WO2020206979A1 - 一种高压电缆用半导电屏蔽料及其制备方法和应用 - Google Patents

一种高压电缆用半导电屏蔽料及其制备方法和应用 Download PDF

Info

Publication number
WO2020206979A1
WO2020206979A1 PCT/CN2019/112911 CN2019112911W WO2020206979A1 WO 2020206979 A1 WO2020206979 A1 WO 2020206979A1 CN 2019112911 W CN2019112911 W CN 2019112911W WO 2020206979 A1 WO2020206979 A1 WO 2020206979A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
parts
shielding material
conductive shielding
graphene
Prior art date
Application number
PCT/CN2019/112911
Other languages
English (en)
French (fr)
Inventor
涂必冬
张丽本
钱其坤
杨俊�
Original Assignee
江苏德威新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏德威新材料股份有限公司 filed Critical 江苏德威新材料股份有限公司
Publication of WO2020206979A1 publication Critical patent/WO2020206979A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Definitions

  • the invention belongs to the field of semi-conductive shielding materials for power cables, in particular to a semi-conductive shielding material for high voltage such as 220kV AC cables, and in particular to a semi-conductive shielding material for AC cables, and a preparation method and application thereof.
  • the core problem that restricts the transmission of high-voltage cables is the defect of the cable insulation layer, the interface characteristics of the insulation shielding layer and the conductivity of the shielding material.
  • the smooth surface of the shielding material and its conductivity are caused by the local electric field stress concentration of the cable.
  • graphene is generally added.
  • graphene is added to it can improve the conductivity, it is very easy to agglomerate, and it is difficult to uniformize it by melt extrusion mixing.
  • the graphene that is agglomerated in the resin matrix is not only easy to form a sharp discharge under a high-voltage electric field, but also this uneven dispersion is difficult to exert its high conductivity under low loading.
  • Chinese invention patent CN104356487B a method for preparing graphene semi-conductive shielding material for cables, includes the following steps: (1) Mixing graphene with organic solvent , After ultrasonic dispersion for a period of time, stir and mix in a high-speed dispersant machine to form a mixed solution of graphene; (2) Mix the resin with an organic solvent, heat, stir, and cool to room temperature to obtain a mixed solution of resin; 3) Mix the graphene mixed solution of step (1) with the resin mixed solution of step (2), stir uniformly to obtain a mixed solution of graphene and resin; (4) under the protection of inert gas, the graphite The mixed solution of ene and resin is dried and granulated by a spray drying granulator to obtain the graphene semi-conductive shielding material for cables; the exhaust gas of the spray drying granulator is used to recover the organic solvent through a condensation device.
  • the technical problem to be solved by the present invention is to overcome the deficiencies in the prior art, and provide an improved semi-conductive shielding material for AC cables, which can modify graphene with a specific structure to add a lower graphene
  • the high conductivity of the shielding material can be realized by a large amount, avoiding the harm of sharp discharge in the prior art, and there is no phenomenon of graphene re-aggregation.
  • the invention also provides a preparation method of the semi-conductive shielding material for AC cables.
  • the invention also provides the application of the semi-conductive shielding material for AC cables in the semi-conductive shielding material for 220kV AC cables.
  • a semi-conductive shielding material for AC cables The raw materials of the semi-conductive shielding material include a resin matrix, conductive carbon black, an antioxidant, and a cross-linking agent.
  • the raw materials also include modified graphene. Is a combination of one or more selected from the compounds represented by formula (I), in terms of mass percentage, the feed amount of the modified graphene accounts for 0.1-10% of the raw material;
  • the feed amount of the modified graphene accounts for 1-8% of the raw material.
  • the modified graphene is prepared by the following method:
  • Plasma etching is applied to single-walled carbon nanotubes to obtain sheet-layer graphene
  • step (2) Adding the sheet-layer graphene obtained in step (1) to an aqueous solution of mixed acid and placing it in an ice bath to stir to prepare pretreated graphene;
  • step (3) The pretreated graphene obtained in step (2) is added to the solution of the compound containing the R group and reacted to form the modified graphene; wherein the compound containing the R group is Selected from copolymers of N-vinylpyrrolidone and quaternized vinylimidazole, 1,1,1-trifluoroacetone, 9-ethyl-9-borabicyclo[3,3,1]nonane and 4-methyl A combination of one or more of -2-pentanone.
  • the mixed acid is composed of concentrated sulfuric acid and concentrated nitric acid, and the feed mass ratio of the concentrated sulfuric acid and the concentrated nitric acid is 1:2.5-3.5.
  • the copolymer of N-vinylpyrrolidone and quaternized vinylimidazole is Polyquaternium-44 of Guangzhou Ruixin Chemical Industry.
  • the resin matrix is an ethylene butyl acrylate resin
  • the butyl acrylate content of the ethylene butyl acrylate resin is 20%-28%
  • the melt index is 20-30 g/10min.
  • the conductive carbon black has an oil absorption value greater than 150cc/100g, a 325 mesh sieve residue is less than 1 ppm, a 500 mesh sieve residue is less than 5 ppm, a moisture content is less than 0.1%, and an ash content is less than 0.01%.
  • the antioxidant is 4,4'-thiobis(6-tert-butyl-3-methylphenol) and tetra[ ⁇ -(3,5-di-tert-butyl- A mixture of 4-hydroxyphenyl)propionic acid]pentaerythritol esters.
  • the raw material further includes a dispersant, and the dispersant is EVA wax.
  • the crosslinking agent is bis(1-methyl-1-phenylethyl) peroxide.
  • the raw material of the semi-conductive shielding material includes 80-100 parts of resin matrix, 1-10 parts of modified graphene, 20-70 parts of conductive carbon black, 0.2-1 part of antioxidant and 1-3 parts of cross-linking agent, and optionally 1-10 parts of dispersant.
  • the raw material of the semi-conductive shielding material includes 80-95 parts of resin matrix, 1-6 parts of modified graphene, 20-50 parts of conductive carbon black, and antioxidant 0.2-1 part and cross-linking agent 1-3 parts, optionally including dispersant 1-6 parts.
  • the raw materials of the semi-conductive shielding material include 90 parts of resin matrix, 3 parts of modified graphene, 25 parts of conductive carbon black, 0.5 parts of antioxidant and crosslinking agent 1.5 parts, optionally including 2 parts of dispersant.
  • a preparation method of the above-mentioned semi-conductive shielding material for AC cables includes the following steps:
  • Plasma etching is applied to single-walled carbon nanotubes to obtain sheet-layer graphene
  • step (2) Adding the sheet-layer graphene obtained in step (1) to an aqueous solution of mixed acid and placing it in an ice bath to stir to prepare pretreated graphene;
  • step (3) The pretreated graphene obtained in step (2) is added to the solution of the compound containing the R group and reacted to form the modified graphene; wherein the compound containing the R group is Selected from copolymers of N-vinylpyrrolidone and quaternized vinylimidazole, 1,1,1-trifluoroacetone, 9-ethyl-9-borabicyclo[3,3,1]nonane and 4-methyl One or more combinations of -2-pentanone;
  • step (b) Weigh the crosslinking agent according to the formula, add it to the semi-finished product prepared in step (a), and stir to prepare the semi-conductive shielding material for AC cables.
  • the mixed acid is composed of concentrated sulfuric acid and concentrated nitric acid, and the mass ratio of the concentrated sulfuric acid to the concentrated nitric acid is 1:2.5-3.5.
  • Another technical solution provided by the present invention an application of the aforementioned semi-conductive shielding material for AC cables in a semi-conductive shielding material for 220kV AC cables.
  • the melt index mentioned in the present invention is all measured according to the ASTM D1238 standard at a test load of 2.16Kg at 190°C.
  • the concentrated sulfuric acid mentioned in the present invention refers to an aqueous sulfuric acid solution with a mass fraction of 75-99%
  • the concentrated nitric acid refers to an aqueous nitric acid solution with a mass fraction of 65-99%.
  • the present invention has the following advantages compared with the prior art:
  • the present invention adds a modified graphene with a specific structure to the semi-conductive shielding material, improves the conductivity of the shielding material and its surface smoothness, homogenizes the insulating electric field, improves the safety of power transmission, and can add lower graphene
  • the high electrical conductivity of the shielding material can be realized by a large amount, while avoiding the harm of sharp discharge in the prior art, and there is no phenomenon of graphene re-aggregation.
  • This example provides a semi-conductive shielding material for 220kV AC cables.
  • the raw material formula of the semi-conductive shielding material is as follows: 90 parts of ethylene butyl acrylate resin, 3 parts of modified graphene, and 25 parts of conductive carbon black , Antioxidant 0.5 parts, dispersant 2 parts, crosslinking agent 1.5 parts; among them, the structural formula of modified graphene is Where R is
  • the preparation method includes the following steps:
  • the single-walled carbon nanotubes are treated by plasma etching, and the surface of the carbon nanotubes is bonded to form a stable sheet of graphene;
  • the graphene of the flakes prepared in step (1) is added to the aqueous solution of mixed acid and placed in an ice bath and stirred for 30 minutes at a stirring speed of 1000 revolutions/min to prepare pretreated graphene;
  • the mixed acid is composed of concentrated sulfuric acid and concentrated nitric acid with a mass ratio of 1:3;
  • step (3) Add the pretreated graphene prepared in step (2) to the solution of the compound containing the R group, stir at low speed for 30 minutes, and react to prepare the modified graphene, which is filtered to obtain; wherein
  • the compound containing R group is Polyquaternium-44 of Guangzhou Ruixin Chemical Industry;
  • step (b) Weigh the crosslinking agent according to the formula, add it to the semi-finished product prepared in step (a), and stir to prepare the semi-conductive shielding material for AC cables.
  • This example provides a semi-conductive shielding material for 220kV AC cables.
  • the raw material formula of the semi-conductive shielding material is as follows: 90 parts of ethylene butyl acrylate resin, 3 parts of modified graphene, and 25 parts of conductive carbon black , Antioxidant 0.5 parts, dispersant 2 parts, crosslinking agent 1.5 parts.
  • the structural formula of modified graphene is Where R is
  • the preparation method includes the following steps:
  • the single-walled carbon nanotubes are treated by plasma etching, and the surface of the carbon nanotubes is bonded to form a stable sheet of graphene;
  • the graphene of the flakes prepared in step (1) is added to the aqueous solution of mixed acid and placed in an ice bath and stirred for 30 minutes at a stirring speed of 1000 revolutions/min to prepare pretreated graphene;
  • the mixed acid is composed of concentrated sulfuric acid and concentrated nitric acid with a mass ratio of 1:3;
  • step (3) Add the pretreated graphene prepared in step (2) to the solution of the compound containing the R group, stir at low speed for 30 minutes, and react to prepare the modified graphene, which is filtered to obtain; wherein
  • the compound containing the R group is 1,1,1-trifluoroacetone;
  • step (b) Weigh the crosslinking agent according to the formula, add it to the semi-finished product prepared in step (a), and stir to prepare the semi-conductive shielding material for AC cables.
  • This example provides a semi-conductive shielding material for 220kV AC cables.
  • the raw material formula of the semi-conductive shielding material is as follows: 90 parts of ethylene butyl acrylate resin, 3 parts of modified graphene, and 25 parts of conductive carbon black , Antioxidant 0.5 parts, dispersant 2 parts, crosslinking agent 1.5 parts.
  • the structural formula of modified graphene is Where R is
  • the preparation method includes the following steps:
  • the single-walled carbon nanotubes are treated by plasma etching, and the surface of the carbon nanotubes is bonded to form a stable sheet of graphene;
  • the graphene of the flakes prepared in step (1) is added to the aqueous solution of mixed acid and placed in an ice bath and stirred for 30 minutes at a stirring speed of 1000 revolutions/min to prepare pretreated graphene;
  • the mixed acid is composed of concentrated sulfuric acid and concentrated nitric acid with a mass ratio of 1:3;
  • step (3) Add the pretreated graphene prepared in step (2) to the solution of the compound containing the R group, stir at low speed for 30 minutes, and react to prepare the modified graphene, which is filtered to obtain; wherein
  • the compound containing R group is 9-ethyl-9-borabicyclo[3,3,1]nonane;
  • step (b) Weigh the crosslinking agent according to the formula, add it to the semi-finished product prepared in step (a), and stir to prepare the semi-conductive shielding material for AC cables.
  • This example provides a semi-conductive shielding material for 220kV AC cables.
  • the raw material formula of the semi-conductive shielding material is as follows: 90 parts of ethylene butyl acrylate resin, 3 parts of modified graphene, and 25 parts of conductive carbon black , Antioxidant 0.5 parts, dispersant 2 parts, crosslinking agent 1.5 parts.
  • the structural formula of modified graphene is Where R is
  • the preparation method includes the following steps:
  • the single-walled carbon nanotubes are treated by plasma etching, and the surface of the carbon nanotubes is bonded to form a stable sheet of graphene;
  • the graphene of the flakes prepared in step (1) is added to the aqueous solution of mixed acid and placed in an ice bath and stirred for 30 minutes at a stirring speed of 1000 revolutions/min to prepare pretreated graphene;
  • the mixed acid is composed of concentrated sulfuric acid and concentrated nitric acid with a mass ratio of 1:3;
  • step (3) Add the pretreated graphene prepared in step (2) to the solution of the compound containing the R group, stir at low speed for 30 minutes, and react to prepare the modified graphene, which is filtered to obtain; wherein
  • the compound containing the R group is 4-methyl-2-pentanone;
  • step (b) Weigh the crosslinking agent according to the formula, add it to the semi-finished product prepared in step (a), and stir to prepare the semi-conductive shielding material for AC cables.
  • Example 2 It is basically the same as Example 1, except that no modified graphene is added, and the amount of conductive carbon black added is adjusted to 28 parts accordingly.
  • Example 2 It is basically the same as Example 1, except that the modified graphene is replaced with conventional nano-particle graphite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本发明公开了一种高压电缆用半导电屏蔽料及其制备方法和应用,尤其公开了高压例如220kV交流电缆用半导电屏蔽料,其原料包括树脂基体、特定结构的改性石墨烯、导电炭黑、抗氧剂和交联剂,还选择性地包括分散剂,改性石墨烯的投料量占原料的0.1-10%;制备:先制备上述特定结构的改性石墨烯,然后再与其余原料混合制备上述交流电缆用半导电屏蔽料;以及上述交流电缆用半导电屏蔽料在220kV高压电缆中的应用;本发明提高了屏蔽料的导电性及其表面光滑特性,均化绝缘电场,提高了输电安全性,进而能够以较低的石墨烯添加量实现屏蔽料的高导电特性。

Description

一种高压电缆用半导电屏蔽料及其制备方法和应用 技术领域
本发明属于电力电缆用半导电屏蔽料领域,尤其涉及高压例如220kV交流电缆用半导电屏蔽料,具体涉及一种交流电缆用半导电屏蔽料及其制备方法和应用。
背景技术
一直以来,制约高压电缆输电的核心问题是电缆绝缘层的缺陷和绝缘屏蔽层的界面特性及屏蔽材料的导电性,其中屏蔽材料的表面光滑特性及其导电特性是导致电缆局部电场应力集中而致使绝缘击穿的关键性能,目前为了提高屏蔽料的导电性,一般都加入了石墨烯,然而石墨烯加入其中虽然能够提高导电性,但是非常容易团聚,熔融挤出混合的方法很难将其均匀地分散在树脂基体中,在树脂基体中团聚的石墨烯不仅在高压电场下容易形成尖端放电,而且这种不均匀的分散也很难发挥其低填充量下的高导电能力。
目前现有技术中已经有针对上述问题做了相应的改进,例如中国发明专利CN104356487B,一种电缆用石墨烯半导电屏蔽料的制备方法,包括以下步骤:(1)将石墨烯与有机溶剂混合,超声分散一段时间后,置于高速分散剂机中搅拌混合,形成石墨烯的混合溶液;(2)将树脂与有机溶剂混合,加热搅拌均匀混合后冷却至室温,得到树脂的混合溶液;(3)将步骤(1)的石墨烯的混合溶液与步骤(2)的树脂混合溶液进行混合,搅拌均匀,得到石墨烯与树脂的混合溶液;(4)在惰性气体保护下,将所述石墨烯与树脂的混合溶液经喷雾干燥造粒机干燥造粒,得到所述电缆用石墨烯半导电屏蔽料;所述喷雾干燥造粒机的废气通过冷凝装置回收有机溶剂。此专利虽然在一定程度上提升了石墨烯在屏蔽料料中的分散均匀性,但一方面使用了有机溶剂,对于环境保护不利,另一方面,还需要另设有机溶剂回收装置,增加了成本,而且当不能完全回收时,对于水体以及周边环境都 会造成极大损坏,同时此专利中的半导电屏蔽料随着时间的推移,纳米粒径的石墨烯仍然存在再次发生团聚的隐患。
因此,本领域的技术人员亟待寻求一种解决上述问题的方式方法。
发明内容
本发明所要解决的技术问题是克服现有技术中的不足,提供一种改进的交流电缆用半导电屏蔽料,其通过对特定结构的石墨烯进行改性,进而能够以较低的石墨烯添加量实现屏蔽料高导电特性,避免出现现有技术中尖端放电的危害,且不存在石墨烯再次团聚的现象。
本发明同时还提供了交流电缆用半导电屏蔽料的制备方法。
本发明同时还提供了交流电缆用半导电屏蔽料在220kV交流电缆用半导电屏蔽料中的应用。
为解决以上技术问题,本发明采取的一种技术方案如下:
一种交流电缆用半导电屏蔽料,所述半导电屏蔽料的原料包括树脂基体、导电炭黑、抗氧剂和交联剂,所述原料还包括改性石墨烯,所述改性石墨烯为选自式(Ⅰ)所示化合物中的一种或多种的组合,以质量百分含量计,所述改性石墨烯的投料量占所述原料的0.1-10%;
Figure PCTCN2019112911-appb-000001
其中,R为
Figure PCTCN2019112911-appb-000002
根据本发明的一些优选方面,以质量百分含量计,所述改性石墨烯的投料量占所述原料的1-8%。
根据本发明的一些优选方面,所述改性石墨烯通过如下方法制备而得:
(1)将单壁碳纳米管采用等离子刻蚀处理,制得片层的石墨烯;
(2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌,制得预处理石墨烯;
(3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,反应,制成所述改性石墨烯;其中所述含有R基团的化合物为选自N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物、1,1,1-三氟丙酮、9-乙基-9-硼杂双环[3,3,1]壬烷和4-甲基-2-戊酮中的一种或多种的组合。
根据本发明的一些优选方面,步骤(2)中,所述混合酸由浓硫酸和浓硝酸构成,所述浓硫酸和所述浓硝酸的投料质量比为1∶2.5-3.5。
根据本发明的一个具体方面,所述N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物为广州瑞鑫化工的聚季铵盐-44。
根据本发明的一些优选方面,所述树脂基体为乙烯丙烯酸丁酯树脂,所述乙烯丙烯酸丁酯树脂的丙烯酸丁酯含量为20%-28%,熔融指数为20-30g/10min。
根据本发明的一些优选方面,所述导电炭黑的吸油值大于150cc/100g,325目筛余物小于1ppm,500目筛余物小于5ppm,水分含量小于0.1%,灰分含量小于0.01%。
根据本发明的一些优选方面,所述抗氧剂为4,4'-硫代双(6-叔丁基-3-甲基苯酚)和四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯的混合物。
根据本发明的一些优选方面,所述原料还包括分散剂,所述分散剂为EVA蜡。
根据本发明的一些具体且优选的方面,所述交联剂为双(1-甲基-1-苯基乙基)过氧化物。
根据本发明的一些具体且优选的方面,以重量份数计,所述半导电屏蔽料的原料包括树脂基体80-100份、改性石墨烯1-10份、导电炭黑20-70份、抗氧剂0.2-1份和交联剂1-3份,还选择性地包括分散剂1-10份。
根据本发明的一些优选方面,以重量份数计,所述半导电屏蔽料的原料包括树脂基体80-95份、改性石墨烯1-6份、导电炭黑20-50份、抗氧剂0.2-1份和交联剂1-3份,还选择性地包括分散剂1-6份。
根据本发明的一个具体方面,以重量份数计,所述半导电屏蔽料的原料包括树脂基体90份、改性石墨烯3份、导电炭黑25份、抗氧剂0.5份和交联剂1.5份,还选择性地包括分散剂2份。
本发明提供的又一技术方案:一种上述所述的交流电缆用半导电屏蔽料的制备方法,所述制备方法包括如下步骤:
(ⅰ)制备改性氧化石墨烯:
(1)将单壁碳纳米管采用等离子刻蚀处理,制得片层的石墨烯;
(2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌,制得预处理石墨烯;
(3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,反应,制成所述改性石墨烯;其中所述含有R基团的化合物为选自N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物、1,1,1-三氟丙酮、9-乙基-9-硼杂双环[3,3,1]壬烷和4-甲基-2-戊酮中的一种或多种的组合;
(ⅱ)制备交流电缆用半导电屏蔽料:
(a)按配方称取各原料,将除交联剂外的各原料加入到密炼机中密炼10-60分钟,挤出造粒,得到半成品;
(b)按照配方称取交联剂,加入到步骤(a)制备的所述半成品中,搅拌,制得所述交流电缆用半导电屏蔽料。
根据本发明的一些优选方面,步骤(2)中,所述混合酸由浓硫酸和浓硝酸构成,所述浓硫酸和所述浓硝酸的质量比为1∶2.5-3.5。
本发明提供的又一技术方案:一种上述所述的交流电缆用半导电屏蔽料在220kV交流电缆用半导电屏蔽料中的应用。
根据本发明,本发明中提及的熔融指数均为以ASTM D1238标准在190℃条件下按照测试载荷为2.16Kg时测定。
根据本发明,本发明中提及的所述浓硫酸是指质量分数为75-99%的硫酸水溶液,所述浓硝酸是指质量分数为65-99%的硝酸水溶液。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
本发明在半导电屏蔽材料中加入特定结构的改性石墨烯,提高了屏蔽料的导电性及其表面光滑特性,均化绝缘电场,提高了输电安全性,进而能够以较低的石墨烯添加量实现屏蔽料高导电特性,同时避免出现现有技术中尖端放电的危害,且不存在石墨烯再次团聚的现象。
具体实施方式
以下结合具体实施例对上述方案做进一步说明;应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。
下述实施例中未作特殊说明,所有原料基本来自于商购或通过本领域的常规方法制备而得。下述提及的熔融指数均为以ASTM D1238标准在190℃条件下按照测试载荷为2.16Kg时测定。下述中,乙烯丙烯酸丁酯树脂的丙烯酸丁酯含量为26%,熔融指数为23g/10min,导电炭黑为美国卡博特碳黑VULCANXC72,浓硫酸为质量分数98%的硫酸水溶液,浓硝酸是指质量分数为68%的硝酸水溶液,抗氧剂为4,4'-硫代双(6-叔丁基-3-甲基苯酚)和四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯按质量比1∶1的混合物,分散剂为EVA蜡,交联剂为双(1-甲基-1-苯基乙基)过氧化物。
实施例1
本例提供一种220kV交流电缆用半导电屏蔽料,以重量份计,所述半导电屏蔽料的原料配方如下:乙烯丙烯酸丁酯树脂90份、改性石墨烯3份,导电炭黑25份、抗氧剂0.5份、分散剂2份、交联剂1.5份;其中, 改性石墨烯的结构式为
Figure PCTCN2019112911-appb-000003
其中R为
Figure PCTCN2019112911-appb-000004
制备方法包括如下步骤:
(ⅰ)制备改性氧化石墨烯:
(1)将单壁碳纳米管采用等离子刻蚀处理,表面成键后制得稳定的片层的石墨烯;
(2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌30min,搅拌速度为1000转/min,制得预处理石墨烯;所述混合酸由质量比为1∶3的浓硫酸与浓硝酸构成;
(3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,低速搅拌30min,反应,制成所述改性石墨烯,过滤,即得;其中所述含有R基团的化合物为广州瑞鑫化工的聚季铵盐-44;
(ⅱ)制备交流电缆用半导电屏蔽料:
(a)按配方称取各原料,将除交联剂外的各原料加入到密炼机中密炼30分钟,密炼温度为160℃左右,挤出造粒,得到半成品;
(b)按照配方称取交联剂,加入到步骤(a)制备的所述半成品中,搅拌,制得所述交流电缆用半导电屏蔽料。
实施例2
本例提供一种220kV交流电缆用半导电屏蔽料,以重量份计,所述半导电屏蔽料的原料配方如下:乙烯丙烯酸丁酯树脂90份、改性石墨烯3份,导电炭黑25份、抗氧剂0.5份、分散剂2份、交联剂1.5份。其中, 改性石墨烯的结构式为
Figure PCTCN2019112911-appb-000005
其中R为
Figure PCTCN2019112911-appb-000006
制备方法包括如下步骤:
(ⅰ)制备改性氧化石墨烯:
(1)将单壁碳纳米管采用等离子刻蚀处理,表面成键后制得稳定的片层的石墨烯;
(2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌30min,搅拌速度为1000转/min,制得预处理石墨烯;所述混合酸由质量比为1∶3的浓硫酸与浓硝酸构成;
(3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,低速搅拌30min,反应,制成所述改性石墨烯,过滤,即得;其中所述含有R基团的化合物为1,1,1-三氟丙酮;
(ⅱ)制备交流电缆用半导电屏蔽料:
(a)按配方称取各原料,将除交联剂外的各原料加入到密炼机中密炼30分钟,密炼温度为160℃左右,挤出造粒,得到半成品;
(b)按照配方称取交联剂,加入到步骤(a)制备的所述半成品中,搅拌,制得所述交流电缆用半导电屏蔽料。
实施例3
本例提供一种220kV交流电缆用半导电屏蔽料,以重量份计,所述半导电屏蔽料的原料配方如下:乙烯丙烯酸丁酯树脂90份、改性石墨烯3份,导电炭黑25份、抗氧剂0.5份、分散剂2份、交联剂1.5份。其中, 改性石墨烯的结构式为
Figure PCTCN2019112911-appb-000007
其中R为
Figure PCTCN2019112911-appb-000008
制备方法包括如下步骤:
(ⅰ)制备改性氧化石墨烯:
(1)将单壁碳纳米管采用等离子刻蚀处理,表面成键后制得稳定的片层的石墨烯;
(2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌30min,搅拌速度为1000转/min,制得预处理石墨烯;所述混合酸由质量比为1∶3的浓硫酸与浓硝酸构成;
(3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,低速搅拌30min,反应,制成所述改性石墨烯,过滤,即得;其中所述含有R基团的化合物为9-乙基-9-硼杂双环[3,3,1]壬烷;
(ⅱ)制备交流电缆用半导电屏蔽料:
(a)按配方称取各原料,将除交联剂外的各原料加入到密炼机中密炼30分钟,密炼温度为160℃左右,挤出造粒,得到半成品;
(b)按照配方称取交联剂,加入到步骤(a)制备的所述半成品中,搅拌,制得所述交流电缆用半导电屏蔽料。
实施例4
本例提供一种220kV交流电缆用半导电屏蔽料,以重量份计,所述半导电屏蔽料的原料配方如下:乙烯丙烯酸丁酯树脂90份、改性石墨烯3份,导电炭黑25份、抗氧剂0.5份、分散剂2份、交联剂1.5份。其中, 改性石墨烯的结构式为
Figure PCTCN2019112911-appb-000009
其中R为
Figure PCTCN2019112911-appb-000010
制备方法包括如下步骤:
(ⅰ)制备改性氧化石墨烯:
(1)将单壁碳纳米管采用等离子刻蚀处理,表面成键后制得稳定的片层的石墨烯;
(2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌30min,搅拌速度为1000转/min,制得预处理石墨烯;所述混合酸由质量比为1∶3的浓硫酸与浓硝酸构成;
(3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,低速搅拌30min,反应,制成所述改性石墨烯,过滤,即得;其中所述含有R基团的化合物为4-甲基-2-戊酮;
(ⅱ)制备交流电缆用半导电屏蔽料:
(a)按配方称取各原料,将除交联剂外的各原料加入到密炼机中密炼30分钟,密炼温度为160℃左右,挤出造粒,得到半成品;
(b)按照配方称取交联剂,加入到步骤(a)制备的所述半成品中,搅拌,制得所述交流电缆用半导电屏蔽料。
对比例1
基本同实施例1,区别仅在于不加改性石墨烯,相应地调整导电炭黑的添加量为28份。
对比例2
基本同实施例1,区别仅在于将改性石墨烯替换为常规的纳米粒径石 墨烯。
性能测试
将上述实施例1-4以及对比例1-2所制得的半导电屏蔽料在放置一个月后进行如下性能测试,具体结果参见表1。
拉伸强度:GB/T1040.3-2006;断裂伸长率:GB/T1040.3-2006;20℃时体积电阻率:GB/T3048.3-2007;90℃时体积电阻率:GB/T3048.3-2007;热延伸:GB/T2951.21-2008;冲击脆化温度:GB/T5470-2008;热老化试验:GB/T2951.12-2008。
表1
Figure PCTCN2019112911-appb-000011
Figure PCTCN2019112911-appb-000012
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (20)

  1. 一种交流电缆用半导电屏蔽料,所述半导电屏蔽料的原料包括树脂基体、导电炭黑、抗氧剂和交联剂,其特征在于,所述原料还包括改性石墨烯,所述改性石墨烯为选自式(Ⅰ)所示化合物中的一种或多种的组合,以质量百分含量计,所述改性石墨烯的投料量占所述原料的0.1-10%;
    Figure PCTCN2019112911-appb-100001
    其中,R为
    Figure PCTCN2019112911-appb-100002
  2. 根据权利要求1所述的交流电缆用半导电屏蔽料,其特征在于,以质量百分含量计,所述改性石墨烯的投料量占所述原料的1-8%。
  3. 根据权利要求1所述的交流电缆用半导电屏蔽料,其特征在于,所述改性石墨烯通过如下方法制备而得:
    (1)将单壁碳纳米管采用等离子刻蚀处理,制得片层的石墨烯;
    (2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌,制得预处理石墨烯;
    (3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,反应,制成所述改性石墨烯;其中所述含有R基团的化合物为选自N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物、1,1,1-三氟丙酮、9-乙基-9-硼杂双环[3,3,1]壬烷和4-甲基-2-戊酮中的一种或多种的组合。
  4. 根据权利要求3所述的交流电缆用半导电屏蔽料,其特征在于,所述N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物为广州瑞鑫化工的聚季铵盐-44。
  5. 根据权利要求3所述的交流电缆用半导电屏蔽料,其特征在于,步骤(2)中,所述混合酸由浓硫酸和浓硝酸构成,所述浓硫酸与所述浓硝酸的投料质量比为1∶2.5-3.5。
  6. 根据权利要求1所述的交流电缆用半导电屏蔽料,其特征在于,所述树脂基体为乙烯丙烯酸丁酯树脂,所述乙烯丙烯酸丁酯树脂的丙烯酸丁酯含量为20%-28%,熔融指数为20-30g/10min。
  7. 根据权利要求1所述的交流电缆用半导电屏蔽料,其特征在于,所述导电炭黑的吸油值大于150cc/100g,325目筛余物小于1ppm,500目筛余物小于5ppm,水分含量小于0.1%,灰分含量小于0.01%。
  8. 根据权利要求1所述的交流电缆用半导电屏蔽料,其特征在于,所述抗氧剂为4,4'-硫代双(6-叔丁基-3-甲基苯酚)和四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯的混合物;和/或,所述原料还包括分散剂,所述分散剂为EVA蜡;和/或,所述交联剂为双(1-甲基-1-苯基乙基)过氧化物。
  9. 根据权利要求1所述的交流电缆用半导电屏蔽料,其特征在于,以重量份数计,所述半导电屏蔽料的原料包括树脂基体80-100份、改性石墨烯1-10份、导电炭黑20-70份、抗氧剂0.2-1份和交联剂1-3份,还选择性地包括分散剂1-10份。
  10. 根据权利要求9所述的交流电缆用半导电屏蔽料,其特征在于,以重量份数计,所述半导电屏蔽料的原料包括树脂基体80-95份、改性石墨烯1-6份、导电炭黑20-50份、抗氧剂0.2-1份和交联剂1-3份,还选择性地包括分散剂1-6份。
  11. 根据权利要求10所述的交流电缆用半导电屏蔽料,其特征在于,以重量份数计,以重量份数计,所述半导电屏蔽料的原料包括树脂基体90份、改性石墨烯3份、导电炭黑25份、抗氧剂0.5份和交联剂1.5份,还选择性地包括分散剂2份。
  12. 根据权利要求1所述的交流电缆用半导电屏蔽料,其特征在于,以重量份数计,所述半导电屏蔽料的原料包括树脂基体80-95份、改性石墨烯1-6份、导电炭黑20-50份、抗氧剂0.2-1份和交联剂1-3份,还选择性地包括分散剂1-6份;以质量百分含量计,所述改性石墨烯的投料量占所述原料的1-8%;所述树脂基体为乙烯丙烯酸丁酯树脂,所述乙烯丙烯酸丁酯树脂的丙烯酸丁酯含量为20%-28%,熔融指数为20-30g/10min;所述导电炭黑的吸油值大于150cc/100g,325目筛余物小于1ppm,500目筛余物小于5ppm,水分含量小于0.1%,灰分含量小于0.01%。
  13. 根据权利要求1所述的交流电缆用半导电屏蔽料,其特征在于,以重量份计,所述半导电屏蔽料的原料配方如下:乙烯丙烯酸丁酯树脂90份、改性石墨烯3份,导电炭黑25份、抗氧剂0.5份、分散剂2份、交联剂1.5份;其中,改性石墨烯的结构式为
    Figure PCTCN2019112911-appb-100003
    其中R为
    Figure PCTCN2019112911-appb-100004
    所述半导电屏蔽料的制备方法包括如下步骤:
    (ⅰ)制备改性氧化石墨烯:
    (1)将单壁碳纳米管采用等离子刻蚀处理,表面成键后制得稳定的片层的石墨烯;
    (2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌30min,搅拌速度为1000转/min,制得预处理石墨烯;所述混合酸由质量比为1∶3的浓硫酸与浓硝酸构成;
    (3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,低速搅拌30min,反应,制成所述改性石墨烯,过滤,即得;其中所述含有R基团的化合物为广州瑞鑫化工的聚季铵盐-44;
    (ⅱ)制备交流电缆用半导电屏蔽料:
    (a)按配方称取各原料,将除交联剂外的各原料加入到密炼机中密炼30分钟,密炼温度为160℃左右,挤出造粒,得到半成品;
    (b)按照配方称取交联剂,加入到步骤(a)制备的所述半成品中,搅拌,制得所述交流电缆用半导电屏蔽料。
  14. 一种权利要求1-12中任一项权利要求所述的交流电缆用半导电屏蔽料的制备方法,其特征在于,所述制备方法包括如下步骤:
    (ⅰ)制备改性氧化石墨烯:
    (1)将单壁碳纳米管采用等离子刻蚀处理,制得片层的石墨烯;
    (2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌,制得预处理石墨烯;
    (3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,反应,制成所述改性石墨烯;其中所述含有R基团的化合物为选自N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物、1,1,1-三氟丙酮、9-乙基-9-硼杂双环[3,3,1]壬烷和4-甲基-2-戊酮中的一种或多种的组合;
    (ⅱ)制备交流电缆用半导电屏蔽料:
    (a)按配方称取各原料,将除交联剂外的各原料加入到密炼机中密炼10-60分钟,挤出造粒,得到半成品;
    (b)按照配方称取交联剂,加入到步骤(a)制备的所述半成品中,搅拌,制得所述交流电缆用半导电屏蔽料。
  15. 根据权利要求14所述的制备方法,其特征在于,步骤(2)中,所述混合酸由浓硫酸和浓硝酸构成,所述浓硫酸和所述浓硝酸的质量比为1∶2.5-3.5。
  16. 根据权利要求14所述的制备方法,其特征在于,所述N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物为广州瑞鑫化工的聚季铵盐-44。
  17. 一种式(Ⅰ)所示的改性氧化石墨烯的制备方法,其特征在于,
    Figure PCTCN2019112911-appb-100005
    其中,R为
    Figure PCTCN2019112911-appb-100006
    所述制备方法包括:
    (1)将单壁碳纳米管采用等离子刻蚀处理,制得片层的石墨烯;
    (2)将步骤(1)制得的所述片层的石墨烯加入到混合酸的水溶液中并放置在冰浴下搅拌,制得预处理石墨烯;
    (3)将步骤(2)制得的所述预处理石墨烯加入至含有R基团的化合物的溶液中,反应,制成所述改性石墨烯;其中所述含有R基团的化合物为选自N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物、1,1,1-三氟丙酮、9-乙基-9-硼杂双环[3,3,1]壬烷和4-甲基-2-戊酮中的一种或多种的组合。
  18. 根据权利要求17所述的式(Ⅰ)所示的改性氧化石墨烯的制备方法,其特征在于,步骤(2)中,所述混合酸由浓硫酸和浓硝酸构成,所述浓硫酸和所述浓硝酸的质量比为1∶2.5-3.5。
  19. 根据权利要求17所述的式(Ⅰ)所示的改性氧化石墨烯的制备方法,其特征在于,所述N-乙烯吡咯烷酮和季铵化乙烯咪唑的共聚物为广州瑞鑫化工的聚季铵盐-44。
  20. 一种权利要求1-13中任一项权利要求所述的交流电缆用半导电屏蔽料在220kV交流电缆用半导电屏蔽料中的应用。
PCT/CN2019/112911 2019-04-08 2019-10-24 一种高压电缆用半导电屏蔽料及其制备方法和应用 WO2020206979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910277812.3 2019-04-08
CN201910277812.3A CN110128736A (zh) 2019-04-08 2019-04-08 一种高压电缆用半导电屏蔽料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020206979A1 true WO2020206979A1 (zh) 2020-10-15

Family

ID=67569264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112911 WO2020206979A1 (zh) 2019-04-08 2019-10-24 一种高压电缆用半导电屏蔽料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110128736A (zh)
WO (1) WO2020206979A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128736A (zh) * 2019-04-08 2019-08-16 江苏德威新材料股份有限公司 一种高压电缆用半导电屏蔽料及其制备方法和应用
CN113754947A (zh) * 2021-09-13 2021-12-07 南方电网科学研究院有限责任公司 一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法
CN116082741A (zh) * 2022-11-07 2023-05-09 万华化学(宁波)有限公司 一种电缆屏蔽料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876204A (zh) * 2015-05-21 2015-09-02 东南大学 一种氧化石墨烯的改性方法
CN105295190A (zh) * 2015-12-14 2016-02-03 常州中超石墨烯电力科技有限公司 炭黑、石墨烯为导电介质的功能化高分子复合材料
CN107474376A (zh) * 2017-09-12 2017-12-15 哈尔滨理工大学 一种电缆半导电屏蔽材料及其制备方法
CN108164804A (zh) * 2017-12-22 2018-06-15 上海至正道化高分子材料股份有限公司 中高压电力电缆用石墨烯复合半导电屏蔽料及其制备方法
CN109206731A (zh) * 2018-08-27 2019-01-15 芜湖市元奎新材料科技有限公司 一种含石墨烯的电力电缆用屏蔽材料及其制备方法
CN110128736A (zh) * 2019-04-08 2019-08-16 江苏德威新材料股份有限公司 一种高压电缆用半导电屏蔽料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352038B (zh) * 2011-07-21 2012-12-05 同济大学 石墨烯改性双马来酰亚胺树脂纳米复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876204A (zh) * 2015-05-21 2015-09-02 东南大学 一种氧化石墨烯的改性方法
CN105295190A (zh) * 2015-12-14 2016-02-03 常州中超石墨烯电力科技有限公司 炭黑、石墨烯为导电介质的功能化高分子复合材料
CN107474376A (zh) * 2017-09-12 2017-12-15 哈尔滨理工大学 一种电缆半导电屏蔽材料及其制备方法
CN108164804A (zh) * 2017-12-22 2018-06-15 上海至正道化高分子材料股份有限公司 中高压电力电缆用石墨烯复合半导电屏蔽料及其制备方法
CN109206731A (zh) * 2018-08-27 2019-01-15 芜湖市元奎新材料科技有限公司 一种含石墨烯的电力电缆用屏蔽材料及其制备方法
CN110128736A (zh) * 2019-04-08 2019-08-16 江苏德威新材料股份有限公司 一种高压电缆用半导电屏蔽料及其制备方法和应用

Also Published As

Publication number Publication date
CN110128736A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020206979A1 (zh) 一种高压电缆用半导电屏蔽料及其制备方法和应用
US7863522B2 (en) Semi-conducting polymer compositions for the preparation of wire and cable
CN101189687B (zh) 改进的可剥离的电缆屏蔽组合物及利用其的电缆
CN109096572A (zh) 一种高直流击穿强度的聚烯烃纳米复合绝缘材料及其制备方法
CN1191308C (zh) 可用于电线和电缆油的炭黑
WO2022111152A1 (zh) 一种高压电缆半导电屏蔽料及其制备方法
JPH11502551A (ja) ポリエチレングリコール処理されたカーボンブラックおよびそれらのコンパウンド
Tong et al. Simultaneously facilitating dispersion and thermal reduction of graphene oxide to enhance thermal conductivity of poly (vinylidene fluoride)/graphene nanocomposites by water in continuous extrusion
CN1823123A (zh) 可剥离半导体绝缘屏蔽
EP0862597A1 (en) Polymeric compositions
CN112280231A (zh) 一种聚丙烯基热塑性电缆用屏蔽料及其制备方法
CN113881133A (zh) 一种导电炭黑高效分散的高压电缆半导电屏蔽料及制备方法
WO2024022526A1 (zh) 一种epdm绝缘橡胶的制备方法及应用
WO2024045340A1 (zh) 剥离强度改善型半导电屏蔽料、制备方法、制品和电缆
CN103665529B (zh) 半导电内屏蔽料组合物及半导电内屏蔽料及其制法和中低压及110千伏电缆
WO2024016580A1 (zh) 基于碳纳米纤维改性的屏蔽料及其制备方法和应用
CN114031837A (zh) 一种高压电缆用可交联聚乙烯绝缘材料、制备方法及其用途
WO2024045419A1 (zh) 基于复配树脂的半导电屏蔽料及其制备方法和应用
WO2023035369A1 (zh) 一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法
CN109161206A (zh) 一种高安全性新能源汽车电池
CN113683889A (zh) 一种基于5g信号传输用半导体材料
CN109438807B (zh) 一种绝缘材料及其制备方法和应用
KR101480009B1 (ko) 고압 또는 초고압 전력 케이블용 반도전성 컴파운드 및 이를 적용한 초고압 전력 케이블
CN114085454A (zh) 一种环保型高压电缆热塑性屏蔽料及其制备方法
WO2023065430A1 (zh) 一种导电炭黑高效分散的高压电缆半导电屏蔽料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924450

Country of ref document: EP

Kind code of ref document: A1