WO2023029523A1 - 肉替代物及其制备方法、测试制冷设备性能的方法 - Google Patents

肉替代物及其制备方法、测试制冷设备性能的方法 Download PDF

Info

Publication number
WO2023029523A1
WO2023029523A1 PCT/CN2022/089034 CN2022089034W WO2023029523A1 WO 2023029523 A1 WO2023029523 A1 WO 2023029523A1 CN 2022089034 W CN2022089034 W CN 2022089034W WO 2023029523 A1 WO2023029523 A1 WO 2023029523A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrageenan
sodium alginate
volume ratio
xanthan gum
mixture
Prior art date
Application number
PCT/CN2022/089034
Other languages
English (en)
French (fr)
Inventor
孙秀娇
尹利昂
冯秋凤
姜波
刘浩泉
朱小兵
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023029523A1 publication Critical patent/WO2023029523A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/04Production of frozen sweets, e.g. ice-cream
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/12Agar or agar-agar, i.e. mixture of agarose and agaropectin; Derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder

Definitions

  • the invention relates to the technical field of refrigeration equipment, in particular to a meat substitute used for performance testing of refrigeration equipment, a preparation method thereof, and a method for testing the performance of refrigeration equipment using the meat substitute.
  • Freezing and fresh-keeping technology of refrigerators and similar refrigerating equipments are attracting more and more attention.
  • the freezing evaluation of new technologies is relatively diverse.
  • the reproducibility of product juice loss data is not ideal.
  • the juice freezing loss of livestock and poultry meat is usually used as the basic test index for freshness preservation. Due to differences in meat origin, variety, location, purchase time, operation time, and operation and handling methods, the test results of juice loss rate will be different and the parallelism will be poor.
  • the juice loss rate is small, and the differences in the frozen freshness of different technologies and their applied products cannot be clearly represented in the data, resulting in The shortcomings of the evaluation of the ability of freezing and fresh-keeping.
  • the loss rate of frozen juice of livestock and poultry meat is usually 2% to 3%, and the difference in lateral ratio logarithmic value is small.
  • gelatin As a single food colloid, gelatin generally has defects such as poor elasticity, brittle gel and severe dehydration. In particular, the content of subunit amino acids in the gelatin standard substance is low, and the triple helix structure is less formed, resulting in the gelatin colloid being brittle, brittle, soft and difficult to handle. Moreover, gelatin standard substances are easily affected by factors such as pH value, temperature concentration, etc., and have poor stability. Therefore, using gelatin as a sample for refrigeration equipment performance testing is not only difficult for users to operate, but also the accuracy of test results is low.
  • An object of the first aspect of the present invention is to overcome at least one defect of the prior art and provide a meat substitute with good elasticity, good stability, strong repeatability and easy operation, so that it is more suitable for use in refrigeration equipment Performance Testing.
  • the object of the second aspect of the present invention is to provide a method for preparing a meat substitute for performance testing of refrigeration equipment.
  • the object of the second aspect of the present invention is to provide a method for testing the performance of refrigeration equipment using meat substitutes.
  • the present invention provides a meat substitute for performance testing of refrigeration equipment, wherein
  • the meat substitute is a complex colloid formed of at least one of xanthan gum, agar, and sodium alginate, carrageenan, and a solvent.
  • the meat substitute is a compound colloid formed by xanthan gum, carrageenan and solvent; wherein
  • the volume ratio of carrageenan is 1%-3%, and that of xanthan gum is 0.5%-3%.
  • the meat substitute is a complex colloid formed of xanthan gum, agar, carrageenan and solvent; wherein
  • the volume ratio of the carrageenan is 1%-3%
  • the volume ratio of the xanthan gum is 0.5%-3%
  • the volume ratio of the agar is 0.1%-3%.
  • the meat substitute is a compound colloid formed by xanthan gum, sodium alginate, carrageenan and solvent; wherein
  • the volume ratio of carrageenan is 1%-3%, the volume ratio of xanthan gum is 0.5%-3%, and the volume ratio of sodium alginate is 0.17%-1%.
  • the meat substitute is a complex colloid formed of sodium alginate, carrageenan and solvent; wherein
  • the volume ratio of the carrageenan is 1.5% to 2.5%, and the volume ratio of the sodium alginate is 1% to 2%.
  • the present invention also provides a method for preparing a meat substitute for refrigeration equipment performance testing, which includes:
  • the liquid jelly is cooled to set, thereby forming the meat substitute.
  • selecting at least one of xanthan gum, agar, and sodium alginate to mix with carrageenan and a solvent to form a colloidal mixture includes:
  • the step of heating the colloidal mixture into a liquid jelly comprises:
  • the colloidal mixture formed is boiled in water at 100° C. until the colloidal mixture forms a uniform liquid jelly;
  • the volume ratio between the carrageenan and the colloid mixture is 1%-3%, and the volume ratio between the xanthan gum and the colloid mixture is 0.5%-3%.
  • selecting at least one of xanthan gum, agar, and sodium alginate to mix with carrageenan and a solvent to form a colloidal mixture includes:
  • the step of heating the colloidal mixture into a liquid jelly comprises:
  • the colloidal mixture formed is boiled in water at 100° C. until the colloidal mixture forms a uniform liquid jelly;
  • the volume ratio between carrageenan and the colloid mixture is 1% to 3%
  • the volume ratio between xanthan gum and the colloid mixture is 0.5% to 3%
  • the volume ratio between agar and the colloid mixture 0.1% to 3%.
  • selecting at least one of xanthan gum, agar, and sodium alginate to mix with carrageenan and a solvent to form a colloidal mixture includes:
  • the step of heating the colloidal mixture into a liquid jelly comprises:
  • the colloidal mixture formed is boiled in water at 100° C. until the colloidal mixture forms a uniform liquid jelly;
  • the volume ratio between carrageenan and the colloid mixture is 1% to 3%, the volume ratio between xanthan gum and the colloid mixture is 0.5% to 3%, and the volume ratio between sodium alginate and the colloid mixture The volume ratio is 0.17% to 1%.
  • selecting at least one of xanthan gum, agar, and sodium alginate to mix with carrageenan and a solvent to form a colloidal mixture includes:
  • the step of heating the colloidal mixture into a liquid jelly comprises:
  • the colloidal mixture formed is boiled in water at 100° C. until the colloidal mixture forms a uniform liquid jelly;
  • the volume ratio between the carrageenan and the colloid mixture is 1.5%-2.5%, and the volume ratio between the sodium alginate and the colloid mixture is 1%-2%.
  • selecting at least one of xanthan gum, agar, and sodium alginate to mix with carrageenan and a solvent to form a colloidal mixture includes:
  • the step of heating the colloidal mixture into a liquid jelly comprises:
  • the colloidal mixture formed is sterilized in a high-pressure steam sterilizer with a temperature of 100°C to 121°C and a pressure of 103.4kPa to form a uniform liquid jelly;
  • the volume ratio between carrageenan and the colloid mixture is 1% to 3%, the volume ratio between xanthan gum and the colloid mixture is 0.5% to 3%, and the volume ratio between sodium alginate and the colloid mixture The volume ratio is 0.17% to 1%.
  • selecting at least one of xanthan gum, agar, and sodium alginate to mix with carrageenan and a solvent to form a colloidal mixture includes:
  • the step of heating the colloidal mixture into a liquid jelly comprises:
  • the colloidal mixture formed is sterilized in a high-pressure steam sterilizer with a temperature of 100°C to 121°C and a pressure of 103.4kPa to form a uniform liquid jelly;
  • the volume ratio between the carrageenan and the colloid mixture is 1.5%-2.5%, and the volume ratio between the sodium alginate and the colloid mixture is 1%-2%.
  • the temperature of the water used to soak the sodium alginate is 80-100°C.
  • Sodium alginate is soaked in water for 2 to 24 hours.
  • the colloid mixture is sterilized in a high-pressure steam sterilizer at a temperature of 100° C. to 121° C. and a pressure of 103.4 kPa for 10 to 15 minutes.
  • the colloidal mixture is boiled in water at 100°C for 0.5-1 hour.
  • the temperature of the water used as the solvent is 40-100°C.
  • the present invention also provides a method for testing the performance of refrigeration equipment using the meat substitute prepared by the preparation method described in any of the above schemes, which includes:
  • the performance of the refrigeration equipment was evaluated according to the juice loss rate.
  • the present invention also provides a method for testing the performance of refrigeration equipment using the meat substitute prepared by the preparation method described in any of the above schemes, which includes:
  • the performance of the refrigeration equipment was evaluated according to the juice loss rate.
  • the present invention proceeds from the essence that meat belongs to a kind of glue, selects at least one of xanthan gum, agar and sodium alginate to form a compound colloid with carrageenan and solvent, and according to the properties and interaction force of the colloid itself, the gel-forming characteristics It is more stable and not easily affected by external conditions. Therefore, it overcomes the defects of a single colloid, and the formed compound colloid has many advantages such as good elasticity, good stability, low dehydration, good repeatability, and easy operation. Tests have proved that the freezing curve of the formed compound colloid conforms to the freezing law of meat, so it can perfectly replace meat as a sample for performance evaluation of refrigeration equipment, and solve the problem of using meat as a sample for performance testing of refrigeration equipment in the prior art. The difference in juice loss is small, the problems of poor parallelism, and the problems of difficult operation and low accuracy when gelatin is used as a test sample in the prior art.
  • the present invention uses polysaccharide colloids such as carrageenan, sodium alginate, and agar, and microbial colloids such as xanthan gum as raw materials, covering the common range of food colloids and having certain universality.
  • polysaccharide colloids such as carrageenan, sodium alginate, and agar
  • microbial colloids such as xanthan gum
  • Fig. 1 and Fig. 2 are the freezing speed graphs of the meat substitute prepared according to one embodiment of the present invention at the first freezing speed gear and the second freezing speed gear;
  • FIG. 3 is a schematic flow chart of a method for preparing a meat substitute for refrigeration equipment performance testing according to an embodiment of the present invention
  • FIG. 4 is a schematic flow chart of a method for testing the performance of refrigeration equipment using meat substitutes according to an embodiment of the present invention
  • Fig. 5 is a schematic flowchart of a method for testing the performance of a refrigeration device using a meat substitute according to another embodiment of the present invention.
  • the invention firstly provides a meat substitute for performance testing of refrigeration equipment.
  • the meat substitute provided by the present invention is a complex colloid formed of at least one of xanthan gum, agar, and sodium alginate, carrageenan, and a solvent.
  • the present invention proceeds from the essence that meat belongs to a kind of glue, selects at least one of xanthan gum, agar and sodium alginate to form a compound colloid with carrageenan and solvent, and according to the properties and interaction force of the colloid itself, the gel-forming characteristics It is more stable and not easily affected by external conditions. Therefore, it overcomes the defects of a single colloid, and the formed compound colloid has many advantages such as good elasticity, good stability, low dehydration, good repeatability, and easy operation. Tests have proved that the freezing curve of the formed compound colloid conforms to the freezing law of meat, so it can perfectly replace meat as a sample for performance evaluation of refrigeration equipment, and solve the problem of using meat as a sample for performance testing of refrigeration equipment in the prior art. The difference in juice loss is small, the problems of poor parallelism, and the problems of difficult operation and low accuracy when gelatin is used as a test sample in the prior art.
  • the present invention uses polysaccharide colloids such as carrageenan, sodium alginate, and agar, and microbial colloids such as xanthan gum as raw materials, covering the common range of food colloids and having certain universality.
  • polysaccharide colloids such as carrageenan, sodium alginate, and agar
  • microbial colloids such as xanthan gum
  • the meat substitute can be a complex colloid formed of xanthan gum, carrageenan and solvent.
  • carrageenan with good gelling strength and xanthan gum with good thickening, stability, thixotropy and emulsification properties are selected as raw materials to form a compound colloid, which overcomes the influence of factors such as poor strength of a single colloid operational disadvantages.
  • xanthan gum is a soft, pasty substance that is not easy to shape.
  • Carrageenan is a slightly hard solid-like substance, but it is brittle and difficult to handle.
  • the meat substitute prepared by mixing xanthan gum and carrageenan in the present invention is a fine and elastic solid substance, not fragile and easy to handle, so it is more suitable for evaluating the performance of refrigeration equipment as a meat substitute.
  • the volume ratio of carrageenan is 1%-3%, and the volume ratio of xanthan gum is 0.5%-3%.
  • the properties of the compound rubber with this volume ratio are more stable, and the juice loss rate is more obvious, which is more conducive to evaluating the performance of refrigeration equipment.
  • the meat substitute of the present invention can be a complex colloid formed of xanthan gum, agar, carrageenan and solvent.
  • Xanthan gum is a soft, pasty substance that is not easy to shape.
  • Carrageenan is a slightly hard solid-like substance, but it is brittle and difficult to handle.
  • Agar is used as a thickener and coagulant, and its hardness is very hard, which can increase the hardness of meat substitutes.
  • the meat substitute prepared by mixing xanthan gum, carrageenan and agar in the present invention is a fine, elastic, and hard solid substance, which is not fragile and easy to handle, so it is more suitable as a meat substitute for the performance of refrigeration equipment Make an evaluation.
  • the volume ratio of carrageenan is 1%-3%
  • the volume ratio of xanthan gum is 0.5%-3%
  • the volume ratio of agar is 0.1%-3%.
  • the properties of the compound rubber with this volume ratio are more stable, and the juice loss rate is more appropriate, which is more conducive to evaluating the performance of refrigeration equipment.
  • Table 1 shows the juice loss data measured under different conditions of the first freezing speed gear and the second freezing speed gear of the meat substitute prepared by using the above volume ratio of carrageenan, xanthan gum and agar.
  • Table 1 shows the juice loss data measured under different conditions of the first freezing speed gear and the second freezing speed gear of the meat substitute prepared by using the above volume ratio of carrageenan, xanthan gum and agar.
  • three groups of meat substitutes were selected for the first freezing speed gear and the second freezing speed gear respectively for parallel testing.
  • Fig. 1 and Fig. 2 are respectively the freezing speed curves of the meat substitute prepared by using the above-mentioned volume ratio of carrageenan, xanthan gum and agar at the first freezing speed gear and the second freezing speed gear.
  • the meat substitute of the present invention can be a complex colloid formed of xanthan gum, sodium alginate, carrageenan and solvent.
  • Xanthan gum is a soft, pasty substance that is not easy to shape.
  • Carrageenan is a slightly hard solid-like substance, but it is brittle and difficult to handle.
  • the meat substitute prepared by mixing xanthan gum and carrageenan in the present invention is a fine, elastic and hard solid substance, which is not fragile and easy to operate.
  • Sodium alginate, as food glue of sugars can increase the elasticity and hardness of the formed meat substitute, and avoid excessive loss rate when xanthan gum and carrageenan are used alone for juice loss test.
  • the volume ratio of carrageenan is 1%-3%
  • the volume ratio of xanthan gum is 0.5%-3%
  • the volume ratio of sodium alginate is 0.17%-1%.
  • the properties of the compound rubber with this volume ratio are more stable, and the juice loss rate is more appropriate, which is more conducive to evaluating the performance of refrigeration equipment.
  • the meat substitute of the present invention may be a complex colloid formed of sodium alginate, carrageenan and solvent.
  • Carrageenan is a slightly hard solid-like substance, but it is brittle and difficult to handle.
  • Sodium alginate is a soft liquid jelly, which is not easy to handle.
  • the meat substitute prepared by mixing carrageenan and sodium alginate in the present invention is a solid substance with elasticity and hardness, which is not fragile and easy to operate.
  • electrolytes can be added and the amount of the regulator can be adjusted to adjust the gel strength, so that the formed meat substitute can meet the requirements more.
  • the volume ratio of carrageenan is 1.5%-2.5%, and the volume ratio of sodium alginate is 1%-2%.
  • the properties of the compound rubber with this volume ratio are more stable, and the juice loss rate is more appropriate, which is more conducive to evaluating the performance of refrigeration equipment.
  • FIG. 3 is a schematic flowchart of a method for preparing a meat substitute for performance testing of refrigeration equipment according to an embodiment of the present invention.
  • the preparation method of the meat substitute of the present invention comprises:
  • Step S10 selecting at least one of xanthan gum, agar, and sodium alginate to mix evenly with carrageenan and a solvent to form a colloidal mixture;
  • Step S20 heating the colloidal mixture into a liquid jelly
  • Step S30 cooling the liquid jelly to make it solidify, thereby forming a meat substitute.
  • the step S10 of selecting at least one of xanthan gum, agar, and sodium alginate to mix evenly with carrageenan and a solvent to form a colloidal mixture may specifically include:
  • the step S20 of heating the colloidal mixture into a liquid jelly may specifically include:
  • the formed colloidal mixture was boiled in water at 100° C. until the colloidal mixture formed a uniform liquid jelly.
  • the temperature of the water solvent is preferably 40-100° C., so that the carrageenan is more easily soluble in water to form a suspension.
  • an appropriate amount of calcium chloride can also be added to the water solvent.
  • Ultrasound, magnetic field, mechanical whipping and other methods can be used to promote the mixing of carrageenan suspension and xanthan gum more evenly.
  • the duration of boiling the compounded rubber in water at 100°C can be 0.5-1 hour, so that the compounded rubber becomes a uniform liquid jelly.
  • a mold of the desired size and shape can be selected, and the liquid jelly is poured into the mold to cool.
  • the carrageenan molecules form helices; as the temperature further decreases, the helices formed by the carrageenan molecules aggregate to form a spatial network structure, which forms an interspersed network with the cooled xanthan gum structure, thereby solidifying into a gel.
  • the volume ratio between the carrageenan and the colloid mixture is 1%-3%, and the volume ratio between the xanthan gum and the colloid mixture is 0.5%-3%.
  • the step S10 of selecting at least one of xanthan gum, agar, and sodium alginate to mix evenly with carrageenan and a solvent to form a colloidal mixture may specifically include:
  • the step S20 of heating the colloidal mixture into a liquid jelly may specifically include:
  • the formed colloidal mixture was boiled in water at 100° C. until the colloidal mixture formed a uniform liquid jelly.
  • the temperature of the water solvent is preferably 40-100° C., so that the carrageenan is more easily soluble in water to form a suspension.
  • an appropriate amount of calcium chloride can also be added to the water solvent.
  • Ultrasound, magnetic field, mechanical whipping and other methods can be used to promote the mixing of carrageenan suspension, xanthan gum and agar more evenly.
  • the time for boiling the compound gel in water at 100°C can be 0.5-1 hour, and the agar as a thickener and coagulant can promote the carrageenan suspension and xanthan gum to become a uniform liquid jelly.
  • a mold of the desired size and shape can be selected, and the liquid jelly is poured into the mold to cool.
  • the carrageenan molecules form helices; as the temperature further decreases, the helices formed by the carrageenan molecules aggregate to form a spatial network structure, which forms an interspersed network with the cooled xanthan gum structure, thereby solidifying into a gel.
  • the volume ratio between carrageenan and colloid mixture is 1% to 3%
  • the volume ratio between xanthan gum and colloid mixture is 0.5% to 3%
  • the volume ratio between agar and colloid mixture is 0.1% ⁇ 3%.
  • the step S10 of selecting at least one of xanthan gum, agar, and sodium alginate to mix with carrageenan and solvent to form a colloidal mixture may specifically include:
  • the step S20 of heating the colloidal mixture into a liquid jelly may specifically include:
  • the formed colloidal mixture was boiled in water at 100° C. until the colloidal mixture formed a uniform liquid jelly.
  • the temperature of the water used to soak the sodium alginate is 80-100°C.
  • Sodium alginate is soaked in water for 2 to 24 hours until the solid particles completely disappear and form a uniform liquid gel state.
  • the temperature of the water solvent is preferably 40-100° C., so that the carrageenan is more easily soluble in water to form a suspension.
  • an appropriate amount of calcium chloride can also be added to the water solvent. Ultrasound, magnetic field, mechanical whipping and other methods can be used to promote the mixing of carrageenan suspension, xanthan gum and sodium alginate more uniformly.
  • the time for the compound glue to be boiled in water at 100°C can be 0.5-1 hour.
  • a mold of the desired size and shape can be selected, and the liquid jelly is poured into the mold to cool. As the temperature decreases, carrageenan and sodium alginate gel under the electrostatic interaction, and form a complex colloid with an interspersed network structure with xanthan gum.
  • the volume ratio between carrageenan and colloid mixture is 1% to 3%
  • the volume ratio between xanthan gum and colloid mixture is 0.5% to 3%
  • the volume ratio between sodium alginate and colloid mixture is 0.17% to 1%.
  • the step S10 of selecting at least one of xanthan gum, agar, and sodium alginate to mix evenly with carrageenan and a solvent to form a colloidal mixture may specifically include:
  • the step S20 of heating the colloidal mixture into a liquid jelly may specifically include:
  • the formed colloidal mixture was boiled in water at 100° C. until the colloidal mixture formed a uniform liquid jelly.
  • the temperature of the water used to soak the sodium alginate is 80-100°C.
  • Sodium alginate is soaked in water for 2 to 24 hours until the solid particles completely disappear and form a uniform liquid gel state.
  • the temperature of the water solvent is preferably 40-100° C., so that the carrageenan is more easily soluble in water to form a suspension.
  • an appropriate amount of calcium chloride can also be added to the water solvent. Ultrasound, magnetic field, mechanical whipping, etc. can be used to promote the mixing of carrageenan suspension and sodium alginate more uniformly.
  • the time for the compound glue to be boiled in water at 100°C can be 0.5-1 hour.
  • a mold of the desired size and shape can be selected, and the liquid jelly is poured into the mold to cool. As the temperature decreases, the carrageenan and sodium alginate gel under electrostatic interactions to form a gelatinous meat substitute.
  • the volume ratio between the carrageenan and the colloid mixture is 1.5%-2.5%, and the volume ratio between the sodium alginate and the colloid mixture is 1%-2%.
  • the step S10 of selecting at least one of xanthan gum, agar, and sodium alginate to mix evenly with carrageenan and a solvent to form a colloidal mixture may specifically include:
  • the step S20 of heating the colloidal mixture into a liquid jelly may specifically include:
  • the formed colloidal mixture is sterilized in a high-pressure steam sterilizer with a temperature of 100° C. to 121° C. and a pressure of 103.4 kPa to form a uniform liquid jelly.
  • Both the fifth embodiment and the third embodiment of the present invention use carrageenan, xanthan gum and sodium alginate as raw materials.
  • the difference is that the fifth embodiment does not need to swell sodium alginate in advance, but directly puts the compound gel formed by carrageenan, xanthan gum and sodium alginate into a high-pressure steam sterilizer for sterilization. It can form a relatively uniform liquid jelly, which saves more time.
  • the compound glue can be sterilized in a high-pressure steam sterilizer at a temperature of 100° C. to 121° C. and a pressure of 103.4 kPa for 10 to 15 minutes.
  • the volume ratio between carrageenan and colloid mixture is 1% to 3%
  • the volume ratio between xanthan gum and colloid mixture is 0.5% to 3%
  • the volume ratio between sodium alginate and colloid mixture is 0.17% to 1%.
  • the step S10 of selecting at least one of xanthan gum, agar, and sodium alginate to mix evenly with carrageenan and a solvent to form a colloidal mixture may specifically include:
  • the step S20 of heating the colloidal mixture into a liquid jelly may specifically include:
  • the formed colloidal mixture is sterilized in a high-pressure steam sterilizer with a temperature of 100° C. to 121° C. and a pressure of 103.4 kPa to form a uniform liquid jelly.
  • Both the sixth embodiment and the fourth embodiment of the present invention use carrageenan and sodium alginate as raw materials.
  • the difference is that the sixth embodiment does not need to swell the sodium alginate in advance, but directly sterilizes the compound gel formed by carrageenan and sodium alginate in a high-pressure steam sterilizer, which can also form a relatively uniform Liquid jelly, more time-saving.
  • the compound glue can be sterilized in a high-pressure steam sterilizer at a temperature of 100° C. to 121° C. and a pressure of 103.4 kPa for 10 to 15 minutes.
  • the volume ratio between the carrageenan and the colloid mixture is 1.5%-2.5%, and the volume ratio between the sodium alginate and the colloid mixture is 1%-2%.
  • the meat substitute of the present invention is artificially made from a variety of food gums, wherein carrageenan exists in the colloid system in the form of a single helix or a double helix, xanthan gum coexists in the system in the form of coiled chains and helical chains, seaweed Sodium bicarbonate and agar produce gel force with other components through electrostatic interaction and intermolecular interaction. The components interact through gel force, which is not easily affected by external environmental conditions and has good stability.
  • these food glues are very easy to obtain and are not affected by quality, variety, season, place of origin, purchase time, operation mode, etc., which solves the problem of poor parallelism of juice loss in the prior art when meat is used as a sample for performance testing.
  • the cost of these food glues can save more than 90% of the cost compared with meat such as beef, pork, chicken, etc., which is convenient for realizing industrialization and standardization.
  • these food glues are all food-grade additives, which are safe, non-toxic and pollution-free.
  • the meat substitute of the present invention has good elasticity, is not easy to be damaged, is easy to operate, and can be customized in shape.
  • the repeatability of meat substitutes is better than that of meat, which can improve the test efficiency and make the obtained data more scientific.
  • FIG. 4 is a schematic diagram of a method for testing the performance of refrigeration equipment using meat substitutes according to an embodiment of the present invention sexual flow chart.
  • the method for utilizing the meat substitute test refrigeration equipment performance of the present invention comprises:
  • Step S110 after the refrigeration equipment runs stably, put the prepared meat substitute into the freezing chamber of the refrigeration equipment;
  • Step S210 after the preset time is reached, the meat substitute is taken out from the refrigeration equipment and thawed;
  • Step S310 calculating the juice loss rate of the meat substitute according to the initial weight of the meat substitute before being put into the refrigeration equipment and the weight after thawing;
  • Step S410 evaluating the performance of the refrigeration equipment according to the juice loss rate.
  • the initial weight and the weight after thawing of the meat substitute are all measured after removing the juice on the surface of the meat substitute, so that the calculation of the juice loss rate is more accurate.
  • the juice loss rate of meat substitutes after freezing and thawing reflects the freezing and fresh-keeping performance of the refrigeration equipment.
  • Fig. 5 is a schematic flowchart of a method for testing the performance of a refrigeration device using a meat substitute according to another embodiment of the present invention.
  • the method for testing the performance of refrigeration equipment using meat substitutes of the present invention includes:
  • Step S120 after the refrigeration equipment runs stably, put the prepared meat substitute into the refrigerating chamber of the refrigeration equipment;
  • Step S220 taking out the meat substitute from the refrigeration equipment after the preset time is reached;
  • Step S320 calculating the juice loss rate of the meat substitute according to the initial weight of the meat substitute before being put into the refrigeration equipment and the weight after being taken out from the refrigeration equipment;
  • Step S420 evaluating the performance of the refrigeration equipment according to the juice loss rate.
  • the initial weight of the meat substitute and the weight after it is taken out of the refrigeration equipment are all measured after removing the juice on the surface of the meat substitute, so that the calculation of the juice loss rate is more accurate.
  • the juice loss rate of meat substitutes after refrigeration reflects the cold storage performance of the refrigeration equipment, and the smaller the juice loss rate, the better the cold storage performance of the refrigeration equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

本发明涉及肉替代物及其制备方法、测试制冷设备性能的方法,用于制冷设备性能测试的肉替代物为黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂形成的复配胶体。选用黄原胶、琼脂和海藻酸钠中的其中至少一种与卡拉胶、溶剂形成复配胶体,根据胶体自身性质及相互作用力,成胶特性更稳定,不易受到外界条件的影响,因此,克服了单一胶体的缺陷,所形成的复配胶体具有弹性好、稳定性好、脱水性较低、重复性好、易操作等诸多优点,且所形成的复配胶体的冷冻曲线符合肉的冻结规律,因此替代肉作为制冷设备的性能评价的样品,解决了现有技术中以明胶作为测试样品时不易操作、准确性较低的问题。

Description

肉替代物及其制备方法、测试制冷设备性能的方法 技术领域
本发明涉及制冷设备技术领域,特别是涉及一种用于制冷设备性能测试的肉替代物及其制备方法、利用肉替代物测试制冷设备性能的方法。
背景技术
冰箱及其类似制冷设备的冷冻保鲜技术越来越受到关注。目前新技术的冷冻评价较为多样,然而,由于食材产地、原料来源及实验前处理等的原因,导致产品汁液流失数据的复现性不理想。在诸多冷冻测试中,通常以畜禽肉的汁液冷冻损失作为保鲜基础测试指标。由于肉的产地、品种、位置、购买时间、操作时间、操作处理方式的不同都会使得汁液流失率测试结果不同,平行性差。并且,畜禽肉在冷冻、解冻过程中,由于细胞组织蛋白的汁液重新收性,汁液流失率小,不同技术及其应用产品在冷冻保鲜方面的差异性,无法在数据上得到明显表征,导致了冷冻保鲜能力评价的短板。此外,畜禽肉的冷冻汁液损失率通常在2%~3%,横向比对数值差异性小。
为此,现有技术中出现了一种利用明胶替代肉类作为测试标准品测试冰箱冷冻性能的方案。然而,明胶作为单一的食品胶体,普遍存在弹性差、凝胶脆和脱水严重等缺陷。尤其是,明胶标准物质中的亚基氨基酸含量低,三股螺旋结构形成较少,导致明胶胶体较脆,易碎,质地软不易操作。而且,明胶标准物质易受pH值、温度浓度等因素的影响,稳定性较差。因此,将明胶作为制冷设备性能测试的样品,不但不易于用户操作,而且测试结果的准确性较低。
发明内容
本发明第一方面的一个目的旨在克服现有技术的至少一个缺陷,提供一种弹性好、稳定性好、重复性强、易操作的肉替代物,以使其更加适合用于制冷设备的性能测试。
本发明第二方面的目的是提供一种用于制冷设备性能测试的肉替代物的制备方法。
本发明第二方面的目的是提供一种利用肉替代物测试制冷设备性能的方法。
根据本发明的第一方面,本发明提供一种用于制冷设备性能测试的肉替代物,其中
所述肉替代物为黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂形成的复配胶体。
可选地,所述肉替代物为黄原胶、卡拉胶和溶剂形成的复配胶体;其中
卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%。
可选地,所述肉替代物为黄原胶、琼脂、卡拉胶和溶剂形成的复配胶体;其中
卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%,琼脂的体积比为0.1%~3%。
可选地,所述肉替代物为黄原胶、海藻酸钠、卡拉胶和溶剂形成的复配胶体;其中
卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%,海藻酸钠的体积比为0.17%~1%。
可选地,所述肉替代物为海藻酸钠、卡拉胶和溶剂形成的复配胶体;其中
卡拉胶的体积比为1.5%~2.5%,海藻酸钠的体积比为1%~2%。
根据本发明第二方面的目的,本发明还提供一种用于制冷设备性能测试的肉替代物的制备方法,其包括:
选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物;
将所述胶体混合物加热成液体胶状物;以及
冷却所述液体胶状物,以使其凝固,从而形成所述肉替代物。
可选地,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向所述卡拉胶悬浊液中加入黄原胶,并混合均匀,形成所述胶体混合物;且
将所述胶体混合物加热成液体胶状物的步骤包括:
将形成的所述胶体混合物在100℃的水中煮沸直至所述胶体混合物形成均匀的液体胶状物;其中
卡拉胶与所述胶体混合物之间的体积比为1%~3%,黄原胶与所述胶体混合物之间的体积比为0.5%~3%。
可选地,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向所述卡拉胶悬浊液中加入黄原胶和琼脂,并混合均匀,形成所述胶体混合物;且
将所述胶体混合物加热成液体胶状物的步骤包括:
将形成的所述胶体混合物在100℃的水中煮沸直至所述胶体混合物形成均匀的液体胶状物;其中
卡拉胶与所述胶体混合物之间的体积比为1%~3%,黄原胶与所述胶体混合物之间的体积比为0.5%~3%,琼脂与所述胶体混合物之间的体积比为0.1%~3%。
可选地,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
将海藻酸钠浸泡在水中溶胀;
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向所述卡拉胶悬浊液中加入黄原胶和溶胀后的海藻酸钠,并混合均匀,形成所述胶体混合物;且
将所述胶体混合物加热成液体胶状物的步骤包括:
将形成的所述胶体混合物在100℃的水中煮沸直至所述胶体混合物形成均匀的液体胶状物;其中
卡拉胶与所述胶体混合物之间的体积比为1%~3%,黄原胶与所述胶体混合物之间的体积比为0.5%~3%,海藻酸钠与所述胶体混合物之间的体积比为0.17%~1%。
可选地,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
将海藻酸钠浸泡在水中溶胀;
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向所述卡拉胶悬浊液中加入溶胀后的海藻酸钠,并混合均匀,形成所述胶体混合物;且
将所述胶体混合物加热成液体胶状物的步骤包括:
将形成的所述胶体混合物在100℃的水中煮沸直至所述胶体混合物形成均匀的液体胶状物;其中
卡拉胶与所述胶体混合物之间的体积比为1.5%~2.5%,海藻酸钠与所述胶体混合物之间的体积比为1%~2%。
可选地,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向所述卡拉胶悬浊液中加入黄原胶和海藻酸钠,并混合均匀,形成所述胶体混合物;且
将所述胶体混合物加热成液体胶状物的步骤包括:
将形成的所述胶体混合物在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌形成均匀的液体胶状物;其中
卡拉胶与所述胶体混合物之间的体积比为1%~3%,黄原胶与所述胶体混合物之间的体积比为0.5%~3%,海藻酸钠与所述胶体混合物之间的体积比为0.17%~1%。
可选地,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向所述卡拉胶悬浊液中加入海藻酸钠,并混合均匀,形成所述胶体混合物;且
将所述胶体混合物加热成液体胶状物的步骤包括:
将形成的所述胶体混合物在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌形成均匀的液体胶状物;其中
卡拉胶与所述胶体混合物之间的体积比为1.5%~2.5%,海藻酸钠与所述胶体混合物之间的体积比为1%~2%。
可选地,用于浸泡海藻酸钠的水的温度为80~100℃;且
海藻酸钠在水中浸泡的时长为2~24h。
可选地,所述胶体混合物在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌的时长为10~15min。
可选地,所述胶体混合物在100℃的水中煮沸的时长为0.5~1h。
可选地,作为溶剂的水的温度为40~100℃。
根据本发明第三方面的目的,本发明还提供一种利用上述任一方案所述的制备方法制备出的肉替代物测试制冷设备性能的方法,其包括:
在所述制冷设备稳定运行后,将制备出的所述肉替代物放入所述制冷设备的冷冻室内;
达到预设时间后将所述肉替代物从所述制冷设备中取出并解冻;
根据所述肉替代物在放入所述制冷设备之前的初始重量和解冻后的重量计算所述肉替代物的汁液损失率;以及
根据所述汁液损失率对所述制冷设备的性能进行评价。
根据本发明第三方面的目的,本发明还提供一种利用上述任一方案所述的制备方法制备出的肉替代物测试制冷设备性能的方法,其包括:
在所述制冷设备稳定运行后,将制备出的所述肉替代物放入所述制冷设备的冷藏室内;
达到预设时间后将所述肉替代物从所述制冷设备中取出;
根据所述肉替代物在放入所述制冷设备之前的初始重量和从所述制冷设备取出后的重量计算所述肉替代物的汁液损失率;以及
根据所述汁液损失率对所述制冷设备的性能进行评价。
本发明从肉属于一种胶的本质出发,选用黄原胶、琼脂和海藻酸钠中的其中至少一种与卡拉胶、溶剂形成复配胶体,根据胶体自身性质及相互作用力,成胶特性更稳定,不易受到外界条件的影响,因此,克服了单一胶体的缺陷,所形成的复配胶体具有弹性好、稳定性好、脱水性较低、重复性好、易操作等诸多优点,且经试验证明,所形成的的复配胶体的冷冻曲线符合肉的冻结规律,因此可以完美地替代肉作为制冷设备的性能评价的样品,解决了现有技术中以肉作为制冷设备性能测试的样品时汁液流失差异性小,平行性差的问题、以及现有技术中以明胶作为测试样品时不易操作、准确性较低的问题。
进一步地,本发明选用卡拉胶、海藻酸钠、琼脂等多糖类的胶体以及黄原胶等微生物类的胶体为原料,涵盖了食品胶体的常见范围,具有一定的普遍性。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1和图2分别是根据本发明一个实施例制备的肉替代物在第一冷冻速度挡位和第二冷冻速度挡位下的冷冻速度曲线图;
图3是根据本发明一个实施例的用于制冷设备性能测试的肉替代物的制备方法的示意性流程图;
图4是根据本发明一个实施例的利用肉替代物测试制冷设备性能的方法的示意性流程图;
图5是根据本发明另一个实施例的利用肉替代物测试制冷设备性能的方法的示意性流程图。
具体实施方式
本发明首先提供一种用于制冷设备性能测试的肉替代物。
具体地,本发明提供的肉替代物为黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂形成的复配胶体。
本发明从肉属于一种胶的本质出发,选用黄原胶、琼脂和海藻酸钠中的其中至少一种与卡拉胶、溶剂形成复配胶体,根据胶体自身性质及相互作用力,成胶特性更稳定,不易受到外界条件的影响,因此,克服了单一胶体的缺陷,所形成的复配胶体具有弹性好、稳定性好、脱水性较低、重复性好、易操作等诸多优点,且经试验证明,所形成的的复配胶体的冷冻曲线符合肉的冻结规律,因此可以完美地替代肉作为制冷设备的性能评价的样品,解决了现有技术中以肉作为制冷设备性能测试的样品时汁液流失差异性小,平行性差的问题、以及现有技术中以明胶作为测试样品时不易操作、准确性较低的问题。
进一步地,本发明选用卡拉胶、海藻酸钠、琼脂等多糖类的胶体以及黄原胶等微生物类的胶体为原料,涵盖了食品胶体的常见范围,具有一定的普遍性。
在第一个实施例中,肉替代物可以为黄原胶、卡拉胶和溶剂形成的复配胶体。本实施例选择成胶强度好的卡拉胶和增稠性、稳定性、触变性、乳化 性好的黄原胶为原料进行复配形成复配胶体,克服了由于单一胶体强度较差等因素影响操作性的弊端。具体地,黄原胶是软质的浆糊状物质,不易成型。卡拉胶是略硬的固体状物质,但易碎不易操作。本发明将黄原胶和卡拉胶混合后制备的肉替代物呈细腻、有弹性的固体状物质,不易碎,易操作,因此比较适合作为肉替代物对制冷设备的性能进行评价。
优选地,卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%。这种体积比的复配胶性质更加稳定,且汁液流失率更加明显,更加有利于对制冷设备的性能进行评价。
在第二个实施例中,本发明的肉替代物可以为黄原胶、琼脂、卡拉胶和溶剂形成的复配胶体。
黄原胶是软质的浆糊状物质,不易成型。卡拉胶是略硬的固体状物质,但易碎不易操作。琼脂作为增稠剂、凝固剂,其硬度很硬,可以提升肉替代物的硬度。本发明将黄原胶、卡拉胶和琼脂混合后制备的肉替代物呈细腻、有弹性、硬度较硬的固体状物质,不易碎,易操作,因此比较适合作为肉替代物对制冷设备的性能进行评价。
优选地,卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%,琼脂的体积比为0.1%~3%。这种体积比的复配胶性质更加稳定,且汁液流失率更加合适,更加有利于对制冷设备的性能进行评价。
例如,表一为利用上述体积比的卡拉胶、黄原胶和琼脂制备出的肉替代物在不同的第一冷冻速度挡位和第二冷冻速度挡位的条件下测得的汁液流失数据。在该测试中,分别为第一冷冻速度挡位和第二冷冻速度挡位选取了三组肉替代物同时进行平行测试。图1和图2分别是利用上述体积比的卡拉胶、黄原胶和琼脂制备出的肉替代物在第一冷冻速度挡位和第二冷冻速度挡位下的冷冻速度曲线图。从表一、图1和图2可以看出,肉替代物的重复性标准偏差小于5%,且冷冻曲线符合肉的冷冻曲线趋势,有平台期,冻结点在-2℃~0℃之间,且替代物汁液流失率趋势与肉汁液流失率趋势相同,完全满足替代肉进行冷冻性能评价的条件。
表一.肉替代物汁液流失数据表
Figure PCTCN2022089034-appb-000001
Figure PCTCN2022089034-appb-000002
在第三个实施例中,本发明的肉替代物可以为黄原胶、海藻酸钠、卡拉胶和溶剂形成的复配胶体。黄原胶是软质的浆糊状物质,不易成型。卡拉胶是略硬的固体状物质,但易碎不易操作。本发明将黄原胶、卡拉胶混合制备的肉替代物呈细腻、有弹性、硬度较硬的固体状物质,不易碎,易操作。海藻酸钠作为糖类的食品胶,可以增加形成的肉替代物的弹性和硬度,避免单独使用黄原胶和卡拉胶进行汁液流失测试时的流失率过大。
优选地,卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%,海藻酸钠的体积比为0.17%~1%。这种体积比的复配胶性质更加稳定,且汁液流失率更加合适,更加有利于对制冷设备的性能进行评价。
在第四个实施例中,本发明的肉替代物可以为海藻酸钠、卡拉胶和溶剂形成的复配胶体。卡拉胶是略硬的固体状物质,但易碎不易操作。海藻酸钠是软质的液体胶状物,不易操作。本发明将卡拉胶和海藻酸钠混合制备的肉替代物为有弹性、硬度较硬的固体状物质,不易碎,易操作。进一步地,本实施例还可以添加电解质并调节器用量来调节凝胶强度,从而使形成的肉替代物更加符合要求。
优选地,卡拉胶的体积比为1.5%~2.5%,海藻酸钠的体积比为1%~2%。这种体积比的复配胶性质更加稳定,且汁液流失率更加合适,更加有利于对制冷设备的性能进行评价。
本发明还提供一种用于制冷设备性能测试的肉替代物的制备方法,图3是根据本发明一个实施例的用于制冷设备性能测试的肉替代物的制备方法的示意性流程图。
参见图3,本发明的肉替代物的制备方法包括:
步骤S10,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物;
步骤S20,将胶体混合物加热成液体胶状物;以及
步骤S30,冷却液体胶状物,以使其凝固,从而形成肉替代物。
在第一个实施例中,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤S10具体可包括:
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向卡拉胶悬浊液中加入黄原胶,并混合均匀,形成胶体混合物。
将胶体混合物加热成液体胶状物的步骤S20具体可包括:
将形成的胶体混合物在100℃的水中煮沸直至胶体混合物形成均匀的液体胶状物。
具体地,水溶剂的温度优选为40~100℃,以使得卡拉胶更加容易与水溶成悬浊液。在制备卡拉胶悬浊液时,也可以向水溶剂中内加入适量的氯化钙。可以利用超声、磁场、机械搅打等方式促使卡拉胶悬浊液和黄原胶混合的更加均匀。复配胶在100℃的水中煮沸的时长可以为0.5~1h,以使得复配胶全部变成均匀的液体胶状物。可以选用所需要尺寸和形状的模具,将液体胶状物倒入模具中冷却。随着温度的降低,卡拉胶分子形成螺旋体;随着温度的进一步降低,卡拉胶分子形成的螺旋体相互聚集,进而形成空间网状结构,该空间网状结构与冷却后的黄原胶形成穿插网络结构,从而凝固成胶。
优选地,卡拉胶与胶体混合物之间的体积比为1%~3%,黄原胶与胶体混合物之间的体积比为0.5%~3%。
在第二个实施例中,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤S10具体可包括:
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向卡拉胶悬浊液中加入黄原胶和琼脂,并混合均匀,形成胶体混合物。
将胶体混合物加热成液体胶状物的步骤S20具体可包括:
将形成的胶体混合物在100℃的水中煮沸直至胶体混合物形成均匀的液体胶状物。
具体地,水溶剂的温度优选为40~100℃,以使得卡拉胶更加容易与水溶成悬浊液。在制备卡拉胶悬浊液时,也可以向水溶剂中内加入适量的氯化钙。可以利用超声、磁场、机械搅打等方式促使卡拉胶悬浊液、黄原胶和琼脂混合的更加均匀。复配胶在100℃的水中煮沸的时长可以为0.5~1h,作为增稠剂、凝固剂的琼脂可以促使卡拉胶悬浊液和黄原胶变成均匀的液体胶状物。可以选用所需要尺寸和形状的模具,将液体胶状物倒入模具中冷却。随着温度的降低,卡拉胶分子形成螺旋体;随着温度的进一步降低,卡拉胶分子形成的螺旋体相互聚集,进而形成空间网状结构,该空间网状结构与冷却后的黄原胶形成穿插网络结构,从而凝固成胶。
优选地,卡拉胶与胶体混合物之间的体积比为1%~3%,黄原胶与胶体混合物之间的体积比为0.5%~3%,琼脂与胶体混合物之间的体积比为 0.1%~3%。
在第三个实施例中,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤S10具体可包括:
将海藻酸钠浸泡在水中溶胀;
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向卡拉胶悬浊液中加入黄原胶和溶胀后的海藻酸钠,并混合均匀,形成胶体混合物。
将胶体混合物加热成液体胶状物的步骤S20具体可包括:
将形成的胶体混合物在100℃的水中煮沸直至胶体混合物形成均匀的液体胶状物。
具体地,用于浸泡海藻酸钠的水的温度为80~100℃。海藻酸钠在水中浸泡的时长为2~24h,直至固体颗粒完全消失形成均匀的液体胶状态。用于浸泡海藻酸钠的水温越高,其需要浸泡的时长越短。水溶剂的温度优选为40~100℃,以使得卡拉胶更加容易与水溶成悬浊液。在制备卡拉胶悬浊液时,也可以向水溶剂中内加入适量的氯化钙。可以利用超声、磁场、机械搅打等方式促使卡拉胶悬浊液、黄原胶和海藻酸钠混合的更加均匀。复配胶在100℃的水中煮沸的时长可以为0.5~1h。可以选用所需要尺寸和形状的模具,将液体胶状物倒入模具中冷却。随着温度的降低,卡拉胶和海藻酸钠在静电的相互作用下凝胶,并与黄原胶形成穿插网络结构的复配胶体。
优选地,卡拉胶与胶体混合物之间的体积比为1%~3%,黄原胶与胶体混合物之间的体积比为0.5%~3%,海藻酸钠与胶体混合物之间的体积比为0.17%~1%。
在第四个实施例中,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤S10具体可包括:
将海藻酸钠浸泡在水中溶胀;
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向卡拉胶悬浊液中加入溶胀后的海藻酸钠,并混合均匀,形成胶体混合物。
将胶体混合物加热成液体胶状物的步骤S20具体可包括:
将形成的胶体混合物在100℃的水中煮沸直至胶体混合物形成均匀的液体胶状物。
具体地,用于浸泡海藻酸钠的水的温度为80~100℃。海藻酸钠在水中 浸泡的时长为2~24h,直至固体颗粒完全消失形成均匀的液体胶状态。用于浸泡海藻酸钠的水温越高,其需要浸泡的时长越短。水溶剂的温度优选为40~100℃,以使得卡拉胶更加容易与水溶成悬浊液。在制备卡拉胶悬浊液时,也可以向水溶剂中内加入适量的氯化钙。可以利用超声、磁场、机械搅打等方式促使卡拉胶悬浊液和海藻酸钠混合的更加均匀。复配胶在100℃的水中煮沸的时长可以为0.5~1h。可以选用所需要尺寸和形状的模具,将液体胶状物倒入模具中冷却。随着温度的降低,卡拉胶和海藻酸钠在静电的相互作用下凝胶,形成胶状的肉替代物。
优选地,卡拉胶与胶体混合物之间的体积比为1.5%~2.5%,海藻酸钠与胶体混合物之间的体积比为1%~2%。
在第五个实施例中,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤S10具体可包括:
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向卡拉胶悬浊液中加入黄原胶和海藻酸钠,并混合均匀,形成胶体混合物。
将胶体混合物加热成液体胶状物的步骤S20具体可包括:
将形成的胶体混合物在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌形成均匀的液体胶状物。
本发明第五个实施例与第三个实施例都以卡拉胶、黄原胶和海藻酸钠为原料。不同的是,第五个实施例不需要提前对海藻酸钠进行溶胀,而是直接将卡拉胶、黄原胶和海藻酸钠形成的复配胶放入高压蒸汽灭菌锅中灭菌,也可以形成比较均匀的液体胶状物,更加节省时间。具体地,复配胶在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌的时长可以为10~15min。
优选地,卡拉胶与胶体混合物之间的体积比为1%~3%,黄原胶与胶体混合物之间的体积比为0.5%~3%,海藻酸钠与胶体混合物之间的体积比为0.17%~1%。
在第六个实施例中,选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤S10具体可包括:
以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
向卡拉胶悬浊液中加入海藻酸钠,并混合均匀,形成胶体混合物。
将胶体混合物加热成液体胶状物的步骤S20具体可包括:
将形成的胶体混合物在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌形成均匀的液体胶状物。
本发明第六个实施例与第四个实施例都以卡拉胶和海藻酸钠为原料。不同的是,第六个实施例不需要提前对海藻酸钠进行溶胀,而是直接将卡拉胶和海藻酸钠形成的复配胶放入高压蒸汽灭菌锅中灭菌,也可以形成比较均匀的液体胶状物,更加节省时间。具体地,复配胶在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌的时长可以为10~15min。
优选地,卡拉胶与胶体混合物之间的体积比为1.5%~2.5%,海藻酸钠与胶体混合物之间的体积比为1%~2%。
可见,本发明的肉替代物以多种食品胶为原料人工制成,其中,卡拉胶以单螺旋或双螺旋型式存在于胶体体系,黄原胶以卷曲链和螺旋链共存于体系中,海藻酸钠、琼脂通过静电相互作用、分子间相互作用与其他成分产生凝胶作用力,各成分通过凝胶作用力相互作用,不易受外界环境条件影响,稳定性好。
并且,这些食品胶都非常易于获得,不受品质、品种、季节、产地、购买时间、操作方式等的影响,解决了现有技术中以肉作为性能测试的样品时汁液流失平行性差的问题。并且,这些食品胶的成本较牛肉、猪肉、鸡肉等肉类可节约成本90%以上,便于实现产业化和标准化。同时,这些食品胶都属于食品级的添加剂,安全、无毒、无污染。此外,本发明的肉替代物还具有很好的弹性,不易损坏,易操作,形状可定制。并且,肉替代物的重复性优于肉,可提高测试效率,使得获取的数据更科学。
本发明还提供一种利用上述任一实施例的制备方法制备出的肉替代物测试制冷设备性能的方法,图4是根据本发明一个实施例的利用肉替代物测试制冷设备性能的方法的示意性流程图。
参见图4,本发明的利用肉替代物测试制冷设备性能的方法包括:
步骤S110,在制冷设备稳定运行后,将制备出的肉替代物放入制冷设备的冷冻室内;
步骤S210,达到预设时间后将肉替代物从制冷设备中取出并解冻;
步骤S310,根据肉替代物在放入制冷设备之前的初始重量和解冻后的重量计算肉替代物的汁液损失率;以及
步骤S410,根据汁液损失率对制冷设备的性能进行评价。
可以理解的是,本实施例中,肉替代物的初始重量和解冻后的重量都是 在去除肉替代物表面的汁液之后测得的,以使得汁液损失率的计算更加准确。
具体地,肉替代物冷冻后再解冻的汁液损失率反应的是制冷设备的冷冻保鲜性能,该汁液损失率越小,制冷设备的冷冻保鲜性能越好。
图5是根据本发明另一个实施例的利用肉替代物测试制冷设备性能的方法的示意性流程图。参见图5,在另一些实施例中,本发明的利用肉替代物测试制冷设备性能的方法包括:
步骤S120,在制冷设备稳定运行后,将制备出的肉替代物放入制冷设备的冷藏室内;
步骤S220,达到预设时间后将肉替代物从制冷设备中取出;
步骤S320,根据肉替代物在放入制冷设备之前的初始重量和从制冷设备取出后的重量计算肉替代物的汁液损失率;以及
步骤S420,根据汁液损失率对制冷设备的性能进行评价。
同样地,本实施例中,肉替代物的初始重量和从制冷设备取出后的重量都是在去除肉替代物表面的汁液之后测得的,以使得汁液损失率的计算更加准确。
具体地,肉替代物冷藏后的汁液损失率反应的是制冷设备的冷藏保鲜性能,该汁液损失率越小,制冷设备的冷藏保鲜性能越好。
本领域技术人员应理解,在利用肉替代物测试制冷设备性能时,肉替代物的汁液损失率的计算是本领域技术人员易于获知的技术,因此,本发明不再赘述。
本领域技术人员还应理解,本发明仅列举出了部分较佳的实施例,对于肉替代物的原料组合以及配比都可以有其他替代的实施例。在不脱离本发明精神和范围的情况下,可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (18)

  1. 一种用于制冷设备性能测试的肉替代物,其中,
    所述肉替代物为黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂形成的复配胶体。
  2. 根据权利要求1所述的肉替代物,其中,
    所述肉替代物为黄原胶、卡拉胶和溶剂形成的复配胶体;其中
    卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%。
  3. 根据权利要求1所述的肉替代物,其中,
    所述肉替代物为黄原胶、琼脂、卡拉胶和溶剂形成的复配胶体;其中
    卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%,琼脂的体积比为0.1%~3%。
  4. 根据权利要求1所述的肉替代物,其中,
    所述肉替代物为黄原胶、海藻酸钠、卡拉胶和溶剂形成的复配胶体;其中
    卡拉胶的体积比为1%~3%,黄原胶的体积比为0.5%~3%,海藻酸钠的体积比为0.17%~1%。
  5. 根据权利要求1所述的肉替代物,其中,
    所述肉替代物为海藻酸钠、卡拉胶和溶剂形成的复配胶体;其中
    卡拉胶的体积比为1.5%~2.5%,海藻酸钠的体积比为1%~2%。
  6. 一种用于制冷设备性能测试的肉替代物的制备方法,包括:
    选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物;
    将所述胶体混合物加热成液体胶状物;以及
    冷却所述液体胶状物,以使其凝固,从而形成所述肉替代物。
  7. 根据权利要求6所述的制备方法,其中,
    选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
    以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
    向所述卡拉胶悬浊液中加入黄原胶,并混合均匀,形成所述胶体混合物;且
    将所述胶体混合物加热成液体胶状物的步骤包括:
    将形成的所述胶体混合物在100℃的水中煮沸直至所述胶体混合物形成均匀的液体胶状物;其中
    卡拉胶与所述胶体混合物之间的体积比为1%~3%,黄原胶与所述胶体混合物之间的体积比为0.5%~3%。
  8. 根据权利要求6所述的制备方法,其中,
    选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
    以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
    向所述卡拉胶悬浊液中加入黄原胶和琼脂,并混合均匀,形成所述胶体混合物;且
    将所述胶体混合物加热成液体胶状物的步骤包括:
    将形成的所述胶体混合物在100℃的水中煮沸直至所述胶体混合物形成均匀的液体胶状物;其中
    卡拉胶与所述胶体混合物之间的体积比为1%~3%,黄原胶与所述胶体混合物之间的体积比为0.5%~3%,琼脂与所述胶体混合物之间的体积比为0.1%~3%。
  9. 根据权利要求6所述的制备方法,其中,
    选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
    将海藻酸钠浸泡在水中溶胀;
    以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
    向所述卡拉胶悬浊液中加入黄原胶和溶胀后的海藻酸钠,并混合均匀,形成所述胶体混合物;且
    将所述胶体混合物加热成液体胶状物的步骤包括:
    将形成的所述胶体混合物在100℃的水中煮沸直至所述胶体混合物形成均匀的液体胶状物;其中
    卡拉胶与所述胶体混合物之间的体积比为1%~3%,黄原胶与所述胶体 混合物之间的体积比为0.5%~3%,海藻酸钠与所述胶体混合物之间的体积比为0.17%~1%。
  10. 根据权利要求6所述的制备方法,其中,
    选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
    将海藻酸钠浸泡在水中溶胀;
    以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
    向所述卡拉胶悬浊液中加入溶胀后的海藻酸钠,并混合均匀,形成所述胶体混合物;且
    将所述胶体混合物加热成液体胶状物的步骤包括:
    将形成的所述胶体混合物在100℃的水中煮沸直至所述胶体混合物形成均匀的液体胶状物;其中
    卡拉胶与所述胶体混合物之间的体积比为1.5%~2.5%,海藻酸钠与所述胶体混合物之间的体积比为1%~2%。
  11. 根据权利要求6所述的制备方法,其中,
    选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
    以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
    向所述卡拉胶悬浊液中加入黄原胶和海藻酸钠,并混合均匀,形成所述胶体混合物;且
    将所述胶体混合物加热成液体胶状物的步骤包括:
    将形成的所述胶体混合物在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌形成均匀的液体胶状物;其中
    卡拉胶与所述胶体混合物之间的体积比为1%~3%,黄原胶与所述胶体混合物之间的体积比为0.5%~3%,海藻酸钠与所述胶体混合物之间的体积比为0.17%~1%。
  12. 根据权利要求6所述的制备方法,其中,
    选择黄原胶、琼脂、海藻酸钠中的至少一种与卡拉胶、溶剂混合均匀形成胶体混合物的步骤包括:
    以卡拉胶为原料、水为溶剂配置卡拉胶悬浊液;以及
    向所述卡拉胶悬浊液中加入海藻酸钠,并混合均匀,形成所述胶体混合物;且
    将所述胶体混合物加热成液体胶状物的步骤包括:
    将形成的所述胶体混合物在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌形成均匀的液体胶状物;其中
    卡拉胶与所述胶体混合物之间的体积比为1.5%~2.5%,海藻酸钠与所述胶体混合物之间的体积比为1%~2%。
  13. 根据权利要求9或10所述的制备方法,其中,
    用于浸泡海藻酸钠的水的温度为80~100℃;且
    海藻酸钠在水中浸泡的时长为2~24h。
  14. 根据权利要求11或12所述的制备方法,其中,
    所述胶体混合物在温度为100℃~121℃、压强为103.4kPa的高压蒸汽灭菌锅中灭菌的时长为10~15min。
  15. 根据权利要求7-10中任一项所述的制备方法,其中,
    所述胶体混合物在100℃的水中煮沸的时长为0.5~1h。
  16. 根据权利要求7-12中任一项所述的方法,其中,
    作为溶剂的水的温度为40~100℃。
  17. 一种利用权利要求6-16中任一项所述的制备方法制备出的肉替代物测试制冷设备性能的方法,包括:
    在所述制冷设备稳定运行后,将制备出的所述肉替代物放入所述制冷设备的冷冻室内;
    达到预设时间后将所述肉替代物从所述制冷设备中取出并解冻;
    根据所述肉替代物在放入所述制冷设备之前的初始重量和解冻后的重量计算所述肉替代物的汁液损失率;以及
    根据所述汁液损失率对所述制冷设备的性能进行评价。
  18. 一种利用权利要求6-16中任一项所述的制备方法制备出的肉替代物测试制冷设备性能的方法,包括:
    在所述制冷设备稳定运行后,将制备出的所述肉替代物放入所述制冷设备的冷藏室内;
    达到预设时间后将所述肉替代物从所述制冷设备中取出;
    根据所述肉替代物在放入所述制冷设备之前的初始重量和从所述制冷设备取出后的重量计算所述肉替代物的汁液损失率;以及
    根据所述汁液损失率对所述制冷设备的性能进行评价。
PCT/CN2022/089034 2021-09-02 2022-04-25 肉替代物及其制备方法、测试制冷设备性能的方法 WO2023029523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111025867.9A CN115746409B (zh) 2021-09-02 2021-09-02 肉替代物及其制备方法、测试制冷设备性能的方法
CN202111025867.9 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023029523A1 true WO2023029523A1 (zh) 2023-03-09

Family

ID=85332120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089034 WO2023029523A1 (zh) 2021-09-02 2022-04-25 肉替代物及其制备方法、测试制冷设备性能的方法

Country Status (2)

Country Link
CN (1) CN115746409B (zh)
WO (1) WO2023029523A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070042099A1 (en) * 2005-08-17 2007-02-22 Stanton Robert P Ready to bake refrigerated batter
CN112273528A (zh) * 2020-10-29 2021-01-29 珠海市澳加联盈生物科技有限公司 异相喷雾法制备薄层人造肉的工艺
KR102328204B1 (ko) * 2020-10-20 2021-11-18 주식회사 논밭 쌀혼합액상을 이용한 비건 아이스크림용 조성물 및 비건 아이스크림을 제조하는 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237464A (zh) * 2010-12-01 2013-08-07 嘉吉公司 肉替代产品
CN103987273B (zh) * 2011-12-09 2018-07-27 Fmc有限公司 具有优良胶强度的共磨碎的稳定剂组合物
US11849741B2 (en) * 2015-10-20 2023-12-26 Savage River, Inc. Meat-like food products
CN108760561A (zh) * 2018-05-21 2018-11-06 青岛海尔股份有限公司 冰箱冷冻性能的测试方法
KR20190135249A (ko) * 2018-05-28 2019-12-06 주식회사 엘지생활건강 온도에 따라 상이 변화하는 음료 조성물 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070042099A1 (en) * 2005-08-17 2007-02-22 Stanton Robert P Ready to bake refrigerated batter
KR102328204B1 (ko) * 2020-10-20 2021-11-18 주식회사 논밭 쌀혼합액상을 이용한 비건 아이스크림용 조성물 및 비건 아이스크림을 제조하는 방법
CN112273528A (zh) * 2020-10-29 2021-01-29 珠海市澳加联盈生物科技有限公司 异相喷雾法制备薄层人造肉的工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, YOUXI: "Carrageenan Hard Capsules", THE SCIENCE AND TECHNOLOGY OF GELATIN, vol. 31, no. 3, 1 September 2011 (2011-09-01), XP093041647 *
WEIWEI SUN, CHAO CAI, JIAN LIU, SHENG CHEN, ZHIMING MA, LEI ZHANG: "Preparation and Properties of the Wall Materials of Menthe Flavor Capsule", WUHAN HUANGHELOU NEW MATERIALS SCIENCE AND TECHNOLOGY DEVELOPMENT CO., LTD, vol. 41, no. 05, 20 May 2020 (2020-05-20), pages 104 - 106, XP093041656 *

Also Published As

Publication number Publication date
CN115746409B (zh) 2024-06-11
CN115746409A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
Kumar et al. Structural properties of gelatin extracted from croaker fish (Johnius sp) skin waste
Jimenez-Colmenero et al. Konjac gel for use as potential fat analogue for healthier meat product development: Effect of chilled and frozen storage
Peng et al. Effects of meat and phosphate level on water-holding capacity and texture of emulsion-type sausage during storage
CN102396738B (zh) 一种鱼糜凝胶及其制备方法
CN105029469A (zh) 一种猪皮胶原蛋白冻的制备方法
CN103404909A (zh) 南极磷虾风味复合虾糜制品的加工方法
CN106509690A (zh) 一种可常温贮藏的低温杀菌鱼糜制品的生产方法
CN114027392B (zh) 一种高冻融稳定性的双网络豌豆蛋白水凝胶及其制备方法
CN107439665A (zh) 液氮冷冻小龙虾的方法
CN112655896A (zh) 一种肉制品用卡拉胶魔芋胶特殊复合胶及其制备工艺
WO2023029523A1 (zh) 肉替代物及其制备方法、测试制冷设备性能的方法
US20190150488A1 (en) Method of preparing seaweed extract from eucheuma seaweed, its utilization in processed meats and a method in making meat gels to seaweed extract functionality
Shang et al. Effects of partial replacement of unwashed Antarctic krill surimi by Litopenaeus vannamei surimi on the heat‐induced gelling and three‐dimensional‐printing properties
Feng et al. Effects of actomyosin dissociation on the physicochemical and gelling properties of silver carp myofibrillar protein sol during freeze–thaw cycles
JP2011205956A (ja) ナマコ素材製造方法、ナマコ素材および乾燥ナマコ戻し品様食品
Poudyal et al. Effect of supercooled freezing on the quality of pork tenderloin meat under different thawing conditions
Zhao et al. The effects of modified quinoa protein emulsion as fat substitutes in frankfurters
CN111728154B (zh) 一种高泡沫稳定性冰蛋清的制备方法
CN106579043B (zh) 一种高持水性蛋液及其制备方法
Zhang et al. Effect of pressure-shift freezing treatment on gelling and structural properties of grass carp surimi
CA2001430C (en) Konjak-added foodstuffs
CN103719887A (zh) 一种风干牛羊肉干质构成型方法
Zhao et al. Effects of high‐pressure processing on the functional properties of pork batters containing Artemisia sphaerocephala krasch gum
Xie et al. Effects of polydextrose on rheological and fermentation properties of frozen dough and quality of Chinese steamed bread
Lindström Ultrasonic assisted drying and its effect on 3D printability of minced beef and other foods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE