16

Family

ID=78879806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116942 WO2023036067A1 (zh) 2021-09-09 2022-09-05 一种气体扩散层及其制备方法

Country Status (3)

Country Link
CN (1) CN113789537B (zh)
AU (1) AU2022341395A1 (zh)
WO (1) WO2023036067A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789537B (zh) * 2021-09-09 2024-01-30 氢克新能源技术(上海)有限公司 一种气体扩散层及其制备方法
CN114934290B (zh) * 2022-03-09 2024-01-30 氢克新能源技术(上海)有限公司 一种气体扩散层及其加工工艺
CN114717587B (zh) * 2022-05-12 2023-01-31 清华大学 质子交换膜电解池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117221A (ja) * 2007-11-08 2009-05-28 Toyota Motor Corp スタック構造を有する燃料電池
JP2010257868A (ja) * 2009-04-28 2010-11-11 Honda Motor Co Ltd ガス拡散層割断装置およびガス拡散層割断方法
CN101946349A (zh) * 2008-06-16 2011-01-12 丰田车体株式会社 气体流路形成部件、制造气体流路形成部件的方法及气体流路形成部件的成形装置
JP2016195052A (ja) * 2015-04-01 2016-11-17 トヨタ自動車株式会社 ガス拡散層付き膜電極接合体の製造方法およびその製造装置
CN111139497A (zh) * 2020-01-22 2020-05-12 同济大学 一种固体聚合物电解质电解槽用膜电极组件及制备方法
CN111408725A (zh) * 2020-04-27 2020-07-14 中国华能集团清洁能源技术研究院有限公司 一种具有梯度孔径的spe电解槽用气体扩散层制备方法
CN113789537A (zh) * 2021-09-09 2021-12-14 氢克新能源技术(上海)有限公司 一种气体扩散层及其制备方法
CN216765076U (zh) * 2021-09-09 2022-06-17 氢克新能源技术(上海)有限公司 一种用于spe电解槽的气体扩散件
CN114934290A (zh) * 2022-03-09 2022-08-23 氢克新能源技术(上海)有限公司 一种气体扩散层及其加工工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294331A (ja) * 2006-04-27 2007-11-08 Toyota Motor Corp 燃料電池および燃料電池用ガスセパレータ
JP2009009879A (ja) * 2007-06-29 2009-01-15 Toyota Motor Corp ガス拡散部材を用いた燃料電池及びガス拡散部材の製造方法
CN103401003B (zh) * 2013-07-17 2016-08-17 南京大学昆山创新研究院 质子交换膜燃料电池的气体扩散层及其制备方法
CN104711634A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种固态聚合物电解质水电解池的扩散层及其制备方法和应用
DE102016200802A1 (de) * 2016-01-21 2017-07-27 Volkswagen Ag Flusskörper-Gasdiffusionsschicht-Einheit für eine Brennstoffzelle, Brennstoffzellenstapel, Brennstoffzellensystem und Kraftfahrzeug
CN211088400U (zh) * 2019-11-18 2020-07-24 天能电池集团股份有限公司 一种隔板流道扩散层复合结构及使用该结构的燃料电池
CN112072119B (zh) * 2020-08-06 2022-06-21 江苏大学 一种燃料电池气体扩散层结构及其加工方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117221A (ja) * 2007-11-08 2009-05-28 Toyota Motor Corp スタック構造を有する燃料電池
CN101946349A (zh) * 2008-06-16 2011-01-12 丰田车体株式会社 气体流路形成部件、制造气体流路形成部件的方法及气体流路形成部件的成形装置
JP2010257868A (ja) * 2009-04-28 2010-11-11 Honda Motor Co Ltd ガス拡散層割断装置およびガス拡散層割断方法
JP2016195052A (ja) * 2015-04-01 2016-11-17 トヨタ自動車株式会社 ガス拡散層付き膜電極接合体の製造方法およびその製造装置
CN111139497A (zh) * 2020-01-22 2020-05-12 同济大学 一种固体聚合物电解质电解槽用膜电极组件及制备方法
CN111408725A (zh) * 2020-04-27 2020-07-14 中国华能集团清洁能源技术研究院有限公司 一种具有梯度孔径的spe电解槽用气体扩散层制备方法
CN113789537A (zh) * 2021-09-09 2021-12-14 氢克新能源技术(上海)有限公司 一种气体扩散层及其制备方法
CN216765076U (zh) * 2021-09-09 2022-06-17 氢克新能源技术(上海)有限公司 一种用于spe电解槽的气体扩散件
CN114934290A (zh) * 2022-03-09 2022-08-23 氢克新能源技术(上海)有限公司 一种气体扩散层及其加工工艺

Also Published As

Publication number Publication date
CN113789537A (zh) 2021-12-14
AU2022341395A1 (en) 2024-04-04
CN113789537B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2023036067A1 (zh) 一种气体扩散层及其制备方法
AU2020200913A1 (en) Flow fields for use with an electrochemical cell
CN109638310B (zh) 燃料电池用超薄复合双极板及包含其的燃料电池
CN112838232B (zh) 一种全通孔金属纤维烧结体燃料电池双极板及燃料电池堆
CN104157895A (zh) 聚合物电解质膜燃料电池轻型电堆及其制造方法
TW201110451A (en) Fuel cells
JP2018109221A (ja) 電気化学式水素ポンプ
US20210119229A1 (en) Metal porous sheet, fuel cell, and water electrolysis device
US9806360B2 (en) Unit cell for solid-oxide fuel cell and solid-oxide fuel cell using same
CN114934290B (zh) 一种气体扩散层及其加工工艺
GB2387264A (en) Flow field pattern
JP4599832B2 (ja) 溝付き電極材および液流通型電解槽用電極
CN216765076U (zh) 一种用于spe电解槽的气体扩散件
WO2014096793A1 (en) Fuel cells and method of operation
KR20050095911A (ko) 유동장
JP3122734B2 (ja) 固体高分子電解質膜を用いる水の電気分解槽
WO2022027944A1 (zh) 一种燃料电池气体扩散层结构及其加工方法
CN112626542A (zh) 电极流场板和电解水槽
JP2021093361A (ja) Hte電解槽またはsofc燃料電池のインターコネクタを構成する部品を製造するための改善された方法
JP2006107968A (ja) 燃料電池用ガス流路形成部材および燃料電池
KR20220059516A (ko) 양성자 교환 막 연료 전지용 가스 확산층 및 그 제조 방법
CN220767194U (zh) 一种水电解槽用带流场结构的极板
CN215517654U (zh) 电极流场板和电解水槽
CN114717587B (zh) 质子交换膜电解池
WO2024098909A1 (zh) 一种用于碱性电解水制氢的气液扩散件及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022341395

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022341395

Country of ref document: AU

Date of ref document: 20220905

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022866530

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022866530

Country of ref document: EP

Effective date: 20240409