WO2023032715A1 - 研磨用組成物 - Google Patents

研磨用組成物 Download PDF

Info

Publication number
WO2023032715A1
WO2023032715A1 PCT/JP2022/031390 JP2022031390W WO2023032715A1 WO 2023032715 A1 WO2023032715 A1 WO 2023032715A1 JP 2022031390 W JP2022031390 W JP 2022031390W WO 2023032715 A1 WO2023032715 A1 WO 2023032715A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
acid
less
hlm
Prior art date
Application number
PCT/JP2022/031390
Other languages
English (en)
French (fr)
Inventor
誼之 田邉
真希 浅田
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2023545451A priority Critical patent/JPWO2023032715A1/ja
Publication of WO2023032715A1 publication Critical patent/WO2023032715A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to polishing compositions.
  • This application claims priority based on Japanese Patent Application No. 2021-142156 filed on September 1, 2021, the entire contents of which are incorporated herein by reference.
  • the polishing process includes, for example, a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process).
  • the preliminary polishing process includes, for example, a rough polishing process (primary polishing process) and an intermediate polishing process (secondary polishing process).
  • Technical documents relating to the polishing composition used in the polishing step include, for example, Patent Documents 1 and 2.
  • HLM hard laser marks
  • the HLM portion itself of the silicon wafer is not used in the final product, if the degraded layer is not properly polished in the polishing step after applying the HLM, it may become raised and the yield may decrease more than necessary. .
  • the altered layer is altered to polysilicon or the like by the energy of the laser beam, making it difficult to polish. Therefore, in recent years, there has been a particular demand for a silicon wafer polishing composition capable of flattening the bumps on the HLM periphery (hereinafter also simply referred to as "bumps").
  • the easily polished portion other than the periphery of the HLM is applicable.
  • a situation may occur in which the portion of the HLM peripheral portion that is difficult to polish is selectively polished, and as a result, it is difficult to improve the ability to eliminate the bumps.
  • polishing that requires a polishing rate equal to or higher than a predetermined value it tends to be difficult to achieve both the polishing rate and the elimination of the protuberance of the peripheral edge of the HLM.
  • Patent Document 1 a polishing composition containing colloidal silica, tetramethylammonium hydroxide ion, potassium carbonate, and water is used to polish a silicon wafer, and laser mark resolvability and polishing speed are evaluated.
  • a composition having good laser mark resolvability tends to have a low polishing rate, and does not satisfy both the maintenance of the polishing rate and the elimination of the protuberance of the HLM peripheral edge.
  • Patent Document 2 a polishing composition containing colloidal silica, potassium carbonate, potassium bicarbonate, potassium sulfate and water (experiment numbers 11 and 12) was used to polish a silicon wafer, and the polishing speed and surface Although the condition (observation of haze and pits with the naked eye under concentrated light) has been evaluated, the HLM perimeter bulging dissolution has not been investigated or suggested.
  • the present invention has been made in view of this point, and an object thereof is to provide a polishing composition capable of maintaining both the polishing rate and eliminating the protuberance of the HLM peripheral edge.
  • a polishing composition contains abrasive grains, a basic compound, an anion salt containing sulfur, and water.
  • a polishing composition containing abrasive grains and using both a basic compound and a salt of an anion containing sulfur, it is possible to maintain the polishing rate and eliminate the protuberance of the HLM peripheral edge at the same time.
  • the elimination of the HLM peripheral ridges means the height from the reference plane (reference plane) around the HLM of the substrate to be polished (typically a semiconductor substrate, such as a silicon wafer) to the highest point of the ridges. to make smaller.
  • the height from the reference surface around the HLM of the substrate to the highest point of the protrusion can be measured, for example, by the method described in Examples below.
  • the salt of the sulfur-containing anion is an inorganic salt.
  • the inorganic salt is sulfate.
  • quaternary ammonium compounds are included as the basic compound.
  • a combination of a quaternary ammonium compound as a basic compound and a salt of an anion containing sulfur it is easy to achieve both a desired polishing rate and elimination of protuberances at the periphery of the HLM.
  • a polishing composition containing a quaternary ammonium compound as a basic compound is also preferable in terms of improving the polishing rate.
  • a polishing composition according to a preferred embodiment contains silica particles as the abrasive grains.
  • silica particles as abrasive grains.
  • the effect of removing bumps can be more effectively exhibited while maintaining the polishing rate required for such polishing.
  • the polishing composition disclosed here can be used for polishing various materials. For example, it can be suitably used in a polishing step of a polishing object having a silicon material.
  • a polishing composition for example, for polishing a polishing object having a silicon material and having a surface to which an HLM is attached, a practical polishing rate can be maintained and De-bulging of the HLM perimeter can be achieved. Further, according to the polishing composition, it is possible to achieve a high polishing rate in polishing an object having a silicon material.
  • a preliminary polishing step for example, a preliminary polishing step for a polishing object having a silicon material
  • a higher polishing rate is required
  • maintenance of the polishing rate and HLM peripheral edge reduction can be achieved. Coexistence with elimination of bumps can be exhibited more effectively.
  • the polishing composition disclosed herein contains abrasive grains.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected according to the mode of use of the polishing composition.
  • Examples of abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • inorganic particles include oxide particles such as silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and red iron oxide particles; nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; and carbonates such as calcium carbonate and barium carbonate.
  • organic particles include polymethyl methacrylate (PMMA) particles, poly(meth)acrylic acid particles, polyacrylonitrile particles, and the like.
  • PMMA polymethyl methacrylate
  • (meth)acrylic acid is a generic term for acrylic acid and methacrylic acid.
  • Abrasive grains can be used singly or in combination of two or more.
  • abrasive grains inorganic particles are preferable, and particles made of oxides of metals or semi-metals are particularly preferable.
  • Suitable examples of abrasive grains that can be used in the technology disclosed herein include silica particles.
  • the technology disclosed herein can be preferably implemented, for example, in a mode in which the abrasive grains are substantially composed of silica particles.
  • substantially means that 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, and may be 100% by weight) of the particles constituting the abrasive grains It refers to silica particles.
  • silica particles is not particularly limited and can be selected as appropriate.
  • a silica particle may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of silica particles include colloidal silica, fumed silica, precipitated silica, and the like. Colloidal silica is particularly preferred because it is less likely to cause scratches on the surface of the object to be polished and can exhibit good polishing performance (such as performance to reduce surface roughness).
  • the type of colloidal silica is not particularly limited and can be selected as appropriate. Colloidal silica may be used individually by 1 type, and may be used in combination of 2 or more type.
  • colloidal silica examples include colloidal silica produced from water glass (sodium silicate) by an ion exchange method, and colloidal silica by an alkoxide method.
  • the alkoxide colloidal silica is colloidal silica produced by a hydrolytic condensation reaction of alkoxysilane.
  • the abrasive grains contained in the polishing composition may be in the form of primary particles or may be in the form of secondary particles in which a plurality of primary particles are associated. Further, the abrasive grains in the form of primary particles and the abrasive grains in the form of secondary particles may be mixed. In a preferred embodiment, at least part of the abrasive grains are contained in the polishing composition in the form of secondary particles.
  • the average primary particle size of the abrasive grains is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, and particularly preferably 10 nm or more, from the viewpoint of maintaining the polishing rate and improving the ability to eliminate bumps. is 20 nm or more. From the viewpoint of obtaining a higher polishing effect, the average primary particle size is preferably 25 nm or more, more preferably 30 nm or more. Abrasive grains having an average primary particle size of 40 nm or more may be used. In some embodiments, the average primary particle size can be, for example, greater than 40 nm, greater than 45 nm, greater than 50 nm.
  • the average primary particle size of the abrasive grains is preferably 200 nm or less, more preferably 150 nm or less, still more preferably 120 nm or less, and particularly preferably 100 nm or less. In some embodiments, the average primary particle size may be 75 nm or less, or 60 nm or less.
  • the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex, trade name "Flow Sorb II 2300".
  • the average secondary particle size of the abrasive grains is not particularly limited, and can be appropriately selected from a range of, for example, about 15 nm to 300 nm. From the viewpoint of improving the ability to eliminate bumps, the average secondary particle size is preferably 30 nm or more, more preferably 35 nm or more. In some embodiments, the average secondary particle size may be, for example, 40 nm or greater, 45 nm or greater, preferably 50 nm or greater, even 60 nm or greater, or 65 nm or greater (eg, 70 nm or greater). In addition, from the viewpoint of preventing scratches, the average secondary particle size is generally advantageously 250 nm or less, preferably 200 nm or less, and more preferably 150 nm or less. In some embodiments, the average secondary particle size may be 120 nm or less, or 110 nm or less.
  • the average secondary particle size of abrasive grains refers to the particle size measured by the dynamic light scattering method.
  • it can be measured using model "FPAR-1000" manufactured by Otsuka Electronics Co., Ltd. or its equivalent.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • specific examples of non-spherical particles include peanut-shaped (that is, peanut shell-shaped), cocoon-shaped, confetti-shaped, and rugby ball-shaped particles.
  • the average aspect ratio of abrasive grains is not particularly limited.
  • the average aspect ratio of the abrasive grains is theoretically 1.0 or more, can be 1.05 or more, 1.10 or more, and may be 1.15 or more. An increase in the average aspect ratio tends to improve the polishing rate.
  • the average aspect ratio of the abrasive grains is greater than 1.2 (specifically greater than 1.20), such as 1.22 or greater. Abrasive grains having an average aspect ratio of greater than 1.2 are typical examples of the non-spherical abrasive grains described above.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, from the viewpoint of reducing scratches and improving the stability of polishing.
  • the average aspect ratio of the abrasive grains can be, for example, 1.5 or less, 1.4 or less, or 1.3 or less.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped, for example, by electron microscope observation.
  • a specific procedure for grasping the average aspect ratio for example, using a scanning electron microscope (SEM), for a predetermined number (for example, 200) of abrasive particles that can recognize the shape of independent particles, each particle Draw the smallest rectangle that bounds the image. Then, regarding the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (value of the major axis) by the length of the short side (value of the minor axis) is the ratio of the major axis to the minor axis (aspect ratio ).
  • the average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the content of abrasive grains is not particularly limited, and can be set as appropriate according to the purpose.
  • the content of abrasive grains relative to the total weight of the polishing composition may be, for example, 0.01% by weight or more, 0.05% by weight or more, or 0.1% by weight or more.
  • the abrasive content may be 0.2 wt% or greater, 0.3 wt% or greater, or 0.5 wt% or greater.
  • the content of abrasive grains may be, for example, 10% by weight or less, 5% by weight or less, or 3% by weight or less. Well, it may be 2% by weight or less, 1.5% by weight or less, 1.2% by weight or less, 1.0% by weight or less, or 0.8% by weight or less. These contents can be preferably applied to the contents in the polishing liquid (working slurry) supplied to the object to be polished, for example.
  • the content of abrasive grains is usually 50% by weight or less from the viewpoint of storage stability and filterability. appropriate, and more preferably 40% by weight or less. Also, from the viewpoint of making the most of the advantage of being a concentrated liquid, the content of abrasive grains is preferably 1% by weight or more, and may be, for example, 5% by weight or more.
  • the polishing composition disclosed herein contains a basic compound.
  • the basic compound refers to a compound that has the function of increasing the pH of the polishing composition when added to the composition.
  • the basic compound functions to chemically polish the surface to be polished, and can contribute to improving the polishing rate.
  • the basic compound may be an organic basic compound or an inorganic basic compound.
  • a basic compound can be used individually by 1 type or in combination of 2 or more types.
  • organic basic compounds include quaternary ammonium salts such as tetraalkylammonium salts.
  • Anions in the above ammonium salts can be, for example, OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , BH 4 ⁇ , HCO 3 ⁇ and the like.
  • quaternary ammonium salts such as choline, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and tetramethylammonium hydrogen carbonate can be preferably used.
  • tetramethylammonium hydroxide is preferred.
  • organic basic compounds include quaternary phosphonium salts such as tetraalkylphosphonium salts.
  • Anions in the above phosphonium salts can be, for example, OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , BH 4 ⁇ , HCO 3 ⁇ and the like.
  • halides and hydroxides of tetramethylphosphonium, tetraethylphosphonium, tetrapropylphosphonium, tetrabutylphosphonium and the like can be preferably used.
  • organic basic compounds include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N-( ⁇ -aminoethyl)ethanolamine, hexamethylenediamine, diethylenetriamine, triethylene.
  • amines such as tetramine
  • piperazines such as 1-(2-aminoethyl)piperazine and N-methylpiperazine
  • azoles such as imidazole and triazole
  • guanidine
  • inorganic basic compounds include ammonia; ammonia, alkali metal or alkaline earth metal hydroxides; ammonia, alkali metal or alkaline earth metal carbonates; ammonia, alkali metal or alkaline earth metal hydrogen carbonates. salt and the like; and the like.
  • specific examples of the hydroxide include lithium hydroxide, potassium hydroxide, sodium hydroxide and the like.
  • Specific examples of the carbonate or hydrogencarbonate include ammonium hydrogencarbonate, ammonium carbonate, lithium hydrogencarbonate, lithium carbonate, potassium hydrogencarbonate, potassium carbonate, sodium hydrogencarbonate, and sodium carbonate.
  • Preferred basic compounds include ammonia, lithium hydroxide, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogen carbonate, ammonium carbonate, lithium hydrogen carbonate, lithium carbonate, potassium hydrogen carbonate, carbonate Potassium, sodium bicarbonate and sodium carbonate are included. Preferred among them are ammonia, lithium hydroxide, potassium hydroxide, sodium hydroxide, tetramethylammonium hydroxide, lithium carbonate and potassium carbonate.
  • Quaternary ammoniums are examples of preferred basic compounds from the standpoint of eliminating bumps and improving the polishing rate.
  • the quaternary ammoniums may be used singly or in combination of two or more. Tetramethylammonium hydroxide is particularly preferably used.
  • a carbonate such as potassium carbonate (specifically, an alkali metal or alkaline earth metal carbonate).
  • a carbonate may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polishing composition comprises a first basic compound and a second basic compound different from the first basic compound.
  • the types of the first and second basic compounds are not particularly limited, and an appropriate type can be selected and used from among those described above.
  • a quaternary ammonium is used as the first basic compound and a carbonate (specifically, an alkali metal or alkaline earth metal carbonate) is used as the second basic compound. use.
  • a carbonate specifically, an alkali metal or alkaline earth metal carbonate
  • the carbonate one or more of the carbonates exemplified above can be used, and among them, potassium carbonate is preferable.
  • the weight ratio (B1/B2) to the content (B2) of the alkali metal or alkaline earth metal carbonate) is not particularly limited.
  • the ratio (B1/B2) may be 0.1 or more, 0.5 or more, or 1 or more (for example, greater than 1).
  • the larger the ratio (B1/B2) the more effectively the effect of containing the first basic compound (preferably quaternary ammoniums) (eg, polishing rate, swelling elimination property) tends to be exhibited.
  • the ratio (B1/B2) may be 50 or less, 30 or less, 20 or less, or 10 or less. As the ratio (B1/B2) becomes smaller, the effect of containing the second basic compound (preferably alkali metal or alkaline earth metal carbonate) (for example, polishing rate improvement) tends to be more effectively exhibited. be.
  • the second basic compound preferably alkali metal or alkaline earth metal carbonate
  • the content of the basic compound with respect to the total amount of the polishing composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and still more preferably 0.1% by weight, from the viewpoint of polishing rate and swelling elimination property. % or more. Stability can also be improved by increasing the content of basic compounds.
  • the upper limit of the content of the basic compound is suitably 5% by weight or less, preferably 2% by weight or less, more preferably 1% by weight or less, still more preferably 1% by weight or less from the viewpoint of surface quality and the like. It is 0.5% by weight or less.
  • the said content points out the total content of 2 or more types of basic compounds.
  • the content of the basic compound is usually 10% by weight or less from the viewpoint of storage stability and filterability. suitable, and more preferably 5% by weight or less.
  • the content of the basic compound is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and still more preferably 0.9% by weight or more. is.
  • the weight ratio ( CB / CA ) of the basic compound content CB to the abrasive grain content CA in the polishing composition is not particularly limited as long as the effect of the technology disclosed herein is exhibited. .
  • the ratio (C B /C A ) is, for example, about 0.01 or more, preferably 0.05 or more, more preferably 0.05 or more, more preferably It is 0.1 or more, and may be 0.2 or more, for example. From the viewpoint of mechanical polishing with abrasive grains and dispersion stability of the composition, the above ratio (C B /C A ) is, for example, about 1 or less, preferably 0.8 or less. , more preferably 0.6 or less, and may be, for example, 0.5 or less.
  • the polishing composition disclosed herein contains a salt of an anion containing sulfur (a salt of an S-containing anion).
  • a polishing composition containing a salt of an S-containing anion can effectively eliminate the swelling of the HLM periphery while maintaining the polishing rate. This is probably because the sulfur (S)-containing anions that form the salt of the S-containing anions act more effectively on the periphery of the HLM than other anions such as carbonate ions.
  • the polishing composition contains abrasive grains, a basic compound, and a salt of an S-containing anion, so that mechanical polishing with the abrasive grains, promotion of polishing (chemical polishing) with the basic compound, and salt of the S-containing anion It is considered that the effect of improving the workability of the HLM periphery is exhibited in a well-balanced manner.
  • the mechanism described above is the inventor's observation based on experimental results, and the technology disclosed herein should not be construed as being limited to the mechanism described above.
  • the salt of the S-containing anion may be an organic salt or an inorganic salt.
  • the salt of the S-containing anion can be used singly or in combination of two or more.
  • Preferred examples of the salt of the S-containing anion include inorganic salts.
  • examples of the above inorganic salts include sulfates, sulfites, hydrogensulfites, thiosulfates, and the like. Cations constituting these salts are not particularly limited, and examples thereof include alkali metals (lithium, sodium, potassium, etc.), alkaline earth metals (calcium, strontium, barium, etc.), magnesium, ammonium and the like.
  • the above inorganic salts can be used singly or in combination of two or more.
  • Specific examples of the above sulfates include lithium sulfate, sodium sulfate, potassium sulfate, and ammonium sulfate.
  • Specific examples of the sulfite include lithium sulfite, sodium sulfite, potassium sulfite, ammonium sulfite, and the like.
  • Examples of the hydrogen sulfite include lithium hydrogen sulfite, sodium hydrogen sulfite, potassium hydrogen sulfite, and ammonium hydrogen sulfite.
  • Examples of the thiosulfate include lithium thiosulfate, sodium thiosulfate, potassium thiosulfate, and ammonium thiosulfate.
  • the above S-containing anion salts include sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, 1-butanesulfonic acid; 1,2-ethanedisulfonic acid, 1,3-propanedisulfonic acid, 1,4- disulfonic acids such as butanedisulfonic acid; hydroxyalkylsulfonic acids such as hydroxymethanesulfonic acid and 2-hydroxyethanesulfonic acid; alkylsulfuric acids such as methylsulfuric acid and ethylsulfuric acid; sulfamic acid; good.
  • sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, 1-butanesulfonic acid
  • 1,2-ethanedisulfonic acid 1,3-propanedisulfonic acid
  • 1,4- disulfonic acids such as butan
  • the cations constituting the above organic salts are not particularly limited, and examples thereof include alkali metals (lithium, sodium, potassium, etc.), alkaline earth metals (calcium, strontium, barium, etc.), magnesium, ammonium and the like.
  • the molar concentration of the salt of the S-containing anion in the polishing composition (the total molar concentration thereof when a plurality of kinds of salts of the S-containing anion are included) is not particularly limited, and is, for example, about 0.1 mmol/L or more. From the viewpoint of realizing higher processability at the periphery of the HLM, it is preferably 1 mmol/L or more, more preferably 2 mmol/L or more, and may be 3 mmol/L or more. From the viewpoint of dispersion stability and the like, the molar concentration of the salt of the S-containing anion is, for example, about 1000 mmol/L or less, preferably 100 mmol/L or less, more preferably 30 mmol/L or less. Yes, it may be 10 mmol/L or less, or 6 mmol/L or less.
  • the weight ratio (C S /C A ) of the content C S of the salt of the S-containing anion to the content C A of the abrasive grains in the polishing composition is particularly Not restricted.
  • the ratio (C S /C A ) is, for example, about 0.01 or more, preferably 0.02 or more, more preferably 0.02 or more, more preferably 0.01 or more, from the viewpoint of realizing higher workability at the HLM periphery.
  • 05 or more for example, more than 0.05
  • more preferably 0.10 or more for example, more than 0.10).
  • the ratio (C S /C A ) is, for example, about 1 or less, preferably 0.5 or less. , more preferably 0.2 or less.
  • the weight ratio (C S /C B ) of the content C S of the salt of the S-containing anion to the content C B of the basic compound in the polishing composition is as long as the effect of the technology disclosed herein is exhibited. There are no particular restrictions.
  • the ratio (C S /C B ) is, for example, about 0.01 or more, preferably 0.05 or more, more preferably 0.1 or more, and 0 0.2 or more (eg, greater than 0.2). From the viewpoint of the polishing rate and the like, the ratio (C S /C B ) is, for example, about 10 or less, preferably 1 or less, more preferably 0.8 or less, for example 0.8. It may be 5 or less.
  • the polishing composition disclosed herein contains water.
  • water ion-exchanged water (deionized water), pure water, ultrapure water, distilled water, or the like can be preferably used.
  • the water used preferably has a total transition metal ion content of, for example, 100 ppb or less, in order to avoid as much as possible inhibition of the functions of other components contained in the polishing composition.
  • the purity of water can be increased by removing impurity ions using an ion exchange resin, removing foreign substances using a filter, and performing operations such as distillation.
  • the polishing composition disclosed herein may, if necessary, further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water.
  • water is preferably 90% by volume or more, more preferably 95% by volume or more (for example, 99 to 100% by volume) of the solvent contained in the polishing composition.
  • the polishing composition disclosed herein contains a water-soluble polymer, a surfactant, an acid, a chelating agent, an antiseptic, an antifungal agent, etc., as long as the effects of the present invention are not significantly hindered.
  • Known additives that can be used in for example, a polishing composition used in a polishing process for silicon wafers may be further contained as necessary.
  • the water-soluble polymer may be used singly or in combination of two or more.
  • the water-soluble polymer include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, vinyl alcohol-based polymers, and polymers containing carboxylic acids (including anhydrides). Specific examples include hydroxyethyl cellulose, pullulan, random copolymers and block copolymers of ethylene oxide and propylene oxide, polyvinyl alcohol, polyglycerin, polyacrylate, polyvinyl acetate, polyethylene glycol, polyvinylimidazole, and polyvinylcarbazole.
  • polishing composition does not substantially contain a water-soluble polymer, that is, in an aspect in which at least no water-soluble polymer is intentionally contained.
  • the molecular weight of the water-soluble polymer is not particularly limited in the technology disclosed herein.
  • the weight average molecular weight (Mw) of the water-soluble polymer can be about 200 ⁇ 10 4 or less, and 150 ⁇ 10 4 or less is suitable.
  • the above Mw may be about 100 ⁇ 10 4 or less, or about 50 ⁇ 10 4 or less.
  • the above Mw is usually about 0.2 ⁇ 10 4 or more, and preferably about 0.5 ⁇ 10 4 or more. and may be about 0.8 ⁇ 10 4 or more.
  • Mw of the water-soluble polymer a value based on aqueous gel permeation chromatography (GPC) (water-based, converted to polyethylene oxide) can be adopted.
  • GPC gel permeation chromatography
  • One type of surfactant may be used alone, or two or more types may be used in combination.
  • the surfactant are not particularly limited, and include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • Use of a surfactant eg, a water-soluble organic compound having a molecular weight of less than 0.2 ⁇ 10 4 ) can improve the dispersion stability of the polishing composition.
  • Mw of the surfactant a value determined by GPC (aqueous system, converted to polyethylene glycol) or a value calculated from a chemical formula can be employed.
  • the polishing composition has a composition in which the amount of water-soluble polymer and surfactant used is limited.
  • the total amount of water-soluble polymer and surfactant in the polishing composition (e.g., polishing liquid) may be less than 0.3 wt%, may be less than 0.2 wt%, or may be less than 0.1 wt% It may be less than 0.03 wt%, or less than 0.01 wt%, or less than 0.0001 wt%.
  • the technique disclosed herein is an aspect in which the polishing composition does not substantially contain a water-soluble polymer and/or a surfactant, that is, at least intentionally contains a water-soluble polymer and/or a surfactant. It can also be preferably implemented in a mode that does not allow
  • One type of acid may be used alone, or two or more types may be used in combination.
  • examples of the above acids include inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid, boric acid; acetic acid, itaconic acid, succinic acid, tartaric acid, citric acid, maleic acid, glycolic acid, malonic acid , methanesulfonic acid, formic acid, malic acid, gluconic acid, alanine, glycine, lactic acid, hydroxyethylidene diphosphate (HEDP), nitrilotris (methylene phosphate) (NTMP), phosphonobutane tricarboxylic acid (PBTC) and other organic acid; and the like.
  • inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid, boric acid
  • the above chelating agents may be used singly or in combination of two or more.
  • the chelating agents include aminocarboxylic acid-based chelating agents and organic phosphonic acid-based chelating agents.
  • aminocarboxylic acid-based chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, diethylenetriaminepentaacetic acid.
  • organic phosphonic acid chelating agents include 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri(methylenephosphonic acid), ethylenediaminetetrakis(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid , ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and ⁇ -methylphosphonic acid.
  • organic phosphonic acid-based chelating agents are more preferred. Preferred among these are ethylenediaminetetrakis(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid) and diethylenetriaminepentaacetic acid. Particularly preferred chelating agents include ethylenediaminetetrakis(methylenephosphonic acid) and diethylenetriaminepenta(methylenephosphonic acid).
  • antiseptics and antifungal agents examples include isothiazoline compounds, paraoxybenzoic acid esters, phenoxyethanol, and the like.
  • the polishing composition disclosed herein preferably does not substantially contain an oxidizing agent. If the polishing composition contains an oxidizing agent, the supply of the composition oxidizes the surface of the substrate (for example, the surface of a silicon wafer) to form an oxide film, which lowers the polishing rate. Because it is possible.
  • the phrase "the polishing composition substantially does not contain an oxidizing agent" means that the polishing composition does not contain an oxidizing agent at least intentionally. is acceptable.
  • the above-mentioned trace amount means that the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol/L or less (preferably 0.0001 mol/L or less, more preferably 0.00001 mol/L or less, particularly preferably 0.0001 mol/L or less).
  • a preferred embodiment of the polishing composition does not contain an oxidizing agent.
  • the polishing composition disclosed herein can be preferably carried out in a mode containing none of hydrogen peroxide, sodium persulfate, ammonium persulfate and sodium dichloroisocyanurate, for example.
  • the polishing composition disclosed herein is supplied to an object to be polished, for example, in the form of a polishing liquid (working slurry) containing the polishing composition, and used for polishing the object to be polished.
  • the polishing composition disclosed herein may be diluted (for example, diluted with water) and used as a polishing liquid, or may be used as a polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein includes both a working slurry supplied to an object to be polished and used for polishing the object, and a concentrated solution (undiluted solution) of the working slurry. is included.
  • the concentration ratio of the concentrated solution may be, for example, about 2 to 140 times by volume, and usually about 5 to 80 times is appropriate.
  • the pH of the polishing composition is, for example, 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher, still more preferably 9.5 or higher, and 10.0 or higher (e.g., 10.5 above). As the pH increases, the polishing rate tends to improve. On the other hand, from the viewpoint of preventing dissolution of abrasive grains (for example, silica particles) and suppressing deterioration of the mechanical polishing action due to the abrasive grains, the pH of the polishing liquid is usually 12.0 or less. , is preferably 11.8 or less, more preferably 11.5 or less. These pH values can be preferably applied to both the pH of the polishing liquid (working slurry) supplied to the object to be polished and the pH of its concentrated liquid.
  • the pH of the polishing composition is measured using a pH meter (for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.) and a standard buffer solution (phthalate pH buffer solution pH: 4.01 (25°C), neutral phosphate pH buffer pH: 6.86 (25°C), carbonate pH buffer pH: 10.01 (25°C)) after three-point calibration can be grasped by placing the glass electrode in the polishing composition and measuring the value after 2 minutes or more have passed and the value has stabilized.
  • a pH meter for example, a glass electrode type hydrogen ion concentration indicator (model number F-23) manufactured by Horiba, Ltd.
  • a standard buffer solution phthalate pH buffer solution pH: 4.01 (25°C), neutral phosphate pH buffer pH: 6.86 (25°C), carbonate pH buffer pH: 10.01 (25°C)
  • the polishing composition disclosed herein may be a one-component type or a multi-component type including a two-component type.
  • the part A containing at least abrasive grains and the part B containing the rest of the components may be mixed and diluted at an appropriate timing as necessary to prepare the polishing liquid.
  • each component contained in the polishing composition may be mixed using a well-known mixing device such as a blade stirrer, an ultrasonic disperser, or a homomixer.
  • a well-known mixing device such as a blade stirrer, an ultrasonic disperser, or a homomixer.
  • the manner in which these components are mixed is not particularly limited. For example, all the components may be mixed at once, or they may be mixed in an appropriately set order.
  • the polishing composition disclosed herein can be used for polishing an object to be polished, for example, in a mode including the following operations. That is, a working slurry containing any one of the polishing compositions disclosed herein is prepared. Then, the polishing composition is supplied to the object to be polished, and the object is polished by a conventional method.
  • an object to be polished is set in a general polishing apparatus, and the polishing composition is supplied to the surface of the object to be polished (surface to be polished) through the polishing pad of the polishing apparatus.
  • the polishing pad is pressed against the surface of the object to be polished, and the two are relatively moved (for example, rotationally moved). Polishing of the object to be polished is completed through such a polishing process.
  • the polishing pad used in the polishing process is not particularly limited.
  • any of polyurethane foam type, non-woven fabric type, suede type, containing abrasive grains, and containing no abrasive grains may be used.
  • As the polishing apparatus a double-side polishing apparatus that polishes both surfaces of the object to be polished may be used, or a single-side polishing apparatus that polishes only one side of the object may be used.
  • the above-mentioned polishing composition may be used in a manner that it is disposed of after being used for polishing (so-called "flowing over"), or may be circulated and used repeatedly.
  • the method of recycling the polishing composition there is a method of recovering the used polishing composition discharged from the polishing apparatus in a tank and supplying the recovered polishing composition to the polishing apparatus again. .
  • the polishing composition disclosed herein can be applied to polishing objects having various materials and shapes.
  • the material of the object to be polished includes, for example, silicon materials, metals or semimetals such as aluminum, nickel, tungsten, copper, tantalum, titanium, and stainless steel, or alloys thereof; quartz glass, aluminosilicate glass, vitreous carbon, and the like. glass-like substances; ceramic materials such as alumina, silica, sapphire, silicon nitride, tantalum nitride and titanium carbide; compound semiconductor substrate materials such as silicon carbide, gallium nitride and gallium arsenide; resin materials such as polyimide resin; .
  • the object to be polished may be made of a plurality of these materials.
  • the polishing composition disclosed here is suitable for polishing an object having a silicon material.
  • the silicon material preferably contains at least one material selected from the group consisting of silicon single crystal, amorphous silicon and polysilicon.
  • the above polishing composition is particularly suitable for polishing substrates having silicon single crystals (for example, silicon wafers).
  • the polishing composition is excellent in the ability to eliminate bumps around the HLM (bump elimination property), and thus can be preferably applied to polishing a surface to be polished including the surface to which the HLM is attached.
  • the polishing composition disclosed herein can be used in a preliminary polishing step, more specifically, a rough polishing step (primary polishing step), which is the first polishing step in the polishing step, and an intermediate polishing step (secondary polishing step) that follows.
  • polishing composition disclosed herein in the preliminary polishing step to achieve both maintenance of the polishing rate and elimination of the protuberance at the periphery of the HLM. especially meaningful.
  • the silicon wafer Prior to the polishing step using the polishing composition disclosed herein, the silicon wafer is subjected to general treatments that can be applied to silicon wafers, such as lapping, etching, and application of the HLM described above. good too.
  • the silicon wafer has a surface made of silicon, for example.
  • Such a silicon wafer is preferably a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
  • the polishing composition disclosed herein is suitable for use in polishing HLM-attached silicon single crystal wafers.
  • the polishing composition disclosed herein can also be suitably used for polishing an object having no HLM.
  • polishing composition ⁇ Preparation of polishing composition> (Example 1) Colloidal silica (average primary particle diameter: 55 nm) as abrasive grains, tetramethylammonium hydroxide (TMAH) as a basic compound, lithium sulfate as an anion salt containing sulfur, and ion-exchanged water are mixed. Thus, a polishing composition concentrate was prepared. By diluting the resulting polishing composition concentrate with ion-exchanged water to a volume ratio of 20, 0.5% by weight of colloidal silica, 0.12% by weight of TMAH, and lithium sulfate at concentrations shown in Table 1 were obtained. A polishing composition containing was obtained. wt % in the table is weight %, and "-" indicates non-use.
  • TMAH tetramethylammonium hydroxide
  • Examples 2-3 Comparative Examples 1-2
  • a polishing composition according to each example was prepared in the same manner as in Example 1, except that the composition was changed as shown in Table 1.
  • potassium carbonate is a basic compound, it is described in the column of "additive (salt)" for convenience.
  • Polishing device Single-sided polishing device manufactured by Nihon Engis Co., Ltd., model "EJ-380IN” Polishing pressure: 12kPa Surface plate rotation speed: +50 rpm (Counterclockwise rotation is positive (+). Same below.) Head rotation speed: +50 rpm Polishing pad: manufactured by Nitta Dupont, trade name "SUBA800” Polishing liquid supply rate: 50 mL/min (using continuous flow) Holding temperature of polishing environment: 25°C Polishing allowance: 4 ⁇ m
  • HLM flatness The silicon wafer after polishing was measured for the surface shape of the HLM peripheral portion using a stylus surface roughness profiler (SURFCOM 1500DX, manufactured by Tokyo Seimitsu Co., Ltd.). Specifically, the needle of the measuring machine was brought into contact with the surface of the substrate and moved along the HLM peripheral edge to measure the height of the raised portion and the height of the raised portion (reference plane). Then, the height ( ⁇ m) from the reference surface to the highest point of the protrusion was defined as "HLM flatness”. The obtained HLM flatness was converted into a relative value (relative HLM flatness [%]) with the flatness of Comparative Example 1 as 100%. The results obtained are shown in Table 1 in the column "Relative HLM Flatness". When the relative HLM flatness is lower than 80%, the HLM flatness is evaluated as good and the bump elimination property is excellent.
  • polishing rate R [cm/min] in each example and comparative example was calculated by the following formulas (1) to (3).
  • the obtained polishing rate R was converted into a relative value (relative polishing rate [%]) with the polishing rate of Comparative Example 1 as 100%.
  • the obtained results are shown in the column of "relative polishing rate” in Table 1. If the relative polishing rate is 100% or more, it is evaluated that the polishing rate is maintained.
  • Examples 1 to 3 using a polishing composition containing a combination of a basic compound and a salt of an anion containing sulfur are polishing compositions that do not contain a salt of an anion containing sulfur.
  • the polishing rate is 100% or more (specifically 101% or more)
  • the HLM flatness is lower than 80%
  • the polishing rate is maintained, and the HLM peripheral edge is raised. It was confirmed that both the cancellation and the cancellation are compatible.
  • Example 3 in which an alkali metal salt was further used in addition to the anion salt containing sulfur, the polishing rate was improved and the protuberance elimination property of the HLM periphery was excellent.
  • the polishing composition containing abrasive grains, a basic compound, a salt of an anion containing sulfur, and water achieves both maintenance of the polishing rate and ability to eliminate bumps on the periphery of the HLM. know you can get it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

研磨レートの維持と、HLM周縁の隆起解消性とを両立し得る研磨用組成物を提供し、この研磨用組成物は、砥粒と、塩基性化合物と、硫黄を含むアニオンの塩と、水と、を含む。

Description

研磨用組成物
 本発明は、研磨用組成物に関する。
 本出願は、2021年9月1日に出願された日本国特許出願2021-142156号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 従来、金属や半金属、非金属、その酸化物等の材料表面に対して研磨用組成物を用いた精密研磨が行われている。例えば、半導体製品の構成要素等として用いられるシリコンウェーハの表面は、一般的にラッピング工程やポリシング工程を経て高品位の鏡面に仕上げられる。上記ポリシング工程は、例えば、予備ポリシング工程(予備研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。上記予備ポリシング工程は、例えば、粗研磨工程(一次研磨工程)および中間研磨工程(二次研磨工程)を含んでいる。上記ポリシング工程で用いられる研磨用組成物に関する技術文献としては、例えば特許文献1および2が挙げられる。
日本国特許6882727号公報 日本国特許出願公開2000-008024号公報
 例えば、シリコンウェーハには、識別等の目的で、該シリコンウェーハの表面や裏面にレーザー光を照射することによって、バーコード、数字、記号等のマーク(ハードレーザーマーク;以下「HLM」と表記することがある。)が付されることがある。HLMの付与は、一般に、シリコンウェーハのラッピング工程を終えた後、ポリシング工程を開始する前に行われる。通常、HLMを付すためのレーザー光の照射によって、HLM周縁のシリコンウェーハ表面には変質層が生じる。シリコンウェーハのうちHLMの部分自体は最終製品には用いられないが、HLM付与後のポリシング工程において上記変質層が適切に研磨されないと、隆起となって必要以上に歩留まりが低下することがあり得る。しかし、上記変質層はレーザー光のエネルギーによりポリシリコン等に変質して研磨されにくくなっている。そのため、HLM周縁の隆起(以下、単に「隆起」ともいう。)を平坦化するシリコンウェーハ研磨用組成物が近年特に求められている。
 また、高い研磨レート(単位時間当たりに研磨対象物を除去する量)を示す研磨用組成物を用いてHLMが付与されたシリコンウェーハを研磨した場合、上記HLM周縁以外の研磨されやすい部位が該HLM周縁部の研磨されにくい部位よりも選択的に研磨されてしまい、結果として隆起の解消性向上が達成されにくいという事態が生じ得る。このように、所定以上の研磨レートが求められる研磨においては、研磨レートとHLM周縁の隆起解消との両立は難しくなる傾向にある。例えば、特許文献1では、コロイダルシリカ、水酸化テトラメチルアンモニウムイオン、炭酸カリウムおよび水を含む研磨用組成物を用いてシリコンウェーハの研磨を実施し、レーザーマーク解消性および研磨速度が評価されているが、レーザーマーク解消性のよい組成は研磨速度が低い傾向にあり、研磨レート維持とHLM周縁の隆起解消とを両立するものではない。また、特許文献2では、コロイダルシリカ、炭酸カリウム、重炭酸カリウム、硫酸カリウムおよび水を含む研磨用組成物(実験番号11および12)を用いて、シリコンウェーハの研磨を実施し、研磨速度および表面状態(集光灯下の肉眼によるヘイズおよびピット観察)が評価されているが、HLM周縁の隆起解消性は検討されておらず、その示唆もない。
 本発明は、かかる点に鑑みてなされたものであり、研磨レートの維持と、HLM周縁の隆起解消とを両立し得る研磨用組成物を提供することを目的とする。
 本明細書によると研磨用組成物が提供される。この研磨用組成物は、砥粒と、塩基性化合物と、硫黄を含むアニオンの塩と、水と、を含む。このように、砥粒を含み、塩基性化合物と、硫黄を含むアニオンの塩とを併用した研磨用組成物によると、研磨レートの維持と、HLM周縁の隆起解消とを両立することができる。
 なお、本明細書においてHLM周縁の隆起を解消するとは、研磨対象基板(典型的には半導体基板、例えばシリコンウェーハ)のHLM周辺の基準面(基準平面)から上記隆起の最高点までの高さを小さくすることをいう。上記基板のHLM周辺の基準面から上記隆起の最高点までの高さは、例えば、後述する実施例に記載の方法により測定することができる。
 好ましい一態様では、上記硫黄を含むアニオンの塩は無機塩である。いくつかの態様において、上記無機塩は硫酸塩である。硫黄を含むアニオンの塩として上述したような塩を用いる研磨において、隆起解消効果がより効果的に発揮され得る。
 好ましい一態様では、上記塩基性化合物として第四級アンモニウム類を含む。塩基性化合物としての第四級アンモニウム類と、硫黄を含むアニオンの塩とを組み合わせて使用することにより、所望の研磨レートと、HLM周縁の隆起解消とを両立しやすい。塩基性化合物として第四級アンモニウム類を含む組成の研磨用組成物は、研磨レート向上の点でも好ましい。
 好ましい一態様に係る研磨用組成物は、上記砥粒としてシリカ粒子を含む。砥粒としてシリカ粒子を用いる研磨において、かかる研磨に求められる研磨レートを維持しつつ、隆起解消効果がより効果的に発揮され得る。
 ここに開示される研磨用組成物は、各種材料の研磨に用いることができる。例えば、シリコン材料を有する研磨対象物の研磨工程において好適に用いることができる。かかる研磨用組成物を、例えば、シリコン材料を有する研磨対象物であって、かつHLMの付された表面を有する研磨対象物の研磨に使用することで、実用的な研磨レートを維持しつつ、HLM周縁の隆起解消を実現することができる。また、上記研磨用組成物によると、シリコン材料を有する研磨対象物の研磨において高い研磨レートを達成することが可能である。したがって、より高い研磨レートが求められ得る予備研磨工程(例えばシリコン材料を有する研磨対象物の予備研磨工程)に、ここに開示される研磨用組成物を使用することで、研磨レート維持とHLM周縁隆起解消との両立がより効果的に発揮され得る。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 <砥粒>
 ここに開示される研磨用組成物は、砥粒を含有する。砥粒の材質や性状は特に制限されず、研磨用組成物の使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子、ポリアクリロニトリル粒子等が挙げられる。ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。砥粒は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。ここに開示される技術において使用し得る砥粒の好適例としてシリカ粒子が挙げられる。ここに開示される技術は、例えば、上記砥粒が実質的にシリカ粒子からなる態様で好ましく実施され得る。ここで「実質的に」とは、砥粒を構成する粒子の95重量%以上(好ましくは98重量%以上、より好ましくは99重量%以上であり、100重量%であってもよい。)がシリカ粒子であることをいう。
 シリカ粒子の種類は特に制限されず、適宜選択することができる。シリカ粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。シリカ粒子の例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。研磨対象物表面にスクラッチを生じにくく、かつ良好な研磨性能(表面粗さを低下させる性能等)を発揮し得ることから、コロイダルシリカが特に好ましい。コロイダルシリカの種類は特に制限されず、適宜選択することができる。コロイダルシリカは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。コロイダルシリカの例としては、イオン交換法により水ガラス(珪酸Na)を原料として作製されたコロイダルシリカや、アルコキシド法コロイダルシリカを好ましく採用することができる。ここでアルコキシド法コロイダルシリカとは、アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカである。
 ここに開示される技術において、研磨用組成物中に含まれる砥粒は、一次粒子の形態であってもよく、複数の一次粒子が会合した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒と二次粒子の形態の砥粒とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒が二次粒子の形態で研磨用組成物中に含まれている。
 砥粒(例えばシリカ粒子)の平均一次粒子径は特に制限されないが、研磨レートの維持と隆起解消性の向上とを両立する等の観点から、好ましくは5nm以上、より好ましくは10nm以上、特に好ましくは20nm以上である。より高い研磨効果を得る観点から、平均一次粒子径は、25nm以上が好ましく、30nm以上がさらに好ましい。平均一次粒子径が40nm以上の砥粒を用いてもよい。いくつかの態様において、平均一次粒子径は、例えば40nm超であってよく、45nm超でもよく、50nm超でもよい。また、スクラッチ発生防止等の観点から、砥粒の平均一次粒子径は、好ましくは200nm以下、より好ましくは150nm以下、さらに好ましくは120nm以下、特に好ましくは100nm以下である。いくつかの態様において、平均一次粒子径は75nm以下でもよく、60nm以下でもよい。
 この明細書において、砥粒の平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径をいう。例えばシリカ粒子の場合、平均一次粒子径(nm)=2727/BET値(m/g)により平均一次粒子径を算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
 砥粒の平均二次粒子径は特に限定されず、例えば15nm~300nm程度の範囲から適宜選択し得る。隆起解消性向上の観点から、平均二次粒子径は30nm以上であることが好ましく、35nm以上であることがより好ましい。いくつかの態様において、平均二次粒子径は、例えば40nm以上であってよく、45nm以上でもよく、好ましくは50nm以上でもよく、さらに60nm以上でもよく、65nm以上(例えば70nm以上)でもよい。また、スクラッチの発生防止の観点から、平均二次粒子径は、通常、250nm以下であることが有利であり、200nm以下であることが好ましく、150nm以下であることがより好ましい。いくつかの態様において、平均二次粒子径は120nm以下でもよく、110nm以下でもよい。
 この明細書において、砥粒の平均二次粒子径とは、動的光散乱法により測定される粒子径をいう。例えば、大塚電子社製の型式「FPAR-1000」またはその相当品を用いて測定することができる。
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす粒子の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。
 砥粒の平均アスペクト比は特に限定されない。砥粒の平均アスペクト比は、原理的に1.0以上であり、1.05以上、1.10以上とすることができ、1.15以上であってもよい。平均アスペクト比の増大により、研磨レートが向上する傾向にある。いくつかの態様において、砥粒の平均アスペクト比は1.2よりも大きく(具体的には1.20超)、例えば1.22以上でもよい。平均アスペクト比が1.2超である砥粒は、上記非球形の砥粒の典型例である。また、砥粒の平均アスペクト比は、スクラッチ低減や研磨の安定性向上等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下である。いくつかの態様において、砥粒の平均アスペクト比は、例えば1.5以下であってよく、1.4以下でもよく、1.3以下でもよい。
 上記砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。
 砥粒の含有量は特に限定されず、目的に応じて適宜設定し得る。研磨用組成物の全重量に対する砥粒の含有量は、例えば0.01重量%以上であってよく、0.05重量%以上でもよく、0.1重量%以上でもよい。砥粒の含有量の増大により、研磨レートは向上する傾向にあり、隆起解消性も概して向上する傾向にある。いくつかの態様において、砥粒の含有量は、0.2重量%以上でもよく、0.3重量%以上でもよく、0.5重量%以上でもよい。また、スクラッチ防止や砥粒の使用量節約の観点から、いくつかの態様において、砥粒の含有量は、例えば10重量%以下であってよく、5重量%以下でもよく、3重量%以下でもよく、2重量%以下でもよく、1.5重量%以下でもよく、1.2重量%以下でもよく、1.0重量%以下でもよく、0.8重量%以下でもよい。これらの含有量は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。
 また、希釈して研磨に用いられる研磨用組成物(すなわち濃縮液)の場合、砥粒の含有量は、保存安定性や濾過性等の観点から、通常は、50重量%以下であることが適当であり、40重量%以下であることがより好ましい。また、濃縮液とすることの利点を活かす観点から、砥粒の含有量は、好ましくは1重量%以上であり、例えば5重量%以上であってもよい。
 <塩基性化合物>
 ここに開示される研磨用組成物は塩基性化合物を含む。ここで塩基性化合物とは、研磨用組成物に添加されることによって該組成物のpHを上昇させる機能を有する化合物を指す。塩基性化合物は、研磨対象となる面を化学的に研磨する働きをし、研磨レートの向上に寄与し得る。塩基性化合物は、有機塩基性化合物であってもよく、無機塩基性化合物であってもよい。塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 有機塩基性化合物の例としては、テトラアルキルアンモニウム塩等の第四級アンモニウム塩が挙げられる。上記アンモニウム塩におけるアニオンは、例えば、OH、F、Cl、Br、I、ClO 、BH 、HCO 等であり得る。例えば、コリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、炭酸水素テトラメチルアンモニウム等の第四級アンモニウム塩を好ましく使用し得る。なかでもテトラメチルアンモニウムヒドロキシド(TMAH)が好ましい。
 有機塩基性化合物の他の例としては、テトラアルキルホスホニウム塩等の第四級ホスホニウム塩が挙げられる。上記ホスホニウム塩におけるアニオンは、例えば、OH、F、Cl、Br、I、ClO 、BH 、HCO 等であり得る。例えば、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラプロピルホスホニウム、テトラブチルホスホニウム等の、ハロゲン化物や水酸化物等を好ましく使用し得る。
 有機塩基性化合物の他の例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン類;1-(2-アミノエチル)ピペラジン、N-メチルピペラジン等のピペラジン類;イミダゾールやトリアゾール等のアゾール類;グアニジン;等が挙げられる。
 無機塩基性化合物の例としては、アンモニア;アンモニア、アルカリ金属またはアルカリ土類金属の水酸化物;アンモニア、アルカリ金属またはアルカリ土類金属の炭酸塩;アンモニア、アルカリ金属またはアルカリ土類金属の炭酸水素塩等;等が挙げられる。上記水酸化物の具体例としては、水酸化リチウム、水酸化カリウム、水酸化ナトリウム等が挙げられる。上記炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素リチウム、炭酸リチウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。
 好ましい塩基性化合物として、アンモニア、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素リチウム、炭酸リチウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸ナトリウムが挙げられる。なかでも好ましいものとして、アンモニア、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド、炭酸リチウムおよび炭酸カリウムが例示される。
 隆起解消性、研磨レート向上等の観点から好ましい塩基性化合物として、第四級アンモニウム類(第四級アンモニウム塩)が挙げられる。第四級アンモニウム類は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。特に好ましく用いられるものとしてテトラメチルアンモニウムヒドロキシドが挙げられる。また、研磨レート向上の観点から、炭酸カリウム等の炭酸塩(具体的には、アルカリ金属またはアルカリ土類金属の炭酸塩)の使用が好ましい。炭酸塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 いくつかの態様において、2種以上の塩基性化合物が用いられる。かかる態様において、研磨用組成物は、第1の塩基性化合物と、第1の塩基性化合物とは異なる第2の塩基性化合物とを含む。第1および第2の塩基性化合物の種類は特に限定されず、上述したもののなかから適当な種類を選定して用いることができる。いくつかの好ましい態様において、第1の塩基性化合物として第四級アンモニウム類を使用し、第2の塩基性化合物として炭酸塩(具体的には、アルカリ金属またはアルカリ土類金属の炭酸塩)を使用する。上記第四級アンモニウム類としては、上記で例示した1種または2種以上を使用することができ、なかでも、テトラメチルアンモニウムヒドロキシドが好ましい。上記炭酸塩としては、上記で例示した1種または2種以上を使用することができ、なかでも、炭酸カリウムが好ましい。
 2種以上の塩基性化合物を使用する態様において、研磨組成物中の第1の塩基性化合物(好適には、第四級アンモニウム類)の含有量(B1)と第2の塩基性化合物(好適には、アルカリ金属またはアルカリ土類金属の炭酸塩)の含有量(B2)との重量比(B1/B2)は特に限定されない。上記比(B1/B2)は、0.1以上であってもよく、0.5以上でもよく、1以上(例えば1超)でもよい。比(B1/B2)が大きいほど、第1の塩基性化合物(好適には、第四級アンモニウム類)含有の効果(例えば研磨レート、隆起解消性)が効果的に発揮される傾向がある。上記比(B1/B2)は、50以下であってもよく、30以下でもよく、20以下でもよく、10以下でもよい。比(B1/B2)が小さいほど、第2の塩基性化合物(好適には、アルカリ金属またはアルカリ土類金属の炭酸塩)含有の効果(例えば研磨レート向上)が効果的に発揮される傾向がある。
 研磨用組成物全量に対する塩基性化合物の含有量は、研磨レートおよび隆起解消性の観点から、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上である。塩基性化合物の含有量の増加によって、安定性も向上し得る。上記塩基性化合物の含有量の上限は、5重量%以下とすることが適当であり、表面品質等の観点から、好ましくは2重量%以下であり、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。なお、2種以上の塩基性化合物を組み合わせて用いる場合は、上記含有量は2種以上の塩基性化合物の合計含有量を指す。これらの含有量は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。
 また、希釈して研磨に用いられる研磨用組成物(すなわち濃縮液)の場合、塩基性化合物の含有量は、保存安定性や濾過性等の観点から、通常は10重量%以下であることが適当であり、5重量%以下であることがより好ましい。また、濃縮液とすることの利点を活かす観点から、塩基性化合物の含有量は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、さらに好ましくは0.9重量%以上である。
 研磨用組成物における砥粒の含有量Cに対する塩基性化合物の含有量Cの重量比(C/C)は、ここに開示される技術の効果が発揮される限りにおいて特に制限されない。上記比(C/C)は、例えば凡そ0.01以上とすることが適当であり、塩基性化合物の添加効果を効果的に発揮させる観点から、好ましくは0.05以上、より好ましくは0.1以上であり、例えば0.2以上であってもよい。また、砥粒による機械的研磨や、組成物の分散安定性等の観点から、上記比(C/C)は、例えば凡そ1以下とすることが適当であり、好ましくは0.8以下、より好ましくは0.6以下であり、例えば0.5以下であってもよい。
 <硫黄を含むアニオンの塩>
 ここに開示される研磨用組成物は、硫黄を含むアニオンの塩(S含有アニオンの塩)を含む。S含有アニオンの塩を含む研磨用組成物によると、研磨レートを維持しつつ、HLM周縁の隆起を効果的に解消することができる。S含有アニオンの塩を構成する硫黄(S)含有アニオンが、炭酸イオン等の他のアニオンと比べて、HLM周縁に効果的に作用するためと考えられる。研磨用組成物が、砥粒、塩基性化合物およびS含有アニオンの塩を含むことで、砥粒による機械的研磨と、塩基性化合物による研磨促進(化学的研磨)と、S含有アニオンの塩によるHLM周縁の加工性向上効果とがバランスよく発揮されるものと考えられる。なお、上記メカニズムは、実験結果に基づく本発明者の考察であり、ここに開示される技術は、上記メカニズムに限定して解釈されるものではない。
 上記S含有アニオンの塩は、有機塩であってもよく、無機塩であってもよい。上記S含有アニオンの塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。上記S含有アニオンの塩の好適例として、無機塩が挙げられる。上記無機塩の例としては、硫酸塩、亜硫酸塩、亜硫酸水素塩、チオ硫酸塩等が挙げられる。これらの塩を構成するカチオンとしては、特に制限されず、例えば、アルカリ金属(リチウム、ナトリウム、カリウム等)、アルカリ土類金属(カルシウム、ストロンチウム、バリウム等)、マグネシウム、アンモニウム等が挙げられる。上記無機塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。
 上記硫酸塩の具体例としては、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム等が挙げられる。上記亜硫酸塩の具体例としては、亜硫酸リチウム、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸アンモニウム等が挙げられる。上記亜硫酸水素塩としては、亜硫酸水素リチウム、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素アンモニウム等が挙げられる。上記チオ硫酸塩としては、チオ硫酸リチウム、チオ硫酸ナトリウム、チオ硫酸カリウム、チオ硫酸アンモニウム等が挙げられる。上記無機塩のなかでも、硫酸塩を用いた研磨において、隆起解消効果が特に効果的に発揮される傾向がある。
 上記S含有アニオンの塩は、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、1-ブタンスルホン酸等のスルホン酸;1,2-エタンジスルホン酸、1,3-プロパンジスルホン酸、1,4-ブタンジスルホン酸等のジスルホン酸;ヒドロキシメタンスルホン酸、2-ヒドロキシエタンスルホン酸等のヒドロキシアルキルスルホン酸;メチル硫酸、エチル硫酸等のアルキル硫酸;スルファミン酸;等から構成される有機塩であってもよい。上記有機塩を構成するカチオンとしては、特に制限されず、例えば、アルカリ金属(リチウム、ナトリウム、カリウム等)、アルカリ土類金属(カルシウム、ストロンチウム、バリウム等)、マグネシウム、アンモニウム等が挙げられる。
 研磨用組成物における上記S含有アニオンの塩のモル濃度(複数種類のS含有アニオンの塩を含む場合には、それらの合計モル濃度)は特に限定されず、例えば凡そ0.1mmol/L以上とすることが適当であり、HLM周縁においてより高い加工性を実現する観点から、好ましくは1mmol/L以上、より好ましくは2mmol/L以上であり、3mmol/L以上であってもよい。また、分散安定性等の観点から、上記S含有アニオンの塩のモル濃度は、例えば凡そ1000mmol/L以下とすることが適当であり、好ましくは100mmol/L以下、より好ましくは30mmol/L以下であり、10mmol/L以下であってもよく、6mmol/L以下でもよい。
 研磨用組成物における砥粒の含有量Cに対するS含有アニオンの塩の含有量Cの重量比(C/C)は、ここに開示される技術の効果が発揮される限りにおいて特に制限されない。上記比(C/C)は、例えば凡そ0.01以上とすることが適当であり、HLM周縁においてより高い加工性を実現する観点から、好ましくは0.02以上、より好ましくは0.05以上(例えば0.05超)、さらに好ましくは0.10以上(例えば0.10超)である。また、砥粒による機械的研磨や、組成物の分散安定性等の観点から、上記比(C/C)は、例えば凡そ1以下とすることが適当であり、好ましくは0.5以下、より好ましくは0.2以下である。
 研磨用組成物における塩基性化合物の含有量Cに対するS含有アニオンの塩の含有量Cの重量比(C/C)は、ここに開示される技術の効果が発揮される限りにおいて特に制限されない。上記比(C/C)は、例えば凡そ0.01以上とすることが適当であり、隆起解消性の観点から、好ましくは0.05以上、より好ましくは0.1以上であり、0.2以上(例えば0.2超)でもよい。また、研磨レート等の観点から、上記比(C/C)は、例えば凡そ10以下とすることが適当であり、好ましくは1以下、より好ましくは0.8以下であり、例えば0.5以下であってもよい。
 <水>
 ここに開示される研磨用組成物は水を含む。水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
 ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(例えば99~100体積%)が水であることがより好ましい。
 <その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、水溶性高分子、界面活性剤、酸、キレート剤、防腐剤、防カビ剤等の、研磨用組成物(例えば、シリコンウェーハのポリシング工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
 水溶性高分子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記水溶性高分子の例としては、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ビニルアルコール系ポリマー、カルボン酸(無水物含む)を含むポリマー等が挙げられる。具体例としては、ヒドロキシエチルセルロース、プルラン、エチレンオキサイドとプロピレンオキサイドとのランダム共重合体やブロック共重合体、ポリビニルアルコール、ポリグリセリン、ポリアクリル酸塩、ポリ酢酸ビニル、ポリエチレングリコール、ポリビニルイミダゾール、ポリビニルカルバゾール、ポリビニルピロリドン、ポリアクリロイルモルホリン、ポリビニルカプロラクタム、ポリビニルピペリジン、オレフィン-(無水)マレイン酸共重合体、スチレン-(無水)マレイン酸共重合体等が挙げられる。ここに開示される技術は、研磨用組成物が水溶性高分子を実質的に含まない態様、すなわち、少なくとも意図的には水溶性高分子を含有させない態様でも好ましく実施され得る。
 ここに開示される技術において水溶性高分子の分子量は特に限定されない。例えば、水溶性高分子の重量平均分子量(Mw)は、凡そ200×10以下とすることができ、150×10以下が適当である。上記Mwは、凡そ100×10以下であってもよく、凡そ50×10以下であってもよい。また、研磨対象物表面(例えばシリコンウェーハ表面)の保護性の観点から、上記Mwは、通常、凡そ0.2×10以上であり、凡そ0.5×10以上であることが適当であり、凡そ0.8×10以上であってもよい。
 なお、水溶性高分子のMwとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。
 界面活性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記界面活性剤の例としては、特に限定されず、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤が挙げられる。界面活性剤(例えば、分子量0.2×10未満の水溶性有機化合物)の使用により、研磨用組成物の分散安定性が向上し得る。界面活性剤のMwとしては、GPCにより求められる値(水系、ポリエチレングリコール換算)または化学式から算出される値を採用することができる。
 いくつかの態様において、研磨用組成物は、水溶性高分子および界面活性剤の使用量が制限された組成を有する。研磨用組成物(例えば研磨液)中の水溶性高分子および界面活性剤の合計量は、0.3重量%未満であってもよく、0.2重量%未満でもよく、0.1重量%未満でもよく、0.03重量%未満または0.01重量%未満でもよく、0.0001重量%未満でもよい。ここに開示される技術は、研磨用組成物が水溶性高分子および/または界面活性剤を実質的に含まない態様、すなわち、少なくとも意図的には水溶性高分子および/または界面活性剤を含有させない態様でも好ましく実施され得る。
 酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記酸の例としては、塩酸、リン酸、硫酸、ホスホン酸、硝酸、ホスフィン酸、ホウ酸等の無機酸;酢酸、イタコン酸、コハク酸、酒石酸、クエン酸、マレイン酸、グリコール酸、マロン酸、メタンスルホン酸、ギ酸、リンゴ酸、グルコン酸、アラニン、グリシン、乳酸、ヒドロキシエチリデン二リン酸(HEDP)、ニトリロトリス(メチレンリン酸)(NTMP)、ホスホノブタントリカルボン酸(PBTC)等の有機酸;等が挙げられる。
 上記キレート剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましい。なかでも好ましいものとして、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)およびジエチレントリアミン五酢酸が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。
 上記防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該組成物が供給されることで基板表面(例えばシリコンウェーハ表面)が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここで、研磨用組成物が酸化剤を実質的に含有しないとは、少なくとも意図的には酸化剤を配合しないことをいい、原料や製法等に由来して微量の酸化剤が不可避的に含まれることは許容され得る。上記微量とは、研磨用組成物における酸化剤のモル濃度が0.0005モル/L以下(好ましくは0.0001モル/L以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)であることをいう。好ましい一態様に係る研磨用組成物は酸化剤を含有しない。ここに開示される研磨用組成物は、例えば、過酸化水素、過硫酸ナトリウム、過硫酸アンモニウムおよびジクロロイソシアヌル酸ナトリウムをいずれも含有しない態様で好ましく実施され得る。
 <研磨用組成物>
 ここに開示される研磨用組成物は、例えば該研磨用組成物を含む研磨液(ワーキングスラリー)の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。ここに開示される研磨用組成物は、例えば、希釈(例えば、水により希釈)して研磨液として使用されるものであってもよく、そのまま研磨液として使用されるものであってもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられるワーキングスラリーと、かかるワーキングスラリーの濃縮液(原液)との双方が包含される。上記濃縮液の濃縮倍率は、例えば、体積基準で2倍~140倍程度であってよく、通常は5倍~80倍程度が適当である。
 研磨用組成物のpHは、例えば8.0以上であり、好ましくは8.5以上、より好ましくは9.0以上、さらに好ましくは9.5以上であり、10.0以上(例えば10.5以上)でもよい。pHが高くなると、研磨レートが向上する傾向にある。一方、砥粒(例えばシリカ粒子)の溶解を防ぎ、該砥粒による機械的な研磨作用の低下を抑制する観点から、研磨液のpHは、通常、12.0以下であることが適当であり、11.8以下であることが好ましく、11.5以下であることがより好ましい。これらのpHは、研磨対象物に供給される研磨液(ワーキングスラリー)およびその濃縮液のpHのいずれにも好ましく適用され得る。
 なお、研磨用組成物のpHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を研磨用組成物に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。
 ここに開示される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、少なくとも砥粒を含むパートAと、残りの成分を含むパートBとを混合し、必要に応じて適切なタイミングで希釈することによって研磨液が調製されるように構成されていてもよい。
 ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
 <研磨>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に使用することができる。
 すなわち、ここに開示されるいずれかの研磨用組成物を含むワーキングスラリーを用意する。次いで、その研磨用組成物を研磨対象物に供給し、常法により研磨する。例えば、一般的な研磨装置に研磨対象物をセットし、該研磨装置の研磨パッドを通じて該研磨対象物の表面(研磨対象面)に研磨用組成物を供給する。例えば上記研磨用組成物を連続的に供給しつつ、研磨対象物の表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。
 上記研磨工程で使用される研磨パッドは特に限定されない。例えば、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。また、上記研磨装置としては、研磨対象物の両面を同時に研磨する両面研磨装置を用いてもよく、研磨対象物の片面のみを研磨する片面研磨装置を用いてもよい。
 上記研磨用組成物は、いったん研磨に使用したら使い捨てにする態様(いわゆる「かけ流し」)で使用されてもよいし、循環して繰り返し使用されてもよい。研磨用組成物を循環使用する方法の一例として、研磨装置から排出される使用済みの研磨用組成物をタンク内に回収し、回収した研磨用組成物を再度研磨装置に供給する方法が挙げられる。
 <用途>
 ここに開示される研磨用組成物は、種々の材質および形状を有する研磨対象物の研磨に適用され得る。研磨対象物の材質は、例えば、シリコン材料、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケートガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等であり得る。これらのうち複数の材質により構成された研磨対象物であってもよい。
 ここに開示される研磨用組成物は、シリコン材料を有する研磨対象物の研磨に好適である。シリコン材料としては、シリコン単結晶、アモルファスシリコンおよびポリシリコンからなる群より選択される少なくとも1種の材料を含むことが好ましい。上記研磨用組成物は、シリコン単結晶を有する基板(例えばシリコンウェーハ)の研磨に特に好適である。上記研磨用組成物は、HLM周縁の隆起を解消する性能(隆起解消性)に優れるので、HLMの付された表面を含む研磨対象面の研磨に好ましく適用することができる。ここに開示される研磨用組成物は、予備研磨工程、より具体的には、ポリシング工程における最初の研磨工程である粗研磨工程(一次研磨工程)や、それに続く中間研磨工程(二次研磨工程)において特に好ましく使用され得る。上記予備研磨工程では、より高い研磨レートが求められ得ることから、ここに開示される研磨用組成物を予備研磨工程に使用して、研磨レート維持とHLM周縁の隆起解消とを両立することが特に有意義である。
 上記シリコンウェーハには、ここに開示される研磨用組成物を用いる研磨工程の前に、ラッピングやエッチング、上述したHLMの付与等の、シリコンウェーハに適用され得る一般的な処理が施されていてもよい。
 上記シリコンウェーハは、例えば、シリコンからなる表面を有する。このようなシリコンウェーハは、好適にはシリコン単結晶ウェーハであり、例えば、シリコン単結晶インゴットをスライスして得られたシリコン単結晶ウェーハである。ここに開示される研磨用組成物は、HLMが付されたシリコン単結晶ウェーハを研磨する用途に好適である。
 また、ここに開示される研磨用組成物は、HLMを有しない研磨対象物の研磨にも好適に使用することができる。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
 <研磨用組成物の調製>
 (実施例1)
 砥粒としてのコロイダルシリカ(平均一次粒子径:55nm)と、塩基性化合物としての水酸化テトラメチルアンモニウム(TMAH)と、硫黄を含むアニオンの塩としての硫酸リチウムと、イオン交換水とを混合することにより、研磨用組成物濃縮液を調製した。得られた研磨用組成物濃縮液をイオン交換水で体積比20倍に希釈することにより、コロイダルシリカを0.5重量%、TMAHを0.12重量%、および硫酸リチウムを表1に示す濃度で含む研磨用組成物を得た。表中のwt%は重量%であり、「-」は不使用を表している。
 (実施例2~3、比較例1~2)
 組成を表1に示すように変更した他は実施例1と同様にして各例に係る研磨用組成物を調製した。なお、炭酸カリウムは塩基性化合物であるが、便宜上、「添加剤(塩)」の欄に記載する。
 <性能評価>
 (シリコンウェーハの研磨)
 各例に係る研磨用組成物をそのまま研磨液(ワーキングスラリー)として使用して、研磨対象物(試験片)の表面を下記の条件で研磨した。試験片としては、ラッピングおよびエッチングを終えた直径100mmの市販シリコン単結晶ウェーハ(厚さ:545μm、伝導型:P型、結晶方位:<100>、抵抗率:0.1Ω・cm以上100Ω・cm未満)を使用した。上記ウェーハにはHLMが付されている。
 (研磨条件)
 研磨装置:日本エンギス社製の片面研磨装置、型式「EJ-380IN」
 研磨圧力:12kPa
 定盤回転数:+50rpm(反時計回りを正(+)とする。以下同じ。)
 ヘッド回転数:+50rpm
 研磨パッド:ニッタ・デュポン社製、商品名「SUBA800」
 研磨液供給レート:50mL/分(かけ流し使用)
 研磨環境の保持温度:25℃
 研磨取り代:4μm
 (HLM平坦度の評価)
 研磨後のシリコンウェーハについて、触針式表面粗さ形状測定機(SURFCOM 1500DX、株式会社東京精密製)を使用し、HLM周縁部の表面形状を測定した。具体的には、上記測定機の針を基板の表面に接触させ、HLM周縁部を走行させることにより、隆起が生じていない部分(基準面)と隆起の高さを測定した。そして、基準面から隆起の最高点までの高さ(μm)を「HLM平坦度」とした。得られたHLM平坦度を、比較例1の平坦度を100%とする相対値(相対HLM平坦度[%])に換算した。得られた結果を表1の「相対HLM平坦度」の欄に示す。相対HLM平坦度が80%よりも低い場合、HLM平坦度が良く、隆起解消性に優れていると評価される。
 (研磨レートの評価)
 上記研磨の前後におけるウェーハの重量差分に基づいて、下記式(1)~(3)により各実施例および比較例における研磨レートR[cm/分]を算出した。得られた研磨レートRを、比較例1の研磨レートを100%とする相対値(相対研磨レート[%])に換算した。得られた結果を表1の「相対研磨レート」の欄に示す。相対研磨レートが100%以上であれば研磨レートが維持されていると評価される。
 ΔV=(W0-W1)/d   (1)
 Δx=ΔV/S        (2)
 R=Δx/t         (3)
  ΔV:研磨前後のウェーハ体積変化量
  W0:研磨前のウェーハ重量[g]
  W1:研磨後のウェーハ重量[g]
  d :シリコンの比重(2.33)[g/cm
  S :ウェーハ表面積[cm
  Δx:研磨前後のウェーハ厚さ変化量[cm]
  t :研磨時間[分]
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、塩基性化合物と、硫黄を含むアニオンの塩とを組み合わせて含む研磨用組成物を使用した実施例1~3は、硫黄を含むアニオンの塩を含まない研磨用組成物を使用した比較例1と比較して、研磨レートが100%以上(具体的には101%以上)であり、HLM平坦度が80%よりも低く、研磨レートの維持と、HLM周縁の隆起解消とが両立されることが確認された。硫黄を含むアニオンの塩に加えて、アルカリ金属塩をさらに使用した実施例3では、研磨レートが向上し、かつHLM周縁の隆起解消性に優れていた。一方、硫黄を含むアニオンの塩を使用せず、硫黄を含むアニオンの塩の代わりに炭酸カリウムを使用した比較例2では、研磨レートは維持されたものの、HLM平坦度が80%であり、実施例1~3よりもHLM周縁の隆起解消性が劣っていた。より具体的には、同種のアルカリ金属を使用した実施例2と比較例2との対比(アルカリ金属種:K)から、硫黄を含むアニオンの塩を使用することにより、より優れたHLM周縁の隆起解消効果が得られることがわかる。
 上記の結果から、砥粒と、塩基性化合物と、硫黄を含むアニオンの塩と、水と、を含む研磨用組成物によると、研磨レートの維持と、HLM周縁の隆起解消性とを両立し得ることがわかる。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。

Claims (6)

  1.  砥粒と、塩基性化合物と、硫黄を含むアニオンの塩と、水と、を含む、研磨用組成物。
  2.  前記硫黄を含むアニオンの塩は無機塩である、請求項1に記載の研磨用組成物。
  3.  前記無機塩は硫酸塩である、請求項2に記載の研磨用組成物。
  4.  前記塩基性化合物として第四級アンモニウム類を含む、請求項1~3のいずれか一項に記載の研磨用組成物。
  5.  前記砥粒としてシリカ粒子を含む、請求項1~4のいずれか一項に記載の研磨用組成物。
  6.  シリコン材料を有する研磨対象物の研磨工程で用いられる、請求項1~5のいずれか一項に記載の研磨用組成物。
PCT/JP2022/031390 2021-09-01 2022-08-19 研磨用組成物 WO2023032715A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023545451A JPWO2023032715A1 (ja) 2021-09-01 2022-08-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142156 2021-09-01
JP2021-142156 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032715A1 true WO2023032715A1 (ja) 2023-03-09

Family

ID=85412262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031390 WO2023032715A1 (ja) 2021-09-01 2022-08-19 研磨用組成物

Country Status (3)

Country Link
JP (1) JPWO2023032715A1 (ja)
TW (1) TW202328394A (ja)
WO (1) WO2023032715A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153158A (ja) * 2002-10-31 2004-05-27 Jsr Corp 化学機械研磨用水系分散体およびこれを用いた化学機械研磨方法ならびに半導体装置の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153158A (ja) * 2002-10-31 2004-05-27 Jsr Corp 化学機械研磨用水系分散体およびこれを用いた化学機械研磨方法ならびに半導体装置の製造方法

Also Published As

Publication number Publication date
TW202328394A (zh) 2023-07-16
JPWO2023032715A1 (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
JP6279593B2 (ja) 研磨用組成物、研磨用組成物の製造方法およびシリコンウェーハ製造方法
KR102575250B1 (ko) 연마용 조성물, 그 제조 방법 및 연마용 조성물을 사용한 연마 방법
JP6649828B2 (ja) シリコン基板の研磨方法および研磨用組成物セット
KR102617007B1 (ko) 기판의 연마 방법 및 연마용 조성물 세트
JP6482200B2 (ja) 研磨用組成物
JP7440423B2 (ja) 研磨用組成物
TW201737334A (zh) 矽基板之研磨方法及研磨用組成物套組
JP7253335B2 (ja) 研磨用組成物、その製造方法および研磨用組成物を用いた研磨方法
JP7237933B2 (ja) 研磨用組成物
JP7319190B2 (ja) 研磨用組成物
JP7111739B2 (ja) 研磨用組成物および研磨方法
JP2020035870A (ja) 研磨用組成物
WO2023032715A1 (ja) 研磨用組成物
JPWO2018025656A1 (ja) シリコンウェーハ粗研磨用組成物の製造方法、シリコンウェーハ粗研磨用組成物セット、およびシリコンウェーハの研磨方法
WO2023032714A1 (ja) 研磨用組成物
WO2023032716A1 (ja) 研磨用組成物
JP6905836B2 (ja) 研磨用組成物及び研磨用組成物の製造方法
CN114450376B (zh) 研磨用组合物
JP2015189828A (ja) 研磨用組成物
KR20240067240A (ko) 연마용 조성물
TW202039718A (zh) 研磨用組合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545451

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE