WO2023033071A1 - 銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法 - Google Patents

銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法 Download PDF

Info

Publication number
WO2023033071A1
WO2023033071A1 PCT/JP2022/032845 JP2022032845W WO2023033071A1 WO 2023033071 A1 WO2023033071 A1 WO 2023033071A1 JP 2022032845 W JP2022032845 W JP 2022032845W WO 2023033071 A1 WO2023033071 A1 WO 2023033071A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
cathode electrode
fuel cell
copper
electrode
Prior art date
Application number
PCT/JP2022/032845
Other languages
English (en)
French (fr)
Inventor
光廣 佐想
Original Assignee
クロステクノロジーラボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クロステクノロジーラボ株式会社 filed Critical クロステクノロジーラボ株式会社
Publication of WO2023033071A1 publication Critical patent/WO2023033071A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a combustion method for a hydrogen peroxide fuel cell using a cathode electrode made of copper or a copper alloy.
  • Non-Patent Document 1 “Single-Compartment hydrogen peroxide fuel cell with poly(3,4-ethylenedioxythiophene) cathodes” Chemical Communications, 2018, Vol.54, Pages 11873-11876).
  • a hydrogen oxide fuel cell has also been announced (Non-Patent Document 2: “Copper hexacyanoferrate as cathode material for hydrogen peroxide fuel cell” International Journal of Hydrogen Energy, ELSEVIER, Vol.45, Issue 47, 25 September 2020, Pages 25708-25718) .
  • PEDOT poly(3,4-ethylenedioxythiophene
  • CuHCF copper hexacyanoferrate
  • hydrogen peroxide water exhibits alkalinity and contains many hydroxy ions along with oxygen.
  • copper or copper alloy is immersed in this hydrogen peroxide water, it is observed that gas is generated.
  • the oxygen produced by hydrogen decomposition contains not only oxygen but also hydrogen. If it is a photocatalyst, it receives sunlight and decomposes water, but this copper and copper alloy does not change its reaction even if it is exposed to sunlight. The decomposition of water in the hydrogen peroxide solution results in a loss of cell electromotive force.
  • an object of the present invention is to provide a novel method of burning copper or its alloy in a hydrogen peroxide fuel cell.
  • the present invention is based on the decomposition reaction of hydroxy ions in a hydrogen peroxide fuel cell using copper or its alloy as a cathode electrode. or an alloy thereof, and an anode electrode made of a metal or an alloy thereof that has an electrode potential lower than that of the cathode electrode and forms an electrode potential difference equal to or higher than the decomposition voltage of hydrogen peroxide, and hydrogen peroxide as fuel.
  • a fuel cell that 4OH ⁇ ⁇ 2O 2 +2H 2 +4e ⁇ for generating power by decomposing hydroxyl ions generated on the surface of the cathode electrode made of metallic copper or its alloy by the following catalytic action to generate oxygen and hydrogen;
  • a combustion method for a hydrogen peroxide fuel cell characterized by:
  • Non-Patent Document 1 the cathode in the acidic region: H2O2+ 2H++ 2e - ⁇ 2H2O (1.78 V vs. NHE) (1) Anode: H2O2 ⁇ O2+ 2H + + 2e ⁇ (0.682 V vs NHE) (2) Total: 2H2O2 ⁇ 2H2O + O2 (1.09 V) (3) causes an electrochemical reaction.
  • Cathode H 2 O 2 + 2e ⁇ ⁇ 2H 2 O+2OH ⁇ (1)
  • Anode H2O2 + 2OH - ⁇ O2 + 2H2O + 2e - (2)
  • hydrogen peroxide is decomposed to hydroxy ions accompanied by a catalytic reaction on the copper cathode surface, and oxygen and generate hydrogen, 2H 2 O 2 ⁇ 4OH ⁇ 2O 2 + 2H 2 + 4e ⁇ or 4OH ⁇ ⁇ O 2 +2H 2 O+4e ⁇ due to direct decomposition of hydroxy ions.
  • FIG. 1 is a conceptual diagram of a hydrogen peroxide fuel cell using copper or an alloy thereof of the present invention as a cathode electrode.
  • FIG. 1 is an assembled view of a first cathode electrode configuration of the present invention with an anode
  • FIG. 2 is a perspective view of a second cathode electrode configuration of the present invention
  • FIG. 3 is an assembled view of a second cathode electrode configuration of the present invention with an anode
  • 3 is a conceptual diagram of a capacitor having the electrode configuration of FIG. 2
  • FIG. 4 is a conceptual diagram of a capacitor having the electrode configuration of FIG. 3
  • FIG. FIG. 4 is a conceptual diagram of the microcapacitor effect that occurs on the surface of the cathode electrode of FIG. 3;
  • an Al or Mg anode electrode and a Cu cathode electrode are immersed in an alkaline electrolyte containing hydrogen peroxide and placed facing each other to form a fuel cell.
  • the electromotive force in the configuration of anode electrode/alkaline electrolyte containing hydrogen peroxide/cathode electrode the reaction of which is as follows.
  • the oxidation reaction on the anode side is Me ⁇ Me n++ + ne-
  • the reduction reaction on the cathode side becomes O 2 +H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • hydrogen peroxide is added to the electrolytic solution in order to promote the reduction reaction on the cathode side, thereby improving the cause of the inferior ionization rate of the positive electrode on the cathode side compared to the negative electrode on the anode side.
  • metallic copper is Cu + 2H 2 O 2 ⁇ Cu 2+ +2OH + 2OH - and Cu + 2OH ⁇ Cu 2 + +2OH - and partly dissolve in hydrogen peroxide, but Cu 2+ +2HO 2 - ⁇ Cu+2HO 2 , HO2 group promotes decomposition of hydrogen peroxide by Haber u. Willstatter chain (non-patent document 3).
  • Non-Patent Document 1 a normal hydrogen peroxide fuel cell (see Non-Patent Document 1) is constructed.
  • hydrogen peroxide is decomposed into 2H 2 O 2 ⁇ .4OH accompanied by a catalytic reaction on the surface of the copper cathode, and .4OH ⁇ H 2 +O 2 +4e ⁇ ⁇ and oxygen and hydrogen are generated, or hydroxyl ions are generated. It is thought that 4OH ⁇ ⁇ 2H 2 +2O 2 +4e ⁇ is directly decomposed to generate oxygen and hydrogen, and electrons are released at the same time.
  • the anode electrode as the counter electrode is combined with the cathode electrode (Fig. 2A) to make contact.
  • a dipole electric double layer capacitor is constructed as shown in the figure and does not short-circuit (Fig. 4A).
  • the tips of the dot-like protrusions have a dipole electric double layer microcapacitor structure (Fig. 4B).
  • sodium percarbonate is used to supply part or all of the hydrogen peroxide to the aqueous electrolytic solution.
  • a neutral or alkaline aqueous solution containing 0.5 to 2.0 mol of alkali metal or alkaline earth metal halide salt, particularly sodium chloride, and several percent to ten and several percent of hydrogen peroxide water (volume %) or sodium percarbonate (% by weight) is preferably added.
  • the anode electrode is made of magnesium or its alloy, and by adopting a cell structure of (-) Mg/NaCl+H2O2/Cu(+), hydrogen peroxide or hydroxyl radicals decomposed by it are decomposed between the copper cathode electrode and the cathode electrode. gives the decomposition voltage required to
  • the cathode electrode (Fig. 2A) and the anode electrode are alternately arranged to face each other with a constant interval via a spacer, and an electric double layer capacitor is formed by applying an aqueous electrolyte containing hydrogen peroxide to the contact portion between the anode electrode and the cathode electrode.
  • the spacer is made of the same metal copper or copper alloy as the cathode electrode, and has punctate projections at regular intervals on the surface of the counter electrode (Fig. 3A ) and its electrode combination (FIG. 3B) constitutes a plurality of microcapacitors (FIG. 4B) and has an avalanche amplification effect (FIG. 5) as the microcapacitor effect.
  • FIGS. 2A and 3A were used to compare the performance of the battery with the conceptual microcapacitor shown in FIG. 4B and without the microcapacitor shown in FIG. 4A.
  • a top-opening cuboid plastic container with a capacity of 3000 ml is used.
  • a copper cathode electrode plate 10 having a thickness of 1 mm and a length and width of 100 ⁇ 100 mm is cut into a large number of triangular protrusions 11 having a height of 50 mm vertically and horizontally at intervals of 150 mm to 200 mm (FIG. 3A), as shown in FIG. 3B.
  • the copper plates 10 are laminated with the protrusions 11 facing inward, and at the center, the copper electrodes 10 are laminated back to back, and the magnesium anode electrode plate 20 having a thickness of 2 mm and a length and width of 100 ⁇ 100 mm is sandwiched between them.
  • a microcapacitor can be formed on the surface of the copper cathode electrode, as shown in FIG. 4B.
  • a Mg anode electrode plate 20 having a thickness of 2 mm and a size of 100 ⁇ 100 mm is sandwiched between the cathode electrode plates with spacers S interposed therebetween.
  • the top end view shown in FIG. 2B is obtained.
  • Using this combination of electrodes forms the dipole electric double layer capacitor shown in FIG. 4A, but does not form a microcapacitor (FIG. 4B).
  • an electrolytic solution of 0.5 mol/l or more, preferably 1.5 mol/l or more, 2 mol/l of sodium chloride is prepared in about 1500 ml of pure water, and 50 to 100 g of sodium percarbonate and 30 g of sodium percarbonate are added thereto. 50 ml of % hydrogen peroxide solution is added. After a certain period of time, the cell reaction consumes hydrogen peroxide and the light bulb decreases, so add 10 ml of 30% hydrogen peroxide solution every 2 to 3 hours.
  • the performance of the electrode configuration of FIGS. 2A and 2B and the electrode configuration of FIGS. 3A and 3B was compared, and a normal capacitor and a microcapacitor were formed on the surface of a copper cathode electrode to compare the performance. Since the conditions were the same except for the electrode configuration, the point that the hydrogen peroxide fuel cell reaction in alkaline electrolyzed water was accompanied by the magnesium air cell reaction was the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】過酸化水素を燃料とする過酸化水素燃料電池反応の提供 【構成】過酸化水素を含む、水溶性電解液中に金属銅又はその合金からなるカソード電極と、カソード電極より電極電位が卑で、過酸化水素の分解電圧以上となる電極電位差を形成する金属又はその合金からなるアノード電極とを浸漬し、カソード電極表面で形成されるヒドロキシイオンを酸素と水素に分解し、4OH-→2O2+2H2+4e- 起電力を得ることを特徴とする過酸化水素燃料電池の新規燃焼方法を提供する。

Description

銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法
本発明は銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法に関する。
燃料電池において、過酸化水素は水素より供給が容易な燃料源として着目されている。近年、過酸化水素燃料電池は、水素燃料電池と違って、水溶液を用いる1コンパートメント構造は、燃料の供給が容易で、しかもカソードとアノード室を区画する膜のない動作ができるため、有望なエネルギー変換プラットフォームとして期待されている。
しかしながら、過酸化水素は燃料と酸化剤の両方として機能する高エネルギー密度液体であるので、ほとんどの金属電極はHのHO とOへの不均化反応を触媒する。
その結果、この不均一反応は過酸化物燃料電池における著しい損失機構を示すので、金属をカソード電極とする過酸化水素燃料電池は存在しない。すなわち、カソード電極として伝導性ポリマーであるポリ(3,4-エチレンジオキシチオフェン(PEDOT)を用いる一方、アノード電極としてニッケルメッシュを使用して、不均化反応による損失を発生させることのないように工夫し、0.20~0.30 mW cmの電力密度で0.5~0.6Vの範囲のオープン回路電
位を示す過酸化水素燃料電池が発表されている(非特許文献1:「Single-Compartment hydrogen peroxide fuel cell with poly(3,4-ethylenedioxythiophene) cathodes」Chemical Communications,2018, Vol.54, Pages 11873-11876)。他方、カソード材料としてヘキサシアノ鉄酸銅(CuHCF)を使用し、アノード材料としてNiグリッドを使用する過酸化水素燃料電池も発表されている(非特許文献2:「Copper hexacyanoferrate as
cathode material for hydrogen peroxide fuel cell」International Journal of Hydrogen Energy, ELSEVIER, Vol.45, Issue 47, 25 September 2020, Pages 25708-25718)
Chemical Communications,2018, Vol.54, Pages 11873-11876 Journal of Hydrogen Energy, ELSEVIER, Vol.45, Issue 47, 25 September 2020, Pages 25708-25718 水渡英二著:物理化学の進歩(1936),10(3):154~165頁
 しかしながら、従来の過酸化水素燃料電池のカソード電極であるポリ(3,4-エチレンジ
オキシチオフェン(PEDOT)やヘキサシアノ鉄酸銅(CuHCF)は複雑で量産性にかけるという問題点がある。そこで、本発明は過酸化水素燃料電池のカソード電極として使用できる新たな電極を提供すべく、鋭意研究を進めた。
その結果、過酸化水素水はアルカリ性を示し、酸素とともに多くのヒドロキシイオンが存在するが、この過酸化水素水中に銅又は銅合金を浸漬すると、気体の発生を認め、常態ではこの気体は過酸化水素分解による酸素であるが、酸素だけでなく、水素を含むことを見出した。光触媒であれば、太陽光を受けて水を分解するが、この銅及び銅合金は太陽光を浴びても反応に変りがない。過酸化水素水中での、水の分解であると、電池起電力の損失となる。そこで、マグネシウム又はアルミニウムをアノード電極とする一方、銅又はその合金をカソード電極とする電池構成では、電解液の酸性域ではボルタ電池を構成し、アノード電極側から水素が発生させて発電するが、中性域では無反応であって、過酸化水素水を含むアルカリ電解液中に投入すると、銅カソード電極側から比較的粒子の大きい気体と細かな気体の両者の発生があり、酸素と水素が銅電極側から発生しつつ発電する現象が認められた。その結果、銅電極は電極近傍に存在するOHヒドロキシイオンの分解を触媒していると考えられ、かかるOHヒドロキシイオンの分解し、酸素及び水素を形成する反応は4OH-→ 2O+2H+4e-で示される。そこで、本発明は、銅又はその合
金を過酸化水素燃料電池における新規燃焼方法を提供することを課題とする。
本発明は、銅又はその合金をカソード電極とする過酸化水素燃料電池のヒドロキシイオンの分解反応に基づくもので、過酸化水素を含む水溶性電解液と、該電解液中に浸漬される金属銅又はその合金からなるカソード電極と、カソード電極より電極電位が卑で、過酸化水素の分解電圧以上となる電極電位差を形成する金属又はその合金からなるアノード電極とを備える、過酸化水素を燃料とする燃料電池において、
前記金属銅又はその合金からなるカソード電極表面で生成するヒドロキシイオンを以下の触媒作用により分解して酸素及び水素を生成し発電する
4OH-→2O2+2H2+4e-
ことを特徴とする過酸化水素燃料電池の燃焼方法にある。
過酸化水素燃料電池では従来、非特許文献1に示すように、酸性領域では
カソード: H2O2+ 2H++ 2e-→ 2H2O (1.78 V対NHE)(1)
アノード: H2O2→ O2+ 2H+ 2e- (0.682 V対NHE)(2)
合計: 2H2O2→ 2H2O + O2 (1.09 V)(3)の電気化学反応を起こすが、本発明
における過酸化水素を添加してなるアルカリ性領域では、
カソード: H+ 2e-→ 2HO+2OH- (1)
アノード: H+2OH-→ O+2H2O + 2e-(2)
の電気化学反応を起こしているものと考えられ、水素発生は認められないが、本発明では銅カソード表面での触媒反応も伴って過酸化水素の分解からのヒドロキシイオンの分解が起こり、酸素と水素を発生し、
2H→ ・4OH→ 2O+ 2H + 4e- の発電反応
又は ヒドロキシイオンの直接分解による4OH-→O+2HO+4e-の発電反応が伴う。
本発明の銅又はその合金をカソード電極として過酸化水素燃料電池の概念図である。 本発明の第1のカソード電極構成の斜視図で、 本発明の第1のカソード電極構成のアノードとの組立図である。 本発明の第2のカソード電極構成の斜視図で、 本発明の第2のカソード電極構成のアノードとの組立図である。 図2の電極構成のキャパシタ概念図である。 図3の電極構成のキャパシタ概念図である。 図3のカソード電極表面で起こるマイクロキャパシタ効果の概念図である。
本発明では、図1に示すように、Al又はMgアノード電極とCuカソード電極とを、過酸化水素を含むアルカリ性電解液に浸漬して対向配置して燃料電池を構成してなる。アノード電極/過酸化水素を含むアルカリ性電解液/カソード電極の構成における起電力であって、その反応は次の通りである。
アノード側の酸化反応をMe→Men+ + ne-と、
他方、カソード側の還元反応をO+HO+4e-→4OH- となる。
本発明では、カソード側の還元反応を促進するために、電解液に過酸化水素を添加し、アノード側負極に比べてカソード側正極のイオン化進行速度が劣る原因を改善した。
すなわち、金属銅はCu+2H→Cu2++2OH+2OH-及び Cu+2OH→Cu
+2OH-と一部過酸化水素に溶けるが、Cu2++2HO -→Cu+2HOと、HO2基がHaber u. Willstatter連鎖によって過酸化水素の分解を促進するからであると思わ
れる(非特許文献3)。
さらに、本発明においては、カソード側から水素と酸素ガスの発生が認められるので、通常の過酸化水素燃料電池(非特許文献1参照)を構成する。
カソード: H+ 2H + 2e-→ 2HO (1.78 V対NHE)(1)
アノード: H→ O+ 2H++ 2e- (0.682 V対NHE)(2)
合計: 2H→ 2HO + O (1.09 V)(3)
本発明では銅カソード表面での触媒反応も伴って過酸化水素2H→・4OH に分解して、・4OH →H+O+4e-↑と酸素と水素を発生させるか又はヒドロキシイオン4OH- →2H+2O+4e-を直接分解して酸素と水素を発生させ、同時に電
子を放出するものと思われる。
しかも、本発明によると、カソード電極の表面に形成される電気二重層は過酸化水素を含み、双極子(ダイポール)機能を有するため、対極のアノード電極はカソード電極(図2A)と組み合わせて接触させても(図2B)、図示のように双極子電気二重層キャパシタを構成して短絡せず(図4A)、他方、対極のアノード電極はカソード電極(図3A)と組
み合わせて接触させても一定間隔で点状に配置される突起等で形成する(図3B)と、点
状突起の先端に双極子電気二重層マイクロキャパシタ構造を有することになり(図4B)、図4Aの双極子電気二重層キャパシタと同一構成であるが、電極表面にマイクロコンデンサとして多数点在し、マイクロキャパシタ効果(図5)有することになり、図3のものは図2のものの2倍以上の発電能力を発揮することになる。
なお、本発明においては、カソード電極表面に過酸化水素を酸化剤として電解液に添加し、そうたが、金属表面を酸化する各種酸化剤であって、電気二重層を形成する機能を有する限り、過酸化水素とともに使用して同様の機能と作用効果を奏することができることは当業者であれば、本明細書の記載から理解できる。
本発明においては、前記水溶性電解液に過酸化水素の一部又は全部を過炭酸ナトリウムにより供給するのが好ましい。具体的には、0.5から2.0モルのアルカリ金属又はアルカリ土類金属ハロゲン化塩、特に塩化ナトリウムを含む中性又はアルカリ性水溶液に対し数%から十数%の過酸化水素水(体積%)又は過炭酸ナトリウム(重量%)を添加するのが好ましい。
アノード電極がマグネシウム又はその合金からなり、(-)Mg/NaCl+H2O2/Cu(+)の電池構成をとることにより、銅カソード電極との間に過酸化水素又はそれが分解したヒドロキシラジカルを分解するに必要な分解電圧を与える。
前記カソード電極(図2A)とアノード電極とを交互にスペーサを介して一定の間隔をも
って対向配置し、アノード電極とカソード電極との接触部に過酸化水素を含む水溶性電解液により電気二重層キャパシタを形成する(図4A)が、前記スペーサがカソード電極と同じ金属銅又は銅合金からなり、対極表面に一定間隔を隔てる点状突起を有する(図3A
)と、その電極組み合わせ(図3B)は複数のマイクロキャパシタを構成し(図4B)、マイクロキャパシタ効果としてアバランシェ増幅効果(図5)を有することになる。
(性能比較)
図2A及び図3Aに示す銅電極を使用して図4Bに示す概念のマイクロキャパシタがある場合と図4Aに示すマイクロキャパシタがない場合の電池の性能を比較した。容量3000mlの上方開放型直方体プラスチック容器を用いる。図3では、1mm厚み、縦横100×100mmの銅カソード電極板10に上下左右に150mmないし200mm間隔で多数の三角形の50mmの高さの突起11を切り立て(図3A)、図3Bに示すように、両
端は銅板10は突起11を内向きに、真ん中は背中合わせに張り合わせた銅電極10で2mm厚み、縦横100×100mmのマグネシウムアノード電極板20を挟み込んで組み合わせる。この組み合わせ電極を使うと図4Bに示すように、銅カソード電極の表面にマイクロキャパシタを形成することができる。
他方、図2Aに示す、1mm厚み、縦横100×100mmの銅カソード電極板10に銅電極板をT字形に切り出し、端部を折り曲げて形成したスペーサSを取り付ける。このカソード電極板でスペーサSを介して2mm厚みの縦横100×100mmのMgアノード電極板20の両側を挟みつける。3枚の銅カソード電極板10で、2枚のMgアノード電極板20はスペーサSを介して交互に挟みつけると、図2Bに示す上部端面図の状態となる。この組み合わせ電極を使うと図4Aに示す双極子電気二重層キャパシタは構成するが、マイクロコンデンサ(図4B)を形成しない。
プラスチック容器にはおよそ1500mlの純水に塩化ナトリウム0.5モル/l以上、好ましくは1.5モル/l以上2モル/lの電解液を調整し、これに過炭酸ナトリウム50~100gと30%過酸化水素水50mlを加える。電池反応は一定時間過ぎると、過酸化水素が消費され、電球が減少するので、2~3時間ごとに10mlの30%過酸化水素水を添加する。
本件実施例においては、図2AおよびBの電極構成と図3AおよびBの電極構成の性能を比較して通常のキャパシタとマイクロキャパシタを銅カソード電極表面に形成して性能比較を行った。
電極構成以外は同じ条件としたので、アルカリ電解水における過酸化水素燃料電池反応に、マグネシウム空気電池反応が伴うものである点は同じである。したがって、以下の反応式に基づき、
過酸化水素がH+2HO+2e-→2HO+2OH-に分解する一方、カソード電極側でH+2OH-→O+2H2O+2e-の酸化反応を起こすだけでなく、
アルカリ性電解液での金属酸化反応がMg→Mg2++2e-となり、カソード側での酸
素を還元してイオン化する反応がO2+2H2O+4e-→4OH-と典型的な金属空気電池反応が起こる。但し、過酸化水素燃料電池では酸素ガスは発生すると理解できるが、上記構成では酸素ガスだけでなく、水素ガスも発生する。ということは、非特許文献3(水渡英二著、物理化学の進歩(1936)、10(3):154~165頁)に示唆されるように、銅カソード電極表面で触媒機能が働き、過酸化水素の分解又はヒドロキシイオンの分解が起こり、発電反応に繋がっていると思われる。
2H→4・OH→H+O+4e-
4OH-→H2+O2+4e-
以上の実験結果を考察すると、マイクロキャパシタを作る構成にもよるが、図3に示すマイクロキャパシタを有する燃料電池は図2に示す単なるキャパシタを有するものに比して2倍以上の電流値の増加を見ることがわかった。

Claims (3)

  1. 過酸化水素を含むアルカリ性電解液と、該電解液中に浸漬される金属銅又はその合金からなるカソード電極と、カソード電極より電極電位が卑で、過酸化水素の分解電圧以上となる電極電位差を形成する金属又はその合金からなるアノード電極とを備える、過酸化水素を燃料とする燃料電池において、
    前記金属銅又はその合金からなるカソード電極表面で生成するヒドロキシイオンを以下の触媒作用により分解して酸素及び水素を生成し発電する
    4OH-→2O2+2H2+4e-
    ことを特徴とする過酸化水素燃料電池の燃焼方法。
  2. 前記水溶性電解液に過酸化水素水又はその一部又は全部を過炭酸ナトリウムにより供給する請求項1記載の過酸化水素燃料電池の燃焼方法。
  3. アノード電極がマグネシウム又はアルミニウムあるいはその合金からなる請求項1記載の過酸化水素燃料電池の燃焼方法。
PCT/JP2022/032845 2021-09-01 2022-08-31 銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法 WO2023033071A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142111A JP2023035333A (ja) 2021-09-01 2021-09-01 銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法
JP2021-142111 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023033071A1 true WO2023033071A1 (ja) 2023-03-09

Family

ID=85412320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032845 WO2023033071A1 (ja) 2021-09-01 2022-08-31 銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法

Country Status (2)

Country Link
JP (1) JP2023035333A (ja)
WO (1) WO2023033071A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032628A (ja) * 2007-07-31 2009-02-12 National Institute Of Advanced Industrial & Technology 燃料電池
JP2016209855A (ja) * 2015-04-28 2016-12-15 三菱瓦斯化学株式会社 海水冷却水の処理方法
US20210104751A1 (en) * 2019-10-03 2021-04-08 Andrei A. Gakh Pulsed aluminum battery
JP2022068077A (ja) * 2020-10-21 2022-05-09 光廣 佐想 金属銅をカソード電極とする1コンパートメント型水溶液燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032628A (ja) * 2007-07-31 2009-02-12 National Institute Of Advanced Industrial & Technology 燃料電池
JP2016209855A (ja) * 2015-04-28 2016-12-15 三菱瓦斯化学株式会社 海水冷却水の処理方法
US20210104751A1 (en) * 2019-10-03 2021-04-08 Andrei A. Gakh Pulsed aluminum battery
JP2022068077A (ja) * 2020-10-21 2022-05-09 光廣 佐想 金属銅をカソード電極とする1コンパートメント型水溶液燃料電池

Also Published As

Publication number Publication date
JP2023035333A (ja) 2023-03-13

Similar Documents

Publication Publication Date Title
EP2929586B1 (en) Anaerobic aluminum-water electrochemical cell
Gyenge et al. Influence of surfactants on the electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes
Santos et al. Cathodic hydrogen production by simultaneous oxidation of methyl red and 2, 4-dichlorophenoxyacetate in aqueous solutions using PbO 2, Sb-doped SnO 2 and Si/BDD anodes. Part 2: hydrogen production
KR100864024B1 (ko) 수소 발생 장치 및 이를 이용한 연료전지 시스템
WO2023033071A1 (ja) 銅又は銅合金からなるカソード電極を用いる過酸化水素燃料電池の燃焼方法
JP2022068077A (ja) 金属銅をカソード電極とする1コンパートメント型水溶液燃料電池
CN108258267A (zh) 一种酸阴极-碱阳极低温醇类燃料电池
WO2022225066A1 (ja) 過酸化水素を含む電気二重層を備える空気極及びそれを用いる金属空気電池
WO2023033070A1 (ja) 銅又は銅合金からなるカソード電極
KR100859176B1 (ko) 수소 발생 장치용 전해질 용액 및 이를 포함하는 수소 발생장치
WO2023033068A1 (ja) 金属銅又はその合金を酸素還元空気極とする空気電池
JP2024034273A (ja) 銅又は銅合金からなるカソード電極
JP2024034270A (ja) 金属銅又はその合金を酸素還元空気極とする空気電池
JP2023061404A (ja) アバランシェ増幅機能を有する電池
US20130088184A1 (en) Battery device utilizing oxidation and reduction reactions to produce electric potential
Gürten et al. The primary study on the effects of primer alcohols on the hydrogen evolution reaction on silver electrode
AU2022338459A1 (en) Battery having electronic conduction function via electric double layer capacitor
JP2024034840A (ja) 電気二重層キャパシタを介する電子伝導機能を有する電池
JP2023061405A (ja) マイクロキャパシタ
US10601095B2 (en) Anaerobic aluminum-water electrochemical cell
KR100685907B1 (ko) 무기물질을이용한 전극제조 방법
KR100508672B1 (ko) 소듐보로하이드라이드가 함유된 액체연료를 사용하는연료전지
KR100862004B1 (ko) 고분자막을 이용한 수소 발생 장치 및 이를 이용한연료전지 시스템
JP2022060037A (ja) 電気化学システム及び電気化学システムの酸素極の製造方法
RU2239260C1 (ru) Щелочно-солевой мембранный аккумулятор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864653

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE