WO2016152398A1 - 除菌水生成装置 - Google Patents

除菌水生成装置 Download PDF

Info

Publication number
WO2016152398A1
WO2016152398A1 PCT/JP2016/056134 JP2016056134W WO2016152398A1 WO 2016152398 A1 WO2016152398 A1 WO 2016152398A1 JP 2016056134 W JP2016056134 W JP 2016056134W WO 2016152398 A1 WO2016152398 A1 WO 2016152398A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hypochlorous acid
concentration
bactericidal metal
metal ions
Prior art date
Application number
PCT/JP2016/056134
Other languages
English (en)
French (fr)
Inventor
黒石 正宏
隆政 鈴木
勇介 野越
鈴木 健太
宗幸 浦田
晃貴 永野
佑希子 矢野
祐介 中村
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to CN201680011605.8A priority Critical patent/CN107250054A/zh
Priority to US15/559,511 priority patent/US20180117197A1/en
Publication of WO2016152398A1 publication Critical patent/WO2016152398A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • A61L2/035Electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4606Treatment of water, waste water, or sewage by electrochemical methods for producing oligodynamic substances to disinfect the water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/10Devices for preventing contamination of drinking-water pipes, e.g. means for aerating self-closing flushing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C2201/00Details, devices or methods not otherwise provided for
    • E03C2201/40Arrangement of water treatment devices in domestic plumbing installations

Definitions

  • the aspect of the present invention generally relates to a sterilized water generator.
  • a functional water generator including a bactericidal metal addition unit for adding bactericidal metal ions to supply water and a hypochlorous acid addition unit for adding hypochlorous acid to supply water (Patent Document 1). ).
  • water containing hypochlorous acid has an immediate effect and can break down a cell membrane of a bacterium in a short time, while being very easy to react with dirt. Therefore, the concentration of hypochlorous acid is lowered by the reaction of the water containing hypochlorous acid with the dirt before attacking the nuclei of the fungus.
  • the immediate effect of water containing bactericidal metal ions is lower than the immediate effect of water containing hypochlorous acid. For this reason, water containing bactericidal metal ions cannot destroy the cell membrane of bacteria in a short time, but is less reactive with dirt than water containing hypochlorous acid, and enters the cytoplasm through the cell membrane. This suppresses cell division of the nucleus. Therefore, the concentration of bactericidal metal ions lasts for a long time.
  • water containing hypochlorous acid and water containing bactericidal metal ions have a relationship of complementing each other's disadvantages. Therefore, water containing hypochlorous acid breaks down the cell membrane of the bacterium in a short time, water containing bactericidal metal ions enters the inside of the bacterium from the cell membrane destroyed by the water containing hypochlorous acid, It is possible to attack the nuclei of bacteria for a long time with the concentration maintained.
  • the concentration of hypochlorous acid is proportional to the amount of chlorine ions contained in tap water. Therefore, when the amount of chlorine ions is small, the concentration of hypochlorous acid is low, and the cell membrane of the fungus may be insufficiently destroyed. When the destruction of the cell membrane of the fungus is insufficient, there is a problem that the water containing the bactericidal metal ions cannot reach the fungus nucleus and the disinfection effect becomes insufficient.
  • the present invention has been made on the basis of recognition of such problems, and even when the concentration of chloride ions contained in tap water is low, disinfected water can exhibit a sufficient disinfecting effect.
  • An object is to provide a generation device.
  • a first aspect of the present invention provides a hypochlorous acid-containing water generating unit that generates water containing hypochlorous acid by electrolyzing tap water, and disinfects sterilizing metal ions by electrolyzing tap water.
  • a bactericidal metal ion water generating unit having an electrode eluting therein, a water discharge unit for discharging at least one of water containing the hypochlorous acid and water containing the bactericidal metal ion, and the hypochlorous acid
  • a control unit that controls the operation of the contained water generation unit and the bactericidal metal ion water generation unit, and when the concentration of the hypochlorous acid in the water containing the hypochlorous acid is relatively low
  • a sterilized water generator characterized in that the concentration of the bactericidal metal ions in the water containing the bactericidal metal ions is relatively high.
  • hypochlorous acid is produced using chlorine ions contained in tap water as raw materials. Therefore, when the amount of chlorine ions contained in tap water is relatively small, the concentration of hypochlorous acid is relatively low.
  • bactericidal metal ions are generated by eluting the electrode. Therefore, the concentration of bactericidal metal ions does not depend on the amount of chlorine ions contained in tap water. However, the amount of bactericidal metal ions produced is limited.
  • the second invention is characterized in that, in the first invention, when the concentration of hypochlorous acid is relatively low, the rate of change in the concentration of the bactericidal metal ion is relatively high. Bacteria water generator.
  • hypochlorous acid When the concentration of hypochlorous acid is relatively high, water containing hypochlorous acid can sufficiently destroy the cell membrane. On the other hand, when there is dirt, the effect of water containing hypochlorous acid attacking the fungus nucleus is lower than the effect of water containing a bactericidal metal ion attacking the fungus nucleus. When the concentration of hypochlorous acid is relatively low, water containing hypochlorous acid may not sufficiently destroy the cell membrane. In this case, destruction of the cell membrane of bacteria is also required for water containing bactericidal metal ions.
  • the third invention is the sterilized water according to the first or second invention, wherein the concentration of the bactericidal metal ion is higher than a predetermined concentration even when the concentration of hypochlorous acid is high. It is a generation device.
  • Water containing hypochlorous acid tends to react with dirt as compared with water containing bactericidal metal ions. Therefore, when there is dirt, even if the concentration of hypochlorous acid is high, the effect of water containing hypochlorous acid attacking the fungus nucleus is that water containing bactericidal metal ions attacks the fungus nucleus. Less effective. In addition, when the concentration of the bactericidal metal ions is lower than the predetermined concentration, the effect of the water containing the bactericidal metal ions attacking the fungus nucleus is low.
  • the concentration of the bactericidal metal ions is higher than the predetermined concentration, even if the concentration of hypochlorous acid is high, the water containing the bactericidal metal ions has an effect of attacking the nuclei of the bacteria. Maintained.
  • the water discharger when the concentration of the hypochlorous acid is relatively low, the water discharger has a relatively large amount of the hypochlorous acid. It is the disinfection water production
  • the instantaneous flow rate of water containing hypochlorous acid when the concentration of hypochlorous acid is relatively low is relatively low in the concentration of hypochlorous acid. It is the disinfection water production
  • the rate of increase in the discharge amount of water containing the bactericidal metal ions is the concentration of hypochlorous acid. It is a disinfected water production
  • the immediate effect of water containing bactericidal metal ions is lower than that of water containing hypochlorous acid. Therefore, while increasing the discharge amount of water containing hypochlorous acid, a certain effect can be obtained, while the discharge amount of water containing hypochlorous acid can be increased even if the discharge amount of water containing bactericidal metal ions is increased. The effect that is obtained when the amount is increased cannot be obtained.
  • the life of the electrode of the bactericidal metal ion water generating unit can be improved while ensuring a sufficient sterilizing effect.
  • any one of the fourth to sixth inventions when the concentration of hypochlorous acid is relatively low, water containing a relatively large amount of the hypochlorous acid is used as the water discharge
  • a sterilized water generating apparatus further comprising an operation unit capable of selecting a mode discharged by the unit.
  • the user can, based on the user's own intention, use a water containing a relatively large amount of hypochlorous acid when the concentration of hypochlorous acid is relatively low. Can be discharged from the water discharger. Thereby, even if it is a case where the density
  • a sterilized water generating device capable of exhibiting a sufficient sterilizing effect even when the concentration of chloride ions contained in tap water is low.
  • FIG. 1 is a block diagram showing a sterilized water generator according to an embodiment of the present invention.
  • the principal part structure of a waterway system and the principal part structure of an electric system are represented collectively.
  • the sterilized water generating device 100 includes a stop cock 101, a solenoid valve 103, a pressure regulating valve 105, a check valve 107, a hypochlorous acid-containing water generating unit 110, and a negative pressure breaking device. (Vacuum breaker) 121, bactericidal metal ion water generation unit 130, motor 141, water discharge unit 143, control unit 145, and operation unit 147.
  • the stop cock 101 is connected to a water supply pipe and can be manually opened and closed.
  • the water stop cock 101 can block the flow path 151 at any time during attachment / detachment of the sterilized water generation apparatus 100, maintenance inspection, and the like.
  • the stop cock 101 may be provided in the sterilized water generating apparatus 100, or as a separate element from the sterilized water generating apparatus 100, between the water supply pipe and the sterilized water generating apparatus 100. It may be provided.
  • the electromagnetic valve 103 is provided downstream of the stop cock 101.
  • the electromagnetic valve 103 switches the open / close state of the flow path 151 based on a signal output from the control unit 145 and controls the supply of water.
  • the pressure regulating valve 105 is provided downstream of the electromagnetic valve 103.
  • the pressure regulating valve 105 adjusts the feed water pressure to a predetermined pressure range when the pressure of the water supplied from the feed water pipe (feed water pressure) is high.
  • the check valve 107 is provided downstream of the pressure regulating valve 105.
  • the check valve 107 is configured such that water containing hypochlorous acid flows backward from the hypochlorous acid-containing water generation unit 110 toward the water supply pipe or is sterilized. This prevents water containing steric metal ions from flowing backward from the bactericidal metal ionic water generator 130 toward the water supply pipe.
  • the hypochlorous acid-containing water generation unit 110 is provided downstream of the check valve 107.
  • generation part 110 is demonstrated, referring drawings.
  • FIG. 2 is a schematic cross-sectional view illustrating a specific example of the hypochlorous acid-containing water generation unit of the present embodiment.
  • the hypochlorous acid-containing water generating unit 110 of this specific example includes an anode 111 and a cathode 113 inside, and the anode 111, the cathode 113, and the like according to the energization control signal output from the control unit 145. It is possible to electrolyze the tap water flowing through the space (flow path) between the two.
  • the reaction represented by the formula (1) occurs at the cathode 113. H + + e ⁇ ⁇ 1 / 2H 2 ⁇ (1)
  • hypochlorous acid (HClO) is produced by electrolyzing chlorine ions.
  • the water electrolyzed in the hypochlorous acid-containing water generating unit 110 changes to water containing hypochlorous acid.
  • the negative pressure breaking device 121 is provided downstream of the hypochlorous acid-containing water generation unit 110.
  • the negative pressure breaking device 121 prevents, for example, water containing sterilizing metal ions from flowing backward from the sterilizing metal ion water generation unit 130 toward the water supply pipe when negative pressure is generated in the flow path 151. .
  • the negative pressure breaking device 121 takes in air from the outside when draining the flow path 151 and promotes drainage of the flow path 151.
  • the bactericidal metal ion water generator 130 is provided downstream of the negative pressure breaker 121.
  • generation part 130 is demonstrated, referring drawings.
  • FIG. 3 is a schematic cross-sectional view showing a specific example of the bactericidal metal ion water generating unit of the present embodiment.
  • the bactericidal metal ion water generation unit 130 of this specific example has a pair of electrodes 131 and 133, and the water flowing between the pair of electrodes 131 and 133 is electrically generated by an energization control signal output from the control unit 145. Can be disassembled.
  • One of the pair of electrodes 131 and 133 serves as an anode (anode), and the other of the pair of electrodes 131 and 133 serves as a cathode (cathode).
  • the electrode serving as the anode is made of silver (Ag) or a metal containing silver. In general, it is desirable to form both of the pair of electrodes 131 and 133 from silver and to reverse the polarity of the applied voltage as appropriate.
  • the metal ions released from the anode-side electrode 131 are not limited to silver ions.
  • the metal ions released from the anode-side electrode 131 may be copper ions or zinc ions, for example.
  • a case where the metal ions released from the anode-side electrode 131 are silver ions is taken as an example.
  • the water discharger 143 is provided downstream of the bactericidal metal ion water generator 130.
  • the water discharger 143 discharges at least one of water containing hypochlorous acid and water containing bactericidal metal ions to an object.
  • the motor 141 generates torque based on the signal output from the control unit 145, and rotates the water discharger 143 around a predetermined axis, for example. Thereby, the water discharger 143 can discharge at least one of water containing hypochlorous acid and water containing bactericidal metal ions in a wider range.
  • the operation unit 147 transmits a signal based on a user operation to the control unit 145.
  • the control unit 145 controls operations of the electromagnetic valve 103, the hypochlorous acid-containing water generation unit 110, the bactericidal metal ion water generation unit 130, and the motor 141.
  • the concentration of hypochlorous acid in water containing hypochlorous acid (hereinafter simply referred to as “the concentration of hypochlorous acid”) is relatively.
  • the concentration of the bactericidal metal ions in the water containing the bactericidal metal ions (hereinafter simply referred to as “bactericidal metal ion concentration”) is relatively high.
  • the concentration of hypochlorous acid is the first concentration
  • the concentration of the bactericidal metal ion is the fourth concentration.
  • the concentration of the bactericidal metal ion is the third concentration.
  • FIG. 4 is a schematic cross-sectional view showing the action of water containing hypochlorous acid and water containing bactericidal metal ions.
  • FIG. 5 is a schematic cross-sectional view showing the action of water containing hypochlorous acid.
  • FIG. 6 is a schematic cross-sectional view showing the action of water containing bactericidal metal ions.
  • the dirt 203 As shown in FIG. 4 to FIG. 6, a state in which the dirt 203 is attached to the surface 201a of the base material (object) 201 will be described.
  • the base material 201 for example, a bathroom washroom floor or the like can be cited.
  • the dirt 203 include sebum and protein.
  • the dirt 203 contains bacteria 210.
  • the fungus 210 has a nucleus (DNA) 211, a cytoplasm 213, and a cell membrane 215.
  • water containing hypochlorous acid has an immediate effect and can destroy the cell membrane 215 of the bacteria 210 in a short time.
  • water containing hypochlorous acid is very likely to react with the dirt 203. Therefore, the concentration of hypochlorous acid is lowered by the reaction with the soil 203 before water containing hypochlorous acid attacks the nucleus 211 of the fungus 210.
  • the immediate effect of water containing bactericidal metal ions is lower than the immediate effect of water containing hypochlorous acid. Therefore, water containing bactericidal metal ions cannot destroy the cell membrane 215 of the bacteria 210 in a short time.
  • water containing bactericidal metal ions is less likely to react with the dirt 203 than water containing hypochlorous acid, and enters the cytoplasm 213 through the cell membrane 215 and suppresses cell division of the nucleus 211. Therefore, the concentration of bactericidal metal ions lasts for a long time.
  • water containing hypochlorous acid and water containing bactericidal metal ions have a relationship of complementing each other's disadvantages. Therefore, as shown in FIG. 4, water containing hypochlorous acid destroys the cell membrane 215 of the bacteria 210 in a short time, and water containing bactericidal metal ions (silver ions in FIG. 4) is hypochlorous acid. It can enter the inside of the bacterium 210 from the cell membrane 215 destroyed by water containing acid, and can attack the nucleus 211 of the bacterium 210 for a long time in a state where the concentration is maintained.
  • the concentration of hypochlorous acid is proportional to the amount of chlorine ions (Cl ⁇ ) contained in the tap water. Therefore, when the amount of chlorine ions is small, the concentration of hypochlorous acid is low, and the cell membrane of the fungus may be insufficiently destroyed. When the destruction of the cell membrane of the fungus is insufficient, there is a problem that the water containing the bactericidal metal ions cannot reach the fungus nucleus and the disinfection effect becomes insufficient.
  • the control unit 145 controls the voltage supplied to the bactericidal metal ion water generating unit 130 and sets the bactericidal metal ion concentration to a relative level. Make it higher.
  • the concentration of chlorine ions contained in tap water is detected by detecting the voltage applied to the hypochlorous acid-containing water generating unit 110. Specifically, the voltage between the anode 111 of the hypochlorous acid-containing water generation unit 110 and the cathode 113 of the hypochlorous acid-containing water generation unit 110 is detected. Based on the voltage, the quality of tap water (for example, the electrical conductivity of water flowing into the hypochlorous acid-containing water generating unit 110) is detected. Thereby, the density
  • the controller 145 controls the voltage supplied to the bactericidal metal ion water generator 130 based on the detected chlorine ion concentration.
  • the bactericidal metal ion water generator 130 can detect the concentration of chlorine ions contained in tap water by the same method as described above.
  • the sterilized water generating device 100 is an ion concentration detection unit provided between the hypochlorous acid-containing water generating unit 110 and the negative pressure breaking device 121, and includes tap water. You may provide the ion concentration detection part which detects the density
  • hypochlorous acid is generated using chlorine ions contained in tap water as a raw material. Therefore, when the amount of chlorine ions contained in tap water is relatively small, the concentration of hypochlorous acid is relatively low.
  • bactericidal metal ions are generated by eluting the electrode. Therefore, the concentration of bactericidal metal ions does not depend on the amount of chlorine ions contained in tap water. However, the amount of bactericidal metal ions produced is limited.
  • the concentration of hypochlorous acid when the concentration of hypochlorous acid is relatively low, the concentration of bactericidal metal ions is relatively high. Thereby, even if the density
  • FIG. 7 is a graph illustrating an example of the relationship between the concentration of hypochlorous acid and the concentration of bactericidal metal ions.
  • the horizontal axis of the graph shown in FIG. 7 represents the concentration of hypochlorous acid.
  • the vertical axis of the graph shown in FIG. 7 represents the concentration of bactericidal metal ions.
  • hypochlorous acid When the concentration of hypochlorous acid is relatively high, water containing hypochlorous acid can sufficiently destroy the cell membrane 215. On the other hand, the effect of water containing hypochlorous acid attacking the nucleus 211 of the fungus 210 is lower than the effect of water containing a bactericidal metal ion attacking the nucleus 211 of the fungus 210.
  • the sterilized water generating apparatus 100 when the concentration of hypochlorous acid is relatively high (in the case of a high concentration region), the bactericidal property is reduced. The rate of change of the metal ion concentration is relatively low. Thereby, the effect which the water containing a bactericidal metal ion attacks the nucleus 211 of the microbe 210 can be acquired, and the disinfection effect can be ensured.
  • hypochlorous acid When the concentration of hypochlorous acid is relatively low, water containing hypochlorous acid may not sufficiently destroy the cell membrane 215. In this case, destruction of the cell membrane 215 of the bacteria 210 is also required for water containing bactericidal metal ions.
  • the concentration of hypochlorous acid when the concentration of hypochlorous acid is relatively low (in the case of a low concentration region), bactericidal properties are obtained.
  • the rate of change of the metal ion concentration is relatively high. Thereby, even if the concentration of hypochlorous acid is relatively low, the cell membrane 215 can be sufficiently destroyed.
  • water containing hypochlorous acid is more likely to react with the dirt 203 than water containing bactericidal metal ions. Therefore, even if the concentration of hypochlorous acid is high, the effect that water containing hypochlorous acid attacks the nucleus 211 of the bacterium 210 is more effective than the effect that water containing bactericidal metal ions attacks the nucleus 211 of the bacterium 210. Low. Further, when the concentration of the bactericidal metal ions is lower than the predetermined concentration, the effect of the water containing the bactericidal metal ions attacking the nucleus 211 of the bacteria 210 is low.
  • the concentration of bactericidal metal ions is higher than the predetermined concentration PD even when the concentration of hypochlorous acid is relatively high.
  • concentration of hypochlorous acid is high, the density
  • the predetermined concentration PD is a concentration of bactericidal metal ions that maintains the effect of water containing bactericidal metal ions attacking the nucleus 211 of the bacteria 210. Therefore, the effect that water containing bactericidal metal ions attacks the nucleus 211 of the fungus 210 is maintained.
  • FIG. 8 is a flowchart showing the operation of the sterilized water generator according to this embodiment.
  • the solenoid valve 103 is closed, the motor 141 is stopped, and the voltage is not supplied to the hypochlorous acid-containing water generator 110 and the bactericidal metal ion water generator 130. Not supplied.
  • the sterilized water generator 100 starts operation (step S101), and determines whether or not the switch is turned on (step S103). When the switch is not turned on (step S103: N), the sterilized water generator 100 continues to determine whether or not the switch is turned on (step S103). When the switch is on (step S103: Y), the water discharger 143 discharges water containing hypochlorous acid (step S105). At this time, the solenoid valve 103 is opened, the motor 141 starts operating, and a voltage is supplied to the hypochlorous acid-containing water generation unit 110.
  • the sterilized water generating apparatus 100 determines whether or not the concentration of hypochlorous acid is equal to or higher than a predetermined concentration (step S107). If the concentration of hypochlorous acid is equal to or higher than the predetermined concentration (step S107: Y), has the sterilized water generation device 100 discharged the water containing hypochlorous acid for the first predetermined time by the water discharger 143? It is determined whether or not (step S109). When the water discharger 143 has not discharged water containing hypochlorous acid for the first predetermined time (step S109: N), the sterilized water generator 100 is configured such that the water discharger 143 includes water containing hypochlorous acid.
  • step S109 Is continuously determined whether or not the ink is discharged for the first predetermined time.
  • step S109: Y the water discharger 143 ends the discharge of water containing hypochlorous acid (step S111). .
  • step S111 the supply of voltage to the hypochlorous acid-containing water generation unit 110 is stopped.
  • the water discharger 143 discharges water containing the first concentration of bactericidal metal ions (step S113). At this time, a voltage is supplied to the bactericidal metal ion water generator 130. Subsequently, the sterilized water generating apparatus 100 determines whether or not the water discharger 143 has discharged water containing the first concentration of bactericidal metal ions for a third predetermined time (step S115). When the water discharger 143 has not discharged the water containing the first concentration of bactericidal metal ions for the third predetermined time (step S115: N), the disinfecting water generating apparatus 100 has the water discharger 143 as the first discharger.
  • step S115 It is subsequently determined whether or not water containing bactericidal metal ions at a concentration of 5 has been discharged for a third predetermined time (step S115).
  • step S115: Y When the water discharger 143 discharges water containing the first concentration of bactericidal metal ions for a third predetermined time (step S115: Y), the water discharger 143 contains the first concentration of bactericidal metal ions. Water discharge is terminated (step S117). Subsequently, the sterilized water generating apparatus 100 ends the operation (step S119).
  • the sterilized water generator 100 uses the water discharger 143 to supply water containing hypochlorous acid for a second predetermined time. It is determined whether or not the ejection has been performed (step S121). Here, the second predetermined time is longer than the first predetermined time (see step S109).
  • the disinfecting water generating apparatus 100 is configured such that the water discharger 143 includes water containing hypochlorous acid. Is continuously determined whether or not the ink is discharged for a second predetermined time (step S121).
  • step S121: Y When the water discharger 143 discharges water containing hypochlorous acid for a second predetermined time (step S121: Y), the water discharger 143 ends the discharge of water containing hypochlorous acid (step S123). . At this time, the supply of voltage to the hypochlorous acid-containing water generation unit 110 is stopped.
  • the water discharger 143 discharges water containing the second concentration of bactericidal metal ions (step S125).
  • the second density is higher than the first density (see step S113).
  • a voltage is supplied to the bactericidal metal ion water generator 130.
  • the sterilized water generating apparatus 100 determines whether or not the water discharger 143 has discharged water containing the second concentration of bactericidal metal ions for a third predetermined time (step S127).
  • step S127: N the disinfecting water generating device 100 has the water discharger 143 second It is subsequently determined whether or not water containing bactericidal metal ions having a concentration of 5 has been discharged for a third predetermined time (step S127).
  • step S127: Y the water discharger 143 contains the second concentration of bactericidal metal ions. Water discharge is terminated (step S129). Subsequently, the sterilized water generating apparatus 100 ends the operation (step S131).
  • the water discharger 143 is water containing hypochlorous acid. Are discharged for a relatively long time (step S121).
  • concentration of hypochlorous acid is relatively low is hypochlorous acid. This is the same as the instantaneous flow rate of water containing hypochlorous acid when the acid concentration is relatively high.
  • the water discharger 143 discharges water containing a relatively large amount of hypochlorous acid. According to this, even if the concentration of hypochlorous acid is relatively low, the cell membrane 215 of the bacteria 210 can be more reliably destroyed.
  • the instantaneous flow rate of water containing hypochlorous acid is constant, even when the concentration of hypochlorous acid is relatively low, the concentration of hypochlorous acid is maintained at a higher state, Water containing a larger amount of hypochlorous acid can be discharged. Thereby, the cell membrane 215 of the bacteria 210 can be more reliably destroyed.
  • the water discharge unit 143 discharges water containing a relatively large amount of hypochlorous acid by the user operating the operation unit 147. May be executed.
  • the user operates the operation unit 147 so that the water discharge unit 143 discharges water containing a relatively large amount of hypochlorous acid when the concentration of hypochlorous acid is relatively low. Can be selected.
  • the discharge time of water containing bactericidal metal ions when the concentration of hypochlorous acid is relatively low is relatively low in the concentration of hypochlorous acid. It is the same as the discharge time of water containing bactericidal metal ions in the case of high (step S115, step S127).
  • the instantaneous flow rate of water containing bactericidal metal ions when the concentration of hypochlorous acid is relatively low is relatively low in the concentration of hypochlorous acid. It is the same as the instantaneous flow rate of water containing bactericidal metal ions in the high case.
  • the discharge amount of water containing bactericidal metal ions when the concentration of hypochlorous acid is relatively low is the same as the discharge amount of water containing when the concentration of hypochlorous acid is relatively high. is there. Therefore, the rate of increase in the discharge amount of water containing bactericidal metal ions when the concentration of hypochlorous acid is relatively low is the amount of water containing hypochlorous acid when the concentration of hypochlorous acid is relatively low. Is lower than the increase rate of the discharge amount (step S109, step S121, step S115, step S127).
  • the immediate effect of water containing bactericidal metal ions is lower than that of water containing hypochlorous acid. Therefore, while increasing the discharge amount of water containing hypochlorous acid, a certain effect can be obtained, while the discharge amount of water containing hypochlorous acid can be increased even if the discharge amount of water containing bactericidal metal ions is increased. The effect that is obtained when the amount is increased cannot be obtained. According to this, the lifetime of the electrode of the bactericidal metal ion water production
  • FIG. 9 is a schematic perspective view showing a bathroom provided with a sterilized water generator according to this embodiment.
  • FIG. 10 is a schematic enlarged view in which a portion provided with the sterilized water generator is enlarged.
  • the bathroom 300 shown in FIG. 9 includes a washing floor 301, a bathtub 310, a first wall panel 303, a second wall panel 305, and a sterilized water generator 100.
  • the control unit 145 is provided behind the ceiling of the bathroom 300.
  • the installation position of the control unit 145 is not limited to the ceiling behind the bathroom 300, and may be provided integrally with the sterilized water generation apparatus 100.
  • the first wall panel 303 is provided with a bathroom counter 321, a faucet counter 323, and a mirror 325. As shown in FIG. 10, a part of the sterilized water generating apparatus 100 is provided inside the bathroom counter 321.
  • the water discharger 143 extends to the outside of the bathroom counter 321 through the lower surface of the bathroom counter 321.
  • the water discharger 143 discharges at least one of water containing hypochlorous acid and water containing bactericidal metal ions to the wash floor 301 (object).
  • An operation unit 147 is provided outside the bathroom 300.
  • the operation unit 147 may be provided inside the bathroom 300.
  • the operation unit 147 may be provided integrally with the sterilized water generation apparatus 100.
  • the user operates the operation unit 147 so that the water discharge unit 143 discharges water containing a relatively large amount of hypochlorous acid when the concentration of hypochlorous acid is relatively low. Can be selected.
  • the sterilized water generating apparatus 100 is as described above with reference to FIGS. According to this, in the bathroom 300 provided with the sterilized water generating device 100, the concentration of chlorine ions contained in tap water is relatively low, and the concentration of hypochlorous acid is relatively low. Can exhibit a sufficient sterilizing effect.
  • each element included in the sterilized water generating apparatus 100 and the installation form of the sterilized water generating apparatus 100 are not limited to those illustrated, and may be changed as appropriate. it can.
  • the installation position of the sterilized water generating apparatus 100 is not limited to the bathroom 300.
  • the sterilized water generating apparatus 100 may be installed in a system kitchen or a bathroom vanity.
  • each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present invention as long as it includes the features of the present invention.
  • a sterilized water generating device capable of exhibiting a sufficient sterilizing effect even when the concentration of chloride ions contained in tap water is low.
  • 100 sterile water generation device 101 stop water faucet, 103 solenoid valve, 105 pressure regulating valve, 107 check valve, 110 hypochlorous acid-containing water generator, 111 anode, 113 cathode, 121 negative pressure destruction device, 130 bactericidal Metal ion water generation unit, 131, 133 electrode, 141 motor, 143 discharge unit, 145 control unit, 147 operation unit, 151 flow path, 201 substrate, 201a surface, 203 soil, 210 bacteria, 211 nucleus, 213 cytoplasm, 215 Cell membrane, 300mm bathroom, 301mm washroom floor, 303mm first wall panel, 305mm second wall panel, 310mm bathtub, 321mm bathroom counter, 323mm water faucet counter, 325mm mirror

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Domestic Plumbing Installations (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

 水道水を電気分解することで次亜塩素酸を含む水を生成する次亜塩素酸含有水生成部と、水道水を電気分解することで殺菌性金属イオンを前記水道水の中に溶出する電極を有する殺菌性金属イオン水生成部と、前記次亜塩素酸を含む水および前記殺菌性金属イオンを含む水の少なくともいずれかを吐出する吐水部と、前記次亜塩素酸含有水生成部および前記殺菌性金属イオン水生成部の動作を制御する制御部と、を備え、前記次亜塩素酸を含む水の中の前記次亜塩素酸の濃度が相対的に低い場合には、前記殺菌性金属イオンを含む水の中の前記殺菌性金属イオンの濃度は、相対的に高いことを特徴とする除菌水生成装置が提供される。

Description

除菌水生成装置
 本発明の態様は、一般的に、除菌水生成装置に関する。
 例えば、除菌水が滞留しにくい対象物であって多くの汚れが存在している対象物(例えば浴室の洗い場床など)を少量且つ低濃度(人体への影響を抑えた濃度)の除菌水で除菌するためには、次亜塩素酸を含む水と殺菌性金属イオンを含む水とを対象物に吐出することが好ましい。例えば、供給水に殺菌性金属イオンを添加する殺菌性金属添加ユニットと、供給水に次亜塩素酸を添加する次亜塩素酸添加ユニットと、を備えた機能水生成装置がある(特許文献1)。
 一般的に、次亜塩素酸を含む水は、即効性を有し、菌の細胞膜を短時間で破壊することができる一方で、汚れと極めて反応しやすい。そのため、次亜塩素酸を含む水が菌の核を攻撃する前に汚れと反応することで、次亜塩素酸の濃度は低下する。 
 これに対して、殺菌性金属イオンを含む水の即効性は、次亜塩素酸を含む水の即効性よりも低い。そのため、殺菌性金属イオンを含む水は、菌の細胞膜を短時間で破壊することはできない一方で、次亜塩素酸を含む水と比較すると汚れとは反応しにくく、細胞膜を通って細胞質へ進入し核の細胞分裂を抑える。そのため、殺菌性金属イオンの濃度は、長時間にわたって持続する。
 このように、次亜塩素酸を含む水と、殺菌性金属イオンを含む水と、は、互いに短所を補完し合う関係にある。そのため、次亜塩素酸を含む水は、菌の細胞膜を短時間で破壊し、殺菌性金属イオンを含む水は、次亜塩素酸を含む水によって破壊された細胞膜から菌の内部へ進入し、濃度が持続した状態で菌の核を長時間にわたって攻撃することができる。
 しかし、次亜塩素酸の濃度は、水道水の中に含まれる塩素イオンの量に比例する。そのため、塩素イオンの量が少ない場合には、次亜塩素酸の濃度が低くなり、菌の細胞膜の破壊が不十分となることがある。菌の細胞膜の破壊が不十分である場合には、殺菌性金属イオンを含む水が菌の核に到達できず、除菌効果が不十分になるという問題がある。
特開2001-252674号公報
 本発明は、かかる課題の認識に基づいてなされたものであり、水道水の中に含まれる塩素イオンの濃度が低い場合であっても、十分な除菌効果を発揮することができる除菌水生成装置を提供することを目的とする。
 第1の発明は、水道水を電気分解することで次亜塩素酸を含む水を生成する次亜塩素酸含有水生成部と、水道水を電気分解することで殺菌性金属イオンを前記水道水の中に溶出する電極を有する殺菌性金属イオン水生成部と、前記次亜塩素酸を含む水および前記殺菌性金属イオンを含む水の少なくともいずれかを吐出する吐水部と、前記次亜塩素酸含有水生成部および前記殺菌性金属イオン水生成部の動作を制御する制御部と、を備え、前記次亜塩素酸を含む水の中の前記次亜塩素酸の濃度が相対的に低い場合には、前記殺菌性金属イオンを含む水の中の前記殺菌性金属イオンの濃度は、相対的に高いことを特徴とする除菌水生成装置である。
 次亜塩素酸は、水道水の中に含まれる塩素イオンを原料として生成される。そのため、水道水の中に含まれる塩素イオンの量が相対的に少ない場合には、次亜塩素酸の濃度は相対的に低い。一方で、殺菌性金属イオンは、電極が溶出することで生成される。そのため、殺菌性金属イオンの濃度は、水道水の中に含まれる塩素イオンの量には依存しない。但し、殺菌性金属イオンの生成量には、制限がある。
 この除菌水生成装置によれば、水道水の中に含まれる塩素イオンの濃度が相対的に低く、次亜塩素酸の濃度が相対的に低い場合であっても、十分な除菌効果を発揮することができる。一方で、次亜塩素酸の濃度が相対的に高い場合には、殺菌性金属イオンの濃度は、相対的に低い。これにより、十分な除菌効果を確保しつつ、殺菌性金属イオン水生成部の電極の寿命を向上させることができる。
 第2の発明は、第1の発明において、前記次亜塩素酸の濃度が相対的に低い場合には、前記殺菌性金属イオンの濃度の変化率は、相対的に高いことを特徴とする除菌水生成装置である。
 次亜塩素酸の濃度が比較的高い場合には、次亜塩素酸を含む水は、細胞膜を十分に破壊することができる。一方で、汚れがある場合においては、次亜塩素酸を含む水が菌の核を攻撃する効果は、殺菌性金属イオンを含む水が菌の核を攻撃する効果よりも低い。 
 また、次亜塩素酸の濃度が比較的低い場合には、次亜塩素酸を含む水は、細胞膜を十分には破壊できないことがある。この場合には、菌の細胞膜を破壊することが、殺菌性金属イオンを含む水にも求められる。
 この除菌水生成装置によれば、次亜塩素酸の濃度が相対的に低い場合には、殺菌性金属イオンの濃度の変化率が相対的に高いため、次亜塩素酸の濃度が相対的に低い場合であっても、細胞膜を十分に破壊することができる。
 第3の発明は、第1または2の発明において、前記殺菌性金属イオンの濃度は、前記次亜塩素酸の濃度が高い場合であっても所定濃度よりも高いことを特徴とする除菌水生成装置である。
 次亜塩素酸を含む水は、殺菌性金属イオンを含む水と比較すると汚れと反応しやすい。そのため、汚れがある場合においては、次亜塩素酸の濃度が高くとも、次亜塩素酸を含む水が菌の核を攻撃する効果は、殺菌性金属イオンを含む水が菌の核を攻撃する効果よりも低い。また、殺菌性金属イオンの濃度が所定の濃度よりも低い場合には、殺菌性金属イオンを含む水が菌の核を攻撃する効果は低い。
 この除菌水生成装置によれば、殺菌性金属イオンの濃度が所定濃度よりも高いため、次亜塩素酸の濃度が高くとも、殺菌性金属イオンを含む水が菌の核を攻撃する効果が維持される。
 第4の発明は、第1~3のいずれか1つの発明において、前記吐水部は、前記次亜塩素酸の濃度が相対的に低い場合には、相対的に多い量の前記次亜塩素酸を含む水を吐出することを特徴とする除菌水生成装置である。
 この除菌水生成装置によれば、次亜塩素酸の濃度が相対的に低い場合であっても、菌の細胞膜をより確実に破壊することができる。
 第5の発明は、第4の発明において、前記次亜塩素酸の濃度が相対的に低い場合における前記次亜塩素酸を含む水の瞬間流量は、前記次亜塩素酸の濃度が相対的に高い場合における前記次亜塩素酸を含む水の瞬間流量と同じであることを特徴とする除菌水生成装置である。
 この除菌水生成装置によれば、次亜塩素酸を含む水の瞬間流量が一定であるため、次亜塩素酸の濃度が相対的に低い場合であっても、次亜塩素酸の濃度をより高い状態に維持しつつ、より多い量の次亜塩素酸を含む水を吐出することができる。これにより、菌の細胞膜をより確実に破壊することができる。
 第6の発明は、第5の発明において、前記次亜塩素酸の濃度が相対的に低い場合における前記殺菌性金属イオンを含む水の吐出量の増加率は、前記次亜塩素酸の濃度が相対的に低い場合における前記次亜塩素酸を含む水の吐出量の増加率よりも低いことを特徴とする除菌水生成装置である。
 殺菌性金属イオンを含む水の即効性は、次亜塩素酸を含む水の即効性よりも低い。そのため、次亜塩素酸を含む水の吐出量を増加させると一定の効果が得られる一方で、殺菌性金属イオンを含む水の吐出量を増加させても、次亜塩素酸を含む水の吐出量を増加させる場合に得られる効果ほどの効果は得られない。
 この除菌水生成装置によれば、十分な除菌効果を確保しつつ、殺菌性金属イオン水生成部の電極の寿命を向上させることができる。
 第7の発明は、第4~6のいずれか1つの発明において、前記次亜塩素酸の濃度が相対的に低い場合に、相対的に多い量の前記次亜塩素酸を含む水を前記吐水部が吐出するモードを選択可能とされた操作部をさらに備えたことを特徴とする除菌水生成装置である。
 この除菌水生成装置によれば、使用者は、使用者自身の意志に基づいて、次亜塩素酸の濃度が相対的に低い場合に、相対的に多い量の次亜塩素酸を含む水を吐水部から吐出させることができる。これにより、次亜塩素酸の濃度が相対的に低い場合であっても、使用者は、使用者自身の意志に基づいて、菌の細胞膜をより確実に破壊することができる。
 本発明の態様によれば、水道水の中に含まれる塩素イオンの濃度が低い場合であっても、十分な除菌効果を発揮することができる除菌水生成装置が提供される。
本発明の実施の形態にかかる除菌水生成装置を表すブロック図である。 本実施形態の次亜塩素酸含有水生成部の具体例を表す模式的断面図である。 本実施形態の殺菌性金属イオン水生成部の具体例を表す模式的断面図である。 次亜塩素酸を含む水および殺菌性金属イオンを含む水の作用を表す模式的断面図である。 次亜塩素酸を含む水の作用を表す模式的断面図である。 殺菌性金属イオンを含む水の作用を表す模式的断面図である。 次亜塩素酸の濃度と、殺菌性金属イオンの濃度と、の間の関係の一例を例示するグラフ図である。 本実施形態にかかる除菌水生成装置の動作を表すフローチャート図である。 本実施形態にかかる除菌水生成装置を備えた浴室を表す模式的斜視図である。 除菌水生成装置が設けられた部分を拡大した模式的拡大図である。
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 
 図1は、本発明の実施の形態にかかる除菌水生成装置を表すブロック図である。 
 図1では、水路系の要部構成と電気系の要部構成とが併せて表されている。
 本実施形態にかかる除菌水生成装置100は、止水栓101と、電磁弁103と、調圧弁105と、逆止弁107と、次亜塩素酸含有水生成部110と、負圧破壊装置(バキュームブレーカ)121と、殺菌性金属イオン水生成部130と、モータ141と、吐水部143と、制御部145と、操作部147と、を備える。
 止水栓101は、給水管と接続され、手動により開閉可能とされている。例えば、止水栓101は、除菌水生成装置100の取り付け・取り外しや、保守点検の際などに流路151を随時遮断することができる。なお、止水栓101は、除菌水生成装置100に設けられてもよいし、または、除菌水生成装置100とは別体の要素として給水管と除菌水生成装置100との間に設けられてもよい。
 電磁弁103は、止水栓101の下流に設けられている。電磁弁103は、制御部145が出力する信号に基づいて流路151の開閉状態を切り替え、水の供給を制御する。 
 調圧弁105は、電磁弁103の下流に設けられている。調圧弁105は、給水管から供給される水の圧力(給水圧)が高い場合に、給水圧を所定の圧力の範囲に調整する。 
 逆止弁107は、調圧弁105の下流に設けられている。逆止弁107は、流路151の内部の圧力が低下した場合などに、例えば、次亜塩素酸を含む水が次亜塩素酸含有水生成部110から給水管へ向かって逆流したり、殺菌性金属イオンを含む水が殺菌性金属イオン水生成部130から給水管へ向かって逆流することを防止する。
 次亜塩素酸含有水生成部110は、逆止弁107の下流に設けられている。ここで、次亜塩素酸含有水生成部110の具体例について、図面を参照しつつ説明する。
 図2は、本実施形態の次亜塩素酸含有水生成部の具体例を表す模式的断面図である。 
 本具体例の次亜塩素酸含有水生成部110は、陽極111と、陰極113と、を内部に有し、制御部145から出力された通電の制御信号により、陽極111と、陰極113と、の間の空間(流路)を流れる水道水を電気分解することができる。電圧が陽極111と陰極113との間に供給されると、式(1)に表した反応が陰極113において生ずる。

 H+e → 1/2H↑         ・・・(1)
 一方で、電圧が陽極111と陰極113との間に供給されると、式(2)および式(3)に表した反応が陽極111において生ずる。

 2OH → 2e+HO+1/2O↑  ・・・(2)
 Cl → e+1/2Cl        ・・・(3)
 式(3)において発生した塩素は気泡としては存在しにくく、ほとんどの塩素は水に溶解する。そのため、式(3)において発生した塩素については、式(4)に表した反応が生ずる。このようにして、塩素イオンを電気分解することにより次亜塩素酸(HClO)が生成される。その結果、次亜塩素酸含有水生成部110において電気分解された水は、次亜塩素酸を含む水に変化する。

 Cl+HO → HClO+H+Cl  ・・・(4)
 図1に戻って説明すると、負圧破壊装置121は、次亜塩素酸含有水生成部110の下流に設けられている。負圧破壊装置121は、負圧が流路151に発生した場合などに、例えば、殺菌性金属イオンを含む水が殺菌性金属イオン水生成部130から給水管へ向かって逆流することを防止する。あるいは、負圧破壊装置121は、流路151の水抜きの際に外部から空気を取り込み、流路151の水抜きを促進する。
 殺菌性金属イオン水生成部130は、負圧破壊装置121の下流に設けられている。ここで、殺菌性金属イオン水生成部130の具体例について、図面を参照しつつ説明する。
 図3は、本実施形態の殺菌性金属イオン水生成部の具体例を表す模式的断面図である。 本具体例の殺菌性金属イオン水生成部130は、一対の電極131、133を有し、制御部145から出力された通電の制御信号により、一対の電極131、133の間を流れる水を電気分解することができる。一対の電極131、133のいずれか一方は、陽極(アノード)となり、一対の電極131、133のいずれか他方は、陰極(カソード)となる。陽極となる電極は、銀(Ag)または銀を含有する金属からなる。なお、一般的には、一対の電極131、133の両方を銀により形成し、印加電圧の極性を適宜反転させることが望ましい。
 一対の電極131、133の間に電圧が供給されると、陽極側の電極(図3では、電極131)から銀イオンが放出される。放出された銀イオンは、水の流れW1にのって下流側へ流れる水に流入する。これにより、殺菌性金属イオン水生成部130において通電された水は、殺菌性金属イオンを含む水に変化する。殺菌性金属イオンを含む水は、例えば、殺菌作用や除菌作用などを発揮する。
 なお、本実施形態の殺菌性金属イオン水生成部130において、陽極側の電極131から放出される金属イオンは、銀イオンには限定されない。陽極側の電極131から放出される金属イオンは、例えば、銅イオンあるいは亜鉛イオンであってもよい。以下の説明では、陽極側の電極131から放出される金属イオンが銀イオンである場合を例に挙げる。
 図1に戻って説明すると、吐水部143は、殺菌性金属イオン水生成部130の下流に設けられている。吐水部143は、次亜塩素酸を含む水および殺菌性金属イオンを含む水の少なくともいずれかを対象物に吐出する。 
 モータ141は、制御部145から出力された信号に基づいてトルクを発生し、例えば、吐水部143を所定の軸を中心として回転させる。これにより、吐水部143は、次亜塩素酸を含む水および殺菌性金属イオンを含む水の少なくともいずれかをより広い範囲に吐出することができる。 
 操作部147は、例えば使用者の操作に基づいた信号を制御部145に送信する。 
 制御部145は、電磁弁103と、次亜塩素酸含有水生成部110と、殺菌性金属イオン水生成部130と、モータ141と、の動作を制御する。
 本実施形態にかかる除菌水生成装置100では、次亜塩素酸を含む水の中の次亜塩素酸の濃度(以下では、単に「次亜塩素酸の濃度」と称する。)が相対的に低い場合には、殺菌性金属イオンを含む水の中の殺菌性金属イオンの濃度(以下では、単に「殺菌性金属イオンの濃度」と称する。)は、相対的に高い。
 例えば、次亜塩素酸の第1の濃度が次亜塩素酸の第2の濃度よりも低く、殺菌性金属イオンの第3の濃度が殺菌性金属イオンの第4の濃度よりも低い場合において、次亜塩素酸の濃度が第1の濃度のときには、殺菌性金属イオンの濃度は、第4の濃度となる。一方で、次亜塩素酸の濃度が第2の濃度のときには、殺菌性金属イオンの濃度は、第3の濃度となる。
 この詳細について、図面を参照しつつさらに説明する。 
 図4は、次亜塩素酸を含む水および殺菌性金属イオンを含む水の作用を表す模式的断面図である。 
 図5は、次亜塩素酸を含む水の作用を表す模式的断面図である。 
 図6は、殺菌性金属イオンを含む水の作用を表す模式的断面図である。
 図4~図6に表したように、基材(対象物)201の表面201aに汚れ203が付着した状態について説明する。基材201としては、例えば浴室の洗い場床などが挙げられる。汚れ203としては、例えば皮脂やタンパク質などが挙げられる。汚れ203には、菌210が含まれている。菌210は、核(DNA)211と、細胞質213と、細胞膜215と、を有する。
 図5に表したように、次亜塩素酸を含む水は、即効性を有し、菌210の細胞膜215を短時間で破壊することができる。一方で、次亜塩素酸を含む水は、汚れ203と極めて反応しやすい。そのため、次亜塩素酸を含む水が菌210の核211を攻撃する前に汚れ203と反応することで、次亜塩素酸の濃度は低下する。
 これに対して、図6に表したように、殺菌性金属イオン(図6では銀イオン)を含む水の即効性は、次亜塩素酸を含む水の即効性よりも低い。そのため、殺菌性金属イオンを含む水は、菌210の細胞膜215を短時間で破壊することはできない。一方で、殺菌性金属イオンを含む水は、次亜塩素酸を含む水と比較すると汚れ203とは反応しにくく、細胞膜215を通って細胞質213へ進入し核211の細胞分裂を抑える。そのため、殺菌性金属イオンの濃度は、長時間にわたって持続する。
 このように、次亜塩素酸を含む水と、殺菌性金属イオンを含む水と、は、互いに短所を補完し合う関係にある。そのため、図4に表したように、次亜塩素酸を含む水は、菌210の細胞膜215を短時間で破壊し、殺菌性金属イオン(図4では銀イオン)を含む水は、次亜塩素酸を含む水によって破壊された細胞膜215から菌210の内部へ進入し、濃度が持続した状態で菌210の核211を長時間にわたって攻撃することができる。
 ここで、次亜塩素酸の濃度は、水道水の中に含まれる塩素イオン(Cl)の量に比例する。そのため、塩素イオンの量が少ない場合には、次亜塩素酸の濃度が低くなり、菌の細胞膜の破壊が不十分となることがある。菌の細胞膜の破壊が不十分である場合には、殺菌性金属イオンを含む水が菌の核に到達できず、除菌効果が不十分になるという問題がある。
 これに対して、本実施形態にかかる除菌水生成装置100では、次亜塩素酸の濃度が相対的に低い場合には、殺菌性金属イオンの濃度は、相対的に高い。 
 例えば、次亜塩素酸の濃度が相対的に低いと検知された場合には、制御部145は、殺菌性金属イオン水生成部130に供給する電圧を制御し、殺菌性金属イオンの濃度を相対的に高くする。
 例えば、水道水の中に含まれる塩素イオンの濃度は、次亜塩素酸含有水生成部110にかかる電圧を検知することにより検知される。具体的には、次亜塩素酸含有水生成部110の陽極111と、次亜塩素酸含有水生成部110の陰極113と、の間の電圧を検知する。その電圧に基づいて、水道水の水質(例えば、次亜塩素酸含有水生成部110に流入する水の電気伝導度など)を検知する。これにより、水道水の中に含まれる塩素イオンの濃度を検出することができる。制御部145は、検出された塩素イオンの濃度に基づいて殺菌性金属イオン水生成部130に供給する電圧を制御する。尚、殺菌性金属イオン水生成部130にて上記と同様の方法により、水道水の中に含まれる塩素イオンの濃度を検出することもできる。
 なお、本実施形態にかかる除菌水生成装置100は、次亜塩素酸含有水生成部110と、負圧破壊装置121と、の間に設けられたイオン濃度検出部であって、水道水の中に含まれる塩素イオンの濃度を検出するイオン濃度検出部を備えていてもよい。
 図4~図6に関して前述したように、次亜塩素酸は、水道水の中に含まれる塩素イオンを原料として生成される。そのため、水道水の中に含まれる塩素イオンの量が相対的に少ない場合には、次亜塩素酸の濃度は相対的に低い。一方で、殺菌性金属イオンは、電極が溶出することで生成される。そのため、殺菌性金属イオンの濃度は、水道水の中に含まれる塩素イオンの量には依存しない。但し、殺菌性金属イオンの生成量には、制限がある。
 本実施形態にかかる除菌水生成装置100によれば、次亜塩素酸の濃度が相対的に低い場合には、殺菌性金属イオンの濃度は、相対的に高い。これにより、水道水の中に含まれる塩素イオンの濃度が相対的に低く、次亜塩素酸の濃度が相対的に低い場合であっても、十分な除菌効果を発揮することができる。一方で、次亜塩素酸の濃度が相対的に高い場合には、殺菌性金属イオンの濃度は、相対的に低い。これにより、十分な除菌効果を確保しつつ、殺菌性金属イオン水生成部130の電極の寿命を向上させることができる。
 図7は、次亜塩素酸の濃度と、殺菌性金属イオンの濃度と、の間の関係の一例を例示するグラフ図である。 
 図7に表したグラフ図の横軸は、次亜塩素酸の濃度を表す。図7に表したグラフ図の縦軸は、殺菌性金属イオンの濃度を表す。
 次亜塩素酸の濃度が比較的高い場合には、次亜塩素酸を含む水は、細胞膜215を十分に破壊することができる。一方で、次亜塩素酸を含む水が菌210の核211を攻撃する効果は、殺菌性金属イオンを含む水が菌210の核211を攻撃する効果よりも低い。
 これに対して、図7に表したように、本実施形態にかかる除菌水生成装置100では、次亜塩素酸の濃度が相対的に高い場合(高濃度領域の場合)には、殺菌性金属イオンの濃度の変化率は、相対的に低い。これにより、殺菌性金属イオンを含む水が菌210の核211を攻撃する効果を得ることができ、除菌効果を確保することができる。
 次亜塩素酸の濃度が比較的低い場合には、次亜塩素酸を含む水は、細胞膜215を十分には破壊できないことがある。この場合には、菌210の細胞膜215を破壊することが、殺菌性金属イオンを含む水にも求められる。
 これに対して、図7に表したように、本実施形態にかかる除菌水生成装置100では、次亜塩素酸の濃度が相対的に低い場合(低濃度領域の場合)には、殺菌性金属イオンの濃度の変化率は、相対的に高い。これにより、次亜塩素酸の濃度が相対的に低い場合であっても、細胞膜215を十分に破壊することができる。
 図4~図6に関して前述したように、次亜塩素酸を含む水は、殺菌性金属イオンを含む水と比較すると汚れ203と反応しやすい。そのため、次亜塩素酸の濃度が高くとも、次亜塩素酸を含む水が菌210の核211を攻撃する効果は、殺菌性金属イオンを含む水が菌210の核211を攻撃する効果よりも低い。また、殺菌性金属イオンの濃度が所定の濃度よりも低い場合には、殺菌性金属イオンを含む水が菌210の核211を攻撃する効果は低い。
 これに対して、図7に表したように、殺菌性金属イオンの濃度は、次亜塩素酸の濃度が相対的に高い場合であっても所定濃度PDよりも高い。これにより、次亜塩素酸の濃度が高くとも、殺菌性金属イオンの濃度は、所定濃度PDよりも高い濃度に維持される。所定濃度PDは、殺菌性金属イオンを含む水が菌210の核211を攻撃する効果が維持される殺菌性金属イオンの濃度である。そのため、殺菌性金属イオンを含む水が菌210の核211を攻撃する効果が維持される。
 図8は、本実施形態にかかる除菌水生成装置の動作を表すフローチャート図である。 
 除菌水生成装置100が動作を開始する前の状態では、電磁弁103は閉じ、モータ141は停止し、次亜塩素酸含有水生成部110および殺菌性金属イオン水生成部130には電圧は供給されていない。
 除菌水生成装置100は、動作を開始すると(ステップS101)、スイッチが入っているか否かを判断する(ステップS103)。スイッチが入っていない場合には(ステップS103:N)、除菌水生成装置100は、スイッチが入っているか否かを引き続き判断する(ステップS103)。スイッチが入っている場合には(ステップS103:Y)、吐水部143は、次亜塩素酸を含む水を吐出する(ステップS105)。このとき、電磁弁103が開き、モータ141が動作を開始し、次亜塩素酸含有水生成部110に電圧が供給される。
 続いて、除菌水生成装置100は、次亜塩素酸の濃度が所定濃度以上であるか否かを判断する(ステップS107)。次亜塩素酸の濃度が所定濃度以上である場合には(ステップS107:Y)、除菌水生成装置100は、吐水部143が次亜塩素酸を含む水を第1の所定時間吐出したか否かを判断する(ステップS109)。吐水部143が次亜塩素酸を含む水を第1の所定時間吐出してない場合には(ステップS109:N)、除菌水生成装置100は、吐水部143が次亜塩素酸を含む水を第1の所定時間吐出したか否かを引き続き判断する(ステップS109)。吐水部143が次亜塩素酸を含む水を第1の所定時間吐出した場合には(ステップS109:Y)、吐水部143は、次亜塩素酸を含む水の吐出を終了する(ステップS111)。このとき、次亜塩素酸含有水生成部110に対する電圧の供給が停止する。
 続いて、吐水部143は、第1の濃度の殺菌性金属イオンを含む水を吐出する(ステップS113)。このとき、殺菌性金属イオン水生成部130に電圧が供給される。続いて、除菌水生成装置100は、吐水部143が第1の濃度の殺菌性金属イオンを含む水を第3の所定時間吐出したか否かを判断する(ステップS115)。吐水部143が第1の濃度の殺菌性金属イオンを含む水を第3の所定時間吐出してない場合には(ステップS115:N)、除菌水生成装置100は、吐水部143が第1の濃度の殺菌性金属イオンを含む水を第3の所定時間吐出したか否かを引き続き判断する(ステップS115)。吐水部143が第1の濃度の殺菌性金属イオンを含む水を第3の所定時間吐出した場合には(ステップS115:Y)、吐水部143は、第1の濃度の殺菌性金属イオンを含む水の吐出を終了する(ステップS117)。続いて、除菌水生成装置100は、動作を終了する(ステップS119)。
 一方で、次亜塩素酸の濃度が所定濃度以上ではない場合には(ステップS107:N)、除菌水生成装置100は、吐水部143が次亜塩素酸を含む水を第2の所定時間吐出したか否かを判断する(ステップS121)。ここで、第2の所定時間は、第1の所定時間(ステップS109参照)よりも長い。吐水部143が次亜塩素酸を含む水を第2の所定時間吐出してない場合には(ステップS121:N)、除菌水生成装置100は、吐水部143が次亜塩素酸を含む水を第2の所定時間吐出したか否かを引き続き判断する(ステップS121)。吐水部143が次亜塩素酸を含む水を第2の所定時間吐出した場合には(ステップS121:Y)、吐水部143は、次亜塩素酸を含む水の吐出を終了する(ステップS123)。このとき、次亜塩素酸含有水生成部110に対する電圧の供給が停止する。
 続いて、吐水部143は、第2の濃度の殺菌性金属イオンを含む水を吐出する(ステップS125)。ここで、第2の濃度は、第1の濃度(ステップS113参照)よりも高い。このとき、殺菌性金属イオン水生成部130に電圧が供給される。続いて、除菌水生成装置100は、吐水部143が第2の濃度の殺菌性金属イオンを含む水を第3の所定時間吐出したか否かを判断する(ステップS127)。吐水部143が第2の濃度の殺菌性金属イオンを含む水を第3の所定時間吐出してない場合には(ステップS127:N)、除菌水生成装置100は、吐水部143が第2の濃度の殺菌性金属イオンを含む水を第3の所定時間吐出したか否かを引き続き判断する(ステップS127)。吐水部143が第2の濃度の殺菌性金属イオンを含む水を第3の所定時間吐出した場合には(ステップS127:Y)、吐水部143は、第2の濃度の殺菌性金属イオンを含む水の吐出を終了する(ステップS129)。続いて、除菌水生成装置100は、動作を終了する(ステップS131)。
 このように、本実施形態にかかる除菌水生成装置100では、次亜塩素酸の濃度が相対的に低い場合には(ステップS107:N)、吐水部143は、次亜塩素酸を含む水を相対的に長い時間吐出する(ステップS121)。また、本実施形態にかかる除菌水生成装置100では、次亜塩素酸の濃度が相対的に低い場合における次亜塩素酸を含む水の瞬間流量(単位時間当たりの流量)は、次亜塩素酸の濃度が相対的に高い場合における次亜塩素酸を含む水の瞬間流量と同じである。
 これにより、次亜塩素酸の濃度が相対的に低い場合には、吐水部143は、相対的に多い量の次亜塩素酸を含む水を吐出する。これによれば、次亜塩素酸の濃度が相対的に低い場合であっても、菌210の細胞膜215をより確実に破壊することができる。また、次亜塩素酸を含む水の瞬間流量が一定であるため、次亜塩素酸の濃度が相対的に低い場合であっても、次亜塩素酸の濃度をより高い状態に維持しつつ、より多い量の次亜塩素酸を含む水を吐出することができる。これにより、菌210の細胞膜215をより確実に破壊することができる。
 例えば、次亜塩素酸の濃度が相対的に低い場合において、相対的に多い量の次亜塩素酸を含む水を吐水部143が吐出することは、使用者が操作部147を操作することで実行されてもよい。例えば、使用者は、操作部147を操作することで、次亜塩素酸の濃度が相対的に低い場合において、相対的に多い量の次亜塩素酸を含む水を吐水部143が吐出するモードを選択することができる。
 また、本実施形態にかかる除菌水生成装置100では、次亜塩素酸の濃度が相対的に低い場合における殺菌性金属イオンを含む水の吐出時間は、次亜塩素酸の濃度が相対的に高い場合における殺菌性金属イオンを含む水の吐出時間と同じである(ステップS115、ステップS127)。また、本実施形態にかかる除菌水生成装置100では、次亜塩素酸の濃度が相対的に低い場合における殺菌性金属イオンを含む水の瞬間流量は、次亜塩素酸の濃度が相対的に高い場合における殺菌性金属イオンを含む水の瞬間流量と同じである。
 これにより、次亜塩素酸の濃度が相対的に低い場合における殺菌性金属イオンを含む水の吐出量は、次亜塩素酸の濃度が相対的に高い場合におけるを含む水の吐出量と同じである。そのため、次亜塩素酸の濃度が相対的に低い場合における殺菌性金属イオンを含む水の吐出量の増加率は、次亜塩素酸の濃度が相対的に低い場合における次亜塩素酸を含む水の吐出量の増加率よりも低い(ステップS109、ステップS121、ステップS115、ステップS127)。
 図4~図6に関して前述したように、殺菌性金属イオンを含む水の即効性は、次亜塩素酸を含む水の即効性よりも低い。そのため、次亜塩素酸を含む水の吐出量を増加させると一定の効果が得られる一方で、殺菌性金属イオンを含む水の吐出量を増加させても、次亜塩素酸を含む水の吐出量を増加させる場合に得られる効果ほどの効果は得られない。 
 これによれば、十分な除菌効果を確保しつつ、殺菌性金属イオン水生成部130の電極の寿命を向上させることができる。
 図9は、本実施形態にかかる除菌水生成装置を備えた浴室を表す模式的斜視図である。 図10は、除菌水生成装置が設けられた部分を拡大した模式的拡大図である。
 図9に表した浴室300は、洗い場床301と、浴槽310と、第1の壁パネル303と、第2の壁パネル305と、除菌水生成装置100と、を備える。図9に表した浴室300では、制御部145は、浴室300の天井裏に設けられている。但し、制御部145の設置位置は、浴室300の天井裏には限定されず、除菌水生成装置100と一体的に設けられていてもよい。
 第1の壁パネル303には、浴室カウンタ321と、水栓カウンタ323と、鏡325と、が設けられている。図10に表したように、除菌水生成装置100の一部は、浴室カウンタ321の内部に設けられている。吐水部143は、浴室カウンタ321の下面を通して浴室カウンタ321の外部に延びている。吐水部143は、次亜塩素酸を含む水および殺菌性金属イオンを含む水の少なくともいずれかを洗い場床301(対象物)に吐出する。
 浴室300の外側には、操作部147が設けられている。操作部147は、浴室300の内側に設けられていてもよい。あるいは、操作部147は、除菌水生成装置100と一体的に設けられていてもよい。例えば、使用者は、操作部147を操作することで、次亜塩素酸の濃度が相対的に低い場合において、相対的に多い量の次亜塩素酸を含む水を吐水部143が吐出するモードを選択することができる。
 除菌水生成装置100は、図1~図8に関して前述した通りである。これによれば、除菌水生成装置100を備えた浴室300において、水道水の中に含まれる塩素イオンの濃度が相対的に低く、次亜塩素酸の濃度が相対的に低い場合であっても、十分な除菌効果を発揮することができる。
 以上、本発明の実施の形態について説明した。しかし、本発明はこれらの記述に限定されるものではない。前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、除菌水生成装置100などが備える各要素の形状、寸法、材質、配置などや除菌水生成装置100の設置形態などは、例示したものに限定されるわけではなく適宜変更することができる。 
 除菌水生成装置100の設置位置は、浴室300には限定されない。例えば、除菌水生成装置100は、システムキッチンや洗面化粧台などに設置されてもよい。 
 また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
 本発明の態様によれば、水道水の中に含まれる塩素イオンの濃度が低い場合であっても、十分な除菌効果を発揮することができる除菌水生成装置が提供される。
 100 除菌水生成装置、 101 止水栓、 103 電磁弁、 105 調圧弁、 107 逆止弁、 110 次亜塩素酸含有水生成部、 111 陽極、 113 陰極、 121 負圧破壊装置、 130 殺菌性金属イオン水生成部、 131、133 電極、 141 モータ、 143 吐水部、 145 制御部、 147 操作部、 151 流路、 201 基材、 201a 表面、 203 汚れ、 210 菌、 211 核、 213 細胞質、 215 細胞膜、 300 浴室、 301 洗い場床、 303 第1の壁パネル、 305 第2の壁パネル、 310 浴槽、 321 浴室カウンタ、 323 水栓カウンタ、 325 鏡

Claims (7)

  1.  水道水を電気分解することで次亜塩素酸を含む水を生成する次亜塩素酸含有水生成部と、
     水道水を電気分解することで殺菌性金属イオンを前記水道水の中に溶出する電極を有する殺菌性金属イオン水生成部と、
     前記次亜塩素酸を含む水および前記殺菌性金属イオンを含む水の少なくともいずれかを吐出する吐水部と、
     前記次亜塩素酸含有水生成部および前記殺菌性金属イオン水生成部の動作を制御する制御部と、
     を備え、
     前記次亜塩素酸を含む水の中の前記次亜塩素酸の濃度が相対的に低い場合には、前記殺菌性金属イオンを含む水の中の前記殺菌性金属イオンの濃度は、相対的に高いことを特徴とする除菌水生成装置。
  2.  前記次亜塩素酸の濃度が相対的に低い場合には、前記殺菌性金属イオンの濃度の変化率は、相対的に高いことを特徴とする請求項1記載の除菌水生成装置。
  3.  前記殺菌性金属イオンの濃度は、前記次亜塩素酸の濃度が高い場合であっても所定濃度よりも高いことを特徴とする請求項1記載の除菌水生成装置。
  4.  前記吐水部は、前記次亜塩素酸の濃度が相対的に低い場合には、相対的に多い量の前記次亜塩素酸を含む水を吐出することを特徴とする請求項1記載の除菌水生成装置。
  5.  前記次亜塩素酸の濃度が相対的に低い場合における前記次亜塩素酸を含む水の瞬間流量は、前記次亜塩素酸の濃度が相対的に高い場合における前記次亜塩素酸を含む水の瞬間流量と同じであることを特徴とする請求項4記載の除菌水生成装置。
  6.  前記次亜塩素酸の濃度が相対的に低い場合における前記殺菌性金属イオンを含む水の吐出量の増加率は、前記次亜塩素酸の濃度が相対的に低い場合における前記次亜塩素酸を含む水の吐出量の増加率よりも低いことを特徴とする請求項5記載の除菌水生成装置。
  7.  前記次亜塩素酸の濃度が相対的に低い場合に、相対的に多い量の前記次亜塩素酸を含む水を前記吐水部が吐出するモードを選択可能とされた操作部をさらに備えたことを特徴とする請求項4記載の除菌水生成装置。
PCT/JP2016/056134 2015-03-20 2016-02-29 除菌水生成装置 WO2016152398A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680011605.8A CN107250054A (zh) 2015-03-20 2016-02-29 除菌水生成装置
US15/559,511 US20180117197A1 (en) 2015-03-20 2016-02-29 Bacteria removing water generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-058190 2015-03-20
JP2015058190A JP6617864B2 (ja) 2015-03-20 2015-03-20 除菌水生成装置

Publications (1)

Publication Number Publication Date
WO2016152398A1 true WO2016152398A1 (ja) 2016-09-29

Family

ID=56978388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056134 WO2016152398A1 (ja) 2015-03-20 2016-02-29 除菌水生成装置

Country Status (4)

Country Link
US (1) US20180117197A1 (ja)
JP (1) JP6617864B2 (ja)
CN (1) CN107250054A (ja)
WO (1) WO2016152398A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210419379U (zh) * 2019-06-25 2020-04-28 慈溪市天泉电器科技有限公司 一种次氯酸水消毒机
WO2024180996A1 (ja) * 2023-02-28 2024-09-06 Toto株式会社 建物内における水道水が使用される設備

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252674A (ja) * 2000-03-09 2001-09-18 Toto Ltd 機能水生成装置
JP2002263649A (ja) * 2001-03-05 2002-09-17 Toto Ltd 殺菌水生成装置
JP2005205343A (ja) * 2004-01-23 2005-08-04 Nippon Savcor Kk 液体の電解防汚処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037691A (ja) * 1998-07-23 2000-02-08 Toto Ltd 電解水生成装置
JP2000125661A (ja) * 1998-10-23 2000-05-09 Toto Ltd 切り花展示装置
JP2001061694A (ja) * 1999-08-30 2001-03-13 Toto Ltd 浴槽洗浄装置
US7891046B2 (en) * 2006-02-10 2011-02-22 Tennant Company Apparatus for generating sparged, electrochemically activated liquid
CN101410192B (zh) * 2006-02-10 2010-12-08 坦南特公司 用于产生、施加和中和电化学活化液体的方法和装置
JP5601570B2 (ja) * 2009-08-06 2014-10-08 Toto株式会社 衛生洗浄装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252674A (ja) * 2000-03-09 2001-09-18 Toto Ltd 機能水生成装置
JP2002263649A (ja) * 2001-03-05 2002-09-17 Toto Ltd 殺菌水生成装置
JP2005205343A (ja) * 2004-01-23 2005-08-04 Nippon Savcor Kk 液体の電解防汚処理方法

Also Published As

Publication number Publication date
CN107250054A (zh) 2017-10-13
US20180117197A1 (en) 2018-05-03
JP2016175035A (ja) 2016-10-06
JP6617864B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
JP3619828B2 (ja) 電解用電極及びその製造方法及び電解用電極を用いた電解方法及び電解水生成装置
US10273668B2 (en) Automatic water faucet device
KR101896201B1 (ko) 살균세척수 생성 시스템이 장착된 싱크대
US10501356B2 (en) Hospital ozone faucet
US10060107B2 (en) Water faucet device
JP2003266073A (ja) 電解水生成装置
WO2016152398A1 (ja) 除菌水生成装置
EP3138971A1 (en) Sanitary washing device
JP5595214B2 (ja) 殺菌水供給システム
JP3819860B2 (ja) オゾン生成装置
JP6596862B2 (ja) 除菌水生成装置
JP2006207328A (ja) 洗浄水生成装置
KR20160062685A (ko) 살균수기 및 살균수기를 포함하는 비데
KR101561303B1 (ko) 전극살균모듈을 이용한 식기세척기
CN112524802A (zh) 用于热水器的清洗装置及热水器
JP2001090145A (ja) 便器の殺菌装置および便器の殺菌方法
JP2008136980A (ja) 電解水供給装置および電解水供給システム
JP2017127378A (ja) 洗面化粧台
JP3806626B2 (ja) 次亜塩素酸発生装置
KR100830147B1 (ko) 전해셀과 초음파를 이용한 자외선복합살균기
JP6751888B2 (ja) 除菌水生成装置
JP2017172123A (ja) 除菌水吐出装置
JP6988564B2 (ja) 電解水吐水装置
EP4400481A1 (en) Electrolytic liquid generation system and control system
JP2008168236A (ja) 電解水生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15559511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768301

Country of ref document: EP

Kind code of ref document: A1