WO2023033113A1 - 電気二重層キャパシタを介する電子伝導機能を有する電池 - Google Patents

電気二重層キャパシタを介する電子伝導機能を有する電池 Download PDF

Info

Publication number
WO2023033113A1
WO2023033113A1 PCT/JP2022/032993 JP2022032993W WO2023033113A1 WO 2023033113 A1 WO2023033113 A1 WO 2023033113A1 JP 2022032993 W JP2022032993 W JP 2022032993W WO 2023033113 A1 WO2023033113 A1 WO 2023033113A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cathode electrode
anode electrode
double layer
electric double
Prior art date
Application number
PCT/JP2022/032993
Other languages
English (en)
French (fr)
Inventor
光廣 佐想
Original Assignee
クロステクノロジーラボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021142109A external-priority patent/JP2023061405A/ja
Priority claimed from JP2021142108A external-priority patent/JP2023061404A/ja
Application filed by クロステクノロジーラボ株式会社 filed Critical クロステクノロジーラボ株式会社
Priority to AU2022338459A priority Critical patent/AU2022338459A1/en
Priority to EP22864695.6A priority patent/EP4398350A1/en
Priority to KR1020247010396A priority patent/KR20240060622A/ko
Priority to CN202280061063.0A priority patent/CN117957678A/zh
Priority to CA3229926A priority patent/CA3229926A1/en
Publication of WO2023033113A1 publication Critical patent/WO2023033113A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes

Definitions

  • the present invention relates to a battery in which an electromotive force is generated by ion conduction in an electrolytic solution, in which electrons are transferred from the cathode electrode to the anode electrode via an electric double layer formed between the anode electrode and the cathode electrode, which are electronic conductors placed in close proximity to each other. It relates to a battery with conductivity.
  • the activation of the electrode reaction includes the configuration of the electrode.
  • PEDOT poly(3,4 - ethylenedioxythiophene )
  • nickel mesh is used as the anode to prevent loss due to disproportionation reaction
  • CuHCF copper hexacyanoferrate
  • Non-Patent Document 2 has also been proposed to use a Ni grid as a cathode electrode.However, these electrodes have problems in mass production, so the present inventors have proposed copper or Focusing on the catalytic function of the alloy, it has been proposed to simplify the electrode configuration and use a copper electrode instead of a carbon electrode as an air cathode cathode electrode of an air battery (Patent Document 1). It was discovered that when hydrogen peroxide is used in place of oxygen in the air, the electrical double layer formed at the interface between the copper or copper electrode and the electrolyte exhibits a unique function or performance.
  • a separatorless battery having a power generation function can be formed (Patent Document 2), and when the cathode electrode side is locally contacted with the anode electrode side via a dipole, the dipole electric double layer forms a microcapacitor (capacitor in the nano-order region), and when a certain amount of charge is accumulated, it exhibits an electron conduction effect through the electric double layer, and a phenomenon occurs in which electrons flow from the cathode electrode side to the anode electrode side.
  • the dipole electric double layer formed at the interface between the electrode and the electrolyte resembles a structure in which a P-type semiconductor and an N-type semiconductor face each other across a depletion layer. A phenomenon of avalanche amplification is found when electrons flow into the depletion layer.
  • Electron exchange is performed by the electron receiving reaction due to the oxidation reaction of the cathode and the electron transfer reaction for the reduction reaction at the interface between the electrode and the electrolyte on the cathode side, and the ion conduction in the electrolyte from the cathode to the anode causes a current to That is, a battery using an electrolyte is an ion-conducting battery.
  • a battery using an electrolyte is an ion-conducting battery.
  • a copper plate is immersed in an aqueous solution of copper sulfate
  • a zinc plate is immersed in an aqueous solution of zinc sulfate.
  • the copper plate and the zinc plate are connected by an external circuit, and the following reactions are carried out.
  • Zinc plate surface Zn(s) ⁇ Zn 2+ +2e ⁇ Copper plate surface: Cu 2+ +2e ⁇ ⁇ Cu(s) ⁇ 2)
  • a lead-acid battery as shown in FIG. 9(b), in an aqueous sulfuric acid solution, Oxidation Reaction of Pb(s)+SO 4 2 ⁇ ⁇ PbSO 4 (s)+2e ⁇ on Metal Lead Electrode and PbO 2 (s)+4H + +SO 4 2 ⁇ +2e ⁇ ⁇ PbSO 4 (s)+2H on Lead Oxide Surface 2 O reduction reaction is performed, and charging/discharging is performed in the acidic electrolytic solution accompanied by movement of ions.
  • Li(s) ⁇ Li + +e ⁇ oxidation reaction on the surface of lithium and reduction reaction of 2MnO2(s) + Li + +e ⁇ ⁇ LiMn 2 O 4 on the surface of manganese dioxide in lithium ion batteries also transfer Li ions. Charging and discharging are performed in the electrolytic solution with 4) On the hydrogen side of the hydrogen fuel cell, the oxidation reaction of 2H 2 (g) ⁇ 4H + +4e ⁇ takes place. It reacts with diffused hydrogen ions to form water.
  • an anode electrode and a cathode electrode which are electronic conductors, are connected by an external circuit and opposed to each other via an electrolytic solution, which is an ionic conductor, so that an oxidation reaction of an active material at the anode electrode and a cathode electrode occur.
  • an ion-conducting battery that generates power through a reduction reaction
  • a plurality of protruding electrodes protruding in the direction of the anode electrode surface are provided on the cathode electrode surface at regular intervals along the surface direction, the protruding electrodes are brought close to the opposing anode electrode surface, and the tip of the protruding electrode of the cathode electrode and the anode electrode surface are arranged.
  • a battery having electronic conductivity via an electric double layer capacitor characterized by forming an electric double layer capacitor between and conducting electrons from the tip of the projection of the cathode electrode to the surface of the anode electrode through the electric double layer capacitor be.
  • the protrusions of the cathode electrode are brought close to the facing anode electrode surface, and an electric double layer capacitor (here, referred to as a microcapacitor) is formed between the tip of the protrusion electrode of the cathode electrode and the anode electrode surface (FIG. 1). ), but electrons are collected and stored on the cathode electrode side, resulting in an electronic conduction state.
  • an electric double layer capacitor here, referred to as a microcapacitor
  • the cathode electrode and the anode electrode are not electrically connected at first, but after a while, negatively charged electrons flow from the tip of the projection of the cathode electrode to the surface of the anode electrode, exhibiting electron conductivity. That is, it is thought that the electrons flowed intensively from the tip of the projection of the copper electrode to the portion close to the counter electrode aluminum electrode plate shown in FIG. )reference). After that, it is thought that the aluminum electrode collides with other atoms of the electrode and the electrolysis of the aluminum electrode progresses rapidly. It is presumed that a kind of avalanche amplification effect appears from the relationship with the increase in amount.
  • the tunnel phenomenon is also considered, but the dipole electric double layer formed at the interface between the electrode and the electrolyte resembles a structure in which a P-type semiconductor and an N-type semiconductor face each other with a depletion layer interposed therebetween. It is also presumed that this is due to a phenomenon in which electrons flow into the depletion layer and cause avalanche amplification. In short, it is found that in a battery based on ionic conduction, electronic conduction occurs and the internal resistance of the battery, which is governed by ionic conduction, drops sharply (Fig. 5).
  • the electrolytic solution preferably contains a dipole compound typified by hydrogen peroxide, and the electric double layer capacitor formed from the tip of the cathode electrode to the surface of the anode electrode is preferably a dipole electric double layer.
  • the cathode electrode is made of copper or an alloy thereof, since it has a catalytic function to accelerate the decomposition of hydrogen peroxide.
  • the anode electrode is preferably composed of magnesium, aluminum, zinc, and alloys thereof, and secures an electrode potential with the cathode electrode. If the alkaline electrolyte contains hydrogen peroxide, the electric double layer becomes a dipole electric double layer, which is preferable because it tends to have a capacitor effect.
  • the hydrogen peroxide is preferably supplied using hydrogen peroxide solution or sodium percarbonate.
  • FIG. 1 is a conceptual diagram of a microcapacitor of the present invention
  • FIG. 1 is a conceptual diagram of an air battery to which the microcapacitor of the present invention is applied
  • FIG. 1(A) is a perspective view of the structure of a copper electrode constituting a microcapacitor of the present invention
  • FIG. 1(B) is a cross-sectional view of a combined state of a magnesium electrode and a copper electrode.
  • 1 is a conceptual diagram of a battery in which many microcapacitors are formed
  • FIG. 4 is a graph showing the state of power generation when the microcapacitor of the present invention is applied to a magnesium air battery
  • FIG. 1A is a perspective view of the structure of copper electrodes of a battery forming a normal electric double layer capacitor
  • FIG. (a) is a perspective view of a copper cathode electrode with four projecting electrodes cut out from the copper electrode surface
  • (b) is a cross-sectional view of an electrode configuration in which an aluminum anode electrode is sandwiched between the copper electrodes of (a) and combined.
  • FIG. 7(a) shows a photograph (a) before use and a photograph (b) after use of an aluminum electrode plate used in combination with a copper electrode.
  • (a) is a principle diagram of a Daniel battery
  • (b) is a principle diagram of a lead-acid battery.
  • a Mg or Al anode electrode plate and a Cu cathode electrode plate are immersed in an alkaline electrolyte containing hydrogen peroxide and arranged opposite to each other.
  • part of the copper electrode 10 is cut into a triangular shape and raised at a right angle to the electrode surface to form an acute triangular protruding electrode 11 having a height of 5 to 15 mm.
  • the tip is made to face the magnesium electrode surface so as to be in soft contact.
  • a spacing interposed by at least one molecular dipole is preferred.
  • the protruding electrodes are preferably formed at intervals of 150 mm to 200 mm so that electrons flow in from the surrounding cathode electrode regions.
  • Electromotive force in the configuration of anode electrode/alkaline electrolyte containing hydrogen peroxide/cathode electrode the reaction of the metal-air battery is as follows.
  • the oxidation reaction on the anode side is 4/3Al ⁇ 4/3Al 3+ +4e ⁇ , or 2Mg ⁇ 2Mg 2+ +4e ⁇
  • the reduction reaction on the cathode side becomes O 2 +H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • hydrogen peroxide is added to the electrolytic solution in order to promote the reduction reaction on the cathode side of the metal-air battery, thereby improving the cause of the inferior ionization rate of the positive electrode on the cathode side compared to the negative electrode on the anode side.
  • metallic copper is Cu+H 2 O 2 ⁇ Cu 2+ +OH+OH ⁇ and Cu + OH ⁇ Cu + OH - and partly dissolves in hydrogen peroxide, Cu 2+ +HO 2 ⁇ ⁇ Cu+2HO 2 and the HO 2 group accelerates the decomposition of hydrogen peroxide through the Haber u. Willstatter chain (Non-Patent Document 3).
  • the electric double layer formed on the surface of the cathode electrode contains hydrogen peroxide and is formed by its dipole function, so it has an ion-permeable separator function. Therefore, even if the anode electrode of the counter electrode comes into contact with the cathode electrode, a short circuit does not occur. It has a double-layer capacitor structure (Fig. 1), and many microcapacitors are scattered on the surface of the electrode. The power generation capacity is 30% to twice as much as that of the same electrode structure without function.
  • sodium percarbonate is used to supply part or all of the hydrogen peroxide to the aqueous electrolytic solution.
  • a neutral or alkaline aqueous solution containing 0.5 to 2.0 mol of alkali metal or alkaline earth metal halide salt, particularly sodium chloride, and several percent to ten and several percent of hydrogen peroxide water (volume %) or sodium percarbonate (% by weight) is preferably added.
  • the anode electrode may use magnesium or its alloy instead of aluminum.
  • a decomposition voltage necessary to decompose hydrogen peroxide or its decomposed hydroxy radical is applied between the copper cathode electrode and the hydrogen peroxide.
  • a magnesium/aluminum/zinc alloy electrode of MAZ61 or MAZ31 can be used as the magnesium alloy electrode.
  • the anode electrode and the cathode electrode are alternately arranged to face each other with a constant interval intervening spacers, and an electric double layer capacitor is formed at the contact portion between the anode electrode and the cathode electrode using an aqueous electrolyte solution containing hydrogen peroxide.
  • the spacer is made of the same metallic copper or copper alloy as that of the cathode electrode, and has punctiform projections spaced apart at regular intervals on the surface of the counter electrode (FIG. 3).
  • a microcapacitor is constructed by opposing a cathode electrode and an anode electrode with a dipole having a dipole efficiency of 2.0 e.su ⁇ 10 ⁇ 15 or more, for example, a distance of nm order of one molecule of hydrogen peroxide.
  • a triangular electrode is protruded from the surface of the cathode electrode so that electrons flow from the cathode electrode to the anode electrode in a concentrated manner.
  • a battery with a microcapacitor conceptually shown in FIG. 1 was constructed using the copper electrodes shown in FIG. A top-opening cuboid plastic container with a capacity of 3000 ml is used.
  • FIG. 2 a large number of triangular projections 11 with a height of 50 to 100 mm are cut vertically and horizontally on a copper cathode electrode plate 10 having a thickness of 1 mm and a size of 100 mm by 100 mm (FIG. 3A).
  • both end copper plates 10 have projections 11 facing inward and copper electrodes 10 stuck back-to-back in the middle protrude in both directions.
  • a microcapacitor can be formed on the surface of the copper cathode electrode, as shown in FIG.
  • a copper cathode electrode plate 10 having a thickness of 1 mm and a length and width of 100 ⁇ 100 mm is provided with a spacer S formed by cutting the copper electrode plate into a T shape and bending the ends.
  • a Mg anode electrode plate 20 having a thickness of 2 mm and a size of 100 ⁇ 100 mm is sandwiched between the cathode electrode plates with spacers S interposed therebetween.
  • Three copper cathode electrode plates 10 are alternately sandwiched between two Mg anode electrode plates 20 with spacers S interposed therebetween (see FIG. 6B). Using this combination of electrodes does not form a microcapacitor.
  • the performance of the electrode configuration of FIGS. 3A and B and the electrode configuration of FIGS. 6A and B were compared to compare the performance with and without the microcapacitor formed on the surface of the copper cathode electrode. Since the conditions were the same except for the electrode configuration, the point that the hydrogen peroxide fuel cell reaction in alkaline electrolyzed water was accompanied by the magnesium air cell reaction was the same.
  • the configuration of the present invention is epoch-making because it can provide a novel and useful configuration for a hydrogen peroxide fuel cell of a one-compartment structure.
  • the electronic conductivity developed through the electric double layer capacitor (microcapacitor) in the present invention is a surprising phenomenon in batteries operating by ionic conduction.
  • Figures 8(a) and (b) show the results.
  • the aluminum plate in FIG. 8(a) is 1.5 mm thick and 15 cm square, and is used in combination with the copper electrodes with four protrusions (see FIG. 7(a)) as shown in FIG. 7(b). .
  • An electric double-layer microcapacitor is formed between the tip of the copper electrode projection and the aluminum electrode plate, and electrons are collected on the cathode side. , and electrons flow toward the anode electrode. This is called the electronic conductivity of the ion-conducting battery.
  • Such a phenomenon is surprising in a battery that uses an electrolytic solution that mainly conducts ions.
  • FIG. As shown in FIG. is opened, and a powdery rough electrode surface is formed around it. Based on this assumption, a phenomenon (electron conduction) occurs in which electrons discharge from the protrusions on the copper electrode side to the aluminum electrode surface, and the electrons that reach the aluminum electrode collide with the surrounding metal atoms and are excited one after another. It is presumed that an avalanche effect is exhibited.
  • the electrode configurations of FIGS. 3 and 6 are for the case of using magnesium for the anode electrode, and this seems to be the reason why the amount of power generation increases when the copper electrode does not have projections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Primary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

電池電極間に形成されるマイクロキャパシタを介して電子伝導性を示すイオン伝導電池であって、過酸化水素を含み、双極子電気二重層を金属銅又はその合金からなるカソード電極と、カソード電極より電極電位が卑である、電極電位差を形成する金属又はその合金からなるアノード電極との間に形成してなる、カソード電極からアノード電極に電子伝導性を示す構造を形成するマイクロキャパシタを備え、アバランシェ増幅に似た電流増幅現象を引き起こすイオン伝導電池。

Description

電気二重層キャパシタを介する電子伝導機能を有する電池
 本発明は電解液中のイオン伝導により起電力を発生させる電池において、互いに近接させた電子伝導体のアノード電極とカソード電極間に形成される電気二重層を介してカソード電極からアノード電極への電子伝導性を有する電池に関する。
  電池性能を改善するには、まず、起電力となる電極電位差を大きくすることが挙げられ、リチウムイオン電池が提案されている。その他の電池の改善としては電池の端子電圧に影響を与える内部抵抗の低減が挙げられる。また、電極反応の活性化については、電極の構成などが挙げられる。例えば、過酸化水素を燃料とする燃料電池では、金属電極はHのHOとOへの不均化反応を触媒するため、PEDOT(ポリ(3,4-エチレンジオキシチオフェン)を用いる一方、アノードとしてニッケルメッシュを使用して不均化反応による損失を発生しないように工夫している(非特許文献1)。また、カソード電極としてヘキサシアノ鉄酸銅(CuHCF)を使用し、カソード電極としてNiグリッドを使用することも提案されている(非特許文献2)。しかしながら、これらの電極は量産性に問題があるため、本発明者は空気電池又は燃料電池のカソードとして銅又はその合金の触媒機能に着目して電極構成の簡素化を図り、銅電極を炭素電極の代わりに空気電池の空気極カソード電極として用いることを提案している(特許文献1)。かかる電極では、空気中の酸素の代わりに過酸化水素を用いると、銅又は銅電極と電解液の界面に形成される電気二重層に特異な機能又は性能が発現することを発見した。すなわち、過酸化水素は双極子化合物であって、高い双極子能率を有するため、過酸化水素を含む電解液を使用すると、電極間に双極子電気二重層を形成し、一対の電極を近接させても短絡せず、発電機能を有するセパレータレス電池を形成すること(特許文献2)を見出した。そして、カソード電極側からアノード電極側に局部的に双極子を介して接触させる構成にすると、その双極子電気二重層がマイクロキャパシタ(ナノオーダー領域でのキャパシタ)を形成し、一定以上の電荷が蓄積されると、電気二重層を介して電子伝導効果を示し、カソード電極側からアノード電極側に電子が流れる現象が見出された。また、電極と電解液の界面に形成される双極子電気二重層はP型半導体とN型半導体とが空乏層を介して対向している構造に似ており、その結果、その空乏層に電子が流れ込むと、アバランシェ増幅を起こす現象が見出される。
ところで、一般に、電解液を介してアノード電極とカソード電極とを対向させ、外部回路で接続する電池では、両極の電極電位差で起電力を発生し、アノード側での電極と電解液との界面での酸化反応による電子の受けとる反応と、カソード側での電極と電解液との界面での還元反応のための電子の受け渡し反応とで電子交換を行い、電解液中のイオン伝導とでカソードからアノードへの電流を生じさせる。すなわち、電解液を使用する電池はイオン伝導電池である。
 例えば、1)ダニエル電池では図9(a)に示すように、硫酸銅の水溶液に銅板を、硫
酸亜鉛の水溶液に亜鉛板を浸漬し、溶液間でイオンの移動が可能な半透膜を介して対向させ、銅板と亜鉛板とを外部回路で接続し、以下の反応を行わせる。
 亜鉛板表面:Zn(s)→Zn2++2e
 銅板表面:Cu2++2e- →Cu(s)↓
2)鉛蓄電池では図9(b)に示すように、硫酸水溶液中で、
金属鉛電極でのPb(s)+SO 2-→PbSO(s)+2eの酸化反応と
酸化鉛表面でのPbO(s)+4H+SO 2-+2e→PbSO(s)+2H
Oの還元反応とを行わせ、イオンの移動を伴って酸性電解液中で充放電がおこなわれる。3)リチウムイオン電池でもリチウム表面でのLi(s)→Li++eの酸化反応と二
酸化マンガン表面での2MnO2(s)+Li+e→LiMnの還元反応とでLiイオンの移動を伴って電解液中で充放電がおこなわれる。
4)水素燃料電池で水素側でも、2H(g)→4H+4eの酸化反応が行われる一
方、空気側では空気中の酸素が水素側から移動してきた電子と反応して還元され、拡散した水素イオンと反応して水を形成する。
このように、電解液を使用する各種電池では、電子はアノード側から外部回路を通ってカソード側に移動するが、活物質又はイオンはカソード電極からアノード電極に電解液を介して移動し、一対の電極間の電極電位差により起電力Eを発生させる。したがって、電解
液はイオン伝導体であるので、エネルギーの移動はイオン伝導となる。そのため、イオン伝導度は電池の内部抵抗Rを支配する。そこで、出力電圧Vを大きくするには内部抵抗を小さくする必要があるが、イオン伝導を行うイオンの移動度に支配されるため、限界がある。
特願2021-142110号公報 特願2021-073490号公報
Chemical Communications, 2018, Vol.54, Pages 11873-11876 Journal of Hydrogen Energy, ELSEVIER, Vol.45, Issue 47,25September 2020,Pages 154-165 水渡英二著:物理化学の進歩(1936)、10(3);154-165頁
 本発明者は、電解液を使用するイオン伝導の各種電池が電解液中でイオン伝導であることに鑑み、電極と電解液の界面に形成される電気二重層を介して電子伝導性を持たせ、電池の内部抵抗の低減を図ることを課題とし、鋭意研究の結果、これを達成した。
本発明は、電子伝導体であるアノード電極とカソード電極とを外部回路で接続するとともに、イオン伝導体である電解液を介して対向させ、活物質のアノード電極での酸化反応とカソード電極での還元反応により発電するイオン伝導性電池において、
前記カソード電極面に面方向に沿って一定間隔でアノード電極面方向に突出する複数の突起電極を設け、該突起電極を対向するアノード電極面に近接させ、カソード電極の突起電極先端とアノード電極面との間に電気二重層キャパシタを形成し、カソード電極の突起先端からアノード電極面に電気二重層キャパシタを介して電子伝導させることを特徴とする電気二重層キャパシタを介する電子伝導性を有する電池にある。
本発明によれば、電解液中のイオン導電性に加え、すなわち、電子伝導性を持たせることができる。すなわち、本発明ではカソード電極の突起を対向するアノード電極面に近接させ、カソード電極の突起電極先端とアノード電極面との間に電気二重層キャパシタ(ここではマイクロキャパシタという)を形成する(図1参照)が、カソード電極側には電子が集電され、蓄電される結果、電子伝導状態に至ると考えられる。前記カソード電極とアノード電極とは始めは導通していないが、しばらくするとカソード電極の突起先端からマイナス電荷の電子が前記アノード電極表面に流れ、電子伝導性を示す。すなわち、図8(a)に示す対極アルミ電極板に近接する部分に対し、銅電極の突起先端から電子が集中して流れ、その部分に穴が形成されたものと思われる(図8(b)参照)。その後、電極の他
の原子に衝突して急激にアルミ電極の電解が進むものと思われ、穴の周囲にはアルミ電極表面に粉を吹いたように凸凹状態が認められ、図5に示す電流量の増加との関係から一種のアバランシェ増幅効果が表れるものと推測される。
 かかる電子伝導性が現れる原因は図1に示すように、カソード電極の突起先端とアノード電極との間に形成される電気二重層キャパシタが形成されることに起因するものであると思われるが、カソード電極側からアノード電極側に電子が流れる現象(電子伝導)は不可思議である。電子伝導の原因は種々考えられる。一つは、カソード電極側に集電された電子が電界の上昇とともにアノード電極側表面に形成される金属イオン等のプラス電荷に向けて流れることが挙げられる。その他、トンネル現象も考えられるが、電極と電解液の界面に形成される双極子電気二重層はP型半導体とN型半導体とが空乏層を介して対向している構造に似ており、その空乏層に電子が流れ込んでアバランシェ増幅を起こす現象によることも推測される。要するに、イオン伝導による電池において、電子伝導が発現し、イオン伝導に支配される電池の内部抵抗が急激に下がることが見出される(図5)。
本発明においては、前記電解液が過酸化水素に代表される双極子化合物を含み、カソード電極先端からアノード電極面に形成される電気二重層キャパシタが双極子電気二重層であるのが好ましい。
また、本発明においては、カソード電極が銅又はその合金からなるのが過酸化水素の分解を促進する触媒機能を持つので好ましい。一方、アノード電極がマグネシウム、アルミニウム及び亜鉛並びにその合金からなり、カソード電極との電極電位を確保するので好ましい。アルカリ性電解液が過酸化水素を含むと、電気二重層が双極子電気二重層となり、キャパシタ効果をもたせやすいので、好ましい。この過酸化水素は過酸化水素水又は過炭酸ナトリウムを用いて供給するのが好ましい。
本発明のマイクロキャパシタの概念図である。 本発明のマイクロキャパシタを適用する空気電池の概念図である。 本発明のマイクロキャパシタを構成する銅電極の構成の(A)は斜視図、(B)はマグネシウム電極と銅電極の組み合わせ状態の断面図である。 多数のマイクロキャパシタを形成した電池の概念図である。 本発明のマイクロキャパシタをマグネシウム空気電池に適用した場合の発電状態を示すグラフである。 通常の電気二重層キャパシタを形成する電池の銅電極の構成の(A)は斜視図、(B)はマグネシウム電極と銅電極の組み合わせ状態の断面図である。 (a)は銅電極面に4個の突起電極を切り出した銅カソード電極の斜視図、(b)は(a)の銅電極でアルミニウムアノード電極を挟んで組み合わせた電極構成の断面図である。 図7(a)銅電極と組み合わせて使用するアルミ電極板の使用前の写真(a)と使用後の写真(b)を示す。 (a)はダニエル電池の原理図、(b)は鉛蓄電池の原理図である。
本発明では、図2に示すように、Mg又はAlアノード電極板とCuカソード電極板を過酸化水素を含むアルカリ性電解液に浸漬して対向配置してなる。そして、図3(A)に示すように、銅電極10はその一部を三角形に切り欠いて電極面に対し直角に立ち上げ、高さ5~15mmの鋭角三角形の突起電極11を形成し、その先端をマグネシウム電極面に柔らかく接するように、対向させる。少なくとも1分子の双極子が介在する間隔が好ましい。突起電極は150mmから200mmの間隔で形成し、周囲のカソード電極領域から電子が流れ込むようにするのがよい。
アノード電極/過酸化水素を含むアルカリ性電解液/カソード電極の構成における起電力であって、その金属空気電池の反応は次の通りである。
アノード側の酸化反応を4/3Al→4/3Al3+ +4eと、
又は2Mg→2Mg2++4e
他方、カソード側の還元反応をO+HO+4e-→4OH- となる。
本発明では、金属空気電池のカソード側の還元反応を促進するために、電解液に過酸化水素を添加し、アノード側負極に比べてカソード側正極のイオン化進行速度が劣る原因を改善した。
すなわち、金属銅はCu+H→Cu2++OH+OH及び 
Cu+OH→Cu+OHと一部過酸化水素に溶けるが、
Cu2++HO →Cu+2HOと、HO基がHaber u. Willstatter連鎖によって過酸化水素の分解を促進するからであると思われる(非特許文献3)。
しかも、本発明によると、カソード電極の表面に形成される電気二重層は過酸化水素を含み、その双極子(ダイポール)機能により形成されるため、イオン透過性セパレータ機能を有する。そのため、対極のアノード電極はカソード電極と接触しても短絡せず、対向するアノード電極とカソード電極の接触を一定間隔で点状に配置される突起等で形成すると、点状突起の先端に電気二重層キャパシタ構造を有することになり(図1)、電極表面にマイクロキャパシタとして多数点在し、電子を集電しては電子伝導効果により流れ、アバランシェ増幅を繰り返す(図5)ので、マクロコンデンサ機能を有しない同一電極構成の場合に比して30%から2倍以上の発電能力を発揮することになる。
本発明においては、前記水溶性電解液に過酸化水素の一部又は全部を過炭酸ナトリウムにより供給するのが好ましい。具体的には、0.5から2.0モルのアルカリ金属又はアルカリ土類金属ハロゲン化塩、特に塩化ナトリウムを含む中性又はアルカリ性水溶液に対し数%から十数%の過酸化水素水(体積%)又は過炭酸ナトリウム(重量%)を添加するのが好ましい。
アノード電極はアルミニウムに代えてマグネシウム又はその合金を使用してもよい。
(-)Mg/NaCl+H/Cu(+)の電池構成をとることにより、銅カソード電極との間に過酸化水素又はそれが分解したヒドロキシラジカルを分解するに必要な分解電圧を与える。マグネシウム合金電極としてMAZ61又はMAZ31のマグネシウム/アル
ミ/亜鉛の合金電極が使用できる。
前記アノード電極とカソード電極とを交互にスペーサを介して一定の間隔をもって対向配置し、アノード電極とカソード電極との接触部に過酸化水素を含む水溶性電解液により電気二重層キャパシタを形成するが、前記スペーサがカソード電極と同じ金属銅又は銅合金からなり、対極表面に一定間隔を隔てる点状突起を有する(図3)のが好ましい。マイクロキャパシタは2.0e.s.u.×10-15以上の双極子能率を有する双極子、例えば過酸
化水素の1分子のnmオーダーの間隔をもってカソード電極とアノード電極を対向させることにより、構成されるが、カソード電極からアノード電極局部に電子が集中して流れるように、カソード電極面から三角形状の電極を突出させる。
図3に示す銅電極を使用して図1に示す概念のマイクロキャパシタがある電池を構成した。
容量3000mlの上方開放型直方体プラスチック容器を用いる。図2では、1mm厚み、縦横100×100mmの銅カソード電極板10に上下左右に150mmないし200mm間隔で多数の三角形の50ないし100mmの高さの突起11を切り立て(図3A)、図3Bに示すように、両端銅板10は突起11を内向きに、真ん中は背中合わせに張り合わせた銅電極10で両方向に突出させ、2mm厚み、縦横100×100mmのマグネシウムアノード電極板20を挟み込んで組み合わせる。
この組み合わせ電極を使うと、図1に示すように、銅カソード電極の表面にマイクロキャパシタを形成することができる。
他方、図6(A)に示すように、1mm厚み、縦横100×100mmの銅カソード電極板10に銅電極板をT字形に切り出し、端部を折り曲げて形成したスペーサSを取り付ける。このカソード電極板でスペーサSを介して2mm厚みの縦横100×100mmのMgアノード電極板20の両側を挟みつける。3枚の銅カソード電極板10で、2枚のMgアノード電極板20はスペーサSを介して交互に挟みつける(図6(B)参照)。この組み合わせ電極を使うとマイクロキャパシタは形成しない。
プラスチック容器にはおよそ1500mlの純水に塩化ナトリウム0.5モル/l以上、
好ましくは1.5モル/l以上2モル/lの電解液を調整し、これに過炭酸ナトリウム50~100gと30%過酸化水素水50mlを加える。
電池反応は一定時間過ぎると、過酸化水素が消費され、電球が減少するので、2~3時間ごとに10mlの30%過酸化水素水を添加する。
本件実施例においては、図3AおよびBの電極構成と図6AおよびBの電極構成の性能を比較してマイクロキャパシタを銅カソード電極表面に形成する場合とない場合の性能比較を行った。
電極構成以外は同じ条件としたので、アルカリ電解水における過酸化水素燃料電池反応に、マグネシウム空気電池反応が伴うものである点は同じである。したがって、以下の反応式に基づき、
過酸化水素がH+2HO+2e-→2HO+2OH-に分解する一方、カソード電極側でH+2OH-→O+2HO+2e-の酸化反応を起こすだけでなく、ア
ルカリ性電解液での金属酸化反応がMg→Mg2++2e-となり、カソード側での酸素
を還元してイオン化する反応がO+2HO+4e-→4OH-と典型的な金属空気電池反応が起こる。但し、過酸化水素燃料電池及び金属空気電池反応では酸素ガスは発生すると理解できるが、上記構成では酸素ガスだけでなく、水素ガスも発生する。ということは、非特許文献3(水渡英二著、物理化学の進歩(1936)、10(3):154~165頁)に示唆されるように、銅カソード電極表面で触媒機能が働き、過酸化水素の分解又はヒドロキシイオンの分解が起こり、発電反応に繋がっていると思われる。
2H→4・OH→H+O+4e-
4OH-→H+O+4e-
以上の実験結果を考察すると、マイクロキャパシタを作る構成にもよるが、図3に示すマイクロキャパシタを有する燃料電池は図6に示すマイクロキャパシタを有しないものに比して2倍以上の電流値の増加を見ることがわかった。
マイクロキャパシタに伴う集電放電効果が電池の発電量に大きな影響を与えることがわかる。そのため、本発明の構成は1コンパートメント構造の過酸化水素燃料電池として新規で有用な構成を提供することができるので、画期的である。
(本発明の電子伝導性について)
本発明における電気二重層キャパシタ(マイクロキャパシタ)を介して発現する電子伝導性はイオン導電で動作する電池において驚くべき現象である。図8(a)と(b)はその結果を示す。図8(a)のアルミ板は厚さ1.5mm、15cm平方であって、4本の突起付き銅電極(図7(a)参照)と組み合わせて図7(b)となし、使用される。銅電極の突起先端とアルミ電極板との間には電気二重層のマイクロキャパシタが形成され、カソード側に電子が集電され、一定の電荷が溜まると、アノード側との電子伝導性を示すようになり、電子がアノード電極側に流れるようになる。これをイオン伝導電池の電子伝導性という。イオン伝導を主とする電解液を用いる電池においてはこのような現象は驚くべきことであって、図8(b)に示すように、銅電極側の突起に対向するアルミ電極には4つの穴が開き、その周囲には粉を吹いたような荒れた電極面が形成されることになる。これから推測するに、銅電極側の突起からアルミ電極面に対し、電子が放電する現象(電子伝導)が起き、そのアルミ電極に到達した電子が周囲の金属原子に衝突して次々励起していくアバランシェ効果を発揮するものと推察される。図3と図6の電極構成はアノード電極にマグネシウムを用いた場合であるが、銅電極に突起が有るなしで発電量が増える原因はここにあるように思える。

Claims (5)

  1. 電子伝導体であるアノード電極とカソード電極とを外部回路で接続するとともに、イオン伝導体である電解液を介して対向させ、活物質のアノード電極での酸化反応とカソード電極での還元反応により発電するイオン伝導電池において、
    前記カソード電極面に面方向に沿って一定間隔でアノード電極面方向に突出する複数の突起電極を設け、該突起電極を対向するアノード電極面に近接させ、カソード電極の突起電極先端とアノード電極面との間に電気二重層キャパシタを形成し、カソード電極の突起先端からアノード電極面に電気二重層キャパシタを介して電子伝導させることを特徴とする電気二重層キャパシタを介する電子伝導性を有する電池。
  2. 前記カソード電極先端からマイナス電荷の電子が前記アノード電極表面に形成されるプラス荷電の金属イオンに流れる電子伝導性を有する請求項1記載の電池。
  3. 前記電解液が双極子化合物を含み、カソード電極先端からアノード電極面に形成される電気二重層キャパシタが双極子電気二重層である請求項1記載の電池。
  4. カソード電極が銅又はその合金からなる一方、アノード電極がマグネシウム、アルミニウム及び亜鉛並びにその合金から選ばれ、アルカリ性電解液が過酸化水素を含む請求項1記載の電池。
  5. 前記電解液が2.0e.s.u.×10-15以上の双極子能率を有する双極子化合物を含み、
    双極子電気二重層を電極との界面に形成する水溶性電解液であって、カソード電極とアノード電極との間に少なくとも1分子の双極子が挟持されて形成され、カソード電極からアノード電極への電子伝導効果を付与する機能を有するマイクロキャパシタを備える請求項1記載の電池。
PCT/JP2022/032993 2021-09-01 2022-09-01 電気二重層キャパシタを介する電子伝導機能を有する電池 WO2023033113A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2022338459A AU2022338459A1 (en) 2021-09-01 2022-09-01 Battery having electronic conduction function via electric double layer capacitor
EP22864695.6A EP4398350A1 (en) 2021-09-01 2022-09-01 Battery having electronic conduction function via electric double layer capacitor
KR1020247010396A KR20240060622A (ko) 2021-09-01 2022-09-01 전기 이중층 커패시터를 통한 전자 전도 기능을 갖는 전지
CN202280061063.0A CN117957678A (zh) 2021-09-01 2022-09-01 具有经由双电层电容器的电子传导功能的电池
CA3229926A CA3229926A1 (en) 2021-09-01 2022-09-01 Battery having electron conduction function via electric double layer capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021142109A JP2023061405A (ja) 2021-09-01 2021-09-01 マイクロキャパシタ
JP2021142108A JP2023061404A (ja) 2021-09-01 2021-09-01 アバランシェ増幅機能を有する電池
JP2021-142109 2021-09-01
JP2021-142108 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023033113A1 true WO2023033113A1 (ja) 2023-03-09

Family

ID=85412381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032993 WO2023033113A1 (ja) 2021-09-01 2022-09-01 電気二重層キャパシタを介する電子伝導機能を有する電池

Country Status (5)

Country Link
EP (1) EP4398350A1 (ja)
KR (1) KR20240060622A (ja)
AU (1) AU2022338459A1 (ja)
CA (1) CA3229926A1 (ja)
WO (1) WO2023033113A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050192A (ja) * 2008-08-20 2010-03-04 Sekisui Chem Co Ltd 電極装置及びその製造方法
JP2010278300A (ja) * 2009-05-29 2010-12-09 Mitsubishi Electric Corp リチウムイオンキャパシタの製造方法
US20130162216A1 (en) * 2011-12-21 2013-06-27 Aruna Zhamu Stacks of internally connected surface-mediated cells and methods of operating same
JP2015519683A (ja) * 2012-04-04 2015-07-09 ノキア コーポレイション 多孔質電極構造体
US20150318530A1 (en) * 2014-05-01 2015-11-05 Sila Nanotechnologies, Inc. Aqueous electrochemical energy storage devices and components
US20160308220A1 (en) * 2013-11-01 2016-10-20 University Of Tennessee Research Foundation Reversible bifunctional air electrode catalyst for rechargeable metal air battery and regenerative fuel cell
US20200321640A1 (en) * 2019-04-06 2020-10-08 Mark Minto Methods and apparatus for decoupling reactant activation and reaction completion
JP2021073490A (ja) 2015-07-01 2021-05-13 ゴーフォトン・ホールディングス,インコーポレイテッド コネクタ係合感知機構
JP2021142110A (ja) 2020-03-12 2021-09-24 株式会社鵬盛商事 位牌転倒防止構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019316865A1 (en) 2018-08-08 2020-12-17 Ascentage Pharma (Suzhou) Co., Ltd. Combination of immunotherapies with MDM2 inhibitors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050192A (ja) * 2008-08-20 2010-03-04 Sekisui Chem Co Ltd 電極装置及びその製造方法
JP2010278300A (ja) * 2009-05-29 2010-12-09 Mitsubishi Electric Corp リチウムイオンキャパシタの製造方法
US20130162216A1 (en) * 2011-12-21 2013-06-27 Aruna Zhamu Stacks of internally connected surface-mediated cells and methods of operating same
JP2015519683A (ja) * 2012-04-04 2015-07-09 ノキア コーポレイション 多孔質電極構造体
US20160308220A1 (en) * 2013-11-01 2016-10-20 University Of Tennessee Research Foundation Reversible bifunctional air electrode catalyst for rechargeable metal air battery and regenerative fuel cell
US20150318530A1 (en) * 2014-05-01 2015-11-05 Sila Nanotechnologies, Inc. Aqueous electrochemical energy storage devices and components
JP2021073490A (ja) 2015-07-01 2021-05-13 ゴーフォトン・ホールディングス,インコーポレイテッド コネクタ係合感知機構
US20200321640A1 (en) * 2019-04-06 2020-10-08 Mark Minto Methods and apparatus for decoupling reactant activation and reaction completion
JP2021142110A (ja) 2020-03-12 2021-09-24 株式会社鵬盛商事 位牌転倒防止構造

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Journal of Hydrogen Energy", vol. 45, 25 September 2020, ELSEVIER, pages: 154 - 165
ADVANCES IN PHYSICAL CHEMISTRY, vol. 10, no. 3, 1936, pages 154 - 165
CHEMICAL COMMUNICATIONS, vol. 54, 2018, pages 11873 - 11876
EIJI SUITO, PHYSICOCHEMICAL ADVANCEMENT, vol. 10, no. 3, 1936, pages 154 - 165

Also Published As

Publication number Publication date
EP4398350A1 (en) 2024-07-10
CA3229926A1 (en) 2023-03-09
KR20240060622A (ko) 2024-05-08
AU2022338459A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
KR20010012249A (ko) 철을 기초로 한 축전지
JP6314152B2 (ja) 固体アルカリイオン伝導性膜の劣化防止
US20170288287A1 (en) Rechargeable aluminum-air electrochemical cell
WO2023033113A1 (ja) 電気二重層キャパシタを介する電子伝導機能を有する電池
US20030008210A1 (en) Silver maganese salt cathodes for alkaline batteries
US3317349A (en) Ambipolar battery including electrodes of identical nickelous composition
JP2024034840A (ja) 電気二重層キャパシタを介する電子伝導機能を有する電池
CN117957678A (zh) 具有经由双电层电容器的电子传导功能的电池
US3201279A (en) Batteries
WO2022225066A1 (ja) 過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池
JP2023061404A (ja) アバランシェ増幅機能を有する電池
WO2023033070A1 (ja) 銅又は銅合金からなるカソード電極
CN214672733U (zh) 一种高能量密度充放电电池
WO2023033071A1 (ja) 銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法
WO2023033068A1 (ja) 金属銅又はその合金を酸素還元空気極とする空気電池
JP2024034273A (ja) 銅又は銅合金からなるカソード電極
JP2024034270A (ja) 金属銅又はその合金を酸素還元空気極とする空気電池
KR102535066B1 (ko) 알루미늄 공기전지용 전해액 및 이의 제조 방법
RU2252468C2 (ru) Добавка к электролиту свинцово-кислотного аккумулятора, электролит для свинцово-кислотного аккумулятора и свинцово-кислотный аккумулятор
TWI678830B (zh) 草酸電池結構
KR101943469B1 (ko) 공기주입식 아연공기 2차전지
RU2131633C1 (ru) Комбинированный кислотно-щелочно-солевой мембранный аккумулятор
JPS5928028B2 (ja) 蓄電池
JP4556250B2 (ja) 鉛蓄電池
WO2017181275A1 (en) Energy storage device electrolyte additive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3229926

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 808629

Country of ref document: NZ

Ref document number: 2022338459

Country of ref document: AU

Ref document number: AU2022338459

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2401001311

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280061063.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022338459

Country of ref document: AU

Date of ref document: 20220901

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247010396

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022864695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864695

Country of ref document: EP

Effective date: 20240402