WO2023035369A1 - 一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法 - Google Patents

一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法 Download PDF

Info

Publication number
WO2023035369A1
WO2023035369A1 PCT/CN2021/125383 CN2021125383W WO2023035369A1 WO 2023035369 A1 WO2023035369 A1 WO 2023035369A1 CN 2021125383 W CN2021125383 W CN 2021125383W WO 2023035369 A1 WO2023035369 A1 WO 2023035369A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
semi
shielding material
conductive
conductive carbon
Prior art date
Application number
PCT/CN2021/125383
Other languages
English (en)
French (fr)
Inventor
傅明利
侯帅
黎小林
展云鹏
朱闻博
惠宝军
冯宾
张逸凡
章彬
徐曙
陈潇
伍国兴
Original Assignee
南方电网科学研究院有限责任公司
深圳供电局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 深圳供电局有限公司 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2023035369A1 publication Critical patent/WO2023035369A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to a method for preparing a high-voltage cable semi-conductive shielding material based on conductive carbon black with a high degree of graphitization, and belongs to the field of cross-linked polyethylene insulated cable semi-conductive shielding materials.
  • the semi-conductive shielding layer is an important part of the medium and high voltage cable structure, which can make the electric field distribution inside the cable more uniform and reduce the damage caused by the concentration of electrical stress on the cable insulation layer. Therefore, the quality of the semi-conductive shielding material directly affects the safety and service life of the cable.
  • the material used for the semi-conductive shielding layer is mainly prepared by doping conductive carbon black and various additives into the polymer matrix by melt mixing. As the most critical component of semiconductive shielding materials, the quality of conductive carbon black determines key indicators such as processing performance, mechanical properties, electrical properties and surface finish of semiconductive shielding materials.
  • CN201510641938 introduces a method of using superconducting carbon black with extremely high oil absorption value as conductive filler to prepare semi-conductive shielding for high-voltage DC cables.
  • the shielding material can meet the application indicators of DC cables, superconducting carbon Black requires a special production process, and its price is much higher than that of conductive carbon black produced by conventional technology. Therefore, this greatly limits the application of superconducting carbon black in the field of high-voltage shielding materials.
  • the conductive carbon black produced by conventional technology has been able to meet the application indicators of medium and low voltage semi-conductive shielding materials, but it still cannot meet the use requirements of high-voltage semi-conductive shielding materials, especially the surface finish cannot meet the requirements of ultra-smoothness.
  • the graphitization structure of the conductive carbon black produced by the prior art is not perfect (that is, the degree of graphitization is low), which brings problems such as insufficient electrical conductivity, large impurity content, and poor dispersibility.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for preparing semi-conductive shielding material for high-voltage cables based on conductive carbon black with a high degree of graphitization.
  • the method applies highly graphitized conductive carbon black to high-voltage semi-conductive shielding materials, which overcomes the problems of excessive filling of ordinary conductive carbon black in semi-conductive shielding materials of high-voltage cables, deterioration of mechanical properties and processing properties of materials, and high-voltage cables.
  • the surface of the semi-conductive shielding material is not smooth, and there are many raised points.
  • the technical solution adopted by the present invention is: a high-voltage cable semi-conductive shielding material, which is characterized in that it includes the following components by weight: 60-65 parts of polar polyolefin copolymer, 30-65 parts of conductive carbon black 35 parts and 6-8.5 parts of processing aids; the conductive carbon black is highly graphitized conductive carbon black, and the carbon content of the highly graphitized conductive carbon black is >96%.
  • the degree of graphitization of conductive carbon black can be divided into low graphitized conductive carbon black, with a carbon content of 87%-92%; medium graphitized conductive carbon black, with a carbon content of 93%-96% , Highly graphitized conductive carbon black with a carbon content of >96%.
  • the inventors have found through research that the highly graphitized conductive carbon black has less impurity content and high conductivity, and can meet the requirements of conductivity at a lower filling amount. It is applied to semi-conductive shielding materials for high-voltage cables, and the obtained Semi-conductive shielding compound for high-voltage cables, with better mechanical properties and processing fluidity, and a smoother extrusion surface with fewer burrs or protrusions.
  • the highly graphitized conductive carbon black is prepared by regulating the ratio of raw material oil to air during the production stage of carbon black, thereby avoiding excess air, and realizing the preparation of highly graphitized conductive carbon black.
  • the polar polyolefin copolymer is ethylene butyl acrylate
  • the melt index of the ethylene butyl acrylate at 190°C and 2.16 kg is 8-10 g/min
  • the elongation at break is ⁇ 700%.
  • the thermal decomposition temperature of ethylene butyl acrylate is 330°C, which is much higher than the thermal decomposition temperature of ethylene-vinyl acetate copolymer, which is 240°C.
  • Ethylene butyl acrylate can minimize the thermal decomposition of the base material and prolong the service life of high-voltage cables.
  • the melt index range is 8-10g/min, which ensures the basic fluidity of the system, and only needs to add a small amount of lubricant to meet the processing performance.
  • the processing aid includes the following components in parts by weight: 1 part of crosslinking agent, 2 parts of coupling agent, 0.5 part of antioxidant, 1 part of lubricant, and 2 parts of dispersant.
  • the ratio of processing aids will affect the overall performance of the material, too much or too little, the overall performance of the high-voltage cable semi-conductive shielding material is not good.
  • the crosslinking agent is dicumyl peroxide and dicumyl peroxide.
  • Dicumyl peroxide has a molecular weight of 338, a melting point range of 46-52°C, and a purity of >96%.
  • Dicumyl peroxide has a molecular weight of 270, a melting point range of 39-41°C, and a purity of >96%.
  • the half-life temperature of bis-tert-butyl peroxide diisopropylbenzene is high, bis-tert-butyl peroxide dicumyl peroxide is used as a cross-linking agent, the cross-linking efficiency is higher, and the filling amount only needs to be peroxidized to achieve the predetermined cross-linking effect.
  • the coupling agent is a silane coupling agent KH570.
  • the antioxidant is at least one of the antioxidant 1010 and the antioxidant 168.
  • the lubricant is zinc stearate.
  • the dispersant is at least one of ethylene bisstearamide and polyvinylpyrrolidone.
  • the silane coupling agent is selected as the coupling agent between the conductive carbon black and the matrix resin
  • zinc stearate is selected as the lubricant.
  • the silane coupling agent can better combine the conductive carbon black and the matrix resin.
  • zinc stearate also has a certain synergistic effect as a lubricant, which can lubricate and disperse during processing, and maximize the dispersion of conductive carbon black. The property makes the material in a uniform state, improves the fluidity of the shielding material extrusion process, and makes the extrusion surface smoother.
  • the present invention provides a method for preparing a high-voltage cable semi-conductive shielding material, comprising the following steps:
  • step (2) After uniformly mixing the conductive carbon black pretreatment obtained in step (1) with an antioxidant and a lubricant, adding a polar polyolefin copolymer and mixing uniformly at 45-50° C. to obtain a mixture;
  • step (3) melting the mixture obtained in step (2) in an extruder, and then making granules through underwater drawing, pelletizing and drying;
  • step (3) Put the granules obtained in step (3) in an oven and add them to 60-65°C, then mix the granules with the crosslinking agent evenly, and place them in an oven at 60-65°C for 5-10 hours to make the granules
  • the material fully absorbs the cross-linking agent, and the high-voltage cable semi-conductive shielding material is obtained.
  • the present invention provides a high-voltage cable semi-conductive shielding material based on highly graphitized conductive carbon black.
  • the carbon content of the highly graphitized conductive carbon black is >96%, the impurity content is small, and the conductivity is good. It is applied In the semi-conductive shielding material for high-voltage cables, it overcomes the excessive filling of ordinary conductive carbon black in the semi-conductive shielding material for high-voltage cables, the deterioration of the mechanical properties and processing properties of the material, and the surface of the semi-conductive shielding material for high-voltage cables. The problem of many starting points.
  • ethylene butyl acrylate is selected as the matrix resin.
  • the thermal decomposition temperature of ethylene butyl acrylate is high, which can minimize the thermal decomposition of the base material and prolong the service life of high-voltage cables.
  • the present invention selects bis-tert-butyl peroxide dicumyl peroxide and dicumyl peroxide as the crosslinking agent, wherein the cross-linking efficiency of bis-tert-butyl peroxide dicumyl peroxide is high, and the required filling amount
  • the high dispersion temperature of bis-tert-butyl peroxide makes the extrusion system more secure and reduces the need for semi-conductive shielding of high-voltage cables.
  • Fig. 1 is the performance diagram of the surface smoothness of the high-voltage cable semi-conductive shielding material prepared in Example 1 and Comparative Example 1-2.
  • This embodiment provides a semi-conductive shielding material for high-voltage cables, including the following components in parts by weight: 63.5 parts of polar polyolefin copolymer, 30 parts of conductive carbon black, 1 part of crosslinking agent, 1 part of lubricant, and dispersant 2 parts, 0.5 parts of antioxidant, 2 parts of coupling agent;
  • the polar polyolefin copolymer is ethylene butyl acrylate, its melt index at 190°C and 2.16kg is 8.7g/min, and its elongation at break is 780%;
  • Described conductive carbon black is highly graphitized conductive carbon black A, and its carbon content is 96.9%;
  • the crosslinking agent is dicumyl peroxide and dicumyl peroxide
  • the coupling agent is silane coupling agent KH570;
  • Described antioxidant is the mixture of antioxidant 1010 and antioxidant 168, and the weight ratio is 2:1;
  • Described lubricant is zinc stearate
  • the dispersant is ethylene bis stearamide.
  • This embodiment also provides a method for preparing a high-voltage cable semi-conductive shielding material, comprising the following steps:
  • step (2) After uniformly mixing the conductive carbon black pretreatment obtained in step (1) with an antioxidant and a lubricant, adding a polar polyolefin copolymer and mixing uniformly at 45-50° C. to obtain a mixture;
  • step (3) melting the mixture obtained in step (2) in an extruder, and then making granules through underwater drawing, pelletizing and drying;
  • step (3) Put the granules obtained in step (3) in an oven and add them to 60-65°C, then mix the granules with the crosslinking agent evenly, and place them in an oven at 60-65°C for 5-10 hours to make the granules
  • the material fully absorbs the cross-linking agent, and the high-voltage cable semi-conductive shielding material is obtained.
  • the high-voltage cable semi-conductive shielding material includes the following components by weight, polar polyolefin copolymer 63.5 parts, 30 parts of conductive carbon black, 1 part of crosslinking agent, 1 part of lubricant, 1 part of dispersant, 0.5 parts of antioxidant, and 2 parts of coupling agent.
  • the high-voltage cable semi-conductive shielding material includes the following components by weight, polar polyolefin copolymer 58.5 parts, 35 parts of conductive carbon black, 1 part of crosslinking agent, 1 part of lubricant, 1 part of dispersant, 0.5 parts of antioxidant, and 2 parts of coupling agent.
  • the conductive carbon black is medium graphitized conductive carbon black B, and its carbon content is 94.2%.
  • the conductive carbon black is low graphitization conductive carbon black C, and its carbon content is 87.3%.
  • the high-voltage cable semi-conductive shielding material prepared by the present invention has high tensile strength, high elongation at break and low volume resistivity.
  • Fig. 1 is the performance diagram of the surface smoothness of the high-voltage cable semi-conductive shielding material prepared in Example 1 and Comparative Example 1-2. It can be seen from Fig. 1 that the surface of the high-voltage cable semi-conductive shielding material prepared in Example 1 is smooth. However, the surface of the high-voltage cable semi-conductive shielding material prepared in Comparative Example 1-2 has obvious raised points, and the surface is not smooth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法,属于交联聚乙烯绝缘电缆半导电屏蔽材料领域。该高压电缆半导电屏蔽料,包括以下重量份的组分:极性聚烯烃共聚物60~65份、导电炭黑30~35份和加工助剂6-8.5份;所述导电炭黑为高石墨化导电炭黑,所述高石墨化导电炭黑的含碳量>96%。本发明基于高石墨化导电炭黑制备的高压电缆半导电屏蔽料呈现优异的电性能和机械性能,并且具有极佳的表面光洁度,能够满足高压电缆使用要求。本发明生产工艺简单,成本低廉,使用方面,有利于推广应用。

Description

一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法 技术领域
本发明涉及一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法,属于交联聚乙烯绝缘电缆半导电屏蔽材料领域。
背景技术
半导电屏蔽层是中高压电缆结构的重要组成部分,能够使电缆内部的电场分布更加均匀,减少电应力集中对电缆绝缘层造成的破坏。因此,半导电屏蔽料的质量直接影响着电缆的使用安全性及运行寿命。半导电屏蔽层所用材料主要将导电炭黑以及各种助剂掺杂于高分子基体中并通过熔融混合制备而成。作为半导电屏蔽料最为关键的组分,导电炭黑的品质决定着半导电屏蔽料的加工性能、力学性能、电性能及表面光洁度等关键指标。中国专利公开号CN201510641938介绍了一种采用具有极高吸油值的超导电炭黑作为导电填料制备高压直流电缆用半导电屏蔽的方法,尽管该屏蔽料能够满足直流电缆的应用指标,但是超导电炭黑需要特殊的生产工艺,其价格远远高于常规技术生产的导电炭黑。因此,这极大程度上限制了超导电炭黑在高压屏蔽料领域的应用。
目前,常规技术生产的导电炭黑已经能够满足中低压半导电屏蔽料的应用指标,但仍无法满足高压半导电屏蔽料的使用要求,尤其是表面光洁度无法达到超光滑的要求。这主要是因为现有技术生产的导电炭黑石墨化结构不完善(即石墨化程度低),带来导电性能不足、杂质含量大、分散性差等问题。因此,生产高石墨化程度导电炭黑并将其应用于高压半导电屏蔽料,有望实现超光滑高压半导电屏蔽的制备,这对高压电缆的发展具有重要的科学价值。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法。该方法将高石墨化导电炭黑应用于高压半导电屏蔽料中,克服了将普通导电炭黑填充高压电缆半导电屏蔽料存在的 填充量过大,材料的机械性能和加工性能劣化,高压电缆半导电屏蔽料表面不光滑,凸起点多的问题。
为实现上述目的,本发明采取的技术方案为:一种高压电缆半导电屏蔽料,其特征在于,包括以下重量份的组分:极性聚烯烃共聚物60~65份、导电炭黑30~35份和加工助剂6~8.5份;所述导电炭黑为高石墨化导电炭黑,所述高石墨化导电炭黑的含碳量>96%。
导电炭黑的石墨化程度按照含碳量的不同,可以分为低石墨化导电炭黑,含碳量为87%-92%;中石墨化导电炭黑,含碳量为93%-96%,高石墨化导电炭黑,含碳量>96%。发明人通过研究发现,高石墨化导电炭黑的杂质含量少,导电性能高,能够在较低的填充量下即可达到导电性能要求,将其应用于高压电缆半导电屏蔽料中,得到的高压电缆半导电屏蔽料,机械性能和加工流动性更好,并且挤出表面更光滑,毛刺或突出物更少。
所述高石墨化导电炭黑是通过在炭黑的生产阶段调控原料油与空气的比例,进而避免空气过剩,实现高石墨化导电炭黑的制备。
优选地,所述极性聚烯烃共聚物为乙烯丙烯酸丁酯,所述乙烯丙烯酸丁酯在190℃和2.16kg下的熔融指数8~10g/min,断裂伸长率≥700%。
乙烯丙烯酸丁酯的热分解温度为330℃,远高于乙烯-醋酸乙烯共聚物的热分解温度240℃,乙烯丙烯酸丁酯可以最大化减少基料的受热分解,延长高压电缆的使用寿命。熔融指数范围8-10g/min,保证了体系基本的流动性能,只需添加少量润滑剂即可满足加工性能。
优选地,所述加工助剂包括以下重量份的组分:交联剂1份、偶联剂2份、抗氧剂0.5份、润滑剂1份、和分散剂2份。
加工助剂之间的配比会影响材料的整体性能,过多或过少,高压电缆半导电屏蔽料的整体性能不佳。
优选地,所述交联剂为双叔丁基过氧化二异丙基苯和过氧化二异丙苯。双叔丁基过氧化二异丙基苯分子量338,熔点范围46~52℃,纯度>96%,过氧化 二异丙苯分子量270,熔点范围39~41℃,纯度>96%。
双叔丁基过氧化二异丙基苯的半衰期温度高,双叔丁基过氧化二异丙基苯作为交联剂,交联效率更高,达到预定的交联效果填充量只需过氧化二异丙苯用量的三分之二,并且在高压电缆半导电屏蔽料后续挤出成缆过程中,由于其较高的分散温度,挤出体系安全性更高,减少高压电缆半导电屏蔽料长期生产挤出“老胶”情况的出现。
优选地,所述偶联剂为硅烷偶联剂KH570。
优选地,所述抗氧剂为抗氧剂1010和抗氧剂168中的至少一种。
优选地,所述润滑剂为硬脂酸锌。
优选地,所述分散剂为乙撑双硬脂酰胺和聚乙烯吡络烷酮中的至少一种。
上述高压电缆半导电屏蔽料中,选择硅烷偶联剂作为导电炭黑和基体树脂的偶联剂,同时选择硬脂酸锌为润滑剂。硅烷偶联剂可以使导电炭黑和基体树脂更好的结合,同时硬脂酸锌作为润滑剂也有一定的协同作用,可以在加工中起到润滑和分散作用,最大限度提升导电炭黑的分散性,使物料处于均一的状态,提高了屏蔽料挤出过程的流动性,挤出表面更加光滑。
第二方面,本发明提供了一种高压电缆半导电屏蔽料的制备方法,包括以下步骤:
(1)去除导电炭黑的水分,然后与分散剂、偶联剂搅拌均匀,得到导电炭黑预处理物;
(2)将步骤(1)所得导电炭黑预处理物和抗氧剂、润滑剂混合均匀后,加入极性聚烯烃共聚物在45~50℃下混合均匀,得到混合物;
(3)将步骤(2)所得混合物在挤出机中进行熔融基础,然后再经水下拉条、切粒、烘干制得颗粒料;
(4)将步骤(3)所得颗粒料置于烘箱中加入到60-65℃,然后将颗粒料与 交联剂混合均匀之后,在60-65℃烘箱中放置5-10个小时,使颗粒料对交联剂进行充分吸收,即得高压电缆半导电屏蔽料。
与现有技术相比,本发明的有益效果为:
1、本发明提供了一种基于高石墨化导电炭黑制备高压电缆半导电屏蔽料,所述高石墨化导电炭黑的含碳量>96%,杂质含量少,导电性能好,将其应用于压电缆半导电屏蔽料中,克服了将普通导电炭黑填充高压电缆半导电屏蔽料存在的填充量过大,材料的机械性能和加工性能劣化,高压电缆半导电屏蔽料表面不光滑,凸起点多的问题。
2、本发明选择乙烯丙烯酸丁酯作为基体树脂,乙烯丙烯酸丁酯的热分解温度高,可以最大化减少基料的受热分解,延长高压电缆的使用寿命。
3、本发明选用双叔丁基过氧化二异丙基苯和过氧化二异丙苯作为交联剂,其中双叔丁基过氧化二异丙基苯的交联效率高,所需填充量少,并且在高压电缆半导电屏蔽料后续挤出成缆过程中,双叔丁基过氧化二异丙基苯较高的分散温度,使挤出体系安全性更高,减少高压电缆半导电屏蔽料长期生产挤出“老胶”情况的出现。
附图说明
图1为实施例1、对比例1-2制备的高压电缆半导电屏蔽料的表面光滑度性能图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例和附图对本发明作进一步的说明。
实施例1
本实施例提供了一种高压电缆半导电屏蔽料,包括以下重量份的组分:极性聚烯烃共聚物63.5份、导电炭黑30份、交联剂1份、润滑剂1份、分散剂2份、抗氧剂0.5份、偶联剂2份;
其中,所述极性聚烯烃共聚物为乙烯丙烯酸丁酯,其在190℃和2.16kg下的熔融指数8.7g/min,断裂伸长率780%;
所述导电炭黑为高石墨化导电炭黑A,其含碳量为96.9%;
所述交联剂为双叔丁基过氧化二异丙基苯和过氧化二异丙苯;
所述偶联剂为硅烷偶联剂KH570;
所述抗氧剂为抗氧剂1010和抗氧剂168的混合物,重量比例为2:1;
所述润滑剂为硬脂酸锌;
所述分散剂为乙撑双硬脂酰胺。
本实施例还提供了一种高压电缆半导电屏蔽料的制备方法,包括以下步骤:
(1)去除导电炭黑的水分,然后与分散剂、偶联剂搅拌均匀,得到导电炭黑预处理物;
(2)将步骤(1)所得导电炭黑预处理物和抗氧剂、润滑剂混合均匀后,加入极性聚烯烃共聚物在45~50℃下混合均匀,得到混合物;
(3)将步骤(2)所得混合物在挤出机中进行熔融基础,然后再经水下拉条、切粒、烘干制得颗粒料;
(4)将步骤(3)所得颗粒料置于烘箱中加入到60-65℃,然后将颗粒料与交联剂混合均匀之后,在60-65℃烘箱中放置5-10个小时,使颗粒料对交联剂进行充分吸收,即得高压电缆半导电屏蔽料。
实施例2
作为本发明实施例的一种高压电缆半导电屏蔽料,本实施例与实施例1的唯一区别为:所述高压电缆半导电屏蔽料包括以下重量份的组分,极性聚烯烃共聚物63.5份、导电炭黑30份、交联剂1份、润滑剂1份、分散剂1份、抗氧剂0.5份、偶联剂2份。
实施例3
作为本发明实施例的一种高压电缆半导电屏蔽料,本实施例与实施例1的唯一区别为:所述高压电缆半导电屏蔽料包括以下重量份的组分,极性聚烯烃共聚物58.5份、导电炭黑35份、交联剂1份、润滑剂1份、分散剂1份、抗氧剂0.5份、偶联剂2份。
对比例1
作为本发明对比例的一种高压电缆半导电屏蔽料,本对比例与实施例1的唯一区别为:所述导电炭黑为中石墨化导电炭黑B,其含碳量为94.2%。
对比例2
作为本发明对比例的一种高压电缆半导电屏蔽料,本对比例与实施例1的唯一区别为:所述导电炭黑为低石墨化导电炭黑C,其含碳量为87.3%。
对比例3
作为本发明对比例的一种高压电缆半导电屏蔽料,本对比例与实施例1的唯一区别为:交联剂使用DCP。
性能测试
测试实施例1-3和对比例1-3制备的高压电缆半导电屏蔽料的物理机械性能、电性能以及表面光滑度性能,测试结果如表1和图1所示。其中,物理机械性能采用Instron电子万能试验机(model 5576,USA)测试得到,电性能采用Fluke F18B数字万用表测试得到,表面光滑度性能采用光学显微镜(GP-300C)观察挤出片材表面得到。
表1 高压电缆半导电屏蔽料的物理机械性能及电性能
Figure PCTCN2021125383-appb-000001
Figure PCTCN2021125383-appb-000002
从表1中可以看出,本发明制备的高压电缆半导电屏蔽料的拉伸强度高,断裂伸长率高,体积电阻率低。
图1为实施例1、对比例1-2制备的高压电缆半导电屏蔽料的表面光滑度性能图。从图1中可以看出,实施例1中制备的高压电缆半导电屏蔽料的表面光滑。而对比例1-2制备的高压电缆半导电屏蔽料的表面有明显的的凸起点,表面不光滑。
最后所应当说明的是,以上实施例用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者同等替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种高压电缆半导电屏蔽料,其特征在于,包括以下重量份的组分:极性聚烯烃共聚物55~65份、导电炭黑28~35份和加工助剂6~8.5份;所述导电炭黑为高石墨化导电炭黑,所述高石墨化导电炭黑的含碳量>96%。
  2. 如权利要求1所述高压电缆半导电屏蔽料,其特征在于,所述极性聚烯烃共聚物的重量份为58.5~65份,所述导电炭黑的重量份为30~35份。
  3. 如权利要求1所述高压电缆半导电屏蔽料,其特征在于,所述极性聚烯烃共聚物为乙烯丙烯酸丁酯树脂,所述乙烯丙烯酸丁酯树脂在190℃和2.16kg下的熔融指数8~10g/min,断裂伸长率≥700%。
  4. 如权利要求1所述高压电缆半导电屏蔽料,其特征在于,所述加工助剂包括以下重量份的组分:交联剂1份、偶联剂2份、抗氧剂0.5份、润滑剂1份、和分散剂2份。
  5. 如权利要求4所述高压电缆半导电屏蔽料,其特征在于,所述交联剂为双叔丁基过氧化二异丙基苯和过氧化二异丙苯。
  6. 如权利要求4所述高压电缆半导电屏蔽料,其特征在于,所述偶联剂为硅烷偶联剂KH570。
  7. 根据权利要求4所述高压电缆半导电屏蔽料,其特征在于,所述抗氧剂为抗氧剂1010和抗氧剂168中的至少一种。
  8. 如权利要求4所述高压电缆半导电屏蔽料,其特征在于,所述润滑剂为硬脂酸锌。
  9. 根据权利要求4所述高压电缆半导电屏蔽料,其特征在于,所述分散剂为乙撑双硬脂酰胺和聚乙烯吡络烷酮中的至少一种。
  10. 一种如权利要求1-9任一项所述高压电缆半导电屏蔽料的制备方法,其特征在于,包括以下步骤:
    (1)去除导电炭黑的水分,然后与分散剂、偶联剂搅拌均匀,得到导电炭黑预处理物;
    (2)将步骤(1)所得导电炭黑预处理物和抗氧剂、润滑剂混合均匀后,加入极性聚烯烃共聚物在45~50℃下混合均匀,得到混合物;
    (3)将步骤(2)所得混合物在挤出机中进行熔融基础,然后再经水下拉条、切粒、烘干制得颗粒料;
    (4)将步骤(3)所得颗粒料置于烘箱中加入到60-65℃,然后将颗粒料与交联剂混合均匀之后,在60-65℃烘箱中放置5-10个小时,使颗粒料对交联剂进行充分吸收,即得高压电缆半导电屏蔽料。
PCT/CN2021/125383 2021-09-13 2021-10-21 一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法 WO2023035369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111066681.8A CN113754947A (zh) 2021-09-13 2021-09-13 一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法
CN202111066681.8 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023035369A1 true WO2023035369A1 (zh) 2023-03-16

Family

ID=78795061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125383 WO2023035369A1 (zh) 2021-09-13 2021-10-21 一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法

Country Status (2)

Country Link
CN (1) CN113754947A (zh)
WO (1) WO2023035369A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116355310A (zh) * 2023-04-23 2023-06-30 金发科技股份有限公司 一种阻燃半导电屏蔽料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656713A (zh) * 2021-12-29 2022-06-24 高邮市金国电缆材料厂有限公司 一种高导电聚烯烃护套料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856554A (zh) * 2003-09-18 2006-11-01 哥伦比亚化学公司 用于各类应用的热改性的碳黑及其生产方法
CN105131419A (zh) * 2015-09-30 2015-12-09 国网智能电网研究院 一种高压直流电缆用半导电屏蔽料及其制备方法
CN110079004A (zh) * 2019-04-01 2019-08-02 江阴市海江高分子材料有限公司 一种额定电压220kv超净超光滑半导电屏蔽料及其制备方法
CN110128736A (zh) * 2019-04-08 2019-08-16 江苏德威新材料股份有限公司 一种高压电缆用半导电屏蔽料及其制备方法和应用
AU2020103074A4 (en) * 2020-10-28 2020-12-24 Tsinghua University Preparation method of semi-conductive shielding material for polypropylene insulating cable
CN112457567A (zh) * 2020-11-27 2021-03-09 南方电网科学研究院有限责任公司 一种高压电缆半导电屏蔽料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107488295A (zh) * 2017-08-10 2017-12-19 全球能源互联网研究院 一种500kV及以下直流电缆用屏蔽料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1856554A (zh) * 2003-09-18 2006-11-01 哥伦比亚化学公司 用于各类应用的热改性的碳黑及其生产方法
CN105131419A (zh) * 2015-09-30 2015-12-09 国网智能电网研究院 一种高压直流电缆用半导电屏蔽料及其制备方法
CN110079004A (zh) * 2019-04-01 2019-08-02 江阴市海江高分子材料有限公司 一种额定电压220kv超净超光滑半导电屏蔽料及其制备方法
CN110128736A (zh) * 2019-04-08 2019-08-16 江苏德威新材料股份有限公司 一种高压电缆用半导电屏蔽料及其制备方法和应用
AU2020103074A4 (en) * 2020-10-28 2020-12-24 Tsinghua University Preparation method of semi-conductive shielding material for polypropylene insulating cable
CN112457567A (zh) * 2020-11-27 2021-03-09 南方电网科学研究院有限责任公司 一种高压电缆半导电屏蔽料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116355310A (zh) * 2023-04-23 2023-06-30 金发科技股份有限公司 一种阻燃半导电屏蔽料及其制备方法和应用

Also Published As

Publication number Publication date
CN113754947A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN112457567B (zh) 一种高压电缆半导电屏蔽料及其制备方法
WO2023035369A1 (zh) 一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法
KR102005113B1 (ko) 절연 조성물 및 이를 포함하는 전기 케이블
JP2013519193A (ja) 加硫可能なコポリマー半導電性シールド組成物
CN112724500B (zh) 一种半导电屏蔽料及其制备方法和应用
CN113956565A (zh) 一种基于高结构导电炭黑的超光滑高压电缆半导电屏蔽料及制备方法
CN114015148A (zh) 一种低杂质导电炭黑制备高压电缆半导电屏蔽料的方法
CN115216082B (zh) 剥离强度改善型半导电屏蔽料、制备方法、制品和电缆
US10501645B2 (en) Semiconductive shield composition
KR20200011947A (ko) 에틸렌 비닐 아세테이트의 반응성 배합
CN111205550A (zh) 新能源车用125℃辐照交联低烟无卤阻燃聚烯烃电缆料
CN113881133A (zh) 一种导电炭黑高效分散的高压电缆半导电屏蔽料及制备方法
CN114685883A (zh) 一种超光滑高压电缆半导电内屏蔽料及其制备方法
CN115044130A (zh) 基于碳纳米纤维改性的屏蔽料及其制备方法和应用
WO2020206979A1 (zh) 一种高压电缆用半导电屏蔽料及其制备方法和应用
WO2023065430A1 (zh) 一种导电炭黑高效分散的高压电缆半导电屏蔽料及制备方法
KR101480009B1 (ko) 고압 또는 초고압 전력 케이블용 반도전성 컴파운드 및 이를 적용한 초고압 전력 케이블
WO2023065429A1 (zh) 一种低杂质导电炭黑制备高压电缆半导电屏蔽料的方法
Li et al. Dispersion of Carbon Blacks and Their Influence on the Properties of Semiconductive Materials use for High-voltage Power Cables
KR20210054103A (ko) 내트래킹성 절연 조성물 및 이를 포함하는 고전압 케이블
CN114989524B (zh) 一种交联粘结型导体屏蔽材料及其制备方法
CN116023727A (zh) 一种抗水树型架空料及其制备方法与应用
KR920004784B1 (ko) 전선용 흑색 가교수지 조성물
CN117903518A (zh) 一种高压半导电屏蔽材料及其制备方法
CN116120655A (zh) 一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE