WO2023032589A1 - 電解液体生成システム、及び制御システム - Google Patents

電解液体生成システム、及び制御システム Download PDF

Info

Publication number
WO2023032589A1
WO2023032589A1 PCT/JP2022/029998 JP2022029998W WO2023032589A1 WO 2023032589 A1 WO2023032589 A1 WO 2023032589A1 JP 2022029998 W JP2022029998 W JP 2022029998W WO 2023032589 A1 WO2023032589 A1 WO 2023032589A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
control mode
electrolytic
control
unit
Prior art date
Application number
PCT/JP2022/029998
Other languages
English (en)
French (fr)
Inventor
真未 堀田
千尋 井
賢一郎 稲垣
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to KR1020247004027A priority Critical patent/KR20240051116A/ko
Priority to CN202280055473.4A priority patent/CN117813264A/zh
Publication of WO2023032589A1 publication Critical patent/WO2023032589A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/029Concentration
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present disclosure relates to an electrolytic liquid generation system and a control system.
  • an ozonated water generator that generates ozonized water (electrolyte liquid) in which ozone (electrolysis product) is dissolved in water.
  • the electrolytic section has a conductive membrane interposed between the anode and the cathode. Then, by creating a potential difference between the anode and the cathode while the electrolytic part is immersed in water, an electrochemical reaction is performed in water to generate ozonated water (for example, the patented Reference 1). Then, the generated ozonized water exerts effects such as sterilization, antifungal, and deodorizing effects on the objects by flowing them through the objects such as pipelines, toilets, washbasins, bathrooms, and kitchens.
  • An object of the present disclosure is to provide an electrolytic liquid generation system and a control system capable of adjusting the balance between liquid sterilization and electrolytic liquid generation efficiency.
  • An electrolytic liquid generation system includes a liquid channel, a function section, and a control section.
  • a liquid flows through the liquid channel.
  • the functional unit has an electrolytic liquid generation function of generating an electrolytic liquid from the liquid by electrolyzing the liquid supplied from the liquid flow path, and a sterilization function of sterilizing the liquid.
  • the control section controls at least one of the electrolytic liquid generation function and the sterilization function of the function section.
  • the controller operates in one of a plurality of control modes including at least a first control mode and a second control mode. The controller improves the electrolyte liquid generating function in the first control mode compared to the second control mode. The controller improves the sterilization function in the second control mode compared to the first control mode.
  • a control system is an electrolytic liquid generation system having an electrolytic liquid generation function of generating an electrolytic liquid from the liquid by electrolyzing the liquid, and a sterilization function of sterilizing the liquid.
  • the control system includes a control unit that controls at least one of the electrolytic liquid generation function and the sterilization function.
  • the controller operates in one of a plurality of control modes including at least a first control mode and a second control mode.
  • the controller improves the electrolyte liquid generating function in the first control mode compared to the second control mode.
  • the controller improves the sterilization function in the second control mode compared to the first control mode.
  • the present disclosure has the effect of being able to adjust the balance between liquid sterilization and electrolyte liquid generation efficiency.
  • FIG. 1 is a block diagram showing an electrolytic liquid generation system according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing an electrolyzer included in the electrolytic liquid generating system;
  • FIG. 3 is a block diagram showing a first modification of the electrolytic liquid generating system same as above.
  • FIG. 4 is a block diagram showing a second modification of the electrolytic liquid generating system same as above.
  • FIG. 5 is a block diagram showing a third modification of the electrolytic liquid generating system same as above.
  • FIG. 6 is an external view showing an example of the water purifier of the second embodiment.
  • FIG. 7 is an external view showing an example of a mist cooler according to the third embodiment.
  • Embodiments generally relate to electrolyte liquid generation systems and control systems. More specifically, the embodiments relate to an electrolytic liquid generation system that generates an electrolytic liquid by electrolyzing a liquid to be processed, and a control system.
  • FIG. 1 is a block diagram showing an electrolytic liquid generating system 1 according to the first embodiment.
  • the electrolytic liquid generation system 1 generates an electrolytic liquid from a liquid by electrolyzing the liquid.
  • the electrolyte liquid generating system 1 of the present embodiment is an ozone water generating apparatus that uses tap water W1 supplied from the tap water supply P1 as the liquid and generates ozone water W2 as the electrolyte liquid.
  • the electrolytic liquid generation system 1, which is an ozone water generator generates ozone (electrolytic product) by electrolyzing tap water W1, which is a liquid, and dissolves the ozone in the tap water W1 to perform electrolysis.
  • a liquid ozone water W2 is generated.
  • Ozonated water W2 is effective for sterilization, deodorization, decomposition of organic matter, and the like, and is therefore widely used in various fields such as water treatment, hygiene, food, and medicine.
  • the electrolytic liquid generating system 1 includes a liquid inflow passage 31, a functional section 4, and a control section 5.
  • tap water W1 flows through the liquid inflow path 31 as a liquid.
  • the functional unit 4 electrolyzes the tap water W1 supplied from the liquid inflow passage 31 to remove the tap water W1 while performing an electrolytic liquid generation function of generating ozone water W2, which is an electrolytic liquid, from the tap water W1.
  • the control unit 5 controls at least one of the electrolyte liquid generation function and the sterilization function of the function unit 4 .
  • the controller 5 operates in one of a plurality of control modes including at least a first control mode and a second control mode.
  • the control unit 5 improves the electrolyte liquid generation function in the first control mode compared to the second control mode.
  • the control unit 5 improves the sterilization function in the second control mode compared to the first control mode.
  • the electrolytic liquid generation system 1 operates in one of a plurality of control modes including a first control mode and a second control mode in which the balance (priority) between the electrolytic liquid generation function and the sterilization function is different.
  • the electrolytic liquid generation system 1 can adjust the balance between the sterilization of the tap water W1 and the generation efficiency of the ozonated water W2. That is, the electrolytic liquid generation system 1 can adjust the balance between the sterilization function and the electrolytic liquid generation function as necessary.
  • the electrolytic liquid generation system 1 can adjust the sterilization function and the electrolytic liquid generation function so that the sterilization function can be used well as needed.
  • Such an electrolytic liquid generation system 1 includes a water purifier using an electrolytic liquid such as ozone water W2, a mist generator, a washing machine, a dishwasher, a warm water washing toilet seat, a refrigerator, a hot water supply device, a sterilization device, and a medical device. It can be used for appliances, air conditioners, kitchen appliances, and the like.
  • control unit 5 described above constitutes a control system 10, and the control system 10 can also achieve the above effects of the electrolytic liquid generation system 1.
  • FIG. FIG. 2 is an exploded perspective view showing the electrolyzer 42 included in the electrolytic liquid generating system 1. As shown in FIG.
  • An electrolytic liquid generating system 1 includes, as shown in FIG. It is an electrolytic liquid generating device including a port 6, a power supply 7, and a detection unit 8.
  • FIG. The electrolytic liquid generation device has a configuration in which the liquid supply section 2, the liquid inflow path 31, the liquid outflow path 32, the function section 4, the control section 5, the water supply port 6, the power source 7, and the detection section 8 are provided in one housing. have.
  • the liquid supply unit 2 includes a water supply pump, pressurizes tap water W1 supplied from the tap water supply P1, and discharges the pressurized tap water W1 into the liquid inflow channel 31. .
  • the liquid supply unit 2 may further include a tank for storing tap water W1.
  • liquid supply unit 2 does not need to be provided with a water supply pump and a tank, and may discharge tap water W1 directly received from the water supply P1 to the liquid inflow path 31.
  • the liquid inflow path 31 corresponds to the liquid flow path of the present disclosure, and is a water pipe such as a hose, resin pipe, or metal pipe.
  • the inlet of the liquid inflow path 31 is connected to the liquid supply section 2 and tap water W1 is received from the liquid supply section 2 into the liquid inflow path 31 .
  • the outflow port of the liquid inflow path 31 is connected to the functional section 4 to supply tap water W1 flowing through the liquid inflow path 31 to the functional section 4 .
  • the functional section 4 includes a flow rate adjustment section 41 and an electrolysis section 42 .
  • the function unit 4 including the flow rate adjustment unit 41 and the electrolysis unit 42 has an electrolytic liquid generation function of generating ozone water W2 from the tap water W1 by electrolyzing the tap water W1 supplied from the liquid inflow passage 31.
  • the sterilization function of sterilizing the tap water W1 is implemented while performing. Note that the sterilization function is a function of electrolyzing the tap water W1 to reduce (kill) the bacteria contained in the tap water W1, thereby generating ozonized water W2 with less bacteria.
  • the flow rate adjusting section 41 is connected between the outlet of the liquid inflow path 31 and the electrolytic section 42 .
  • the flow rate adjustment unit 41 includes an electromagnetic valve or the like, and adjusts the flow rate of the tap water W1 supplied from the liquid inflow path 31 to the electrolysis unit 42 by adjusting the opening degree of the electromagnetic valve.
  • the flow rate of the tap water W1 supplied from the liquid inflow passage 31 to the electrolytic section 42 may be referred to as the liquid supply amount.
  • the flow rate adjusting unit 41 is notified of the command value (flow rate command value) of the liquid supply amount by the flow rate command signal S1 from the control unit 5, and adjusts the opening of the solenoid valve so that the liquid supply amount matches the flow rate command value. adjust.
  • the function unit 4 can adjust the amount of the ozone water W2 generated by the electrolysis unit 42 by adjusting the liquid supply amount using the flow rate adjustment unit 41 . That is, the functional unit 4 can increase the amount of ozone water W2 generated by increasing the amount of liquid supplied by the flow rate adjusting unit 41, and as a result, can improve the electrolyte liquid generating function. Moreover, the function part 4 can reduce the production amount of the ozone water W2 by reducing the liquid supply amount by the flow rate adjustment part 41, and as a result, can lower the electrolytic liquid production function.
  • the electrolysis unit 42 generates ozone by electrolyzing the tap water W1 whose flow rate is adjusted by the flow rate adjustment unit 41, and dissolves the ozone in the tap water W1 to generate ozonized water W2, which is an electrolytic liquid. do.
  • the electrolytic section 42 includes a case 42a, a cover 42b, an anode (electrode) 42c, a cathode (electrode) 42d, a conductive film 42e, a feeder 42f, and an elastic body 42g.
  • the case 42a and the cover 42b are made of non-conductive resin such as acrylic.
  • the case 42a includes a hollow rectangular parallelepiped case main body 421 having a concave portion 422 on one surface.
  • the anode 42c, the cathode 42d, the conductive film 42e, the feeder 42f, and the elastic body 42g are accommodated in the recess 422.
  • the cover 42 b covers the opening of the recess 422 . That is, the case 42a and the cover 42b form a hollow rectangular parallelepiped housing.
  • a cylindrical upstream connecting portion 423 is formed at the first longitudinal end of the case body 421 , and a cylindrical downstream connecting portion 424 is formed at the second longitudinal end of the case body 421 .
  • the upstream connection portion 423 is connected to a pipe through which the tap water W1 whose flow rate is adjusted by the flow rate adjusting portion 41 (see FIG. 1) flows, and the tap water W1 that has passed through the flow rate adjusting portion 41 flows through the concave portion 422 of the case main body 421. lead inside.
  • the downstream connection portion 424 is connected to the inlet of the liquid outflow path 32 (see FIG. 1), and guides the ozone water W2 generated in the electrolysis section 42 from the recess 422 to the liquid outflow path 32 .
  • the recess 422 accommodates an elastic body 42g, a feeder 42f, an anode 42c, a conductive film 42e, and a cathode 42d.
  • the elastic body 42g, the power feeder 42f, the anode 42c, the conductive film 42e, and the cathode 42d are arranged to overlap the bottom surface of the recess 422, and the elastic body 42g, the power feeder 42f, the anode 42c, the conductive The conductive film 42e and the cathode 42d are stacked in this order.
  • the elastic body 42g is formed in a rectangular parallelepiped shape using a material having elasticity such as rubber, plastic, metal spring, or the like.
  • the feeder 42f is formed in a rectangular plate shape using titanium, for example.
  • the anode 42c is formed by depositing a conductive diamond film on a rectangular conductive substrate made of silicon, for example.
  • the conductive film 42e is, for example, a proton conductive ion exchange film having a thickness of about 100 ⁇ m to 200 ⁇ m, and is formed in a rectangular plate shape.
  • the cathode 42d is formed in a rectangular plate shape having a thickness of about 0.5 mm, for example, using a stainless alloy.
  • the first surface of the elastic body 42g is in contact with the bottom surface of the recess 422.
  • the first surface of the power feeder 42f is in contact with the second surface of the elastic body 42g, and the second surface of the power feeder 42f is in contact with the first surface of the anode 42c.
  • the second surface of anode 42c is in contact with the first surface of conductive film 42e.
  • the second surface of the conductive film 42e is in contact with the first surface of the cathode 42d.
  • the second surface of the cathode 42d faces the rear surface of the cover 42b.
  • a rod-shaped anode-side power supply shaft 425 is attached to one end in the longitudinal direction of the power supply 42f.
  • the anode-side power supply shaft 425 is connected to the power supply 7 (see FIG. 1) via wiring.
  • the feeder 42f is in contact with the anode 42c.
  • the anode-side power supply shaft 425 is electrically connected to the anode 42c.
  • a rod-shaped cathode-side power supply shaft 426 is attached to one end in the longitudinal direction of the cathode 42d.
  • the cathode-side power supply shaft 426 is connected to the power supply 7 via wiring.
  • the power supply 7 can apply a driving voltage between the anode 42c and the cathode 42d via the anode-side power supply shaft 425 and the cathode-side power supply shaft 426. As shown in FIG.
  • the power source 7 applies a driving voltage between the anode 42c and the cathode 42d.
  • a potential difference is generated through A potential difference is generated between the anode 42c and the cathode 42d, thereby energizing the anode 42c, the conductive film 42e, and the cathode 42d, and driving current flows from the anode 42c to the cathode 42d.
  • the tap water W1 is electrolyzed to generate ozone in the vicinity of the interface between the conductive film 42e and the anode 42c.
  • the ozone dissolves in the tap water W1 while being transported toward the downstream connection portion 424 along the flow of the tap water W1 in the recess 422 to generate the ozone water W2.
  • the driving voltage applied between the anode 42c and the cathode 42d by the power supply 7 is several volts to several tens of volts, and the larger the driving current (the higher the driving voltage), the greater the amount of ozone generated.
  • the driving current is the current supplied from the power supply 7 to the electrolytic section 42 for electrolysis.
  • the electrolysis unit 42 dissolves ozone (electrolyzed product) in the tap water W1 to generate ozone water W2 (electrolyte liquid).
  • the electrolysis unit 42 reduces bacteria contained in the tap water W1 by the oxidizing action of ozone, thereby generating ozonized water W2 containing few bacteria.
  • the electrolysis unit 42 can adjust the amount of ozone generated in the electrolysis unit 42 (the amount of ozone contained in the ozone water W2) by adjusting the drive current.
  • the electrolysis unit 42 is notified of the command value (current command value) of the drive current by the current command signal S2 from the control unit 5, and adjusts the drive current so that the value of the drive current matches the current command value. That is, the functional unit 4 can increase the amount of ozone contained in the ozonized water W2 by increasing the amount of ozone generated by the electrolysis unit 42 by increasing the drive current, and as a result, the sterilization function can be performed. can be improved. Further, the functional unit 4 can reduce the amount of ozone contained in the ozone water W2 by decreasing the amount of ozone generated by the electrolysis unit 42 by decreasing the drive current, and as a result, the sterilization function can be performed. can be lowered.
  • the liquid outflow path 32 is a water pipe such as a hose, a resin pipe, or a metal pipe.
  • the inlet of the liquid outflow path 32 is connected to the downstream side connection portion 424 (see FIG. 2) of the electrolysis section 42 , and the ozone water W2 flows into the liquid outflow path 32 from the electrolysis section 42 .
  • the liquid outflow path 32 is connected to the water supply port 6 , and the ozone water W ⁇ b>2 flowing through the liquid outflow path 32 is supplied from the water supply port 6 to the outside of the electrolytic liquid generating system 1 .
  • the water supply port 6 supplies the ozone water W2 flowing through the liquid outflow path 32 to the outside of the electrolyte liquid generating system 1 .
  • the water supply port 6 constitutes the water discharge port of the water purifier, and the ozone water W2 is discharged from the water supply port 6.
  • the mist generator generates mist using ozone water W2 supplied from the water supply port 6, and sprays the generated mist.
  • the power supply 7 applies a drive voltage to the electrolytic section 42 to generate a potential difference between the anode 42c and the cathode 42d, thereby generating a drive current from the anode 42c to the cathode 42d. That is, the power supply 7 applies a drive voltage to the electrolysis section 42 and supplies a drive current to the electrolysis section 42 .
  • the detector 8 detects the degree of contamination of at least one of the tap water W1 and the ozone water W2. The lower the degree of contamination, the cleaner and harmless it is considered.
  • the detection unit 8 is an upstream detection unit 81 that detects the degree of contamination of the tap water W1 flowing through the liquid inflow path 31.
  • the upstream detection unit 81 detects, for example, the number of bacteria contained in the tap water W1, turbidity, color, concentration of organic substances, residence time in the liquid inflow passage 31, etc., as a first dirt detection indicating the degree of dirt of the tap water W1. value.
  • the upstream detection unit 81 may use the reciprocal of the residual chlorine concentration of the tap water W1 as the first dirt detection value.
  • the first dirt detection value indicates that the tap water W1 has fewer bacteria, less turbidity, colorless and transparent color, lower concentration of organic matter, and shorter residence time in the liquid inflow passage 31.
  • the smaller the reciprocal of the chlorine concentration the smaller.
  • the smaller the first contamination detection value the lower the degree of contamination of the tap water W1.
  • the upstream detection section 81 outputs a detection signal S3 that notifies the first dirt detection value to the control section 5 .
  • the control unit 5 determines the degree of contamination of the tap water W1 based on the first contamination detection value included in the detection signal S3, and controls the function unit 4 based on the determination result.
  • the detection unit 8 includes, for example, sensors for detecting the degree of contamination of the liquid such as a bacteria count sensor, a turbidity sensor, a chromaticity sensor, and an organic matter concentration sensor; , a sensor for detecting the concentration of a substance having a sterilizing action such as ozone, or a flow sensor.
  • sensors for detecting the degree of contamination of the liquid such as a bacteria count sensor, a turbidity sensor, a chromaticity sensor, and an organic matter concentration sensor
  • a sensor for detecting the concentration of a substance having a sterilizing action such as ozone, or a flow sensor.
  • the control unit 5 includes a computer system. That is, in the control unit 5, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) reads and executes a program stored in a memory, thereby performing part or all of the functions of the control unit 5. is realized.
  • the control unit 5 has a processor that operates according to a program as a main hardware configuration. Any type of processor can be used as long as it can implement functions by executing a program.
  • the processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or LSI (large scale integration).
  • ICs and LSIs are called ICs and LSIs, but the names change depending on the degree of integration, and they may be called system LSIs, VLSIs (very large scale integration), or ULSIs (ultra large scale integration).
  • a field programmable gate array (FPGA) which is programmed after the LSI is manufactured, or a reconfigurable logic device capable of reconfiguring the junction relationships inside the LSI or setting up circuit partitions inside the LSI for the same purpose. can be done.
  • a plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. A plurality of chips may be collectively arranged or distributed.
  • control unit 5 includes a flow control unit 51 and a current control unit 52.
  • the flow rate control unit 51 determines the degree of contamination of the tap water W1 based on the detection signal S3, and outputs the flow rate instruction signal S1 based on the determination result.
  • the flow rate adjustment section 41 controls the liquid supply amount (the flow rate of the tap water W1 supplied to the electrolysis unit 42) by controlling the flow rate adjustment unit 41.
  • the flow control unit 51 can increase the production amount of the ozone water W2 by increasing the liquid supply amount by the flow control unit 41, and as a result, can improve the electrolytic liquid production function.
  • the flow control unit 51 can reduce the production amount of the ozone water W2 by reducing the liquid supply amount by the flow control unit 41, and as a result, the electrolytic liquid production function can be lowered.
  • the current control unit 52 determines the degree of contamination of the tap water W1 based on the detection signal S3, and outputs the current instruction signal S2 based on the determination result.
  • the electrolysis section 42 is controlled. That is, the current control unit 52 controls the amount of ozone generated by the electrolysis unit 42 by controlling the electrolysis unit 42 .
  • the current control unit 52 can increase the amount of ozone contained in the ozone water W2 by increasing the driving current of the electrolysis unit 42 to increase the amount of ozone generated by the electrolysis unit 42. As a result, As a result, the sterilization function can be improved.
  • the current control unit 52 can reduce the amount of ozone contained in the ozone water W2 by decreasing the amount of ozone generated by the electrolysis unit 42 by decreasing the driving current of the electrolysis unit 42. As a result, As a result, the sterilization function can be reduced.
  • generated by the electrolysis part 42 may be called the total production amount of ozone.
  • the controller 5 operates in one of a plurality of control modes.
  • the multiple control modes include a first control mode and a second control mode.
  • the control unit 5 improves the electrolyte liquid generation function in the first control mode compared to the second control mode.
  • the control unit 5 improves the sterilization function in the second control mode compared to the first control mode. That is, the control unit 5 gives priority to the electrolyte liquid generation function in the first control mode, and gives priority to the sterilization function in the second control mode.
  • the electrolytic liquid generation system 1 can adjust the balance between the sterilization of the tap water W1 and the generation efficiency of the ozonated water W2.
  • control unit 5 selects one of a plurality of control modes according to the degree of contamination of the tap water W1, and operates in the selected control mode.
  • the control unit 5 operates in the first control mode when the degree of contamination of the tap water W1 is less than the mode threshold, and operates in the second control mode when the degree of contamination of the tap water W1 is equal to or greater than the mode threshold. .
  • the control unit 5 detects the degree of contamination of the tap water W1 as the number of bacteria contained in the tap water W1, turbidity, color, concentration of organic matter, retention time in the liquid inflow passage 31, or residual A detection signal S ⁇ b>3 including a first contamination detection value such as the reciprocal of the chlorine concentration is received from the upstream detection section 81 . Then, the control unit 5 compares the first contamination detection value with the mode threshold, and if the first contamination detection value is less than the mode threshold, it operates in the first control mode. If so, it operates in the second control mode. That is, the electrolytic liquid generation system 1 can automatically switch the control mode based on the degree of contamination of the tap water W1.
  • the upstream detection unit 81 detects the residence time of the tap water W1 in the liquid inflow path 31 as the first dirt detection value.
  • the residence time of the tap water W1 is equal to the stop time of the electrolytic liquid generation system 1.
  • the control unit 5 automatically operates in the second control mode.
  • the control unit 5 operates in the first control mode if the first dirt detection value is less than the mode threshold.
  • the flow rate control unit 51 controls the flow rate adjustment unit 41 so that the liquid supply amount (the flow rate of the tap water W1 supplied to the electrolysis unit 42) becomes F1.
  • the current control unit 52 controls the electrolysis unit 42 so that the driving current of the electrolysis unit 42 becomes I1.
  • the control unit 5 operates in the second control mode if the first contamination detection value is equal to or greater than the mode threshold.
  • the flow control unit 51 controls the flow control unit 41 so that the liquid supply amount is F2 ( ⁇ F1). That is, the liquid supply amount F2 in the second control mode is smaller than the liquid supply amount F1 in the first control mode.
  • the current control unit 52 controls the electrolysis unit 42 so that the driving current of the electrolysis unit 42 is I2 (>I1). That is, the drive current I2 in the second control mode becomes larger than the drive current I1 in the first control mode. As a result, the total amount of ozone produced in the second control mode is greater than the total amount of ozone produced in the first control mode.
  • the amount of ozonated water W2 generated in the second control mode is less than the amount of ozonated water W2 generated in the first control mode. Also, the ozone concentration of the ozone water W2 generated in the second control mode is higher than the ozone concentration of the ozone water W2 generated in the first control mode. That is, in the second control mode, the electrolytic liquid generation system 1 can enhance the sterilization efficiency and save the tap water W1.
  • the controller 5 improves the electrolytic liquid generation function compared to the second control mode, and lowers the sterilization function compared to the second control mode.
  • the control unit 5 improves the sterilization function compared to the first control mode, and lowers the electrolytic liquid generation function compared to the first control mode.
  • the flow rate control unit 51 preferably sets the liquid supply amount F2 in the second control mode to a liquid supply amount equal to or less than 1/2 of the liquid supply amount F1 in the first control mode and greater than 0 (zero). .
  • the liquid supply amount F1 is 1.0 L (liter)/min (minute)
  • the liquid supply amount F2 should be 0.5 L/min or less.
  • the electrolytic liquid generation system 1 can improve the sterilization efficiency and save tap water W1.
  • the flow rate control unit 51 may set the liquid supply amount F2 in the second control mode to 1 ⁇ 5 or less of the liquid supply amount F1 in the first control mode. Specifically, for example, if the liquid supply amount F1 is 1.0 L/min, the liquid supply amount F2 should be 0.2 L/min or less. In this case, the electrolytic liquid generating system 1 can further improve the sterilization efficiency and further save the tap water W1.
  • the flow rate control unit 51 may set the liquid supply amount F2 in the second control mode to 1 ⁇ 8 or less of the liquid supply amount F1 in the first control mode. Specifically, for example, if the liquid supply amount F1 is 1.0 L/min, the liquid supply amount F2 should be 0.125 L/min or less. In this case, the electrolytic liquid generating system 1 can further improve the sterilization efficiency and further save the tap water W1.
  • the liquid supply amount F2 in the second control mode may be less than the liquid supply amount F1 in the first control mode and larger than half the liquid supply amount F1.
  • the control unit 5 operates in the first control mode if the first dirt detection value is less than the mode threshold.
  • the flow rate control unit 51 controls the flow rate adjustment unit 41 so that the liquid supply amount (the flow rate of the tap water W1 supplied to the electrolysis unit 42) becomes F1.
  • the current control unit 52 controls the electrolysis unit 42 so that the driving current of the electrolysis unit 42 becomes I1.
  • the control unit 5 operates in the second control mode if the first contamination detection value is equal to or greater than the mode threshold.
  • the flow control unit 51 controls the flow control unit 41 so that the liquid supply amount is F3 ( ⁇ F1). That is, the liquid supply amount F3 in the second control mode is smaller than the liquid supply amount F1 in the first control mode.
  • the current control unit 52 controls the electrolysis unit 42 so that the driving current of the electrolysis unit 42 is I3 ( ⁇ I1). That is, the drive current I3 in the second control mode is smaller than the drive current I1 in the first control mode. As a result, the total amount of ozone produced in the second control mode is less than the total amount of ozone produced in the first control mode. However, the liquid supply amount F3 in the second control mode is smaller than the liquid supply amount F1 in the first control mode. Therefore, the value of the drive current I3 is set in advance so that the ozone concentration of the ozone water W2 generated in the second control mode is higher than the ozone concentration of the ozone water W2 generated in the first control mode. .
  • the amount of ozonated water W2 generated in the second control mode is less than the amount of ozonated water W2 generated in the first control mode. Also, the ozone concentration of the ozone water W2 generated in the second control mode is higher than the ozone concentration of the ozone water W2 generated in the first control mode. That is, in the second control mode, the electrolytic liquid generation system 1 can enhance the sterilization efficiency and save the tap water W1.
  • the controller 5 improves the electrolytic liquid generation function compared to the second control mode, and lowers the sterilization function compared to the second control mode.
  • the control unit 5 improves the sterilization function compared to the first control mode, and lowers the electrolytic liquid generation function compared to the first control mode.
  • the electrolytic liquid generation system 1 suppresses deterioration of the electrolysis unit 42 in the second control mode by making the drive current I3 in the second control mode smaller than the drive current I1 in the first control mode, 42 can also be extended in service life.
  • the current control unit 52 preferably sets the drive current I3 in the second control mode to a current value equal to or less than 1/2 of the drive current I1 in the first control mode and greater than 0 (zero). In this case, suppression of deterioration of the electrolytic part 42 in the second control mode and extension of the service life of the electrolytic part 42 can be realized more reliably.
  • the drive current I3 in the second control mode may be 1/5 or less, or 1/8 or less of the drive current I1 in the first control mode.
  • the drive current I3 in the second control mode may be less than the drive current I1 in the first control mode and larger than half the drive current I1.
  • the control unit 5 operates in the first control mode if the first dirt detection value is less than the mode threshold.
  • the flow rate control unit 51 controls the flow rate adjustment unit 41 so that the liquid supply amount (the flow rate of the tap water W1 supplied to the electrolysis unit 42) becomes F1.
  • the current control unit 52 controls the electrolysis unit 42 so that the driving current of the electrolysis unit 42 becomes I1.
  • the control unit 5 operates in the second control mode if the first contamination detection value is equal to or greater than the mode threshold.
  • the flow control unit 51 controls the flow control unit 41 so that the liquid supply amount is F1, which is the same as in the first control mode. That is, the liquid supply amount does not change between the first control mode and the second control mode.
  • the current control unit 52 controls the electrolysis unit 42 so that the driving current of the electrolysis unit 42 is I4 (>I1). Since the drive current I4 in the second control mode is greater than the drive current I1 in the first control mode, the total amount of ozone produced in the second control mode is greater than the total amount of ozone produced in the first control mode.
  • the amount of ozonated water W2 generated in the second control mode is the same as the amount of ozonated water W2 generated in the first control mode.
  • the ozone concentration of the ozone water W2 generated in the second control mode is It is higher than the ozone concentration of the ozonated water W2. That is, the electrolytic liquid generation system 1 can enhance the sterilization efficiency in the second control mode.
  • control unit 5 lowers the sterilization function in the first control mode compared to the second control mode. In addition, the control unit 5 improves the sterilization function in the second control mode compared to the first control mode.
  • the current control unit 52 preferably sets the drive current I4 in the second control mode to 4/3 or more of the drive current I1 in the first control mode. In this case, it is possible to sufficiently improve the sterilization efficiency in the second control mode.
  • the control unit 5 operates in the first control mode if the first dirt detection value is less than the mode threshold.
  • the flow rate control unit 51 controls the flow rate adjustment unit 41 so that the liquid supply amount (the flow rate of the tap water W1 supplied to the electrolysis unit 42) becomes F1.
  • the current control unit 52 controls the electrolysis unit 42 so that the driving current of the electrolysis unit 42 becomes I1.
  • the control unit 5 operates in the second control mode if the first contamination detection value is equal to or greater than the mode threshold.
  • the flow control unit 51 controls the flow control unit 41 so that the liquid supply amount is F4 ( ⁇ F1). That is, the liquid supply amount F4 in the second control mode is less than the liquid supply amount F1 in the first control mode.
  • the current control unit 52 controls the electrolysis unit 42 so that the driving current of the electrolysis unit 42 is I1, which is the same as in the first control mode. That is, the drive current does not change between the first control mode and the second control mode.
  • the ozone concentration of the ozonated water W2 generated in the second control mode is equal to that of the ozonized water W2 generated in the first control mode. higher than the ozone concentration of That is, in the second control mode, the electrolytic liquid generation system 1 can enhance the sterilization efficiency and save the tap water W1.
  • the controller 5 improves the electrolytic liquid generation function compared to the second control mode, and lowers the sterilization function compared to the second control mode.
  • the control unit 5 improves the sterilization function compared to the first control mode, and lowers the electrolytic liquid generation function compared to the first control mode.
  • FIG. 3 shows a block diagram of an electrolytic liquid generation system 1A as a first modification of the electrolytic liquid generation system 1. As shown in FIG.
  • the electrolytic liquid generation system 1A includes an operation input section 9 instead of the detection section 8 (upstream detection section 81) of the electrolytic liquid generation system 1.
  • the operation input unit 9 includes at least one of switches, buttons, touch panels, and receiving devices. Switches, buttons, and touch panels directly accept user operations.
  • the receiving device indirectly accepts a user's operation by receiving a wireless signal or a wired signal from a remote controller operated by the user.
  • the user's operation received by the operation input unit 9 includes a mode selection operation for selecting a control mode. That is, the user can instruct the control unit 5 by operating the operation input unit 9 to operate the control unit 5 in either the first control mode or the second control mode.
  • the operation input unit 9 outputs an operation signal S4 to the control unit 5 according to the user's operation.
  • the operation signal S4 instructs the control section 5 to enter the control mode. If the control mode instructed by the operation signal S4 is the first control mode, the control section 5 operates in the first control mode. If the control mode instructed by the operation signal S4 is the second control mode, the control section 5 operates in the second control mode. That is, the electrolytic liquid generation system 1A can switch the control mode by user's operation.
  • Each operation of the flow control unit 51 and the current control unit 52 of the control unit 5 in each of the first control mode and the second control mode is the same as one of the first operation example to the fourth operation example described above, and the explanation is omitted.
  • the control unit 5 operates in the second control mode according to the user's operation, thereby giving priority to the sterilization function and improving the sterilization efficiency. can be improved.
  • the electrolytic liquid generation system 1 may further include the operation input section 9 of the first modified example.
  • the control unit 5 operates in the second control mode according to the user's operation, so that the sterilization function can be given priority and the sterilization efficiency can be improved.
  • FIG. 4 shows a block diagram of an electrolytic liquid generation system 1B as a second modification of the electrolytic liquid generation system 1.
  • the liquid outflow path 32 of the electrolytic liquid generating system 1 of FIG. the controller 5 of the electrolyte liquid generation system 1B further includes a branch controller 53 .
  • the electrolytic liquid generation system 1B further includes a downstream detector 82 and an upstream detector 83 .
  • the electrolysis unit 42 supplies the generated ozone water W2 to the liquid outflow path 321.
  • a branch portion 34 is provided in the liquid outflow path 321 .
  • the branch part 34 has an electromagnetic valve and has a function of selectively branching the ozone water W2 from the liquid outflow channel 321 to either the liquid outflow channel 322 or the circulation channel 33 . That is, the branch portion 34 connects the liquid outflow path 321 to either the liquid outflow path 322 or the circulation path 33 in a switchable manner.
  • the liquid outflow path 322 is connected to the water supply port 6 and supplies the water supply port 6 with the ozone water W2 supplied through the branch portion 34 .
  • the circulation flow path 33 is connected to the liquid inflow path 31 and returns the ozone water W2 supplied through the branch portion 34 to the liquid inflow path 31 .
  • the branch control unit 53 controls the branch unit 34 to switch the liquid outflow channel 321 to either the liquid outflow channel 322 or the circulation channel 33 .
  • the downstream detection unit 82 detects the degree of contamination of the ozone water W2 flowing through the liquid outflow path 321.
  • the downstream detection unit 82 detects the degree of contamination of the ozonated water W2, for example, the number of bacteria contained in the ozonated water W2, turbidity, color, concentration of organic matter, or retention time in the liquid outflow path 321. value. Further, the downstream detection unit 82 may use the reciprocal of the residual chlorine concentration of the ozone water W2 as the second dirt detection value.
  • the second contamination detection value is such that the smaller the number of bacteria in the ozone water W2, the smaller the turbidity, the more colorless and transparent the color, the lower the concentration of organic matter, and the shorter the residence time in the liquid outflow path 321, the more residual The smaller the reciprocal of the chlorine concentration, the smaller.
  • the downstream detection unit 82 outputs a detection signal S5 that notifies the second dirt detection value to the control unit 5.
  • the control unit 5 determines the degree of contamination of the ozonated water W2 based on the second contamination detection value included in the detection signal S5, and the branch control unit 53 controls the branch unit 34 based on the determination result.
  • the branch control unit 53 compares the second dirt detection value with the branch threshold, and if the second dirt detection value is less than the branch threshold, the liquid outflow path 321 is connected to the liquid outflow path 322 . Then, the branch unit 34 is controlled.
  • the ozone water W ⁇ b>2 generated by the electrolytic section 42 is supplied to the water supply port 6 through the liquid outflow path 322 .
  • the branch control unit 53 controls the branch unit 34 so that the connection destination of the liquid outflow channel 321 is the circulation channel 33 when the second dirt detection value is equal to or greater than the branch threshold.
  • the ozone water W2 generated by the electrolysis unit 42 flows through the circulation path 33 and is supplied to the liquid inflow path 31, where it is mixed with the tap water W1. It mixes with the ozone water W2.
  • a mixed liquid W3 in which the tap water W1 and the ozone water W2 are mixed is supplied to the functional unit 4 via the upstream detection unit 81 .
  • the function unit 4 electrolyzes the mixed liquid W3 to perform an electrolytic liquid generation function for generating the ozone water W2 and a sterilization function for sterilizing the mixed liquid W3.
  • the mixed liquid W3 corresponds to the liquid.
  • the ozonated water W2 that is not sufficiently contaminated is sterilized again in the electrolysis unit 42 so that the ozonized water W2 that is not sufficiently contaminated does not flow out from the water supply port 6. be done. Therefore, since the ozonated water W2 with a sufficiently low degree of contamination is supplied from the water supply port 6, the quality of the ozonized water W2 can be improved.
  • the upstream detection section 83 is the detection section 8 of the electrolytic liquid generation system 1B.
  • the upstream detector 83 detects the degree of contamination of the mixed liquid W3.
  • the upstream detection unit 83 uses, for example, the number of bacteria contained in the mixed liquid W3, turbidity, color, organic matter concentration, or residence time as a third contamination detection value representing the degree of contamination of the mixed liquid W3.
  • the upstream detection unit 83 may use the reciprocal of the residual chlorine concentration of the mixed liquid W3 as the third contamination detection value.
  • the third dirt detection value the smaller the number of bacteria in the mixed liquid W3, the smaller the turbidity, the more colorless and transparent, the lower the concentration of organic matter, the shorter the residence time, and the smaller the reciprocal of the residual chlorine concentration. becomes smaller.
  • the smaller the third contamination detection value the lower the degree of contamination of the mixed liquid W3.
  • the upstream detection section 83 outputs a detection signal S6 that notifies the third dirt detection value to the control section 5 .
  • the control unit 5 determines the degree of contamination of the mixed liquid W3 based on the third contamination detection value included in the detection signal S6, and controls the function unit 4 based on the determination result.
  • the control unit 5 compares the third contamination detection value with the mode threshold, and operates in the first control mode if the third contamination detection value is less than the mode threshold. , operate in the second control mode. That is, the electrolytic liquid generation system 1B can automatically switch the control mode based on the degree of contamination of the mixed liquid W3.
  • Each operation of the flow control unit 51 and the current control unit 52 of the control unit 5 in each of the first control mode and the second control mode is the same as one of the first operation example to the fourth operation example described above, and the explanation is omitted.
  • the electrolytic liquid generating system 1B of the second modified example is preferably used particularly for a mist cooler (mist generator).
  • the mist-type cooler lowers the ambient temperature by ejecting a mist of ozonized water W2 in the form of fine particles and depriving the surroundings of the heat of vaporization. In this case, the mist is sufficiently sterilized, improving safety.
  • FIG. 5 shows a block diagram of an electrolytic liquid generation system 1C as a third modification of the electrolytic liquid generation system 1. As shown in FIG.
  • the electrolytic liquid generation system 1 ⁇ /b>C includes a downstream detection section 84 as the detection section 8 instead of the upstream detection section 81 of the electrolytic liquid generation system 1 .
  • the downstream detection unit 84 detects the degree of contamination of the ozone water W2 flowing through the liquid outflow path 32.
  • the downstream detection unit 84 detects the degree of contamination of the ozonated water W2, for example, the number of bacteria contained in the ozonated water W2, turbidity, color, concentration of organic matter, or residence time in the liquid outflow path 32. value. Further, the downstream detection unit 84 may use the reciprocal of the residual chlorine concentration of the ozonated water W2 or the reciprocal of the ion concentration of the ozonated water W2 as the fourth dirt detection value.
  • the fourth contamination detection value is such that the smaller the number of bacteria in the ozone water W2, the smaller the turbidity, the more colorless and transparent the color, the lower the concentration of organic matter, and the shorter the retention time in the liquid outflow path 32, the more residual contamination.
  • the downstream detection unit 84 outputs a detection signal S7 that notifies the fourth contamination detection value to the control unit 5.
  • the control unit 5 compares the fourth contamination detection value with the mode threshold, and operates in the first control mode if the fourth contamination detection value is less than the mode threshold. , operate in the second control mode. That is, the electrolytic liquid generation system 1C can automatically switch the control mode based on the degree of contamination of the ozone water W2.
  • Each operation of the flow control unit 51 and the current control unit 52 of the control unit 5 in each of the first control mode and the second control mode is the same as one of the first operation example to the fourth operation example described above, and the explanation is omitted.
  • FIG. 6 shows the appearance of a water purifier G1 as an example of a device using the electrolytic liquid generating system 1 described above.
  • the water purifier G1 has a hollow cylindrical main body G11, and part of the electrolytic liquid generation system 1 is housed in the main body G11.
  • a liquid outflow path 32 formed of a flexible hose extends from the main body G11, and a water supply port 6 serving as a water discharge port is attached to the tip of the liquid outflow path 32. As shown in FIG.
  • water purifier G1 may be provided with an electrolyte liquid generation system 1A, 1B, or 1C instead of the electrolyte liquid generation system 1.
  • FIG. 7 shows the appearance of a mist type cooler G2 as another example of a device using the above-described electrolytic liquid generation system 1B.
  • the mist cooler G2 is attached to an outdoor structure.
  • FIG. 7 illustrates a structure including a base H1 formed on the ground, four pillars H2 installed on the base H1, and a ceiling material H3 supported above the base H1 by the four pillars H2. .
  • the mist type cooler G2 is attached to the lower surface of the ceiling material H3, and blows downward a mist M1 in which the ozonized water W2 is made into fine particles, thereby depriving the surroundings of heat of vaporization to lower the ambient temperature.
  • mist cooler G2 may include the electrolyte liquid generation system 1, 1A, or 1C instead of the electrolyte liquid generation system 1B.
  • Each of the electrolytic liquid generating systems 1, 1A, 1B, and 1C of the present disclosure adjusts the balance between the sterilization of the tap water W1 and the efficiency of generating the ozone water W2,
  • the operations for balance adjustment are not limited to the operations described above. That is, each of the electrolytic liquid generation systems 1, 1A, 1B, and 1C can adjust the balance between the sterilization of the tap water W1 and the generation efficiency of the ozonated water W2 if the sterilization effect of the tap water W1 can be effectively utilized.
  • the operation for is not limited to any particular operation.
  • control mode may further include a third mode in which tap water W1 is supplied from the water supply port 6 without performing electrolysis treatment in the electrolysis unit 42.
  • control mode may further include a strong mode that enhances the sterilization function and a weak mode that lowers the sterilization function.
  • the control unit 5 may be configured to control at least one of the electrolyte liquid generation function and the sterilization function of the function unit 4 . Moreover, the control part 5 may be configured to control only one of the flow rate adjusting part 41 and the electrolytic part 42 .
  • the liquid is not limited to tap water W1, and may be other liquids.
  • the electrolytic liquid is not limited to the ozone water W2, and may be another liquid having a sterilizing effect.
  • the liquid may be salt water and the electrolytic liquid may be electrolytic hypochlorite.
  • the liquid is not limited to the liquid supplied from the water supply P1, and may be liquid flowing inside a device or instrument.
  • the electrolytic liquid generation system 1 has the liquid supply section 2, the liquid inflow path 31, the liquid outflow path 32, the function section 4, the control section 5, the water supply port 6, the power supply 7, and the detection section 8 distributed over two or more devices. It may be a system configuration that
  • control system 10 configured by the control unit 5 described above can be achieved by control methods of the electrolytic liquid generating systems 1, 1A, 1B, and 1C, computer programs, or recording media recording the computer programs.
  • control methods of the electrolytic liquid generating systems 1, 1A, 1B, and 1C computer programs, or recording media recording the computer programs.
  • the functions of the control system 10 may be embodied by a control method, a computer program, or a recording medium recording the computer program for each of the electrolytic liquid generation systems 1, 1A, 1B, and 1C.
  • the electrolytic liquid generating system (1, 1A, 1B, 1C) of the first aspect according to the above-described embodiments includes a liquid inflow path (31), a functional section (4), and a control section (5). And prepare. Liquids (W1, W3) flow through the liquid inflow path (31).
  • the functional unit (4) has an electrolytic liquid generating function of generating an electrolytic liquid (W2) from the liquids (W1, W3) by electrolyzing the liquids (W1, W3) supplied from the liquid inflow path (31).
  • a sterilization function that sterilizes the liquids (W1, W3) is implemented while performing the operation.
  • a control unit (5) controls at least one of the electrolyte liquid generation function and the sterilization function of the function unit (4).
  • a control section (5) operates in one of a plurality of control modes including at least a first control mode and a second control mode.
  • the controller (5) improves the electrolyte liquid generating function in the first control mode compared to the second control mode.
  • the control unit (5) improves the sterilization function in the second control mode compared to the first control mode.
  • the above-mentioned electrolyte liquid generation system (1, 1A, 1B, 1C) can adjust the balance between the sterilization of the liquids (W1, W3) and the generation efficiency of the electrolyte liquid (W2).
  • the functional part (4) includes the liquid supplied from the liquid inflow path (31) It is preferable to include a flow rate adjusting section (41) that adjusts the amount of liquid supplied, which is the amount of (W1, W3).
  • the control section (5) controls the electrolyte liquid generation function by controlling the flow rate adjustment section (41) so as to reduce the liquid supply amount compared to the first control mode.
  • the above-mentioned electrolytic liquid generation system (1, 1A, 1B, 1C) increases the sterilization efficiency and also saves the liquid (W1, W3) in the second control mode.
  • the functional part (4) converts the liquids (W1, W3) into electric It is preferable to have an electrolytic part (42) that decomposes.
  • the control unit (5) controls the current (driving current) supplied to the electrolysis unit (42), and controls the sterilization function by increasing the current in the second control mode compared to the first control mode. .
  • the above-described electrolytic liquid generation system (1, 1A, 1B, 1C) can increase the sterilization efficiency in the second control mode.
  • the functional unit (4) is an electrolyzer that electrolyzes the liquids (W1, W3) Preferably, it further comprises a portion (42).
  • the control unit (5) controls the current (driving current) supplied to the electrolysis unit (42), and controls the sterilization function by reducing the current in the second control mode compared to the first control mode. .
  • the above-described electrolytic liquid generation system (1, 1A, 1B, 1C) can suppress deterioration of the electrolysis section (42) in the second control mode and extend the life of the electrolysis section (42).
  • the electrolyte liquid generation system (1A) of the fifth aspect according to the above-described embodiments may further include an operation input section (9) that accepts a human operation. preferable.
  • a control section (5) selects one of a plurality of control modes according to an operation received by an operation input section (9), and operates in the selected control mode.
  • control unit (5) can switch the control mode by user operation.
  • the sixth aspect of the electrolytic liquid generating system (1, 1B, 1C) is the liquid (W1, W3) and the electrolytic liquid (W2) in any one of the first to fourth aspects. It is preferable to further include a detector (8) that detects the degree of contamination of at least one of the.
  • a control section (5) selects one of a plurality of control modes according to the degree of contamination, and operates in the selected control mode.
  • the above-described electrolytic liquid generation systems (1, 1B, 1C) can automatically switch control modes based on the degree of contamination of at least one of the liquids (W1, W3) and the electrolytic liquid (W2).
  • the controller (5) controls the first If it operates in the control mode and the degree of contamination is equal to or greater than the mode threshold, it preferably operates in the second control mode.
  • the above-described electrolytic liquid generation system (1, 1B, 1C) automatically improves the sterilization function if at least one of the liquids (W1, W3) and the electrolytic liquid (W2) is dirty or more than the mode threshold. be able to.
  • the electrolyte liquid (W2) is ozone water.
  • the electrolyte liquid (W2) is ozone water.
  • the electrolytic liquid generation system (1, 1A, 1B, 1C) described above can generate ozonated water (W2) effective for sterilization, deodorization, and decomposition of organic matter.
  • W2 ozonated water
  • the electrolytic liquid generation system (1, 1A, 1B, 1C) of the ninth aspect performs electrolysis in the functional unit (4) in any one of the first to eighth aspects It is preferable to further comprise a power supply (7) for applying a voltage for.
  • the above-mentioned electrolytic liquid generation system (1, 1A, 1B, 1C) does not require a separate power source, which improves convenience.
  • the tenth aspect of the electrolytic liquid generation system (1, 1A, 1B, 1C) is any one of the first to ninth aspects, wherein the liquid (W1 ) is further provided.
  • the above-described electrolytic liquid generation system (1, 1A, 1B, 1C) does not require a separate liquid supply unit such as a water supply pump, improving convenience.
  • the control system (10) of the eleventh aspect has an electrolytic liquid generation function of generating an electrolytic liquid (W2) from the liquids (W1, W3) by electrolyzing the liquids (W1, W3).
  • the control system (10) includes a control section (5) that controls at least one of the electrolyte liquid generation function and the sterilization function.
  • a control section (5) operates in one of a plurality of control modes including at least a first control mode and a second control mode.
  • the controller (5) improves the electrolyte liquid generating function in the first control mode compared to the second control mode.
  • the control unit (5) improves the sterilization function in the second control mode compared to the first control mode.
  • the control system (10) described above can adjust the balance between the sterilization of the liquids (W1, W3) and the production efficiency of the electrolytic liquid (W2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

電解液体生成システム(1)では、機能部(4)は、液体流入路(31)から供給された水道水(W1)を電気分解することで、水道水(W1)からオゾン水(W2)を生成する電解液体生成機能、及び水道水(W1)を除菌する除菌機能を有する。制御部(5)は、機能部(4)の電解液体生成機能及び除菌機能の少なくとも一方を制御する。制御部(5)は、第1制御モードでは、第2制御モードに比べて電解液体生成機能を向上させる。制御部(5)は、第2制御モードでは、第1制御モードに比べて除菌機能を向上させる。

Description

電解液体生成システム、及び制御システム
 本開示は、電解液体生成システム、及び制御システムに関する。
 従来、電解液体生成システムとして、オゾン(電解生成物)が水に溶解したオゾン水(電解液体)を生成するオゾン水生成装置が知られている。電解部は、陽極と陰極との間に介在している導電性膜を有する。そして、電解部を水に浸した状態で陽極と陰極との間に電位差を生じさせることで、水中にて電気化学反応を起こす電解処理が行われて、オゾン水が生成される(例えば、特許文献1参照)。そして、生成されたオゾン水は、管路、トイレ、洗面台、バスルーム、キッチン等の対象物に流されることによって、対象物に、除菌、防カビ、脱臭等の効果を及ぼす。
特開2017-176993号公報
 従来の電解液体生成システムには、被処理液体(以下、単に「液体」という)の除菌に関する効果が見られる。しかしながら、従来の電解液体生成システムでは、液体の除菌と、電解液体の生成効率と、のバランスを調整することは困難であった。
 本開示の目的は、液体の除菌と、電解液体の生成効率と、のバランスを調整することができる電解液体生成システム、及び制御システムを提供することにある。
 本開示の一態様に係る電解液体生成システムは、液体流路と、機能部と、制御部と、を備える。前記液体流路は、液体が流れる。前記機能部は、前記液体流路から供給された前記液体を電気分解することで、前記液体から電解液体を生成する電解液体生成機能、及び前記液体を除菌する除菌機能を有する。前記制御部は、前記機能部の前記電解液体生成機能及び前記除菌機能の少なくとも一方を制御する。前記制御部は、少なくとも第1制御モード及び第2制御モードを含む複数の制御モードのいずれかで動作する。前記制御部は、前記第1制御モードでは、前記第2制御モードに比べて前記電解液体生成機能を向上させる。前記制御部は、前記第2制御モードでは、前記第1制御モードに比べて前記除菌機能を向上させる。
 本開示の他の一態様に係る制御システムは、液体を電気分解することで、前記液体から電解液体を生成する電解液体生成機能、及び前記液体を除菌する除菌機能を有する電解液体生成システムに用いられる。前記制御システムは、前記電解液体生成機能及び前記除菌機能の少なくとも一方を制御する制御部を備える。前記制御部は、少なくとも第1制御モード及び第2制御モードを含む複数の制御モードのいずれかで動作する。前記制御部は、前記第1制御モードでは、前記第2制御モードに比べて前記電解液体生成機能を向上させる。前記制御部は、前記第2制御モードでは、前記第1制御モードに比べて前記除菌機能を向上させる。
 本開示は、液体の除菌と、電解液体の生成効率と、のバランスを調整することができるという効果がある。
図1は、第1実施形態に係る電解液体生成システムを示すブロック図である。 図2は、同上の電解液体生成システムが備える電解部を示す分解斜視図である。 図3は、同上の電解液体生成システムの第1変形例を示すブロック図である。 図4は、同上の電解液体生成システムの第2変形例を示すブロック図である。 図5は、同上の電解液体生成システムの第3変形例を示すブロック図である。 図6は、第2実施形態の浄水器の一例を示す外観図である。 図7は、第3実施形態のミスト式冷却器の一例を示す外観図である。
 実施形態は、一般に電解液体生成システム、及び制御システムに関する。より詳細には、実施形態は、被処理液体を電気分解することで電解液体を生成する電解液体生成システム、及び制御システムに関する。
 以下、実施形態に係る電解液体生成システム、及び制御システムについて、図面を参照して詳細に説明する。ただし、下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさや厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。
 また、以下に説明する実施形態は、本開示の実施形態の一例にすぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。
 (1)第1実施形態
 (概要)
 まず、本実施形態に係る電解液体生成システム1の概要について、図1を参照して説明する。図1は、第1実施形態に係る電解液体生成システム1を示すブロック図である。
 電解液体生成システム1は、液体を電気分解することで、液体から電解液体を生成する。本実施形態の電解液体生成システム1は、液体として上水道P1から供給される水道水W1を用い、電解液体としてオゾン水W2を生成するオゾン水生成装置である。オゾン水生成装置である電解液体生成システム1は、液体である水道水W1を電気分解する電解処理によって、オゾン(電解生成物)を発生させ、当該オゾンを水道水W1に溶解させることで、電解液体であるオゾン水W2を生成する。オゾン水W2は、除菌、脱臭、及び有機物分解などに有効であるため、水処理分野、衛生分野、食品分野、及び医学分野などの各分野において広く利用されている。
 電解液体生成システム1は、液体流入路31と、機能部4と、制御部5と、を備える。液体流入路31には、液体として、例えば水道水W1が流れる。機能部4は、液体流入路31から供給された水道水W1を電気分解することで、水道水W1から電解液体であるオゾン水W2を生成する電解液体生成機能を実施しつつ水道水W1を除菌する除菌機能を実施する。制御部5は、機能部4の電解液体生成機能及び除菌機能の少なくとも一方を制御する。そして、制御部5は、少なくとも第1制御モード及び第2制御モードを含む複数の制御モードのいずれかで動作する。制御部5は、第1制御モードでは、第2制御モードに比べて電解液体生成機能を向上させる。制御部5は、第2制御モードでは、第1制御モードに比べて除菌機能を向上させる。
 電解液体生成システム1は、電解液体生成機能と除菌機能とのバランス(優先度)が互いに異なる第1制御モード及び第2制御モードを含む複数の制御モードのいずれかで動作する。この結果、電解液体生成システム1は、水道水W1の除菌と、オゾン水W2の生成効率と、のバランスを調整することができる。すなわち、電解液体生成システム1は、必要に応じて、除菌機能と電解液体生成機能とのバランスを調整することができる。例えば、電解液体生成システム1は、除菌機能を必要に応じて良好に活用できるように、除菌機能及び電解液体生成機能を調整することができる。
 このような電解液体生成システム1は、オゾン水W2などの電解液体を利用する浄水器、ミスト発生装置、洗濯機、食洗機、温水洗浄便座、冷蔵庫、給湯給水装置、除菌装置、医療用機器、空調機器、又は厨房機器などに用いることができる。
 また、上述の制御部5は制御システム10を構成しており、制御システム10も電解液体生成システム1の上記効果を奏し得る。
 (詳細)
 次に、本実施形態に係る電解液体生成システム1の詳細について、図1及び図2を参照して説明する。図2は、電解液体生成システム1が備える電解部42を示す分解斜視図である。
 (1.1)全体構成
 本実施形態に係る電解液体生成システム1は、図1に示すように、液体供給部2、液体流入路31、液体流出路32、機能部4、制御部5、給水口6、電源7、及び検出部8を備える電解液体生成装置である。電解液体生成装置は、液体供給部2、液体流入路31、液体流出路32、機能部4、制御部5、給水口6、電源7、及び検出部8を1つの筐体に設けた構成を有する。
 (1.1.1)液体供給部
 液体供給部2は、給水ポンプを備えており、上水道P1から供給された水道水W1を加圧し、加圧した水道水W1を液体流入路31に吐出する。液体供給部2は、水道水W1を溜めるタンクを更に備えていてもよい。
 また、液体供給部2は、給水ポンプ、及びタンクを備える必要はなく、上水道P1から直接受けた水道水W1を液体流入路31に吐出してもよい。
 (1.1.2)液体流入路
 液体流入路31は、本開示の液体流路に相当し、ホース、樹脂管、又は金属管などの水管である。液体流入路31の流入口は液体供給部2に接続しており、液体供給部2から液体流入路31に水道水W1を受ける。液体流入路31の流出口は機能部4に接続しており、液体流入路31を流れる水道水W1を、機能部4に供給する。
 (1.1.3)機能部
 機能部4は、流量調整部41、及び電解部42を備える。そして、流量調整部41及び電解部42を備える機能部4は、液体流入路31から供給された水道水W1を電気分解することで、水道水W1からオゾン水W2を生成する電解液体生成機能を実施しつつ水道水W1を除菌する除菌機能を実施する。なお、除菌機能は、水道水W1に電解処理を施して、水道水W1に含まれる菌を減少させる(除菌する)ことで、菌が少ないオゾン水W2を生成する機能である。
 (流量調整部)
 流量調整部41は、液体流入路31の流出口と電解部42との間に接続されている。そして、流量調整部41は、電磁弁などを備えており、電磁弁の開度を調整することで、液体流入路31から電解部42に供給される水道水W1の流量を調整する。なお、以降では、液体流入路31から電解部42に供給される水道水W1の流量を、液体供給量と呼ぶことがある。
 流量調整部41は、制御部5からの流量指示信号S1によって液体供給量の指示値(流量指示値)を通知され、液体供給量が流量指示値に一致するように、電磁弁の開度を調整する。
 したがって、機能部4は、流量調整部41によって液体供給量を調整することで、電解部42が生成するオゾン水W2の量を調整できる。すなわち、機能部4は、流量調整部41によって液体供給量を増加させることで、オゾン水W2の生成量を増やすことができ、結果として電解液体生成機能を向上させることができる。また、機能部4は、流量調整部41によって液体供給量を減少させることで、オゾン水W2の生成量を減らすことができ、結果として電解液体生成機能を低下させることができる。
 (電解部)
 電解部42は、流量調整部41によって流量調整された水道水W1を電気分解することで、オゾンを発生させ、当該オゾンを水道水W1に溶解させることで、電解液体であるオゾン水W2を生成する。
 図2に示すように、電解部42は、ケース42a、カバー42b、陽極(電極)42c、陰極(電極)42d、導電性膜42e、給電体42f、及び弾性体42gを備える。
 ケース42a及びカバー42bは、アクリル等の非導電性の樹脂で形成されている。ケース42aは、一面に凹部422を有する中空の直方体状のケース本体421を備える。陽極42c、陰極42d、導電性膜42e、給電体42f、及び弾性体42gが凹部422に収納されている。カバー42bは、凹部422の開口を覆う。すなわち、ケース42a及びカバー42bは、中空の直方体状のハウジングを構成する。
 ケース本体421の長手方向の第1端には筒状の上流側接続部423が形成され、ケース本体421の長手方向の第2端には筒状の下流側接続部424が形成されている。上流側接続部423は、流量調整部41(図1参照)によって流量を調整された水道水W1が流れる配管に接続され、流量調整部41を通った水道水W1をケース本体421の凹部422の内部に導く。下流側接続部424は、液体流出路32(図1参照)の流入口に接続されており、電解部42で生成されたオゾン水W2を凹部422から液体流出路32に導く。
 凹部422には、弾性体42g、給電体42f、陽極42c、導電性膜42e、陰極42dが収納されている。弾性体42g、給電体42f、陽極42c、導電性膜42e、及び陰極42dは、凹部422の底面に重なって配置されており、凹部422の底面から弾性体42g、給電体42f、陽極42c、導電性膜42e、陰極42dの順に積み重なっている。
 弾性体42gは、例えばゴム、プラスチック、金属ばね等の弾力性を有する材料を用いて、直方体状に形成されている。給電体42fは、例えばチタンを用いて矩形板状に形成されている。陽極42cは、例えばシリコンを用いた矩形板状の導電性基板に導電性ダイヤモンド膜を成膜することで形成されている。導電性膜42eは、例えば100μm~200μm程度の厚みを有するプロトン導電型のイオン交換フィルムであり、矩形板状に形成されている。陰極42dは、例えばステンレス合金を用いて、0.5mm程度の厚みを有する矩形板状に形成されている。
 弾性体42gの第1面は凹部422の底面に接触している。給電体42fの第1面は弾性体42gの第2面に接触し、給電体42fの第2面は陽極42cの第1面に接触している。陽極42cの第2面は導電性膜42eの第1面に接触している。導電性膜42eの第2面は陰極42dの第1面に接触している。陰極42dの第2面は、カバー42bの裏面に対向している。
 給電体42fには、長手方向の一端に棒状の陽極側給電シャフト425が取り付けられている。陽極側給電シャフト425は、電源7(図1参照)に配線を介して接続されている。給電体42fは陽極42cに接触している。陽極側給電シャフト425は、陽極42cに電気的に接続している。陰極42dには、長手方向の一端に棒状の陰極側給電シャフト426が取り付けられている。陰極側給電シャフト426は、電源7に配線を介して接続されている。電源7は、陽極側給電シャフト425及び陰極側給電シャフト426を介して、陽極42cと陰極42dの間に駆動電圧を印加することができる。
 上流側接続部423から凹部422に水道水W1が流れ込んでいる状態で、電源7が陽極42cと陰極42dの間に駆動電圧を印加すると、陽極42cと陰極42dとの間には導電性膜42eを介して電位差が生じる。陽極42cと陰極42dとの間に電位差が生じることで、陽極42c、導電性膜42e、及び陰極42dが通電して、陽極42cから陰極42dに向かって駆動電流が流れる。駆動電流が流れると、水道水W1が電気分解されて、導電性膜42eと陽極42cとの界面近傍でオゾンが発生する。オゾンが凹部422内の水道水W1の流れに沿って下流側接続部424に向かって運ばれながら水道水W1に溶解し、オゾン水W2が生成される。電源7が陽極42cと陰極42dの間に印加する駆動電圧は、数ボルト~数十ボルトであり、駆動電流が大きい程(駆動電圧が高い程)オゾンの発生量が大きくなる。なお、駆動電流は、電気分解のために、電源7から電解部42に供給される電流である。
 このように、電解部42は、オゾン(電解生成物)を水道水W1に溶解させることで、オゾン水W2(電解液体)を生成する。電解部42は、オゾンの酸化作用によって水道水W1に含まれる菌を減少させることで、菌が少ないオゾン水W2を生成する。
 そして、電解部42は、駆動電流を調整することで、電解部42で生成されるオゾンの量(オゾン水W2に含まれるオゾンの量)を調整できる。電解部42は、制御部5からの電流指示信号S2によって駆動電流の指示値(電流指示値)を通知され、駆動電流の値が電流指示値に一致するように、駆動電流を調整する。すなわち、機能部4は、駆動電流を増加させて、電解部42が生成するオゾンの量を増加させることで、オゾン水W2に含まれるオゾンの量を増やすことができ、結果として除菌機能を向上させることができる。また、機能部4は、駆動電流を減少させて、電解部42が生成するオゾンの量を減少させることで、オゾン水W2に含まれるオゾンの量を減らすことができ、結果として除菌機能を低下させることができる。
 (1.1.4)液体流出路
 液体流出路32は、ホース、樹脂管、又は金属管などの水管である。液体流出路32の流入口は電解部42の下流側接続部424(図2参照)に接続しており、電解部42から液体流出路32にオゾン水W2が流れ込む。液体流出路32は給水口6に接続しており、液体流出路32を流れるオゾン水W2は、給水口6から電解液体生成システム1の外部に供給される。
 (1.1.5)給水口
 給水口6は、液体流出路32を流れるオゾン水W2を、電解液体生成システム1の外部に供給する。
 例えば、電解液体生成システム1を浄水器に組み込んだ場合、給水口6が浄水器の吐水口を構成し、給水口6からオゾン水W2を吐き出す。また、電解液体生成システム1をミスト発生装置に組み込んだ場合、ミスト発生装置は、給水口6から供給されたオゾン水W2を用いてミストを生成し、生成したミストを噴霧する。
 (1.1.6)電源
 電源7は、電解部42に駆動電圧を印加して、陽極42cと陰極42dとの間に電位差を生じさせ、陽極42cから陰極42dに向かう駆動電流を発生させる。すなわち、電源7は、電解部42に駆動電圧を印加し、電解部42に駆動電流を供給する。
 (1.1.7)検出部
 検出部8は、水道水W1及びオゾン水W2の少なくとも一方の汚れの程度を検出する。汚れの程度が低い程、清潔、無害であるとみなされる。
 本実施形態では、検出部8は、液体流入路31を流れている水道水W1の汚れの程度を検出する上流側検出部81である。上流側検出部81は、例えば水道水W1に含まれる菌の数、濁り、色、有機物濃度、又は液体流入路31での滞留時間などを、水道水W1の汚れの程度を表す第1汚れ検出値とする。また、上流側検出部81は、水道水W1の残留塩素濃度の逆数を、第1汚れ検出値としてもよい。第1汚れ検出値は、水道水W1の菌の数が少ない程、濁りが少ない程、色が無色透明である程、有機物濃度が低い程、液体流入路31での滞留時間が短い程、残留塩素濃度の逆数が小さい程、小さくなる。このような第1汚れ検出値が小さい程、水道水W1の汚れの程度は低くなる。
 上流側検出部81は、第1汚れ検出値を通知する検出信号S3を制御部5に出力する。制御部5は、検出信号S3に含まれる第1汚れ検出値に基づいて水道水W1の汚れの程度を判定し、当該判定結果に基づいて機能部4を制御する。
 なお、検出部8は、例えば、菌数センサ、濁度センサ、色度センサ、有機物濃度センサなどの液体の汚れ度合いを検出するセンサ、残留塩素濃度センサ、オゾン濃度センサなどの液体に残留する塩素、オゾンなどの除菌作用を有する物質の濃度を検出するセンサ、又は流量センサを備える。
 (1.1.8)制御部
 制御部5は、コンピュータシステムを備える。すなわち、制御部5では、CPU(Central Processing Unit)、又はMPU(Micro Processing Unit)などのプロセッサがメモリに記憶されているプログラムを読み出して実行することによって、制御部5の一部又は全部の機能が実現される。制御部5は、プログラムに従って動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、又はLSI(large scale integration)を含む一つ又は複数の電子回路で構成される。ここでは、ICやLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、若しくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、フィールド・プログラマブル・ゲート・アレイ(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができる再構成可能な論理デバイスも同じ目的で使うことができる。複数の電子回路は、一つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは集約して配置されてもよいし、分散して配置されてもよい。
 具体的に、制御部5は、流量制御部51、及び電流制御部52を備える。
 制御部5が上流側検出部81から検出信号S3を受け取ると、流量制御部51は、検出信号S3に基づいて水道水W1の汚れの程度を判定し、当該判定結果に基づく流量指示信号S1を機能部4の流量調整部41に出力することで、流量調整部41を制御する。すなわち、流量制御部51は、流量調整部41を制御することで、液体供給量(電解部42に供給する水道水W1の流量)を制御する。例えば、流量制御部51は、流量調整部41が液体供給量を増加させることで、オゾン水W2の生成量を増やすことができ、結果として電解液体生成機能を向上させることができる。また、流量制御部51は、流量調整部41が液体供給量を減少させることで、オゾン水W2の生成量を減らすことができ、結果として電解液体生成機能を低下させることができる。
 制御部5が上流側検出部81から検出信号S3を受け取ると、電流制御部52は、検出信号S3に基づいて水道水W1の汚れの程度を判定し、当該判定結果に基づく電流指示信号S2を機能部4の電解部42に出力することで、電解部42を制御する。すなわち、電流制御部52は、電解部42を制御することで、電解部42が生成するオゾンの量を制御する。例えば、電流制御部52は、電解部42の駆動電流を増加させて、電解部42が生成するオゾンの量を増加させることで、オゾン水W2に含まれるオゾンの量を増やすことができ、結果として除菌機能を向上させることができる。また、電流制御部52は、電解部42の駆動電流を減少させて、電解部42が生成するオゾンの量を減少させることで、オゾン水W2に含まれるオゾンの量を減らすことができ、結果として除菌機能を低下させることができる。なお、以降では、電解部42で生成されるオゾンの総量を、オゾンの総生成量と呼ぶことがある。
 (1.2)動作
 制御部5は、複数の制御モードのいずれかで動作する。複数の制御モードは、第1制御モード及び第2制御モードを含む。制御部5は、第1制御モードでは、第2制御モードに比べて電解液体生成機能を向上させる。制御部5は、第2制御モードでは、第1制御モードに比べて除菌機能を向上させる。すなわち、制御部5は、第1制御モードでは電解液体生成機能を優先させ、第2制御モードでは除菌機能を優先させる。この結果、電解液体生成システム1は、水道水W1の除菌と、オゾン水W2の生成効率と、のバランスを調整することができる。
 そして、制御部5は、水道水W1の汚れの程度に応じて複数の制御モードのいずれかを選択し、当該選択した制御モードで動作する。制御部5は、水道水W1の汚れの程度がモード閾値未満であれば、第1制御モードで動作し、水道水W1の汚れの程度がモード閾値以上であれば、第2制御モードで動作する。
 本実施形態では、制御部5は、水道水W1の汚れの程度の検出結果として、水道水W1に含まれる菌の数、濁り、色、有機物濃度、液体流入路31での滞留時間、又は残留塩素濃度の逆数などの第1汚れ検出値を含む検出信号S3を、上流側検出部81から受け取る。そして、制御部5は、第1汚れ検出値をモード閾値と比較し、第1汚れ検出値がモード閾値未満であれば、第1制御モードで動作し、第1汚れ検出値がモード閾値以上であれば、第2制御モードで動作する。すなわち、電解液体生成システム1は、水道水W1の汚れの程度に基づいて、制御モードを自動で切り替えることができる。
 特に、電解部42がオゾン水W2を生成した後、オゾン水W2に含まれるオゾンは時間の経過ともに減少するため、オゾン水W2における除菌効果は持続しない。したがって、電解液体生成システム1が停止すると、液体流出路32に残留しているオゾン水W2に含まれる菌が増加する可能性がある。そこで、上流側検出部81が、液体流入路31における水道水W1の滞留時間を第1汚れ検出値として検出することが好ましい。この水道水W1の滞留時間は、電解液体生成システム1の停止時間に等しい。そして、長期間使用されていない電解液体生成システム1が動作を開始するときには、水道水W1の滞留時間が所定時間以上になり、制御部5が自動的に第2制御モードで動作することで、除菌機能を優先させて、除菌効率を向上させることができる。
 以下、本実施形態の電解液体生成システム1の動作例を挙げる。
 (1.2.1)第1動作例
 第1動作例では、電解液体生成システム1は、以下のように動作する。
 制御部5は、第1汚れ検出値がモード閾値未満であれば、第1制御モードで動作する。
 制御部5が第1制御モードで動作するとき、流量制御部51は、液体供給量(電解部42に供給する水道水W1の流量)がF1となるように、流量調整部41を制御する。
 制御部5が第1制御モードで動作するとき、電流制御部52は、電解部42の駆動電流がI1となるように、電解部42を制御する。
 制御部5は、第1汚れ検出値がモード閾値以上であれば、第2制御モードで動作する。
 制御部5が第2制御モードで動作するとき、流量制御部51は、液体供給量がF2(<F1)となるように、流量調整部41を制御する。すなわち、第2制御モードにおける液体供給量F2は、第1制御モードにおける液体供給量F1より少なくなる。
 制御部5が第2制御モードで動作するとき、電流制御部52は、電解部42の駆動電流がI2(>I1)となるように、電解部42を制御する。すなわち、第2制御モードにおける駆動電流I2は、第1制御モードにおける駆動電流I1より大きくなる。この結果、第2制御モードにおけるオゾンの総生成量は、第1制御モードにおけるオゾンの総生成量より多くなる。
 したがって、第2制御モードで生成されるオゾン水W2の量は、第1制御モードで生成されるオゾン水W2の量より少なくなる。また、第2制御モードで生成されるオゾン水W2のオゾン濃度は、第1制御モードで生成されるオゾン水W2のオゾン濃度よりも多くなる。すなわち、電解液体生成システム1は、第2制御モードにおいて、除菌効率を高め、かつ、水道水W1の節約も可能となる。
 言い換えると、制御部5は、第1制御モードでは、第2制御モードに比べて電解液体生成機能を向上、かつ、第2制御モードに比べて除菌機能を低下させている。また、制御部5は、第2制御モードでは、第1制御モードに比べて除菌機能を向上、かつ、第1制御モードに比べて電解液体生成機能を低下させている。
 なお、流量制御部51は、第2制御モードにおける液体供給量F2を、第1制御モードにおける液体供給量F1の1/2以下、かつ、0(ゼロ)より大きい液体供給量とすることが好ましい。具体的には、例えば、液体供給量F1が1.0L(リットル)/min(分)であれば、液体供給量F2は0.5L/min以下になるようにすればよい。この場合、電解液体生成システム1は、除菌効率を高め、かつ、水道水W1の節約も可能となる。
 さらに好ましくは、流量制御部51は、第2制御モードにおける液体供給量F2を、第1制御モードにおける液体供給量F1の1/5以下としてもよい。具体的には、例えば、液体供給量F1が1.0L/minであれば、液体供給量F2は0.2L/min以下になるようにすればよい。この場合、電解液体生成システム1は、除菌効率を更に高め、かつ、水道水W1の更なる節約も可能となる。
 さらに好ましくは、流量制御部51は、第2制御モードにおける液体供給量F2を、第1制御モードにおける液体供給量F1の1/8以下としてもよい。具体的には、例えば液体供給量F1が1.0L/minであれば、液体供給量F2は、0.125L/min以下になるようにすればよい。この場合、電解液体生成システム1は、除菌効率を更に高め、かつ、水道水W1の更なる節約も可能となる。
 また、第2制御モードにおける液体供給量F2は、第1制御モードにおける液体供給量F1未満、かつ、液体供給量F1の1/2より大きくてもよい。
 (1.2.2)第2動作例
 第2動作例では、電解液体生成システム1は、以下のように動作する。
 制御部5は、第1汚れ検出値がモード閾値未満であれば、第1制御モードで動作する。
 制御部5が第1制御モードで動作するとき、流量制御部51は、液体供給量(電解部42に供給する水道水W1の流量)がF1となるように、流量調整部41を制御する。
 制御部5が第1制御モードで動作するとき、電流制御部52は、電解部42の駆動電流がI1となるように、電解部42を制御する。
 制御部5は、第1汚れ検出値がモード閾値以上であれば、第2制御モードで動作する。
 制御部5が第2制御モードで動作するとき、流量制御部51は、液体供給量がF3(<F1)となるように、流量調整部41を制御する。すなわち、第2制御モードにおける液体供給量F3は、第1制御モードにおける液体供給量F1より少なくなる。
 制御部5が第2制御モードで動作するとき、電流制御部52は、電解部42の駆動電流がI3(<I1)となるように、電解部42を制御する。すなわち、第2制御モードにおける駆動電流I3は第1制御モードにおける駆動電流I1より小さい。この結果、第2制御モードにおけるオゾンの総生成量は、第1制御モードにおけるオゾンの総生成量より少なくなる。しかし、第2制御モードにおける液体供給量F3は、第1制御モードにおける液体供給量F1よりも少ない。そこで、第2制御モードで生成されるオゾン水W2のオゾン濃度が、第1制御モードで生成されるオゾン水W2のオゾン濃度よりも多くなるように、駆動電流I3の値が予め設定されている。
 したがって、第2制御モードで生成されるオゾン水W2の量は、第1制御モードで生成されるオゾン水W2の量より少なくなる。また、第2制御モードで生成されるオゾン水W2のオゾン濃度は、第1制御モードで生成されるオゾン水W2のオゾン濃度よりも多くなる。すなわち、電解液体生成システム1は、第2制御モードにおいて、除菌効率を高め、かつ、水道水W1の節約も可能となる。
 言い換えると、制御部5は、第1制御モードでは、第2制御モードに比べて電解液体生成機能を向上、かつ、第2制御モードに比べて除菌機能を低下させている。また、制御部5は、第2制御モードでは、第1制御モードに比べて除菌機能を向上、かつ、第1制御モードに比べて電解液体生成機能を低下させている。
 さらに、電解液体生成システム1は、第2制御モードにおける駆動電流I3を第1制御モードにおける駆動電流I1より小さくすることで、第2制御モードでの電解部42の劣化を抑制して、電解部42の長寿命化を図ることもできる。
 なお、電流制御部52は、第2制御モードにおける駆動電流I3を、第1制御モードにおける駆動電流I1の1/2以下、かつ、0(ゼロ)より大きい電流値とすることが好ましい。この場合、第2制御モードでの電解部42の劣化抑制、及び電解部42の長寿命化を、より確実に実現できる。
 また、第2制御モードにおける駆動電流I3は、第1制御モードにおける駆動電流I1の1/5以下、又は1/8以下であってもよい。
 また、第2制御モードにおける駆動電流I3は、第1制御モードにおける駆動電流I1未満、かつ、駆動電流I1の1/2より大きくてもよい。
 (1.2.3)第3動作例
 第3動作例では、電解液体生成システム1は、以下のように動作する。
 制御部5は、第1汚れ検出値がモード閾値未満であれば、第1制御モードで動作する。
 制御部5が第1制御モードで動作するとき、流量制御部51は、液体供給量(電解部42に供給する水道水W1の流量)がF1となるように、流量調整部41を制御する。
 制御部5が第1制御モードで動作するとき、電流制御部52は、電解部42の駆動電流がI1となるように、電解部42を制御する。
 制御部5は、第1汚れ検出値がモード閾値以上であれば、第2制御モードで動作する。
 制御部5が第2制御モードで動作するとき、流量制御部51は、液体供給量が第1制御モードと同じF1となるように、流量調整部41を制御する。すなわち、第1制御モード及び第2制御モードで、液体供給量は変わらない。
 制御部5が第2制御モードで動作するとき、電流制御部52は、電解部42の駆動電流がI4(>I1)となるように、電解部42を制御する。第2制御モードにおける駆動電流I4は第1制御モードにおける駆動電流I1より大きいので、第2制御モードにおけるオゾンの総生成量は、第1制御モードにおけるオゾンの総生成量より多くなる。
 したがって、第2制御モードで生成されるオゾン水W2の量は、第1制御モードで生成されるオゾン水W2の量と同じである。しかし、第2制御モードにおけるオゾンの総生成量は、第1制御モードにおけるオゾンの総生成量より多いので、第2制御モードで生成されるオゾン水W2のオゾン濃度は、第1制御モードで生成されるオゾン水W2のオゾン濃度よりも多くなる。すなわち、電解液体生成システム1は、第2制御モードにおいて、除菌効率を高めることができる。
 言い換えると、制御部5は、第1制御モードでは、第2制御モードに比べて除菌機能を低下させている。また、制御部5は、第2制御モードでは、第1制御モードに比べて除菌機能を向上させている。
 なお、電流制御部52は、第2制御モードにおける駆動電流I4を、第1制御モードにおける駆動電流I1の4/3以上とすることが好ましい。この場合、第2制御モードでの除菌効率を十分に高めることができる。
 (1.2.4)第4動作例
 第4動作例では、電解液体生成システム1は、以下のように動作する。
 制御部5は、第1汚れ検出値がモード閾値未満であれば、第1制御モードで動作する。
 制御部5が第1制御モードで動作するとき、流量制御部51は、液体供給量(電解部42に供給する水道水W1の流量)がF1となるように、流量調整部41を制御する。
 制御部5が第1制御モードで動作するとき、電流制御部52は、電解部42の駆動電流がI1となるように、電解部42を制御する。
 制御部5は、第1汚れ検出値がモード閾値以上であれば、第2制御モードで動作する。
 制御部5が第2制御モードで動作するとき、流量制御部51は、液体供給量がF4(<F1)となるように、流量調整部41を制御する。すなわち、第2制御モードにおける液体供給量F4は、第1制御モードにおける液体供給量F1より少なくなる。
 制御部5が第2制御モードで動作するとき、電流制御部52は、電解部42の駆動電流が第1制御モードと同じI1となるように、電解部42を制御する。すなわち、第1制御モード及び第2制御モードで、駆動電流は変わらない。しかしながら、第2モードにおける液体供給量F4は第1モードにおける液体供給量F1より少ないので、第2制御モードで生成されるオゾン水W2のオゾン濃度が、第1制御モードで生成されるオゾン水W2のオゾン濃度よりも多くなる。すなわち、電解液体生成システム1は、第2制御モードにおいて、除菌効率を高め、かつ、水道水W1の節約も可能となる。
 言い換えると、制御部5は、第1制御モードでは、第2制御モードに比べて電解液体生成機能を向上、かつ、第2制御モードに比べて除菌機能を低下させている。また、制御部5は、第2制御モードでは、第1制御モードに比べて除菌機能を向上、かつ、第1制御モードに比べて電解液体生成機能を低下させている。
 (1.3)第1変形例
 図3は、電解液体生成システム1の第1変形例として、電解液体生成システム1Aのブロック図を示す。
 電解液体生成システム1Aは、電解液体生成システム1の検出部8(上流側検出部81)の代わりに、操作入力部9を備える。
 操作入力部9は、スイッチ、ボタン、タッチパネル、及び受信装置の少なくとも1つを備える。スイッチ、ボタン、及びタッチパネルは、ユーザの操作を直接的に受け付ける。受信装置は、ユーザが操作するリモートコントローラから無線信号又は有線信号を受信することで、ユーザの操作を間接的に受け付ける。
 操作入力部9が受け付けるユーザの操作には、制御モードを選択するモード選択操作が含まれている。すなわち、ユーザは、制御部5を第1制御モード及び第2制御モードのいずれで動作させるかを、操作入力部9の操作によって制御部5に指示できる。
 図3では、操作入力部9は、ユーザの操作に応じた操作信号S4を制御部5に出力する。操作信号S4は、制御部5に対して制御モードを指示する。制御部5は、操作信号S4で指示された制御モードが第1制御モードであれば、第1制御モードで動作する。制御部5は、操作信号S4で指示された制御モードが第2制御モードであれば、第2制御モードで動作する。すなわち、電解液体生成システム1Aは、ユーザ操作によって制御モードを切り替えることができる。
 第1制御モード及び第2制御モードのそれぞれにおける制御部5の流量制御部51及び電流制御部52の各動作は、上述の第1動作例-第4動作例のいずれかと同じであり、説明は省略する。
 例えば、長期間使用しなかった電解液体生成システム1Aを使用するとき、ユーザは、使用開始時に操作入力部9を操作して、第2制御モードを選択する。したがって、長期間使用されていない電解液体生成システム1Aが動作を開始するとき、制御部5は、ユーザ操作によって第2制御モードで動作することで、除菌機能を優先させて、除菌効率を向上させることができる。
 また、図1に示すように、電解液体生成システム1は、第1変形例の操作入力部9を更に備えていてもよい。この場合、電解液体生成システム1においても、制御部5は、ユーザ操作によって第2制御モードで動作することで、除菌機能を優先させて、除菌効率を向上させることができる。
 (1.4)第2変形例
 図4は、電解液体生成システム1の第2変形例として、電解液体生成システム1Bのブロック図を示す。電解液体生成システム1Bでは、図1の電解液体生成システム1の液体流出路32を、液体流出路321、322に分割し、循環流路33、及び分岐部34を更に備える。また、電解液体生成システム1Bの制御部5は、分岐制御部53を更に備える。また、電解液体生成システム1Bは、下流側検出部82、上流側検出部83を更に備える。
 電解液体生成システム1Bでは、電解部42は、生成したオゾン水W2を液体流出路321に供給する。液体流出路321には分岐部34が設けられている。分岐部34は、電磁弁を備えており、液体流出路321から液体流出路322及び循環流路33のいずれかに選択的にオゾン水W2を分岐させる機能を有する。すなわち、分岐部34は、液体流出路321を、液体流出路322及び循環流路33のいずれかに切り替え可能に接続する。液体流出路322は給水口6に接続しており、分岐部34を通って供給されるオゾン水W2を給水口6に供給する。循環流路33は、液体流入路31に接続しており、分岐部34を通って供給されるオゾン水W2を液体流入路31に戻す。分岐制御部53は、分岐部34を制御して、液体流出路321を、液体流出路322及び循環流路33のいずれかに切り替える。
 下流側検出部82は、液体流出路321を流れているオゾン水W2の汚れの程度を検出する。下流側検出部82は、例えばオゾン水W2に含まれる菌の数、濁り、色、有機物濃度、又は液体流出路321での滞留時間などを、オゾン水W2の汚れの程度を表す第2汚れ検出値とする。また、下流側検出部82は、オゾン水W2の残留塩素濃度の逆数を、第2汚れ検出値としてもよい。第2汚れ検出値は、オゾン水W2の菌の数が少ない程、濁りが少ない程、色が無色透明である程、有機物濃度が低い程、液体流出路321での滞留時間が短い程、残留塩素濃度の逆数が小さい程、小さくなる。第2汚れ検出値が小さい程、オゾン水W2の汚れの程度は低くなる。
 下流側検出部82は、第2汚れ検出値を通知する検出信号S5を制御部5に出力する。制御部5は、検出信号S5に含まれる第2汚れ検出値に基づいてオゾン水W2の汚れの程度を判定し、分岐制御部53は、当該判定結果に基づいて分岐部34を制御する。
 具体的に、分岐制御部53は、第2汚れ検出値を分岐閾値と比較し、第2汚れ検出値が分岐閾値未満であれば、液体流出路321の接続先が液体流出路322となるように、分岐部34を制御する。液体流出路321の接続先が液体流出路322になると、電解部42が生成したオゾン水W2は、液体流出路322を通って給水口6に供給される。
 また、分岐制御部53は、第2汚れ検出値が分岐閾値以上であれば、液体流出路321の接続先が循環流路33となるように、分岐部34を制御する。液体流出路321の接続先が循環流路33になると、電解部42が生成したオゾン水W2は、循環流路33を流れて液体流入路31に供給され、液体流入路31において水道水W1とオゾン水W2とが混合する。水道水W1とオゾン水W2とが混合した混合液体W3は、上流側検出部81を介して機能部4に供給される。機能部4は、混合液体W3を電気分解することで、オゾン水W2を生成する電解液体生成機能、及び混合液体W3を除菌する除菌機能を実行する。この場合、混合液体W3が、液体に相当する。
 上述のように、汚れの程度が十分に低くなっていないオゾン水W2が給水口6から流れ出さないように、汚れの程度が十分に低くなっていないオゾン水W2は電解部42で再度除菌される。したがって、汚れの程度が十分に低いオゾン水W2が給水口6から供給されるので、オゾン水W2の質を高めることができる。
 また、上流側検出部83は、電解液体生成システム1Bの検出部8である。上流側検出部83は、混合液体W3の汚れの程度を検出する。上流側検出部83は、例えば混合液体W3に含まれる菌の数、濁り、色、有機物濃度、又は滞留時間などを、混合液体W3の汚れの程度を表す第3汚れ検出値とする。また、上流側検出部83は、混合液体W3の残留塩素濃度の逆数を、第3汚れ検出値としてもよい。第3汚れ検出値は、混合液体W3の菌の数が少ない程、濁りが少ない程、色が無色透明である程、有機物濃度が低い程、滞留時間が短い程、残留塩素濃度の逆数が小さい程、小さくなる。第3汚れ検出値が小さい程、混合液体W3の汚れの程度は低くなる。
 上流側検出部83は、第3汚れ検出値を通知する検出信号S6を制御部5に出力する。制御部5は、検出信号S6に含まれる第3汚れ検出値に基づいて混合液体W3の汚れの程度を判定し、当該判定結果に基づいて機能部4を制御する。
 制御部5は、第3汚れ検出値をモード閾値と比較し、第3汚れ検出値がモード閾値未満であれば、第1制御モードで動作し、第3汚れ検出値がモード閾値以上であれば、第2制御モードで動作する。すなわち、電解液体生成システム1Bは、混合液体W3の汚れの程度に基づいて、制御モードを自動で切り替えることができる。
 第1制御モード及び第2制御モードのそれぞれにおける制御部5の流量制御部51及び電流制御部52の各動作は、上述の第1動作例-第4動作例のいずれかと同じであり、説明は省略する。
 第2変形例の電解液体生成システム1Bは、特にミスト式冷却器(ミスト発生装置)に用いられることが好ましい。ミスト式冷却器は、オゾン水W2を微粒子状にしたミストを噴出し、周囲の気化熱を奪うことにより、周囲温度を下げる。この場合、ミストが十分に除菌されており、安全性が向上する。
 (1.5)第3変形例
 図5は、電解液体生成システム1の第3変形例として、電解液体生成システム1Cのブロック図を示す。
 電解液体生成システム1Cは、検出部8として、電解液体生成システム1の上流側検出部81の代わりに、下流側検出部84を備える。
 下流側検出部84は、液体流出路32を流れているオゾン水W2の汚れの程度を検出する。下流側検出部84は、例えばオゾン水W2に含まれる菌の数、濁り、色、有機物濃度、又は液体流出路32での滞留時間などを、オゾン水W2の汚れの程度を表す第4汚れ検出値とする。また、下流側検出部84は、オゾン水W2の残留塩素濃度の逆数、又はオゾン水W2のイオン濃度の逆数を、第4汚れ検出値としてもよい。第4汚れ検出値は、オゾン水W2の菌の数が少ない程、濁りが少ない程、色が無色透明である程、有機物濃度が低い程、液体流出路32での滞留時間が短い程、残留塩素濃度の逆数が小さい程、イオン濃度の逆数が小さい程、小さくなる。第4汚れ検出値が小さい程、オゾン水W2の汚れの程度は低くなる。
 下流側検出部84は、第4汚れ検出値を通知する検出信号S7を制御部5に出力する。制御部5は、第4汚れ検出値をモード閾値と比較し、第4汚れ検出値がモード閾値未満であれば、第1制御モードで動作し、第4汚れ検出値がモード閾値以上であれば、第2制御モードで動作する。すなわち、電解液体生成システム1Cは、オゾン水W2の汚れの程度に基づいて、制御モードを自動で切り替えることができる。
 第1制御モード及び第2制御モードのそれぞれにおける制御部5の流量制御部51及び電流制御部52の各動作は、上述の第1動作例-第4動作例のいずれかと同じであり、説明は省略する。
 (2)第2実施形態
 図6は、上述の電解液体生成システム1を用いた装置の一例として、浄水器G1の外観を示す。
 浄水器G1は、中空の円柱状の本体G11を備えており、電解液体生成システム1の一部は本体G11に収納されている。本体G11からは、フレキシブルホースで構成された液体流出路32が延びており、液体流出路32の先端には、吐水口となる給水口6が取り付けられている。
 なお、浄水器G1は、電解液体生成システム1の代わりに、電解液体生成システム1A、1B、又は1Cを備えていてもよい。
 (3)第3実施形態
 図7は、上述の電解液体生成システム1Bを用いた装置の他の一例として、ミスト式冷却器G2の外観を示す。
 ミスト式冷却器G2は屋外の構造物に取り付けられる。図7では、地面に形成された土台H1、土台H1上に設置された4本の柱H2、及び4本の柱H2によって土台H1の上方に支持される天井材H3を備える構造物を例示する。そして、ミスト式冷却器G2は、天井材H3の下面に取り付けられ、下方に向かってオゾン水W2を微粒子状にしたミストM1を噴出し、周囲の気化熱を奪うことにより、周囲温度を下げる。
 なお、ミスト式冷却器G2は、電解液体生成システム1Bの代わりに、電解液体生成システム1、1A、又は1Cを備えていてもよい。
 (4)その他の変形例
 本開示の電解液体生成システム1、1A、1B、1Cの各々は、水道水W1の除菌と、オゾン水W2の生成効率と、のバランスを調整するものであり、バランス調整のための動作は、上述の各動作に限定されない。すなわち、電解液体生成システム1、1A、1B、1Cの各々は、水道水W1の除菌効果を良好に活用できるのであれば、水道水W1の除菌とオゾン水W2の生成効率とのバランス調整のための動作は、特定の動作に限定されない。
 制御モードは、第1制御モードおよび第2制御モード以外に、電解部42での電解処理を行わずに、水道水W1を給水口6から供給する第3モードを更に含んでいてもよい。
 また、制御モードは、第1制御モードおよび第2制御モード以外に、除菌機能を高くする強モード、及び除菌機能を低くする弱モードを更に含んでいてもよい。
 制御部5は、機能部4の電解液体生成機能及び除菌機能の少なくとも一方を制御する構成であってもよい。また、制御部5は、流量調整部41と電解部42とのうち、一方のみを制御する構成であってもよい。
 液体は、水道水W1に限定されず、他の液体であってもよい。また、電解液体は、オゾン水W2に限定されず、除菌効果を有する他の液体であってもよい。例えば、液体を塩水とし、電解液体を電解次亜水としてもよい。
 また、液体は、上水道P1から供給される液体に限定されず、装置又は器具などの内部を流れている液体であってもよい。
 電解液体生成システム1は、液体供給部2、液体流入路31、液体流出路32、機能部4、制御部5、給水口6、電源7、及び検出部8を、2つ以上の装置に分散させたシステム構成であってもよい。
 また、上述の制御部5で構成される制御システム10と同様の機能は、電解液体生成システム1、1A、1B、1Cのそれぞれの制御方法、コンピュータプログラム、又はコンピュータプログラムを記録した記録媒体等で具現化されてもよい。すなわち、制御システム10の機能を、電解液体生成システム1、1A、1B、1Cのそれぞれの制御方法、コンピュータプログラム、又はコンピュータプログラムを記録した記録媒体等で具現化してもよい。
 上述の「除菌」という文言は、「殺菌」又は「滅菌」に置き換えてもよい。「除菌」は、菌を除いて、減らすことを意味する。「殺菌」は、「医薬品」または「医薬部外品」に対して使用可能である。「滅菌」は、日本薬局方で「微生物の生存する確率が100万分の1以下になること」と定義されている。
 (5)まとめ
 上述の実施形態に係る第1の態様の電解液体生成システム(1、1A、1B、1C)は、液体流入路(31)と、機能部(4)と、制御部(5)と、を備える。液体流入路(31)は、液体(W1、W3)が流れる。機能部(4)は、液体流入路(31)から供給された液体(W1、W3)を電気分解することで、液体(W1、W3)から電解液体(W2)を生成する電解液体生成機能を実施しつつ液体(W1、W3)を除菌する除菌機能を実施する。制御部(5)は、機能部(4)の電解液体生成機能及び除菌機能の少なくとも一方を制御する。制御部(5)は、少なくとも第1制御モード及び第2制御モードを含む複数の制御モードのいずれかで動作する。制御部(5)は、第1制御モードでは、第2制御モードに比べて電解液体生成機能を向上させる。制御部(5)は、第2制御モードでは、第1制御モードに比べて除菌機能を向上させる。
 上述の電解液体生成システム(1、1A、1B、1C)は、液体(W1、W3)の除菌と、電解液体(W2)の生成効率と、のバランスを調整することができる。
 上述の実施形態に係る第2の態様の電解液体生成システム(1、1A、1B、1C)では、第1の態様において、機能部(4)は、液体流入路(31)から供給される液体(W1、W3)の量である液体供給量を調整する流量調整部(41)を備えることが好ましい。制御部(5)は、第2制御モードでは、第1制御モードに比べて液体供給量を減少させるように流量調整部(41)を制御することで、電解液体生成機能を制御する。
 上述の電解液体生成システム(1、1A、1B、1C)は、第2制御モードにおいて、除菌効率を高め、かつ、液体(W1、W3)の節約も可能となる。
 上述の実施形態に係る第3の態様の電解液体生成システム(1、1A、1B、1C)では、第1又は第2の態様において、機能部(4)は、液体(W1、W3)を電気分解する電解部(42)を備えることが好ましい。制御部(5)は、電解部(42)に供給する電流(駆動電流)を制御し、第2制御モードでは、第1制御モードに比べて電流を大きくすることで、除菌機能を制御する。
 上述の電解液体生成システム(1、1A、1B、1C)は、第2制御モードにおいて、除菌効率を高めることができる。
 上述の実施形態に係る第4の態様の電解液体生成システム(1、1A、1B、1C)では、第2の態様において、機能部(4)は、液体(W1、W3)を電気分解する電解部(42)を更に備えることが好ましい。制御部(5)は、電解部(42)に供給する電流(駆動電流)を制御し、第2制御モードでは、第1制御モードに比べて電流を小さくすることで、除菌機能を制御する。
 上述の電解液体生成システム(1、1A、1B、1C)は、第2制御モードでの電解部(42)の劣化を抑制して、電解部(42)の長寿命化を図ることができる。
 上述の実施形態に係る第5の態様の電解液体生成システム(1A)は、第1~第4の態様のいずれか1つにおいて、人の操作を受け付ける操作入力部(9)を更に備えることが好ましい。制御部(5)は、操作入力部(9)が受け付けた操作に応じて、複数の制御モードのうちいずれかの制御モードを選択し、選択した制御モードで動作する。
 上述の電解液体生成システム(1A)は、制御部(5)は、ユーザ操作によって制御モードを切り替えることができる。
 上述の実施形態に係る第6の態様の電解液体生成システム(1、1B、1C)は、第1~第4の態様のいずれか1つにおいて、液体(W1、W3)及び電解液体(W2)の少なくとも一方の汚れの程度を検出する検出部(8)を更に備えることが好ましい。制御部(5)は、汚れの程度に応じて、複数の制御モードのうちいずれかの制御モードを選択し、選択した制御モードで動作する。
 上述の電解液体生成システム(1、1B、1C)は、液体(W1、W3)及び電解液体(W2)の少なくとも一方の汚れの程度に基づいて、制御モードを自動で切り替えることができる。
 上述の実施形態に係る第7の態様の電解液体生成システム(1、1B、1C)では、第6の態様において、制御部(5)は、汚れの程度がモード閾値未満であれば、第1制御モードで動作し、汚れの程度がモード閾値以上であれば、第2制御モードで動作することが好ましい。
 上述の電解液体生成システム(1、1B、1C)は、液体(W1、W3)及び電解液体(W2)の少なくとも一方の汚れの程度がモード閾値以上であれば、自動で除菌機能を向上させることができる。
 上述の実施形態に係る第8の態様の電解液体生成システム(1、1A、1B、1C)では、第1~第7の態様のいずれか1つにおいて、電解液体(W2)は、オゾン水であることが好ましい。
 上述の電解液体生成システム(1、1A、1B、1C)は、除菌、脱臭、及び有機物分解などに有効なオゾン水(W2)を生成できる。
 上述の実施形態に係る第9の態様の電解液体生成システム(1、1A、1B、1C)は、第1~第8の態様のいずれか1つにおいて、機能部(4)に電気分解を行うための電圧を印加する電源(7)を更に備えることが好ましい。
 上述の電解液体生成システム(1、1A、1B、1C)は、電源を別に準備する必要がなく、利便性が向上する。
 上述の実施形態に係る第10の態様の電解液体生成システム(1、1A、1B、1C)は、第1~第9の態様のいずれか1つにおいて、液体流入路(31)に液体(W1)を供給する液体供給部(2)を更に備えることが好ましい。
 上述の電解液体生成システム(1、1A、1B、1C)は、給水ポンプなどの液体供給部を別に準備する必要がなく、利便性が向上する。
 上述の実施形態に係る第11の態様の制御システム(10)は、液体(W1、W3)を電気分解することで、液体(W1、W3)から電解液体(W2)を生成する電解液体生成機能を実施しつつ液体(W1、W3)を除菌する除菌機能を実施する電解液体生成システム(1、1A、1B、1C)に用いられる制御システムである。制御システム(10)は、電解液体生成機能及び除菌機能の少なくとも一方を制御する制御部(5)を備える。制御部(5)は、少なくとも第1制御モード及び第2制御モードを含む複数の制御モードのいずれかで動作する。制御部(5)は、第1制御モードでは、第2制御モードに比べて電解液体生成機能を向上させる。制御部(5)は、第2制御モードでは、第1制御モードに比べて除菌機能を向上させる。
 上述の制御システム(10)は、液体(W1、W3)の除菌と、電解液体(W2)の生成効率と、のバランスを調整することができる。
 1、1A、1B、1C 電解液体生成システム
 2 液体供給部
 31 液体流入路(液体流路)
 4 機能部
 41 流量調整部
 42 電解部
 5 制御部
 7 電源
 8 検出部
 81、83 上流側検出部(検出部)
 82、84 下流側検出部(検出部)
 9 操作入力部
 10 制御システム
 W1 水道水(液体)
 W2 オゾン水(電解液体)
 W3 混合液体(液体)

Claims (11)

  1.  液体が流れる液体流路と、
     前記液体流路から供給された前記液体を電気分解することで、前記液体から電解液体を生成する電解液体生成機能、及び前記液体を除菌する除菌機能を有する機能部と、
     前記機能部の前記電解液体生成機能及び前記除菌機能の少なくとも一方を制御する制御部と、を備え、
     前記制御部は、
      少なくとも第1制御モード及び第2制御モードを含む複数の制御モードのいずれかで動作し、
      前記第1制御モードでは、前記第2制御モードに比べて前記電解液体生成機能を向上させ、
      前記第2制御モードでは、前記第1制御モードに比べて前記除菌機能を向上させる
     電解液体生成システム。
  2.  前記機能部は、前記液体流路から供給される前記液体の量である液体供給量を調整する流量調整部を備え、
     前記制御部は、
      前記第2制御モードでは、前記第1制御モードに比べて前記液体供給量を減少させるように前記流量調整部を制御することで、前記電解液体生成機能を制御する
     請求項1の電解液体生成システム。
  3.  前記機能部は、前記液体を電気分解する電解部を備え、
     前記制御部は、
      前記電解部に供給する電流を制御し、
      前記第2制御モードでは、前記第1制御モードに比べて前記電流を大きくすることで、前記除菌機能を制御する
     請求項1又は2の電解液体生成システム。
  4.  前記機能部は、前記液体を電気分解する電解部を更に備え、
     前記制御部は、
      前記電解部に供給する電流を制御し、
      前記第2制御モードでは、前記第1制御モードに比べて前記電流を小さくすることで、前記除菌機能を制御する
     請求項2の電解液体生成システム。
  5.  人の操作を受け付ける操作入力部を更に備え、
     前記制御部は、前記操作入力部が受け付けた前記操作に応じて、前記複数の制御モードのうちいずれかの制御モードを選択し、選択した前記制御モードで動作する
     請求項1~4のいずれか1つの電解液体生成システム。
  6.  前記液体及び前記電解液体の少なくとも一方の汚れの程度を検出する検出部を更に備え、
     前記制御部は、
      前記汚れの程度に応じて、前記複数の制御モードのうちいずれかの制御モードを選択し、選択した前記制御モードで動作する
     請求項1~4のいずれか1つの電解液体生成システム。
  7.  前記制御部は、
      前記汚れの程度がモード閾値未満であれば、前記第1制御モードで動作し、
      前記汚れの程度が前記モード閾値以上であれば、前記第2制御モードで動作する
     請求項6の電解液体生成システム。
  8.  前記電解液体は、オゾン水である
     請求項1~7のいずれか1つの電解液体生成システム。
  9.  前記機能部に前記電気分解を行うための電圧を印加する電源を更に備える
     請求項1~8のいずれか1つの電解液体生成システム。
  10.  前記液体流路に前記液体を供給する液体供給部を更に備える
     請求項1~9のいずれか1つの電解液体生成システム。
  11.  液体を電気分解することで、前記液体から電解液体を生成する電解液体生成機能、及び前記液体を除菌する除菌機能を有する電解液体生成システムに用いられる制御システムであって、
     前記電解液体生成機能及び前記除菌機能の少なくとも一方を制御する制御部を備え、
     前記制御部は、
      少なくとも第1制御モード及び第2制御モードを含む複数の制御モードのいずれかで動作し、
      前記第1制御モードでは、前記第2制御モードに比べて前記電解液体生成機能を向上させ、
      前記第2制御モードでは、前記第1制御モードに比べて前記除菌機能を向上させる
     制御システム。
PCT/JP2022/029998 2021-09-06 2022-08-04 電解液体生成システム、及び制御システム WO2023032589A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247004027A KR20240051116A (ko) 2021-09-06 2022-08-04 전해 액체 생성 시스템, 및 제어 시스템
CN202280055473.4A CN117813264A (zh) 2021-09-06 2022-08-04 电解液体生成系统和控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-144954 2021-09-06
JP2021144954A JP2023038058A (ja) 2021-09-06 2021-09-06 電解液体生成システム、及び制御システム

Publications (1)

Publication Number Publication Date
WO2023032589A1 true WO2023032589A1 (ja) 2023-03-09

Family

ID=85411011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029998 WO2023032589A1 (ja) 2021-09-06 2022-08-04 電解液体生成システム、及び制御システム

Country Status (5)

Country Link
JP (1) JP2023038058A (ja)
KR (1) KR20240051116A (ja)
CN (1) CN117813264A (ja)
TW (1) TW202311567A (ja)
WO (1) WO2023032589A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119669A (ja) * 1997-06-23 1999-01-19 Inax Corp オゾン水給水装置
JP2004324190A (ja) * 2003-04-24 2004-11-18 Shinko Plant Kensetsu Kk オゾン水を用いた手洗い装置及びオゾン水濃度維持装置
JP2011098274A (ja) * 2009-11-05 2011-05-19 Japan Medical Creative:Kk オゾン水生成装置
JP2014004568A (ja) * 2012-06-27 2014-01-16 Panasonic Corp 水処理装置
JP2016222967A (ja) * 2015-05-29 2016-12-28 パナソニックIpマネジメント株式会社 オゾン水生成装置
JP2017176993A (ja) 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 電解液体生成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH119669A (ja) * 1997-06-23 1999-01-19 Inax Corp オゾン水給水装置
JP2004324190A (ja) * 2003-04-24 2004-11-18 Shinko Plant Kensetsu Kk オゾン水を用いた手洗い装置及びオゾン水濃度維持装置
JP2011098274A (ja) * 2009-11-05 2011-05-19 Japan Medical Creative:Kk オゾン水生成装置
JP2014004568A (ja) * 2012-06-27 2014-01-16 Panasonic Corp 水処理装置
JP2016222967A (ja) * 2015-05-29 2016-12-28 パナソニックIpマネジメント株式会社 オゾン水生成装置
JP2017176993A (ja) 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 電解液体生成装置

Also Published As

Publication number Publication date
KR20240051116A (ko) 2024-04-19
CN117813264A (zh) 2024-04-02
TW202311567A (zh) 2023-03-16
JP2023038058A (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
US10464830B2 (en) Electrolytic liquid generating device, liquid modifying device provided with electrolytic liquid generating device, and electric apparatus using electrolytic liquid generated by means of electrolytic liquid generating device
CA2468856C (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water
KR101740507B1 (ko) 살균 효과가 있는 구강 세정기
JP2003266073A (ja) 電解水生成装置
CN114615953A (zh) 具有臭氧化水系统的超声波洁牙机
WO2023032589A1 (ja) 電解液体生成システム、及び制御システム
JP2007014888A (ja) 消毒装置
KR101561303B1 (ko) 전극살균모듈을 이용한 식기세척기
KR100547469B1 (ko) 비데용 살균장치
KR101744569B1 (ko) 수도수와 살균수가 혼합된 급수시스템
JP4878822B2 (ja) 床置き式空気除菌装置
CN112524802A (zh) 用于热水器的清洗装置及热水器
JP6962709B2 (ja) 電解水生成装置
KR101350005B1 (ko) 살균 장치
JP2573143B2 (ja) 滅菌水製造装置
JPH07136660A (ja) 殺菌性上水供給式洗浄用住設機器
JP2017127378A (ja) 洗面化粧台
JP6826312B2 (ja) 洗面台
WO2016152398A1 (ja) 除菌水生成装置
JP6596862B2 (ja) 除菌水生成装置
JPH11239791A (ja) 電解水供給装置
KR101853759B1 (ko) 이중 살균 기능을 갖는 식기세척기의 급수시스템
JP2008136980A (ja) 電解水供給装置および電解水供給システム
JP2017172123A (ja) 除菌水吐出装置
KR20150047242A (ko) 살균수기 전해질 도징 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280055473.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022864175

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864175

Country of ref document: EP

Effective date: 20240408