WO2023029115A1 - 一种聚丙烯电缆保护层及其制备方法 - Google Patents

一种聚丙烯电缆保护层及其制备方法 Download PDF

Info

Publication number
WO2023029115A1
WO2023029115A1 PCT/CN2021/119222 CN2021119222W WO2023029115A1 WO 2023029115 A1 WO2023029115 A1 WO 2023029115A1 CN 2021119222 W CN2021119222 W CN 2021119222W WO 2023029115 A1 WO2023029115 A1 WO 2023029115A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
thickness
protective layer
parts
layer
Prior art date
Application number
PCT/CN2021/119222
Other languages
English (en)
French (fr)
Inventor
张逸凡
傅明利
侯帅
黎小林
贾磊
惠宝军
冯宾
朱闻博
展云鹏
聂永杰
Original Assignee
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2023029115A1 publication Critical patent/WO2023029115A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/08Insulating conductors or cables by winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/26Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0241Disposition of insulation comprising one or more helical wrapped layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1875Multi-layer sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/428Heat conduction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Definitions

  • the invention relates to the field of cable materials, in particular to a polypropylene cable protective layer and a preparation method thereof.
  • raising the voltage level of the cable is generally achieved by increasing the radial thickness of the insulating layer.
  • increasing the thickness of the insulation layer will often significantly increase the diameter of the cable.
  • this will lead to a decrease in the toughness of the cable, which is not conducive to cable bending, thereby increasing the construction difficulty in the cable laying process; on the other hand, the thickness is too high and heat conduction
  • a poorly capable insulating layer is also not conducive to the dissipation of Joule heat in the center conductor, which will increase the temperature rise of the cable and reduce the operating life of the conductor and insulating material. Therefore, how to improve the insulation strength and voltage level of the power cable and increase the power transmission energy without reducing the mechanical toughness and heat dissipation capacity of the power cable has become an urgent problem in the processing of power cables.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a polypropylene cable protective layer and a preparation method thereof.
  • the technical solution adopted by the present invention is: a polypropylene cable protective layer, the polypropylene cable protective layer includes a dielectric layer, a buffer layer and an insulating layer in sequence from the inside to the outside, the dielectric layer
  • the thickness accounts for 5% to 12% of the thickness of the protective layer of the polypropylene cable
  • the thickness of the buffer layer accounts for 17% to 25% of the thickness of the protective layer of the polypropylene cable
  • the dielectric layer is surrounded by polypropylene film A Obtained by wrapping, the buffer layer is obtained by wrapping polypropylene film B, and the insulating layer is obtained by wrapping polypropylene film C;
  • the polypropylene film A includes the following components by weight: 100 parts of polypropylene, 8-10 parts of graphene oxide and 0.5-5 parts of maleic anhydride grafted polypropylene, and the thickness of the polypropylene film A is 0.05- 0.2mm;
  • the polypropylene film B includes the following components by weight: 100 parts of polypropylene, 4 to 6 parts of graphene oxide and 0.5 to 5 parts of maleic anhydride grafted polypropylene, and the thickness of the polypropylene film B is 0.05 to 5 parts. 0.2mm;
  • the polypropylene film C includes the following components in parts by weight: 100 parts of polypropylene and 0.5-5 parts of maleic anhydride grafted polypropylene, and the thickness of the polypropylene film C is 0.05-0.2 mm.
  • the above-mentioned polypropylene cable protective layer is composed of a dielectric layer, a buffer layer and an insulating layer, and the dielectric layer, buffer layer and insulating layer are respectively obtained by wrapping polypropylene films with gradually reduced graphite oxide content, so that the polypropylene cable protective layer
  • the dielectric gradient is formed, which can greatly improve the electric strength of the cable, and significantly reduce the thickness of the insulating layer, so as to achieve a balance between the electric strength, mechanical toughness and thermal conductivity of the power cable, and realize the improvement of the dielectric strength, voltage level and While increasing the power transmission energy, it will not reduce the mechanical toughness and heat dissipation capacity of the power cable; in the existing dielectric gradient insulation parts, there are often problems of uneven mixing and filler agglomeration, which will lead to the occurrence of thin film in the process of processing.
  • the above-mentioned polypropylene cable protective layer is obtained by wrapping polypropylene films with different dielectric parameters, which effectively avoids the problems of uneven mixing and agglomeration of fillers;
  • the polypropylene film contains maleic anhydride grafted polypropylene (PP-g-MAH), which acts as a surface modifier for graphene and serves as a bridge to improve the adhesion and compatibility between graphene oxide and polypropylene molecules ( Improve the adhesion and compatibility between graphene oxide and polypropylene particles), thereby reducing the dispersion of dielectric constant and conductivity, increasing the breakdown field strength, and improving the stability of dielectric gradient cables property;
  • above-mentioned polypropylene cable protective layer limits the thickness ratio of dielectric layer, buffer layer and insulating layer, and limits the thickness of polypropylene film A, polypropylene film B and polypropylene
  • the thickness of the polypropylene film A is 0.08-0.15 mm; the thickness of the polypropylene film B is 0.08-0.15 mm; the thickness of the polypropylene film C is 0.08-0.15 mm.
  • the thickness of the dielectric layer accounts for 8%-10% of the thickness of the polypropylene cable protective layer; the thickness of the buffer layer accounts for 17%-20% of the thickness of the polypropylene cable protective layer.
  • the inventor has found through research that when the thickness of the dielectric layer accounts for 8% to 10% of the thickness of the protective layer of the polypropylene cable; the thickness of the buffer layer accounts for 17% to 20% of the thickness of the protective layer of the polypropylene cable, more It is beneficial to improve the electric strength and toughness of the polypropylene cable protective layer.
  • the polypropylene cable protective layer is thermocompressed at 160°C to 180°C.
  • the air bubbles between the polypropylene films of the polypropylene cable protective layer are removed by hot pressing at 160°C to 180°C, which is beneficial to improve the uniformity of the structure of the polypropylene cable protective layer.
  • the polypropylene film A includes the following components in parts by weight: 100 parts of polypropylene, 9-10 parts of graphene oxide and 1-5 parts of maleic anhydride grafted polypropylene;
  • the polypropylene film B includes the following components by weight: 100 parts of polypropylene, 5-6 parts of graphene oxide and 1-5 parts of maleic anhydride grafted polypropylene;
  • the polypropylene film C includes the following components in parts by weight: 100 parts of polypropylene and 1-5 parts of maleic anhydride grafted polypropylene.
  • the polypropylene has a melt index at 200° C. of 2 ⁇ 3 g/10 min.
  • the relative dielectric constant of the polypropylene film A is 30-35, the electrical conductivity (0.8-1.2) is 10 -8 S/m, and the thermal conductivity is 0.7-0.9 W/m ⁇ K;
  • the relative dielectric constant of the polypropylene film B is 10-12, the electrical conductivity is (0.8-1.2) 10-12 S/m, and the thermal conductivity is 0.4-0.6W/m ⁇ K;
  • the relative dielectric constant of the polypropylene film C is 2.2-2.5, the electrical conductivity is (0.8-1.2)10 -14 S/m, and the thermal conductivity is 0.2-0.3 W/m ⁇ K.
  • the present invention also provides a cable, which comprises a conductor, any one of the above-mentioned polypropylene cable protective layers and an outer shielding layer in sequence from the inside to the outside.
  • the above-mentioned cable adopts any one of the above-mentioned polypropylene cable protective layers, which can enhance the electric strength of the cable, and significantly reduce the thickness of the polypropylene cable protective layer, so as to achieve the balance of electric strength, mechanical toughness and thermal conductivity of the power cable.
  • the present invention also provides the preparation method of above-mentioned any described polypropylene cable protective layer, described method comprises the following steps:
  • the hot pressing direction of hot pressing includes several hot pressing directions that are symmetrical to the center and perpendicular to the circumference of the polypropylene cable protective layer.
  • the pressure of several hot pressing directions The size deviation does not exceed 2%.
  • the pressures in several hot pressing directions are equal in magnitude.
  • the above method adopts a hot isostatic pressing method for hot-press forming of the cable protective layer, and the pressure in all directions is equal, which can improve the structural uniformity of the cable protective layer during hot-pressing.
  • step (4) step-by-step pressurization is adopted in thermocompression forming.
  • the step-by-step pressing method in the thermocompression molding includes the following steps: maintaining the temperature of the polypropylene cable protective layer at 160-180°C;
  • the beneficial effect of the present invention is: the present invention provides a kind of protective layer of polypropylene cable and preparation method thereof, and protective layer of polypropylene cable of the present invention has the following advantages: (1) is made up of dielectric layer, buffer layer and insulating layer, The dielectric layer, buffer layer, and insulating layer are obtained by wrapping polypropylene film with gradually reduced graphite oxide content in turn, so that the polypropylene cable protective layer forms a dielectric gradient, which can greatly improve the electric strength of the cable and significantly reduce the insulation.
  • the thickness of the layer achieves the balance of the electrical strength, mechanical toughness and thermal conductivity of the power cable, and realizes the improvement of the insulation strength and voltage level of the power cable and the increase of the power transmission energy without reducing the mechanical toughness and heat dissipation of the power cable.
  • the polypropylene cable protective layer is obtained by wrapping polypropylene films with different dielectric parameters, which effectively avoids the problems of uneven mixing and filler agglomeration;
  • the polypropylene film contains maleic anhydride grafted polypropylene (PP-g -MAH), as a surface modifier of graphene, becomes a bridge to improve the adhesion and compatibility between graphene oxide and polypropylene molecules (improves the adhesion between graphene oxide and polypropylene particles and compatibility), thereby reducing the dispersion of dielectric constant and conductivity, improving the breakdown field strength, and improving the stability of the dielectric gradient cable;
  • the polypropylene cable protective layer of the present invention limits the dielectric layer , The thickness ratio
  • Fig. 1 is a front sectional view of a cable according to an embodiment of the present invention.
  • Fig. 2 is a side sectional view of the cable according to the embodiment of the present invention.
  • Fig. 3 is a graph of the maximum electric field test results of the cable according to the embodiment of the present invention.
  • the protective layer of polypropylene cable is composed of a dielectric layer, a buffer layer and an insulating layer in sequence from the inside to the outside, and the thickness of the dielectric layer accounts for 10% of the thickness of the polypropylene cable.
  • the thickness of the buffer layer accounts for 20% of the thickness of the polypropylene cable protective layer;
  • the dielectric layer is obtained by wrapping polypropylene film A, and the buffer layer is obtained by polypropylene film B Obtained by wrapping, the insulating layer is obtained by wrapping polypropylene film C;
  • the polypropylene film A comprises the following components by weight: 100 parts of polypropylene, 10 parts of graphene oxide and 1 part of maleic anhydride grafted polypropylene, and the thickness of the polypropylene film A is 0.1 mm;
  • the polypropylene film B comprises the following components by weight: 100 parts of polypropylene, 5 parts of graphene oxide and 1 part of maleic anhydride grafted polypropylene, and the thickness of the polypropylene film B is 0.1 mm;
  • the polypropylene film C includes the following components in parts by weight: 100 parts of polypropylene and 1 part of maleic anhydride grafted polypropylene, and the thickness of the polypropylene film C is 0.1 mm.
  • the hot-pressing direction of hot-press forming includes several hot-pressing directions that are center-symmetrical and perpendicular to the circumference of the polypropylene cable protective layer, and the pressures of several hot-pressing directions are equal;
  • a step-by-step pressurization method is adopted in the thermocompression forming;
  • the step-by-step pressurization method in the thermocompression molding includes the following steps: maintaining the temperature of the polypropylene cable protective layer at 160-180°C;
  • the preparation method of described polypropylene film A comprises the following steps:
  • the polypropylene film mixture is used to form a film with a double-roll calender, and the thickness of the prepared film is in the range of 0.1 mm.
  • the relative permittivity of the prepared polypropylene film A is 32.5, the electrical conductivity is 10 -8 S/m, the thermal conductivity is 0.8W/m ⁇ K, the modulus of elasticity is 0.75GPa, and the elongation at break is 126%;
  • the relative permittivity of the prepared polypropylene film B is 11, the electrical conductivity is 10-12 S/m, the thermal conductivity is 0.5W/m ⁇ K, the modulus of elasticity is 0.65GPa, and the elongation at break is 155%. ;
  • the relative dielectric constant of the prepared polypropylene film C is 2.25, the electrical conductivity is 10 -14 S/m, the thermal conductivity is 0.25W/m ⁇ K, the elastic modulus is 0.65GPa, and the elongation at break is 145%. .
  • the thickness of the dielectric layer accounts for 5% of the thickness of the polypropylene cable protective layer; the buffer layer The thickness accounts for 17% of the thickness of the polypropylene cable protective layer;
  • the thickness of the dielectric layer accounts for 8% of the thickness of the protective layer of polypropylene cable; the buffer layer The thickness accounts for 20% of the thickness of the polypropylene cable protective layer.
  • the thickness of the dielectric layer accounts for 12% of the thickness of the polypropylene cable protective layer; the buffer layer The thickness accounts for 25% of the thickness of the polypropylene cable protective layer.
  • the thickness of the polypropylene film A is 0.05 mm; the thickness of the polypropylene film B is 0.05 mm; The thickness of the polypropylene film C is 0.05 mm.
  • the thickness of the polypropylene film A is 0.15 mm; the thickness of the polypropylene film B is 0.15 mm; The thickness of the polypropylene film C is 0.15mm.
  • the cable includes a conductor 1, a polypropylene cable protective layer and an outer shielding layer 5 according to any of the above embodiments from inside to outside, and the polypropylene cable protective layer consists of From the inside to the outside, it consists of a dielectric layer, a buffer layer and an insulating layer.
  • Example 1 As a kind of polypropylene cable protective layer of the embodiment of the present invention, the only difference between this comparative example and Example 1 is: no buffer layer is included, and the polypropylene film B in Example 1 is replaced by polypropylene film C to obtain this comparative example Polypropylene cable protection layer.
  • polypropylene cable protective layer of the embodiment of the present invention As a kind of polypropylene cable protective layer of the embodiment of the present invention, the only difference between this comparative example and embodiment 1 is: no buffer layer and dielectric layer are included, and polypropylene film B in embodiment 1 is replaced by polypropylene film C 1. Polypropylene film A obtains the polypropylene cable protective layer of this comparative example.
  • the polypropylene cable protective layers and conductors of Examples 1-6 and Comparative Examples 1-2 were used to form cable samples, and the electrical, thermal and mechanical properties of the cable samples were tested. The results are shown in Table 1.
  • the diameter of the central conductor of the cable sample to be tested is , and the thickness of the protective layer of the polypropylene cable of the cable sample is .
  • the polypropylene cable protective layer of the embodiment has It is beneficial to improve the voltage level of the cable, which is beneficial to improve the heat dissipation efficiency, and the thickness of the protective layer is smaller, and the bending ability of the cable is better.

Landscapes

  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Abstract

本发明提供一种聚丙烯电缆保护层及其制备方法,聚丙烯电缆保护层由内至外依次包括介电层、缓冲层和绝缘层,介电层的厚度占述聚丙烯电缆保护层厚度的5%~12%;缓冲层的厚度占所述聚丙烯电缆保护层厚度的17%~25%;所述介电层、缓冲层和绝缘层分别由厚度0.05~0.20mm的聚丙烯薄膜A、聚丙烯薄膜B、聚丙烯薄膜C绕包得到,聚丙烯薄膜A、聚丙烯薄膜B、聚丙烯薄膜C中的氧化石墨烯含量递减。本发明的聚丙烯电缆保护层形成介电梯度,可以大幅度提升电缆的耐电强度,并显著缩小绝缘层厚度,达到电力电缆耐电强度、机械韧性和导热能力的平衡,实现了在提升电力电缆的绝缘强度、电压等级以及增大电能传输能量的同时,不会降低电力电缆的机械韧性及散热能力。

Description

一种聚丙烯电缆保护层及其制备方法 技术领域
本发明涉及电缆材料领域,具体涉及一种聚丙烯电缆保护层及其制备方法。
背景技术
电力电缆作为电能输送的重要载体,在电力系统中应用十分广泛。随着国民经济的不断发展及分散式可再生能源中心的不断涌现,对电能进行长距离、大容量输送已成为电力系统发展的主要趋势,目前电力电缆的电压等级一般不超过550kV,输送容量的提升也受到限制,因此,迫切需要研发、制造出更高电压等级的电力电缆。
现有技术中,提升电缆的电压等级一般通过增大绝缘层的径向厚度实现。然而,提升绝缘层厚度往往会显著增加电缆的直径,这一方面会导致电缆的韧性降低,不利于电缆弯折,进而增大电缆铺设过程中的施工难度;另一方面,厚度过高且导热能力较差的绝缘层也不利于中心导体焦耳热的耗散,会增大电缆的温升程度,降低导体与绝缘材料的运行寿命。因此,如何在提升电力电缆的绝缘强度、电压等级以及增大电能传输能量的同时,不会降低电力电缆的机械韧性及散热能力,成为电力电缆加工中急需解决的问题。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供一种聚丙烯电缆保护层及其制备方法。
为实现上述目的,本发明采取的技术方案为:一种聚丙烯电缆保护层,所述聚丙烯电缆保护层由内至外依次包括介电层、缓冲层和绝缘层,所述介电层的厚度占所述聚丙烯电缆保护层厚度的5%~12%;所述缓冲层的厚度占所述聚丙烯电缆保护层厚度的17%~25%;所述介电层由聚丙烯薄膜A绕包得到,所述缓冲层由聚丙烯薄膜B绕包得到,所述绝缘层由聚丙烯薄膜C绕包得到;
所述聚丙烯薄膜A包括以下重量份的组分:100份聚丙烯、8~10份氧化石墨烯和0.5~5份马来酸酐接枝聚丙烯,所述聚丙烯薄膜A的厚度为0.05~0.2mm;
所述聚丙烯薄膜B包括以下重量份的组分:100份聚丙烯、4~6份氧化石墨烯和0.5~5份马来酸酐接枝聚丙烯,所述聚丙烯薄膜B的厚度为0.05~0.2mm;
所述聚丙烯薄膜C包括以下重量份的组分:100份聚丙烯和0.5~5份马来酸酐接枝聚丙烯,所述聚丙烯薄膜C的厚度为0.05~0.2mm。
上述的聚丙烯电缆保护层由介电层、缓冲层和绝缘层组成,介电层、缓冲层和绝缘层分别依次由氧化石墨含量逐渐减少的聚丙烯薄膜绕包得到,使得聚丙烯电缆保护层形成介电梯度,可以大幅度提升电缆的耐电强度,并显著缩小绝缘层厚度,达到电力电缆耐电强度、机械韧性和导热能力的平衡,实现了在提升电力电缆的绝缘强度、电压等级以及增大电能传输能量的同时,不会降低电力电缆的机械韧性及散热能力;现有的介电梯度绝缘件中经常出现混料不均匀、填料团聚的问题,进而会导致薄膜在加工过程中发生局部应力集中而破裂,同时电缆中填料团聚区域容易发生绝缘失效,上述聚丙烯电缆保护层利用不同介电参数的聚丙烯薄膜绕包后得到,有效避免了混料不均匀、填料团聚的问题;聚丙烯薄膜中含有马来酸酐接枝聚丙烯(PP-g-MAH),作为石墨烯的表面改性剂,成为增进氧化石墨烯与聚丙烯分子之间粘接性和相容性的桥梁(增进了氧化石墨烯与聚丙烯颗粒料之间的粘接性和相容性),进而降低了介电常数和电导率的分散性,提升了击穿场强,提高了介电梯度电缆的稳定性;上述聚丙烯电缆保护层限定介电层、缓冲层和绝缘层的厚度比例,并且限定聚丙烯薄膜A、聚丙烯薄膜B和聚丙烯薄膜C的厚度,有利于改善聚丙烯电缆的韧性,增强耐电强度。
优选地,所述聚丙烯薄膜A的厚度为0.08~0.15mm;所述聚丙烯薄膜B的厚度为0.08~0.15mm;所述聚丙烯薄膜C的厚度为0.08~0.15mm。
优选地,所述介电层的厚度占所述聚丙烯电缆保护层厚度的8%~10%;所述缓冲层的厚度占所述聚丙烯电缆保护层厚度的17%~20%。
发明人通过研究发现,当介电层的厚度占所述聚丙烯电缆保护层厚度的8%~10%;缓冲层的厚度占所述聚丙烯电缆保护层厚度的17%~20%时,更有利 于提高聚丙烯电缆保护层的耐电强度和韧性。
优选地,所述聚丙烯电缆保护层在160℃~180℃下热压成型。
通过在160℃~180℃下热压成型以去除聚丙烯电缆保护层的聚丙烯薄膜之间的气泡,有利于提高聚丙烯电缆保护层结构的均匀性。
优选地,所述聚丙烯薄膜A包括以下重量份的组分:100份聚丙烯、9~10份氧化石墨烯和1~5份马来酸酐接枝聚丙烯;
所述聚丙烯薄膜B包括以下重量份的组分:100份聚丙烯、5~6份氧化石墨烯和1~5份马来酸酐接枝聚丙烯;
所述聚丙烯薄膜C包括以下重量份的组分:100份聚丙烯和1~5份马来酸酐接枝聚丙烯。
优选地,所述聚丙烯的在200℃下的熔融指数为2~3g/10min。
优选地,所述聚丙烯薄膜A的相对介电常数为30~35,电导率(0.8~1.2)10 -8S/m,热导率为0.7~0.9W/m·K;
所述聚丙烯薄膜B的相对介电常数为10~12,电导率为(0.8~1.2)10 -12S/m,热导率为0.4~0.6W/m·K;
所述聚丙烯薄膜C的相对介电常数为2.2~2.5,电导率为(0.8~1.2)10 -14S/m,热导率为0.2~0.3W/m·K。
本发明还提供一种电缆,所述电缆由内至外依次包括导体、上述任一所述聚丙烯电缆保护层和外屏蔽层。
上述电缆采用上述任一所述聚丙烯电缆保护层,可以增强电缆的耐电强度,并且显著降低聚丙烯电缆保护层的厚度,达到电力电缆耐电强度、机械韧性和导热能力的平衡。
本发明还提供上述任一所述聚丙烯电缆保护层的制备方法,所述方法包括以下步骤:
(1)将聚丙烯薄膜A绕包为介电层;
(2)将聚丙烯薄膜B沿介电层绕包得到缓冲层;
(3)将聚丙烯薄膜C沿缓冲层绕包得到绝缘层;
(4)在160℃~180℃下热压成型,热压成型的热压方向包括中心对称且与所述聚丙烯电缆保护层的圆周垂直的若干个热压方向,若干个热压方向的压力大小偏差不超过2%。
更优选地,所述步骤(4)中,若干个热压方向的压力大小相等。
上述方法采用热等静压方法进行电缆保护层的热压成形,各个方向的压力相等,能够提升电缆保护层热压过程中的结构均匀性。
优选地,所述步骤(4)中,热压成型中采用逐级加压方式。
优选地,所述热压成型中的逐级加压方式包括以下步骤:维持聚丙烯电缆保护层的温度为160~180℃;
(a)以5MPa施加压力2min;
(b)去除压力等待20s;
(c)以10MPa加压2min;
(d)去除压力等待20s;
(e)以15MPa加压20min;
(f)去除压力后将温度降低至120摄氏度,稳定60min;
(g)以10摄氏度每分钟的速度缓慢降低至室温,得到聚丙烯电缆保护层。
本发明的有益效果在于:本发明提供了一种聚丙烯电缆保护层及其制备方法,本发明的聚丙烯电缆保护层具有以下优点:(1)由介电层、缓冲层和绝缘层组成,介电层、缓冲层和绝缘层分别依次由氧化石墨含量逐渐减少的聚丙烯薄膜绕包得到,使得聚丙烯电缆保护层形成介电梯度,可以大幅度提升电缆的耐电强度,并显著缩小绝缘层厚度,达到电力电缆耐电强度、机械韧性和导热能力的平衡,实现了在提升电力电缆的绝缘强度、电压等级以及增大电能传输能量的同时,不会降低电力电缆的机械韧性及散热能力;(2)现有的介电梯度绝缘件中经常出现混料不均匀、填料团聚的问题,进而会导致薄膜在加工过程中发生局部应力集中而破裂,同时电缆中填料团聚区域容易发生绝缘失效,上述聚丙烯电缆保护层利用不同介电参数的聚丙烯薄膜绕包后得到,有效避免了 混料不均匀、填料团聚的问题;聚丙烯薄膜中含有马来酸酐接枝聚丙烯(PP-g-MAH),作为石墨烯的表面改性剂,成为增进氧化石墨烯与聚丙烯分子之间粘接性和相容性的桥梁(增进了氧化石墨烯与聚丙烯颗粒料之间的粘接性和相容性),进而降低了介电常数和电导率的分散性,提升了击穿场强,提高了介电梯度电缆的稳定性;(3)本发明聚丙烯电缆保护层限定介电层、缓冲层和绝缘层的厚度比例,并且限定聚丙烯薄膜A、聚丙烯薄膜B和聚丙烯薄膜C的厚度,有利于改善聚丙烯电缆的韧性,增强耐电强度。
附图说明
图1为本发明实施例的电缆的主视剖面图。
图2为本发明实施例的电缆的侧视剖面图。
图3为本发明实施例的电缆的最大电场测试结果图。
1、中心导体,2、介电层,3、过渡层,4、绝缘层,5、外屏蔽层。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
作为本发明实施例的一种聚丙烯电缆保护层,所述聚丙烯电缆保护层由内至外依次由介电层、缓冲层和绝缘层组成,所述介电层的厚度占所述聚丙烯电缆保护层厚度的10%;所述缓冲层的厚度占所述聚丙烯电缆保护层厚度的20%;所述介电层由聚丙烯薄膜A绕包得到,所述缓冲层由聚丙烯薄膜B绕包得到,所述绝缘层由聚丙烯薄膜C绕包得到;
所述聚丙烯薄膜A包括以下重量份的组分:100份聚丙烯、10份氧化石墨烯和1份马来酸酐接枝聚丙烯,所述聚丙烯薄膜A的厚度为0.1mm;
所述聚丙烯薄膜B包括以下重量份的组分:100份聚丙烯、5份氧化石墨烯和1份马来酸酐接枝聚丙烯,所述聚丙烯薄膜B的厚度为0.1mm;
所述聚丙烯薄膜C包括以下重量份的组分:100份聚丙烯和1份马来酸酐接枝聚丙烯,所述聚丙烯薄膜C的厚度为0.1mm。
本实施例的聚丙烯电缆保护层的制备方法包括以下步骤:
(1)将聚丙烯薄膜A绕包在金属导体线缆上得到介电层;
(2)将聚丙烯薄膜B沿介电层绕包得到缓冲层;
(3)将聚丙烯薄膜C沿缓冲层绕包得到绝缘层;
(4)在170℃下热压成型,热压成型的热压方向包括中心对称且与所述聚丙烯电缆保护层的圆周垂直的若干个热压方向,若干个热压方向的压力大小相等;热压成型中采用逐级加压方式;所述热压成型中的逐级加压方式包括以下步骤:维持聚丙烯电缆保护层的温度为160~180℃;
(a)以5MPa施加压力2min;
(b)去除压力等待20s;
(c)以10MPa加压2min;
(d)去除压力等待20s;
(e)以15MPa加压20min;
(f)去除压力后将温度降低至120摄氏度,稳定60min;
(g)以10摄氏度每分钟的速度缓慢降低至室温,得到聚丙烯电缆保护层。
所述聚丙烯薄膜A的制备方法包括以下步骤:
(1)将200℃下熔融指数2.2g/10min(测试条件参照GB/T 3682-2018)聚丙烯颗粒料(PP)、氧化石墨烯(GO)、马来酸酐接枝聚丙烯(PP-g-MAH)按照重量配比依次放入滚筒球磨机球磨混匀得到聚丙烯薄膜混合料;
(2)采用双辊压延机将聚丙烯薄膜混合料进行制膜,制备得到的薄膜厚度数值范围为0.1mm。
调整氧化石墨烯的重量含量,参照聚丙烯薄膜A的制备方法制备聚丙烯薄膜B和聚丙烯薄膜C。
制备得到的聚丙烯薄膜A的相对介电常数为32.5,电导率10 -8S/m,热导率为0.8W/m·K,弹性模量为0.75GPa,断裂伸长率为126%;
制备得到的聚丙烯薄膜B的相对介电常数为11,电导率为10 -12S/m,热导 率为0.5W/m·K,弹性模量为0.65GPa,断裂伸长率为155%;
制备得到的聚丙烯薄膜C的相对介电常数为2.25,电导率为10 -14S/m,热导率为0.25W/m·K,弹性模量为0.65GPa,断裂伸长率为145%。
实施例2
作为本发明实施例的一种聚丙烯电缆保护层,本实施例与实施例1的唯一区别为:所述介电层的厚度占所述聚丙烯电缆保护层厚度的5%;所述缓冲层的厚度占所述聚丙烯电缆保护层厚度的17%;
实施例3
作为本发明实施例的一种聚丙烯电缆保护层,本实施例与实施例1的唯一区别为:所述介电层的厚度占所述聚丙烯电缆保护层厚度的8%;所述缓冲层的厚度占所述聚丙烯电缆保护层厚度的20%。
实施例4
作为本发明实施例的一种聚丙烯电缆保护层,本实施例与实施例1的唯一区别为:所述介电层的厚度占所述聚丙烯电缆保护层厚度的12%;所述缓冲层的厚度占所述聚丙烯电缆保护层厚度的25%。
实施例5
作为本发明实施例的一种聚丙烯电缆保护层,本实施例与实施例1的唯一区别为:所述聚丙烯薄膜A的厚度为0.05mm;所述聚丙烯薄膜B的厚度为0.05mm;所述聚丙烯薄膜C的厚度为0.05mm。
实施例6
作为本发明实施例的一种聚丙烯电缆保护层,本实施例与实施例1的唯一区别为:所述聚丙烯薄膜A的厚度为0.15mm;所述聚丙烯薄膜B的厚度为0.15mm;所述聚丙烯薄膜C的厚度为0.15mm。
实施例7
作为本发明实施例的一种聚丙烯电缆,所述电缆由内至外依次包括导体1、上述实施例任一所述聚丙烯电缆保护层和外屏蔽层5,所述聚丙烯电缆保护层由内至外依次由介电层、缓冲层和绝缘层组成。
对比例1
作为本发明实施例的一种聚丙烯电缆保护层,本对比例与实施例1的唯一区别为:不包括缓冲层,由聚丙烯薄膜C替换实施例1中的聚丙烯薄膜B得到本对比例的聚丙烯电缆保护层。
对比例2
作为本发明实施例的一种聚丙烯电缆保护层,本对比例与实施例1的唯一区别为:不包括缓冲层和介电层,由聚丙烯薄膜C替换实施例1中的聚丙烯薄膜B、聚丙烯薄膜A得到本对比例的聚丙烯电缆保护层。
性能测试。
将实施例1-6、对比例1-2的聚丙烯电缆保护层与导体组成电缆样品,测试电缆样品的电、热和力特性。结果如表1所示。待测电缆样品的中心导体的直径为,电缆样品聚丙烯电缆保护层的厚度为。
表1 聚丙烯电缆保护层的性能
Figure PCTCN2021119222-appb-000001
Figure PCTCN2021119222-appb-000002
实施例1、对比例1、对比例2电场分布如下图3所示,在相同绝缘厚度下,中心导体施加相同的电压时,对比例2(图3a)的最大电场可达2kV/mm,对比例1(图3b)最大电场仍可达1.8kV/mm。实施例1(图3c)电场的均匀性得到了显著改善,最大电场为1.4kV/mm,更低的绝缘内部电场意味着外施电压等级可以更高,说明实施例的聚丙烯电缆保护层有利于提高电缆的电压等级,有利益提高散热效率,并且保护层厚度更小,电缆的弯折能力更佳。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (9)

  1. 一种聚丙烯电缆保护层,其特征在于,所述聚丙烯电缆保护层由内至外依次包括介电层、缓冲层和绝缘层,所述介电层的厚度占所述聚丙烯电缆保护层厚度的5%~12%;所述缓冲层的厚度占所述聚丙烯电缆保护层厚度的17%~25%;所述介电层由聚丙烯薄膜A绕包得到,所述缓冲层由聚丙烯薄膜B绕包得到,所述绝缘层由聚丙烯薄膜C绕包得到;
    所述聚丙烯薄膜A包括以下重量份的组分:100份聚丙烯、8~10份氧化石墨烯和0.5~5份马来酸酐接枝聚丙烯,所述聚丙烯薄膜A的厚度为0.05~0.2mm;
    所述聚丙烯薄膜B包括以下重量份的组分:100份聚丙烯、4~6份氧化石墨烯和0.5~5份马来酸酐接枝聚丙烯,所述聚丙烯薄膜B的厚度为0.05~0.2mm;
    所述聚丙烯薄膜C包括以下重量份的组分:100份聚丙烯和0.5~5份马来酸酐接枝聚丙烯,所述聚丙烯薄膜C的厚度为0.05~0.2mm。
  2. 根据权利要求1所述的聚丙烯电缆保护层,其特征在于,所述聚丙烯薄膜A的厚度为0.08~0.15mm;所述聚丙烯薄膜B的厚度为0.08~0.15mm;所述聚丙烯薄膜C的厚度为0.08~0.15mm。
  3. 根据权利要求1所述的聚丙烯电缆保护层,其特征在于,所述介电层的厚度占所述聚丙烯电缆保护层厚度的8%~10%;所述缓冲层的厚度占所述聚丙烯电缆保护层厚度的17%~20%。
  4. 根据权利要求1所述的聚丙烯电缆保护层,其特征在于,所述聚丙烯电缆保护层在160℃~180℃下热压成型。
  5. 根据权利要求1所述的聚丙烯电缆保护层,其特征在于,所述聚丙烯薄膜A包括以下重量份的组分:100份聚丙烯、9~10份氧化石墨烯和1~5份马来酸酐接枝聚丙烯;
    所述聚丙烯薄膜B包括以下重量份的组分:100份聚丙烯、5~6份氧化石墨烯和1~5份马来酸酐接枝聚丙烯;
    所述聚丙烯薄膜C包括以下重量份的组分:100份聚丙烯和1~5份马来酸酐接枝聚丙烯。
  6. 根据权利要求5所述的聚丙烯电缆保护层,其特征在于,所述聚丙烯薄膜A的相对介电常数为30~35,电导率(0.8~1.2)×10 -8S/m,热导率为0.7~0.9W/m·K;
    所述聚丙烯薄膜B的相对介电常数为10~12,电导率为(0.8~1.2)10 -12S/m,热导率为0.4~0.6W/m·K;
    所述聚丙烯薄膜C的相对介电常数为2.2~2.5,电导率为(0.8~1.2)10 -14S/m,热导率为0.2~0.3W/m·K。
  7. 一种电缆,其特征在于,所述电缆由内至外依次包括导体、如权利要求1-6任一所述聚丙烯电缆保护层和外屏蔽层。
  8. 如权利要求1-6任一所述聚丙烯电缆保护层的制备方法,其特征在于,所述方法包括以下步骤:
    (1)将聚丙烯薄膜A绕包为介电层;
    (2)将聚丙烯薄膜B沿介电层绕包得到缓冲层;
    (3)将聚丙烯薄膜C沿缓冲层绕包得到绝缘层;
    (4)在160℃~180℃下热压成型,热压成型的热压方向包括中心对称且与所述聚丙烯电缆保护层的圆周垂直的若干个热压方向,若干个热压方向的压力大小偏差不超过2%。
  9. 根据权利要求8所述聚丙烯电缆保护层的制备方法,其特征在于,所述步骤(4)中,热压成型中采用逐级加压方式。
PCT/CN2021/119222 2021-09-01 2021-09-18 一种聚丙烯电缆保护层及其制备方法 WO2023029115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111023507.5A CN113921188B (zh) 2021-09-01 2021-09-01 一种聚丙烯电缆保护层及其制备方法
CN202111023507.5 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023029115A1 true WO2023029115A1 (zh) 2023-03-09

Family

ID=79233788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119222 WO2023029115A1 (zh) 2021-09-01 2021-09-18 一种聚丙烯电缆保护层及其制备方法

Country Status (2)

Country Link
CN (1) CN113921188B (zh)
WO (1) WO2023029115A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624786A (zh) * 2024-01-26 2024-03-01 广东电缆厂有限公司 一种聚丙烯绝缘中压电力电缆及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400068A (zh) * 2015-11-27 2016-03-16 安徽宁国市高新管业有限公司 一种氧化石墨烯改性聚丙烯电力电缆保护管
US20160217888A1 (en) * 2013-09-04 2016-07-28 Schlumberger Technology Corporation Power cable gas barrier
CN105924767A (zh) * 2015-02-27 2016-09-07 现代自动车株式会社 聚丙烯-石墨烯复合材料及其制备方法
CN110265176A (zh) * 2019-06-14 2019-09-20 清华大学深圳研究生院 介电梯度材料及其应用
CN111171449A (zh) * 2020-02-05 2020-05-19 上海大学 一种高导热聚丙/烯石墨烯复合材料及其制备方法
CN111292885A (zh) * 2018-12-10 2020-06-16 耐克森公司 包括聚合物-碳复合物的屏蔽层的高屏蔽轻质电缆

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940456A (zh) * 2021-03-15 2021-06-11 南方电网科学研究院有限责任公司 一种功能梯度绝缘件的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160217888A1 (en) * 2013-09-04 2016-07-28 Schlumberger Technology Corporation Power cable gas barrier
CN105924767A (zh) * 2015-02-27 2016-09-07 现代自动车株式会社 聚丙烯-石墨烯复合材料及其制备方法
CN105400068A (zh) * 2015-11-27 2016-03-16 安徽宁国市高新管业有限公司 一种氧化石墨烯改性聚丙烯电力电缆保护管
CN111292885A (zh) * 2018-12-10 2020-06-16 耐克森公司 包括聚合物-碳复合物的屏蔽层的高屏蔽轻质电缆
CN110265176A (zh) * 2019-06-14 2019-09-20 清华大学深圳研究生院 介电梯度材料及其应用
CN111171449A (zh) * 2020-02-05 2020-05-19 上海大学 一种高导热聚丙/烯石墨烯复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624786A (zh) * 2024-01-26 2024-03-01 广东电缆厂有限公司 一种聚丙烯绝缘中压电力电缆及其制备方法

Also Published As

Publication number Publication date
CN113921188A (zh) 2022-01-11
CN113921188B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
Wu et al. On the improved properties of injection-molded, carbon nanotube-filled PET/PVDF blends
KR101161360B1 (ko) 공간전하 저감 효과를 갖는 직류용 전력 케이블
CN109093108B (zh) 高定向石墨烯-碳纳米管混合铜基复合材料及其制备方法
WO2023029115A1 (zh) 一种聚丙烯电缆保护层及其制备方法
WO2022179375A1 (zh) 一种绝缘电线及其制备方法、线圈和电子、电气设备
WO2022242026A1 (zh) 一种交联聚乙烯复合材料及其制备方法与应用
US11674076B2 (en) Dielectric elastomer precursor fluid, preparation method therefor and use thereof, dielectric elastomer composite material, flexible device, and light-emitting device
CN107767989A (zh) 一种聚醚醚酮高压柔性直流输电光纤复合挤出电缆
CN110894342B (zh) 一种复合热界面材料及其制备方法
CN116063801A (zh) 一种导热绝缘ev电缆料及其制备方法和应用
CN106633303A (zh) 高直流击穿场强的纳米复合交联聚乙烯绝缘材料及其制备方法
CN103350553B (zh) 单面补强云母带
Li et al. Enhancement of thermal conductivity for epoxy laminated composites by constructing hetero‐structured GF/BN networks
WO2020206979A1 (zh) 一种高压电缆用半导电屏蔽料及其制备方法和应用
Yang et al. Enhanced nonlinear conductivity of silicone rubber composites with hybrid graphene and alumina for cable accessory
CN110452444B (zh) 具有超疏水特性的交联聚乙烯复合材料及制备方法、应用
WO2020211311A1 (zh) 具有三维导电网络的橡胶/低熔点合金/纳米碳复合材料及其制备方法
US20240221971A1 (en) Polypropylene cable protective layer and preparation method thereof
CN113754941B (zh) 一种高电气强度聚烯烃基复合绝缘材料及其制备方法
CN106497077B (zh) 一种适应复杂电场的双掺杂硅橡胶复合材料及其制备方法
CN114031942A (zh) 一种硅橡胶改性绝缘材料的制备方法
CN112646316A (zh) 低电导温度系数环氧树脂/富勒烯复合材料及其制备方法
CN112646315A (zh) 低电导温度系数环氧树脂纳米复合绝缘材料及其制备方法
CN114907655A (zh) 一种ptfe复合材料及其制备方法和应用
CN113644288A (zh) 复合双极板及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17920051

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE