WO2022225066A1 - 過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池 - Google Patents

過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池 Download PDF

Info

Publication number
WO2022225066A1
WO2022225066A1 PCT/JP2022/018775 JP2022018775W WO2022225066A1 WO 2022225066 A1 WO2022225066 A1 WO 2022225066A1 JP 2022018775 W JP2022018775 W JP 2022018775W WO 2022225066 A1 WO2022225066 A1 WO 2022225066A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal
hydrogen peroxide
air
copper
Prior art date
Application number
PCT/JP2022/018775
Other languages
English (en)
French (fr)
Inventor
光廣 佐想
Original Assignee
光廣 佐想
クロステクノロジーラボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光廣 佐想, クロステクノロジーラボ株式会社 filed Critical 光廣 佐想
Priority to CA3216113A priority Critical patent/CA3216113A1/en
Priority to EP22791837.2A priority patent/EP4329049A1/en
Priority to AU2022261634A priority patent/AU2022261634A1/en
Priority to US18/287,726 priority patent/US20240204209A1/en
Priority to JP2023515544A priority patent/JPWO2022225066A1/ja
Priority to KR1020237039973A priority patent/KR20240027580A/ko
Priority to CN202280029380.4A priority patent/CN117999692A/zh
Publication of WO2022225066A1 publication Critical patent/WO2022225066A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an air electrode provided with an electric double layer containing hydrogen peroxide and a metal-air battery using the same.
  • Hydrogen fuel cells and metal-air batteries are known as fuel cells, but hydrogen fuel cells require compressed hydrogen to supply hydrogen, and in the case of use in automobiles, there are difficulties in supplying and storing the compressed air. Therefore, it has been proposed to use hydrogen peroxide as a fuel.
  • metal-air batteries a carbon electrode is generally used as the air electrode. is generally used and improved (Patent Document 1).
  • a conductive polymer poly(3,4-ethylenedioxythiophene (PEDOT), is used as the cathode electrode instead of the carbon electrode, while a nickel mesh is used as the anode electrode.
  • PEDOT poly(3,4-ethylenedioxythiophene
  • Non-Patent Document 1 A fuel cell that exhibits an open-circuit potential in the range of 0.5 to 0.6 V at a power density of 0.20 to 0.30 mW cm has been announced (Non-Patent Document 1).
  • CuHCF copper hexacyanoferrate
  • the present inventors found that when hydrogen peroxide is supplied to the alkaline electrolyte of a metal-air battery, the interface between the metal electrode and the electrolyte functions as a separator.
  • a metal electrode is used as the positive electrode in a fuel cell, a disproportionation reaction of hydrogen peroxide occurs and it was said that it could not be used.
  • an electrolytic solution containing hydrogen oxide forms a dipole electric double layer on the copper electrode surface, the copper electrode can be used as an air electrode and hydrogen peroxide can be used as a fuel.
  • the first object of the present invention is to provide an air electrode comprising a copper electrode having an electric double layer containing hydrogen peroxide
  • the second object of the present invention is to provide a copper electrode having an electric double layer containing hydrogen peroxide.
  • An object of the present invention is to provide an air fuel cell as an air electrode.
  • the present invention firstly provides a fuel cell using a neutral or alkaline electrolyte containing at least hydrogen peroxide, in which metal copper or an alloy thereof immersed in the electrolyte is used as a cathode electrode, and peroxide Provided is an air electrode characterized by comprising a dipole electric double layer formed of hydrogen.
  • the present invention includes a neutral or alkaline aqueous electrolyte containing hydrogen peroxide and forming an electric double layer at the interface with the electrode, a cathode electrode made of metallic copper or an alloy thereof immersed in the electrolyte, and a cathode
  • An anode electrode made of a metal or an alloy thereof whose electrode potential is less noble than that of the electrode, and an electrolyte solution containing hydrogen peroxide formed between the interface between the cathode electrode and the electrolyte solution to form a dipole electric double layer
  • a metal-air battery that can be used as an air electrode instead of a carbon electrode is provided.
  • the hydrogen peroxide in the electrolyte is an electric dipole (dipole), it is oriented on the electrode surface to form a dipole electric double layer.
  • 4A and 4B are functional explanatory diagrams thereof.
  • an electric double layer is usually formed at the interface between the electrodes and the electrolyte. is additionally added, it functions as a dipole to form a dipole electric double layer.
  • One of the factors is the function of hydrogen peroxide as a dipole.
  • a dipole electric double layer is formed at the interface with the electrode surface by the arrangement of electric dipoles (dipoles).
  • the oxidizing power of hydrogen peroxide also cooperates, and according to the present invention, hydrogen peroxide is the cause of the inferior ionization progress rate of the positive electrode on the cathode side compared to the negative electrode on the anode side, which is the bottleneck of the metal-air battery.
  • hydrogen peroxide is the cause of the inferior ionization progress rate of the positive electrode on the cathode side compared to the negative electrode on the anode side, which is the bottleneck of the metal-air battery.
  • the addition of hydrogen peroxide is different from the action of a depolarizer that avoids the effects of hydrogen ions in a voltaic battery with an acidic electrolyte
  • the hydrogen peroxide added to the electrolyte is
  • the copper cathode has a catalytic function as an air electrode, and various power generation reactions are exhibited on the surface of the copper cathode electrode.
  • the anode obtains electrons through an oxidation reaction of 2Mg ⁇ 2Mg 2+ +4e ⁇ , while the cathode electrode reduces oxygen to O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ to form hydroxy ions. It generated and generated electricity, and the amount of current increased when a copper electrode was used as the cathode electrode in a neutral or alkaline electrolyte containing hydrogen peroxide. Looking at this factor, in a battery with such a configuration, not only is the ionization reaction delay, which is a bottleneck in metal-air batteries, eliminated by the addition of hydrogen peroxide, but it is also possible to confirm the generation of oxygen and hydrogen on the cathode side.
  • the hydrogen peroxide decomposes in the fuel cell on the surface of the copper electrode.
  • the cathode H 2 O 2 + 2H ++ 2e ⁇ ⁇ 2H 2 O (1.78 V vs.
  • FIG. 1 is a conceptual diagram showing a metal-air battery of the present invention
  • FIG. FIG. 4 is a perspective view showing a copper cathode electrode with spacers interposed therebetween
  • FIG. 3 is a conceptual side view of a state in which a copper cathode electrode and a magnesium anode electrode are combined
  • 1 is a photograph of copper cathode electrodes forming a number of microcapacitors.
  • FIG. 3B is a schematic side view of a state in which the copper cathode electrode and the magnesium anode electrode of FIG. 3A are combined; BRIEF DESCRIPTION OF THE DRAWINGS FIG.
  • FIG. 1 is a conceptual diagram showing the configuration of the air electrode capacitor of the present invention, in which (A) shows a state in which an electric double layer containing hydrogen peroxide dipoles and a metal oxide is formed on the surfaces of the anode and cathode electrodes; ) shows a state in which an electric double layer containing hydrogen peroxide dipoles and a metal oxide is formed only on the surface of the anode electrode.
  • 1A and 1B are conceptual diagrams showing a configuration having a microcapacitor of the present invention as an electric double layer; FIG.
  • an Al or Mg anode electrode and a Cu cathode electrode are immersed in a neutral or alkaline electrolyte containing hydrogen peroxide and placed opposite each other to form a metal-air battery.
  • Electromotive force in the configuration of anode electrode/alkaline electrolyte containing hydrogen peroxide/cathode electrode, the reaction of the metal-air battery is as follows.
  • the metal oxidation reaction on the anode side is M ⁇ M n + + ne -
  • the oxygen reduction reaction on the cathode side becomes O 2 +H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • hydrogen peroxide is added to the electrolytic solution in order to promote the reduction reaction on the cathode side of the metal-air battery, thereby improving the cause of the inferior ionization rate of the positive electrode on the cathode side compared to the negative electrode on the anode side.
  • metallic copper dissolves partially in hydrogen peroxide as Cu+2H 2 O 2 ⁇ Cu 2+ +2OH+2OH - and Cu+2OH ⁇ Cu 2+ +2OH - , but Cu 2+ +2HO 2 - ⁇ Cu+2HO 2 and HO 2 groups form the Haber u. Willstatter chain. This is thought to be because the decomposition of hydrogen peroxide is accelerated by (Non-Patent Document 3).
  • FIG. 1 is a conceptual diagram of the metal-air battery of the present invention.
  • an electrolytic solution containing hydrogen peroxide is interposed between the Mg anode electrode, the Cu cathode electrode, and the electrolytic solution, an electric double layer having hydrogen peroxide as a dipole is formed at the interface between the electrolytic solution and the electrode,
  • the electrodes do not short and they work together. function as a capacitor.
  • Hydrogen peroxide forms a dipole electric double layer on the surface of the cathode electrode as a dipole.
  • the anode metal ions are oxidized to form oxides (some of which are metal hydroxides). and B, FIGS. 4A and B).
  • hydrogen peroxide was added to the electrolytic solution as an oxidizing agent for forming an insulating electric double layer on the surface of the cathode electrode.
  • sodium percarbonate is used to supply part or all of the hydrogen peroxide to the aqueous electrolytic solution.
  • a neutral or alkaline aqueous solution containing 0.5 to 2.0 mol of alkali metal or alkaline earth metal halide salt, particularly sodium chloride, and several percent to ten and several percent of hydrogen peroxide water (volume %) or sodium percarbonate (% by weight) is preferably added.
  • the anode electrode and the cathode electrode are alternately arranged to face each other with a constant spacing interposed between them, and an electric double layer capacitor is formed from an aqueous electrolyte solution containing hydrogen peroxide at the contact portion between the anode electrode and the cathode electrode ( 4A and B), the spacer is preferably made of the same metallic copper or copper alloy as the cathode electrode and has point-like projections at regular intervals on the counter electrode surface (FIGS. 5A and B).
  • FIGS. 2A-B and 3A-B were used to compare the performance of cells with and without the microcapacitor concept shown in FIGS. 5A-B.
  • a top-opening cuboid plastic container with a capacity of 3000 ml is used.
  • 5A and B a large number of triangular protrusions 11 with a height of 50 mm were cut vertically and horizontally at intervals of 150 mm to 200 mm on a copper cathode electrode plate 10 having a thickness of 1 mm and a size of 100 mm by 100 mm (photograph FIG. 3A), and FIG. 3B.
  • FIG. 3A photograph FIG. 3A
  • the copper plates 10 at both ends are laminated with the protrusions 11 facing inward, and the copper electrodes 10 are laminated back to back in the middle to sandwich a magnesium anode electrode plate 20 having a thickness of 2 mm and a length and width of 100 ⁇ 100 mm.
  • This combination of electrodes can be used to form a microcapacitor on the surface of the copper cathode electrode, as shown in FIGS. 5A and B.
  • FIG. On the other hand, a copper cathode electrode plate 10 having a thickness of 1 mm and a length and width of 100 ⁇ 100 mm shown in FIG.
  • a Mg anode electrode plate 20 having a thickness of 2 mm and a size of 100 ⁇ 100 mm is sandwiched between the cathode electrode plates with spacers S interposed therebetween.
  • the top end view shown in FIG. 2B is obtained. Using this combination of electrodes does not form the microcapacitor shown in FIGS.
  • an electrolytic solution of 0.5 mol/l or more, preferably 1.5 mol/l or more, 2 mol/l of sodium chloride is prepared in about 1500 ml of pure water, and 50 to 100 g of sodium percarbonate and 30 g of sodium percarbonate are added thereto. 50 ml of % hydrogen peroxide solution is added. After a certain period of time, the cell reaction consumes hydrogen peroxide and the light bulb decreases, so add 10 ml of 30% hydrogen peroxide solution every 2 to 3 hours.
  • the performance of the electrode configuration of FIGS. 2A and B was compared with the electrode configuration of FIGS. 3A and B to compare the performance with and without the microcapacitor formed on the copper cathode electrode surface. Since the conditions were the same except for the electrode configuration, the point that the hydrogen peroxide fuel cell reaction in alkaline electrolyzed water was accompanied by the magnesium air cell reaction was the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】過酸化水素を含む双極子電気二重層を備える空気極及びそれを備える金属空気電池の提供 【構成】過酸化水素を含む中性又はアルカリ性電解液中で金属銅からなるカソード電極と、銅より電極電位の卑なる金属アノードと、過酸化水素を双極子とする電気二重層を形成し、アノード電極とカソード電極間にセパレータとして機能する絶縁性双極子電気二重層を有するセパレータレス電池及び過酸化水素を双極子とする電気二重層を備える銅カソードを空気極とする金属空気電池を提供する。

Description

過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池
 本発明は過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池に関する。
 燃料電池としては水素燃料電池、金属空気電池が知られているが、水素燃料電池は水素供給減として圧縮水素を必要とし、自動車での使用の場合、その圧縮空気の供給及び貯蔵に難点があるため、燃料として過酸化水素を用いることが提案されている。また、金属空気電池では一般に空気極として炭素電極が使用されているが、負極でのイオン化に比して空気極での酸素のイオン化の進行速度が遅いことが問題となっており、多孔質カーボンを用い、その改良を行うのが一般的である(特許文献1)。また、燃料電池では、炭素電極に代えてカソード電極として伝導性ポリマーであるポリ(3,4-エチレンジオキシチオフェン(PEDOT)を用いる一方、アノード電極としてニッケルメッシュを使用して、不均化反応による損失を発生させることのないように工夫し、0.20~0.30 mW cmの電力密度で0.5~0.6Vの範囲のオープン回路電位を示す燃料電池が発表されている(非特許文献1)。他方、カソード材料としてヘキサシアノ鉄酸銅(CuHCF)を使用し、アノード材料としてNiグリッドを使用する燃料電池も発表されている(非特許文献2)が、金属空気電池の空気極として用いるには汎用性がない。
特開2014-220107号
Chemical Communications,2018, Vol.54, Pages 11873-11876 Journal of Hydrogen Energy, ELSEVIER, Vol.45, Issue 47, 25 September 2020, Pages 25708-25718 水渡英二著:物理化学の進歩(1936),10(3):154~165頁
 本発明者は、従来技術の空気極の問題点を解決すべく鋭意研究の結果、金属空気電池のアルカリ性電解液中に過酸化水素を供給すると、金属電極と電解液との界面にセパレータ機能を有する双極子電気二重層を形成し、電極の短絡を防止でき、他方、燃料電池では正極として金属電極を使用すると、過酸化水素の不均化反応が起こり、使用できないとされていたが、過酸化水素を含む電解液が銅電極面に双極子電気二重層を形成すると、銅電極を空気極として過酸化水素を燃料として使用することが出来ることを見出した。これらの発見は驚くべきことであった。そこで、本発明は第一に、過酸化水素を含む電気二重層を備える銅電極からなる空気極を提供することを課題とし、第二に、過酸化水素を含む電気二重層を備える銅電極を空気極とする空気燃料電池を提供することを課題とする。
 すなわち、本発明は、第1に、少なくとも過酸化水素を含む中性又はアルカリ性電解液を用いる燃料電池において、該電解液中に浸漬する金属銅又はその合金をカソード電極とし、その界面に過酸化水素で形成される双極子電気二重層を形成してなる、ことを特徴とする空気極を提供するものである。
次いで、本発明は過酸化水素を含み、電気二重層を電極との界面に形成する中性又はアルカリ性水性電解液と、該電解液中に浸漬する金属銅又はその合金からなるカソード電極と、カソード電極より電極電位が卑なる金属又はその合金からなるアノード電極とを備え、カソード電極と電解液との界面の間に形成される過酸化水素を含む電解液により双極子電気二重層を形成し、炭素電極に代え、空気極として使用できる金属空気電池を提供するものである。
本発明によれば、電解液中の過酸化水素は電気双極子(ダイポール)であるから電極表面に配向して双極子電気二重層を形成する。図4A及びBはその機能説明図である。図中、電解液がアノード電極とカソード電極との間に介在すると、両電極には通常、電解液との界面に電気二重層が形成されるが、本発明では特に電解液中に過酸化水素が追加添加されているので、その双極子(ダイポール)としての機能により双極子電気二重層を形成する。その要因の一つは過酸化水素の双極子としての機能である。電極表面との界面には電気双極子(ダイポール)の配列によって、双極子電気二重層が形成される。その上、しかも過酸化水素の酸化力も協働し、本発明によれば、金属空気電池のボトルネックとなっているアノード側負極に比べてカソード側正極のイオン化進行速度が劣る原因を過酸化水素の添加によって改善することができる(なお、過酸化水素の添加は酸性電解液のボルタ電池における水素イオンによる影響を回避する減極剤の作用と異なる)が、電解液に添加した過酸化水素は双極子電気二重層を形成するだけでなく、銅カソードに空気極としての触媒機能を持たせ、銅カソード電極表面で種々の発電反応を発揮する。
過酸化水素を供給した、空気電池ではアノードでは2Mg→2Mg2++4e-と酸化反応で電子を得る一方、カソード電極ではO+2HO+4e-→4OHと酸素は還元され、ヒドロキシイオンを生成して発電するが、過酸化水素を含む中性又はアルカリ性電解液中でカソード電極として銅電極を使用すると、その電流量は増大していった。この要因をみると、かかる構成の電池では、金属空気電池のネックとなっているイオン化反応遅延が過酸化水素の添加により解消するだけでなく、カソード側での、酸素と水素の発生を確認できるため、銅電極表面では過酸化水素が分解する燃料電池反応を起こしていると考えられる。通常、過酸化水素燃料電池では非特許文献1に示すように、酸性領域では
カソード: H+ 2H+ 2e-→ 2HO (1.78 V対NHE)(1)
アノード: H→ O+ 2H+ 2e- (0.682 V対NHE)(2)
合計: 2H→ 2HO + O2 (1.09 V)(3)の電気化学反応を起こしているが、
過酸化水素を添加してなる本発明の中性又はアルカリ性領域では、
カソード: H+ 2H+2OH-+2e-→ 2HO+2OH- (1)
アノード: H+2OH-→ O+ 2H+2OH+ 2e-(2)
の電気化学反応を起こしているものと考えられ、
さらに本発明では過酸化水素を含む双極子電気二重層は銅カソード表面での触媒反応も伴って過酸化水素の分解による
2H→ ・4OH→ 2O+ 2H2 + 4e- の発電反応
又は ヒドロキシイオンの分解による4OH-→O+2HO+4e-の発電反応が伴うと思われる。
本発明の金属空気電池を示す概念図である。 スペーサを介した銅カソード電極を示す斜視図である。 銅カソード電極とマグネシウムアノード電極を組み合わせた状態の側面概念図である。 多数のマイクロキャパシタを形成する銅カソード電極の写真である。 図3Aの銅カソード電極とマグネシウムアノード電極を組み合わせた状態の側面概念図である。 本発明の空気極のキャパシタの構成を示す概念図で、(A)はアノード及びカソード電極表面に過酸化水素双極子と金属酸化物とを含む電気二重層が形成されている状態を、(B)はアノード電極表面のみに過酸化水素双極子と金属酸化物とを含む電気二重層が形成されている状態を示す。 本発明のマイクロキャパシタを電気二重層として備える構成を示す概念図(A)及び(B)である。
(金属空気電池の構成)
本発明では、図1に示すように、Al又はMgアノード電極とCuカソード電極を過酸化水素を含む中性又はアルカリ性電解液に浸漬して対向配置して金属空気電池を構成してなる。
アノード電極/過酸化水素を含むアルカリ性電解液/カソード電極の構成における起電力であって、その金属空気電池の反応は次の通りである。
アノード側の金属酸化反応をM→Mn+ + ne-と、
他方、カソード側の酸素還元反応をO+HO+4e-→4OH- となる。
本発明では、金属空気電池のカソード側の還元反応を促進するために、電解液に過酸化水素を添加し、アノード側負極に比べてカソード側正極のイオン化進行速度が劣る原因を改善した。
すなわち、金属銅はCu+2H→Cu2++2OH+2OH-及び
Cu+2OH→Cu2++2OH-と一部過酸化水素に溶けるが、Cu2++2HO -→Cu+2HOと、HO基がHaber u. Willstatter連鎖によって過酸化水素の分解を促進するからであると思われる(非特許文献3)。
さらに、本発明においては、カソード側から水素と酸素ガスの発生が認められるので、通常の過酸化水素燃料電池(非特許文献1参照)を構成するだけでなく、
カソード: H+ 2H + 2e-→ 2HO (1.78 V対NHE)(1)
アノード: H→ O+ 2H + 2e- (0.682 V対NHE)(2)
合計: 2H→ 2HO + O2 (1.09 V)(3)
本発明では銅カソード表面での触媒反応も伴って過酸化水素2H→・4OH に分解して、・4OH ⇒H+O+4e-↑と酸素と水素を発生させるか又はヒドロキシイオン4OH- ⇒H+O+4e-を分解して酸素と水素を発生させ、同時に電子を放出するものと思われる。
図1は、本発明の金属空気電池の概念図である。Mgアノード電極とCuカソード電極と電解液の間に過酸化水素を含む電解液が介在すると、電解液と電極との界面には過酸化水素を双極子とする電気二重層が形成される一方、過酸化水素により電極表面の双方(図4A)又は少なくともアノード側(図4B)に過酸化水素で酸化された金属イオンの酸化物が介在する結果、両電極は短絡せず、これらが協働してキャパシタ機能を発揮する。過酸化水素は双極子としてカソード電極表面に双極子電気二重層を形成するが、同時に、電解液中で電極、アノード電極を構成する典型金属のマグネシウム、アルミニウム、亜鉛は電解液との反応性が高く、特にアノード金属イオンを酸化して酸化物(一部は金属水酸化物)を形成するため、アノード電極とカソード電極が接触しても短絡せず、電極をセパレートすることが分かる(図2A及びB、図4A及びB)。
本発明においては、カソード電極表面に絶縁性電気二重層を形成する酸化剤として電解液に過酸化水素を添加したが、金属表面を酸化する各種酸化剤であって、電気二重層を形成する機能を有する限り、過酸化水素とともに使用して同様の機能と作用効果を奏することができることは当業者であれば、本明細書の記載から理解できる。
本発明においては、前記水溶性電解液に過酸化水素の一部又は全部を過炭酸ナトリウムにより供給するのが好ましい。具体的には、0.5から2.0モルのアルカリ金属又はアルカリ土類金属ハロゲン化塩、特に塩化ナトリウムを含む中性又はアルカリ性水溶液に対し数%から十数%の過酸化水素水(体積%)又は過炭酸ナトリウム(重量%)を添加するのが好ましい。
前記アノード電極とカソード電極とを交互にスペーサを介して一定の間隔をもって対向配置し、アノード電極とカソード電極との接触部に過酸化水素を含む水溶性電解液により電気二重層キャパシタを形成する(図4A及びB)が、前記スペーサがカソード電極と同じ金属銅又は銅合金からなり、対極表面に一定間隔を隔てる点状突起を有する(図5A及びB)のが好ましい。
(性能比較)
図2A及びB及び図3A及びBに示す銅電極を使用して図5A及びBに示す概念のマイクロキャパシタがある場合とない場合の電池の性能を比較した。
容量3000mlの上方開放型直方体プラスチック容器を用いる。図5A及びBでは、1mm厚み、縦横100×100mmの銅カソード電極板10に上下左右に150mmないし200mm間隔で多数の三角形の50mmの高さの突起11を切り立て(写真図3A)、図3Bに示すように、両端は銅板10は突起11を内向きに、真ん中は背中合わせに張り合わせた銅電極10で2mm厚み、縦横100×100mmのマグネシウムアノード電極板20を挟み込んで組み合わせる。
この組み合わせ電極を使うと図5A及びBに示すように、銅カソード電極の表面にマイクロコンデンサを形成することができる。
他方、図2Aに示す、1mm厚み、縦横100×100mmの銅カソード電極板10に銅電極板をT字形に切り出し、端部を折り曲げて形成したスペーサSを取り付ける。このカソード電極板でスペーサSを介して2mm厚みの縦横100×100mmのMgアノード電極板20の両側を挟みつける。3枚の銅カソード電極板10で、2枚のMgアノード電極板20はスペーサSを介して交互に挟みつけると、図2Bに示す上部端面図の状態となる。この組み合わせ電極を使うと図4A及びBに示すマイクロコンデンサを形成しない。
プラスチック容器にはおよそ1500mlの純水に塩化ナトリウム0.5モル/l以上、好ましくは1.5モル/l以上2モル/lの電解液を調整し、これに過炭酸ナトリウム50~100gと30%過酸化水素水50mlを加える。電池反応は一定時間過ぎると、過酸化水素が消費され、電球が減少するので、2~3時間ごとに10mlの30%過酸化水素水を添加する。
本件実施例においては、図2AおよびBの電極構成と図3AおよびBの電極構成の性能を比較してマイクロキャパシタを銅カソード電極表面に形成する場合とない場合の性能比較を行った。
電極構成以外は同じ条件としたので、アルカリ電解水における過酸化水素燃料電池反応に、マグネシウム空気電池反応が伴うものである点は同じである。したがって、以下の反応式に基づき、
過酸化水素がH+2HO+2e-→2HO+2OH-に分解する一方、カソード電極側でH+2OH-→O+2HO+2e-の酸化反応を起こすだけでなく、アルカリ性電解液での金属酸化反応がMg→Mg2++2e-となり、カソード側での酸素を還元してイオン化する反応がO+2HO+4e-→4OH-と典型的な金属空気電池反応が起こる。但し、過酸化水素燃料電池及び金属空気電池反応では酸素ガスは発生すると理解できるが、上記構成では酸素ガスだけでなく、水素ガスも発生する。ということは、非特許文献3(水渡英二著、物理化学の進歩(1936)、10(3):154~165頁)に示唆されるように、銅カソード電極表面で触媒機能が働き、過酸化水素の分解又はヒドロキシイオンの分解が起こり、発電反応に繋がっていると思われる。
2H→4・OH→H+O+4e-
4OH-→H+O+4e-
以上、本発明を一対の電極として、Mgアノード電極とCuカソード電極とを用いて説明したが、同種の典型金属から選はれるアルミニウム及び亜鉛並びにその合金を用いても電極電位差は異なるものの、同種の効果が得られることは言うまでもない。

Claims (6)

  1. 中性又はアルカリ性電解液と、空気極と、空気極より電極電位が卑なるアルミ、亜鉛、マグネシウム及びその合金から選ばれる典型金属をアノードとする電極とを備える金属空気電池において、前記電解液が過酸化水素を含む一方、前記空気極が銅及びその合金から選ばれる遷移金属からなり、銅及びその合金からなる電極と過酸化水素を含む電解液との界面に、過酸化水素を双極子とする電気二重層を形成してなる、ことを特徴とする空気極。
  2. 中性又はアルカリ性電解液と、空気極と、空気極より電極電位が卑なるアルミ、亜鉛、マグネシウム及びその合金から選ばれる典型金属をアノードとする電極とを備える金属空気電池であって、前記電解液が過酸化水素を含む一方、前記空気極が銅及びその合金から選ばれる遷移金属から選ばれ、前記銅及びその合金から選ばれる遷移金属からなる電極と電解液との界面に、過酸化水素を双極子とする電気二重層を形成し、空気極として作用させることを特徴とする金属空気電池。
  3.  前記電解液が過酸化水素供給源として過炭酸ナトリウム及び/又は過酸化水素水を含む一方、電解液がアルカリ金属又はアルカリ土類金属ハロゲン化物から選ばれる電解質を含む請求項2記載の金属空気電池。
  4. 前記アノード電極と空気極とが導電性金属スペーサを介してイオン流動を確保する一定の間隔をもって対向配置してなる電極構造を1組以上有する請求項2記載の金属空気電池。
  5. 前記スペーサが空気極と同じ金属銅又は銅合金からなり、空気極が対極となるアノード電極表面に一定間隔を隔てて分布する点状接触部を有する請求項3記載の金属空気電池。
  6. アノード側のアルカリ域での金属酸化反応がM→Mn++ne-(但し、Mはマグネシウム、アルミニウム及び亜鉛から選ばれる典型金属、nは価数を示す)と、カソード側での酸素を還元してイオン化する反応がO+2HO+4e-→4OH-からなる金属空気電池反応であって、
    アノード側でのアルカリ域での過酸化水素反応が
    +2HO+2e-→2HO+2OH-と、
    カソード側での反応が
    +2OH-→O+2HO+2e-の酸化反応からなる過酸化水素反応を伴う請求項2記載の金属空気電池。
PCT/JP2022/018775 2021-04-23 2022-04-25 過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池 WO2022225066A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3216113A CA3216113A1 (en) 2021-04-23 2022-04-25 Air electrode having hydrogen peroxide-containing electric double layer, and metal-air battery using same
EP22791837.2A EP4329049A1 (en) 2021-04-23 2022-04-25 Air electrode having hydrogen peroxide-containing electric double layer, and metal-air battery using same
AU2022261634A AU2022261634A1 (en) 2021-04-23 2022-04-25 Air electrode having hydrogen peroxide-containing electric double layer, and metal-air battery using same
US18/287,726 US20240204209A1 (en) 2021-04-23 2022-04-25 Air electrode having hydrogen peroxide-containing electric double layer, and metal-air battery using same
JP2023515544A JPWO2022225066A1 (ja) 2021-04-23 2022-04-25
KR1020237039973A KR20240027580A (ko) 2021-04-23 2022-04-25 과산화 수소를 포함하는 전기 이중층을 구비하는 공기극 및 그것을 이용하는 금속 공기 전지
CN202280029380.4A CN117999692A (zh) 2021-04-23 2022-04-25 具备包含过氧化氢的电偶极子层的空气电极、及使用该空气电极的金属空气电池

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021-073534 2021-04-23
JP2021-073535 2021-04-23
JP2021-073490 2021-04-23
JP2021073534 2021-04-23
JP2021073535 2021-04-23
JP2021073490 2021-04-23
JP2021-142106 2021-09-01
JP2021142106 2021-09-01

Publications (1)

Publication Number Publication Date
WO2022225066A1 true WO2022225066A1 (ja) 2022-10-27

Family

ID=83722861

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/018776 WO2022225067A1 (ja) 2021-04-23 2022-04-25 双極子電気二重層からなるセパレータ及びそれをセパレータとするイオン導電性電池
PCT/JP2022/018775 WO2022225066A1 (ja) 2021-04-23 2022-04-25 過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018776 WO2022225067A1 (ja) 2021-04-23 2022-04-25 双極子電気二重層からなるセパレータ及びそれをセパレータとするイオン導電性電池

Country Status (7)

Country Link
US (1) US20240204209A1 (ja)
EP (1) EP4329049A1 (ja)
JP (2) JPWO2022225066A1 (ja)
KR (1) KR20240027580A (ja)
AU (1) AU2022261634A1 (ja)
CA (1) CA3216113A1 (ja)
WO (2) WO2022225067A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380480A (ja) * 1986-07-09 1988-04-11 アンテロツクス (ソシエテ アノニム) 燃料電池及び燃料電池で発電する方法
JP2009032628A (ja) * 2007-07-31 2009-02-12 National Institute Of Advanced Industrial & Technology 燃料電池
JP2014220107A (ja) 2013-05-08 2014-11-20 株式会社ワイヤードジャパン 空気マグネシウム電池とそのカソード製造方法
JP2017092014A (ja) * 2015-11-13 2017-05-25 基嗣 田島 アルミニウム空気電池
JP2018206578A (ja) * 2017-06-02 2018-12-27 国立研究開発法人産業技術総合研究所 リチウム空気電池用電解液、リチウム空気電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380480A (ja) * 1986-07-09 1988-04-11 アンテロツクス (ソシエテ アノニム) 燃料電池及び燃料電池で発電する方法
JP2009032628A (ja) * 2007-07-31 2009-02-12 National Institute Of Advanced Industrial & Technology 燃料電池
JP2014220107A (ja) 2013-05-08 2014-11-20 株式会社ワイヤードジャパン 空気マグネシウム電池とそのカソード製造方法
JP2017092014A (ja) * 2015-11-13 2017-05-25 基嗣 田島 アルミニウム空気電池
JP2018206578A (ja) * 2017-06-02 2018-12-27 国立研究開発法人産業技術総合研究所 リチウム空気電池用電解液、リチウム空気電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Journal of Hydrogen Energy", vol. 45, 25 September 2020, ELSEVIER, pages: 25708 - 25718
CHEMICAL COMMUNICATIONS, vol. 54, 2018, pages 11873 - 11876
EIJI MINATO, PROGRESS IN PHYSICAL CHEMISTRY, vol. 10, no. 3, 1936, pages 154 - 165
EIJI WATER, PHYSICOCHEMICAL ADVANCEMENT, vol. 10, no. 3, 1936, pages 154 - 165

Also Published As

Publication number Publication date
JPWO2022225066A1 (ja) 2022-10-27
AU2022261634A1 (en) 2023-11-30
US20240204209A1 (en) 2024-06-20
CA3216113A1 (en) 2022-10-27
KR20240027580A (ko) 2024-03-04
WO2022225067A1 (ja) 2022-10-27
JPWO2022225067A1 (ja) 2022-10-27
EP4329049A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
KR101296431B1 (ko) 배터리와 배터리 작동 방법
ES2733323T3 (es) Electrolito sólido conductor de ion alcalino compuesto
EP2929586B1 (en) Anaerobic aluminum-water electrochemical cell
US8304121B2 (en) Primary aluminum hydride battery
JP2022068077A (ja) 金属銅をカソード電極とする1コンパートメント型水溶液燃料電池
JP5737727B2 (ja) マグネシウム電池
WO2022225066A1 (ja) 過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池
US20030008210A1 (en) Silver maganese salt cathodes for alkaline batteries
WO2023033071A1 (ja) 銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法
WO2023033070A1 (ja) 銅又は銅合金からなるカソード電極
WO2023033068A1 (ja) 金属銅又はその合金を酸素還元空気極とする空気電池
JP2015022871A (ja) 金属空気電池
EP4398350A1 (en) Battery having electronic conduction function via electric double layer capacitor
WO2023033113A1 (ja) 電気二重層キャパシタを介する電子伝導機能を有する電池
EP4398383A1 (en) Air battery in which metallic copper or alloy thereof serves as oxygen reducing air electrode
JP2024034273A (ja) 銅又は銅合金からなるカソード電極
JP2024034270A (ja) 金属銅又はその合金を酸素還元空気極とする空気電池
JP2023061404A (ja) アバランシェ増幅機能を有する電池
JP2024034840A (ja) 電気二重層キャパシタを介する電子伝導機能を有する電池
CN117957678A (zh) 具有经由双电层电容器的电子传导功能的电池
CN214672733U (zh) 一种高能量密度充放电电池
US20130088184A1 (en) Battery device utilizing oxidation and reduction reactions to produce electric potential
US3471334A (en) Fuel cell process using peroxide and superoxide and apparatus
TWI840087B (zh) 氫電共生的燃料電池及其系統
KR100685907B1 (ko) 무기물질을이용한 전극제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280029380.4

Country of ref document: CN

Ref document number: 2301006819

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 3216113

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18287726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023515544

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022261634

Country of ref document: AU

Ref document number: 805584

Country of ref document: NZ

Ref document number: AU2022261634

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020237039973

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022791837

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022261634

Country of ref document: AU

Date of ref document: 20220425

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022791837

Country of ref document: EP

Effective date: 20231123