CN114031942A - 一种硅橡胶改性绝缘材料的制备方法 - Google Patents

一种硅橡胶改性绝缘材料的制备方法 Download PDF

Info

Publication number
CN114031942A
CN114031942A CN202111341711.1A CN202111341711A CN114031942A CN 114031942 A CN114031942 A CN 114031942A CN 202111341711 A CN202111341711 A CN 202111341711A CN 114031942 A CN114031942 A CN 114031942A
Authority
CN
China
Prior art keywords
insulating material
parts
nano
mixing
silicone rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111341711.1A
Other languages
English (en)
Inventor
徐毓皓
贾志勇
赵海清
齐乾坤
刘梦洋
王谦
康力文
张继超
罗辑
张扬
徐�明
蔡广达
张学川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiamusi Power Supply Co Of State Grid Heilongjiang Electric Power Co ltd
State Grid Corp of China SGCC
Original Assignee
Jiamusi Power Supply Co Of State Grid Heilongjiang Electric Power Co ltd
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiamusi Power Supply Co Of State Grid Heilongjiang Electric Power Co ltd, State Grid Corp of China SGCC filed Critical Jiamusi Power Supply Co Of State Grid Heilongjiang Electric Power Co ltd
Priority to CN202111341711.1A priority Critical patent/CN114031942A/zh
Publication of CN114031942A publication Critical patent/CN114031942A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种硅橡胶改性绝缘材料的制备方法,本发明涉及绝缘材料制备领域。本发明要解决现有绝缘材料绝缘性能不能达到使用要求的技术问题。该方法:一、称取液体硅橡胶、抗氧剂、玻璃纤维、三氧化二铝纤维和份填料;二、混炼;三、硫化,挤压成型。本发明利用协同作用使得绝缘材料具有优异的力学性能和抗击穿性能,且该制备方法步骤简单,原料易得。本发明用于制备绝缘材料。

Description

一种硅橡胶改性绝缘材料的制备方法
技术领域
本发明涉及绝缘材料制备领域。
背景技术
与交流输电相比,高压直流输电由于输电能力强,线路损耗小,两侧交流无需同步运行,故障损失小等优点而用于长距离(大于600km)大容量输电技术中。因此,绝缘材料作为直流输变电技术中的重要一环,而现有的绝缘材料绝缘性能不能达到使用要求,需要进一步发展电绝缘材料,以适应输电线路的要求。
发明内容
本发明要解决现有绝缘材料绝缘性能不能达到使用要求,而提供一种硅橡胶改性绝缘材料的制备方法。
一种硅橡胶改性绝缘材料的制备方法,具体按以下步骤进行:
一、按照重量份数称取100份液体硅橡胶、0.2~0.7份抗氧剂、3~8份玻璃纤维、3-8 份三氧化二铝纤维和10~20份填料;
二、将步骤一称取的液体硅橡胶、抗氧剂、玻璃纤维、三氧化二铝纤维和填料混合,然后进行混炼,获得坯料;
三、将步骤二获得的坯料放入平板硫化机进行硫化,然后挤出成型获得所述一种硅橡胶改性绝缘材料。
进一步的,填料包括纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨。
进一步的,纳米氧化锌的粒径为10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管的直径为5nm~80nm、管长为 1μm~15μm,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm。
进一步的,所述碳纳米管为单臂碳纳米管、双臂碳纳米管或多壁碳纳米管。
进一步的,步骤一所述抗氧化剂为有机硫化物。
进一步的,步骤二所述混炼温度为40~60℃,混炼时间为10~30min。
进一步的,步骤三所述硫化温度为110~165℃,硫化时间为5~10min。
步骤二采用真空搅拌机进行混炼排除气泡。
本发明的有益效果是:
本发明采用多种非线性功能填料复配,充分发挥各功能填料的协同效应,100份液体硅橡胶中添加的非线性功能填料不超过20份,搅拌过程中的复合材料粘度低,易于搅拌,制备得到的液体硅橡胶基电导非线性绝缘材料的交流击穿强度不小于30kV/mm,直流击穿强度不小于60kV/mm,在8kV/mm以下电场中下体积电阻率不小于1013Ω·m,最大非线性系数6~20,拉伸强度不小于6.0MPa,断裂伸长率不小于200%。本发明主要应用于高压复合绝缘材料。
本发明利用协同作用使得绝缘材料具有优异的力学性能和抗击穿强度性能,且该制备方法步骤简单,原料易得。
本发明用于制备绝缘材料。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式一种硅橡胶改性绝缘材料的制备方法,具体按以下步骤进行:
一、按照重量份数称取100份液体硅橡胶、0.2~0.7份抗氧剂、3~8份玻璃纤维、3-8 份三氧化二铝纤维和10~20份填料;
二、将步骤一称取的液体硅橡胶、抗氧剂、玻璃纤维、三氧化二铝纤维和填料混合,然后进行混炼,获得坯料;
三、将步骤二获得的坯料放入平板硫化机进行硫化,然后挤出成型获得所述一种硅橡胶改性绝缘材料。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一所述填料包括纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:纳米氧化锌的粒径为 10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管的直径为5nm~80nm、管长为1μm~15μm,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述碳纳米管为单臂碳纳米管、双臂碳纳米管或多壁碳纳米管。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一所述抗氧化剂为有机硫化物。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二所述混炼温度为40~60℃,混炼时间为10~30min。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤三所述硫化温度为110~165℃,硫化时间为5~10min。其它与具体实施方式一至六之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:
本实施例一种硅橡胶改性绝缘材料的制备方法,具体按以下步骤进行:
一、按照重量份数称取100份液体硅橡胶、0.5份抗氧剂、8份玻璃纤维、5份三氧化二铝纤维和15份填料;
填料为10份纳米氧化锌、2份纳米二氧化钛、5份纳米碳化硅、0.5份碳纳米管、0.5份导电炭黑和0.5份纳米石墨;
二、将步骤一称取的液体硅橡胶、抗氧剂、玻璃纤维、三氧化二铝纤维和填料混合,然后进行混炼,获得坯料;混炼温度为45℃,混炼时间为5min;
三、将步骤二获得的坯料放入平板硫化机升温至110℃,进行硫化,硫化时间为10min,然后挤出成型获得所述一种硅橡胶改性绝缘材料。
本实施例得到的硅橡胶改性绝缘材料在8kV/mm以下电场中体积电阻率为6.8×1014Ω·m,交流击穿强度为33kV/mm,直流击穿强度为65kV/mm,最大非线性系数为12.8,拉伸强度为6.8MPa,断裂伸长率为210%。
实施例二:
本实施例一种硅橡胶改性绝缘材料的制备方法,具体按以下步骤进行:
一、按照重量份数称取100份液体硅橡胶、0.5份抗氧剂、8份玻璃纤维、5份三氧化二铝纤维和15份填料;
填料为5份纳米氧化锌、1份纳米二氧化钛、4份纳米碳化硅、1.0份碳纳米管、1份导电炭黑和1份纳米石墨;
二、将步骤一称取的液体硅橡胶、抗氧剂、玻璃纤维、三氧化二铝纤维和填料混合,然后进行混炼,获得坯料;混炼温度为45℃,混炼时间为5min;
三、将步骤二获得的坯料放入平板硫化机升温至130℃,进行硫化,硫化时间为8min,然后挤出成型获得所述一种硅橡胶改性绝缘材料。
本实施例得到的硅橡胶改性绝缘材料在8kV/mm以下电场中体积电阻率为8.8×1014Ω·m,交流击穿强度为35kV/mm,直流击穿强度为68kV/mm,最大非线性系数为11.7,拉伸强度为7.6MPa,断裂伸长率为270%。
实施例三:
本实施例一种硅橡胶改性绝缘材料的制备方法,具体按以下步骤进行:
一、按照重量份数称取100份液体硅橡胶、0.5份抗氧剂、8份玻璃纤维、5份三氧化二铝纤维和15份填料;
填料为3份纳米氧化锌、1份纳米二氧化钛、3.5份纳米碳化硅、1份碳纳米管、1份导电炭黑和0.5份纳米石墨;
二、将步骤一称取的液体硅橡胶、抗氧剂、玻璃纤维、三氧化二铝纤维和填料混合,然后进行混炼,获得坯料;混炼温度为45℃,混炼时间为5min;
三、将步骤二获得的坯料放入平板硫化机升温至120℃,进行硫化,硫化时间为8min,然后挤出成型获得所述一种硅橡胶改性绝缘材料。
本实施例得到的硅橡胶改性绝缘材料在8kV/mm以下电场中体积电阻率为9.6×1014Ω·m,交流击穿强度为37kV/mm,直流击穿强度为71kV/mm,最大非线性系数为9.6,拉伸强度为8.8MPa,断裂伸长率为320%。

Claims (7)

1.一种硅橡胶改性绝缘材料的制备方法,其特征在于该绝缘材料的制备方法具体按以下步骤进行:
一、按照重量份数称取100份液体硅橡胶、0.2~0.7份抗氧剂、3~8份玻璃纤维、3-8份三氧化二铝纤维和10~20份填料;
二、将步骤一称取的液体硅橡胶、抗氧剂、玻璃纤维、三氧化二铝纤维和填料混合,然后进行混炼,获得坯料;
三、将步骤二获得的坯料放入平板硫化机进行硫化,然后挤出成型获得所述一种硅橡胶改性绝缘材料。
2.根据权利要求1所述的一种硅橡胶改性绝缘材料的制备方法,其特征在于步骤一所述填料包括纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨。
3.根据权利要求2所述的一种硅橡胶改性绝缘材料的制备方法,其特征在于纳米氧化锌的粒径为10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管的直径为5nm~80nm、管长为1μm~15μm,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm。
4.根据权利要求3所述的一种硅橡胶改性绝缘材料的制备方法,其特征在于所述碳纳米管为单臂碳纳米管、双臂碳纳米管或多壁碳纳米管。
5.根据权利要求1所述的一种硅橡胶改性绝缘材料的制备方法,其特征在于步骤一所述抗氧化剂为有机硫化物。
6.根据权利要求1所述的一种硅橡胶改性绝缘材料的制备方法,其特征在于步骤二所述混炼温度为40~60℃,混炼时间为10~30min。
7.根据权利要求1所述的一种硅橡胶改性绝缘材料的制备方法,其特征在于步骤三所述硫化温度为110~165℃,硫化时间为5~10min。
CN202111341711.1A 2021-11-12 2021-11-12 一种硅橡胶改性绝缘材料的制备方法 Pending CN114031942A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111341711.1A CN114031942A (zh) 2021-11-12 2021-11-12 一种硅橡胶改性绝缘材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111341711.1A CN114031942A (zh) 2021-11-12 2021-11-12 一种硅橡胶改性绝缘材料的制备方法

Publications (1)

Publication Number Publication Date
CN114031942A true CN114031942A (zh) 2022-02-11

Family

ID=80137510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111341711.1A Pending CN114031942A (zh) 2021-11-12 2021-11-12 一种硅橡胶改性绝缘材料的制备方法

Country Status (1)

Country Link
CN (1) CN114031942A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116004017A (zh) * 2023-01-09 2023-04-25 东莞市正安有机硅科技有限公司 一种玻纤粉改性硅橡胶及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116004017A (zh) * 2023-01-09 2023-04-25 东莞市正安有机硅科技有限公司 一种玻纤粉改性硅橡胶及其制备方法
CN116004017B (zh) * 2023-01-09 2024-04-16 东莞市正安有机硅科技有限公司 一种玻纤粉改性硅橡胶及其制备方法

Similar Documents

Publication Publication Date Title
Zhou et al. Polymeric insulation materials for HVDC cables: Development, challenges and future perspective
Subramaniam et al. Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes
CN103214850B (zh) 一种混炼硅橡胶基电导非线性绝缘材料
WO2018036425A1 (zh) 基于三维石墨烯改性的橡胶复合材料及其制备方法
CN103214747B (zh) 一种三元乙丙橡胶基电导非线性绝缘材料
CN101845178A (zh) 耐扭曲风力发电电缆绝缘材料及电缆
CN102382377A (zh) 中压乙丙橡胶绝缘材料及制备方法
CN103214851A (zh) 一种液体硅橡胶基电导非线性绝缘材料
CN102746671A (zh) 一种耐环境开裂低温补偿电缆料及其制备方法
EP4086978A1 (en) Welding-free connector electrically connected to battery cell, and lithium ion battery comprising the connector
CN114031942A (zh) 一种硅橡胶改性绝缘材料的制备方法
EP3835362A1 (en) Conductive liquid silicone rubber and preparation method and use thereof
CN108003626A (zh) 导电硅橡胶及其制备方法
Qian et al. Enhanced mechanical and dielectric properties of natural rubber using sustainable natural hybrid filler
Xie et al. Construction of thermal conduction networks and decrease of interfacial thermal resistance for improving thermal conductivity of epoxy natural rubber composites
CN111978611B (zh) 一种高强度导电自愈合的橡胶复合材料及其制备方法
CN101434747A (zh) 竹炭基高导电橡胶的制备方法
CN112592537A (zh) 一种高弹性电缆保护管及其制备方法
WO2020211311A1 (zh) 具有三维导电网络的橡胶/低熔点合金/纳米碳复合材料及其制备方法
CN114672116B (zh) 一种电池密封件用低压缩应力松弛氟橡胶及其制备方法
WO2023029115A1 (zh) 一种聚丙烯电缆保护层及其制备方法
Keshavarz et al. Effect of graphene oxide reduction with l-ascorbic acid on electrical conductivity and mechanical properties of graphene oxide-epoxy nanocomposites
CN113754941B (zh) 一种高电气强度聚烯烃基复合绝缘材料及其制备方法
CN111303500B (zh) 一种氧化石墨烯/丁腈胶乳纳米复合材料的制备方法
CN1923898A (zh) 半导体均压层和中导电性硅橡胶及制备合成绝缘子的工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication