WO2023028983A1 - 金属箔及制备方法、集流体、电极、电池及用电装置 - Google Patents

金属箔及制备方法、集流体、电极、电池及用电装置 Download PDF

Info

Publication number
WO2023028983A1
WO2023028983A1 PCT/CN2021/116426 CN2021116426W WO2023028983A1 WO 2023028983 A1 WO2023028983 A1 WO 2023028983A1 CN 2021116426 W CN2021116426 W CN 2021116426W WO 2023028983 A1 WO2023028983 A1 WO 2023028983A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal foil
layer
metal layer
roughness
Prior art date
Application number
PCT/CN2021/116426
Other languages
English (en)
French (fr)
Inventor
吴宇堃
葛销明
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21926044.5A priority Critical patent/EP4166696A4/en
Priority to PCT/CN2021/116426 priority patent/WO2023028983A1/zh
Priority to CN202180085643.9A priority patent/CN116762194A/zh
Priority to US17/900,908 priority patent/US20230082055A1/en
Publication of WO2023028983A1 publication Critical patent/WO2023028983A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium batteries, in particular to a metal foil and a preparation method, a current collector, an electrode, a battery and an electrical device.
  • lithium-ion batteries have been widely used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields. Due to the great development of lithium-ion batteries, higher requirements have been put forward for their energy density, cycle performance and safety performance.
  • the current collector is the carrier that carries the electrode active materials.
  • Lithium-ion battery active materials tend to expand and shrink to a certain extent during charge and discharge cycles, and this repeated volume change easily causes the active materials to separate from the current collector. Therefore, improving the cohesion between active materials and current collectors is helpful to obtain stable battery performance.
  • the present application was made in view of the above-mentioned problems, and an object thereof is to provide a current collector having improved adhesion to an active material.
  • the metal foil has improved adhesion to the active material.
  • the metal foil includes a laminated first metal layer, a metal base layer, and a second metal layer, the metal base layer is located between the first metal layer and the second metal layer, and the metal base layer faces the
  • the surface roughness Rz of the second metal layer is ⁇ 2 ⁇ m
  • the roughness Rz of the surface of the second metal layer facing away from the metal base layer is ⁇ 2 ⁇ m
  • ⁇ 2 1.8 ⁇ 2.9
  • ⁇ 2 1 ⁇ 1.4.
  • Both sides of the metal foil have improved adhesion to the active material.
  • the ratio of ⁇ 1 to ⁇ 2 is 0.9-1.1, and may be 1. Both sides of the metal foil have uniform structure and properties.
  • the ratio of ⁇ 1 to ⁇ 2 is 0.9-1.1, and may be 1. Both sides of the metal foil have uniform structure and properties.
  • the metal foil has improved adhesion to the active material.
  • the metal foil has lower cost and better performance.
  • the metal foil has lower cost and better performance.
  • the average grain size a of the first metal layer satisfies 10 ⁇ a ⁇ 70
  • the average grain size z of the metal base layer satisfies 100 ⁇ z ⁇ 1000
  • the average grain size of the second metal layer satisfies 10 ⁇ b ⁇ 70.
  • the metal foil has lower cost and better mechanical properties.
  • the average grain size a of the first metal layer satisfies 15 ⁇ a ⁇ 57
  • the average grain size z of the metal base layer satisfies 114 ⁇ z ⁇ 925
  • the average grain size of the second metal layer satisfies 14 ⁇ b ⁇ 69.
  • the metal foil has lower cost and better mechanical properties.
  • the first metal layer has a thickness of 1.2-2.0 ⁇ m
  • the metal base layer has a thickness of 4.4-5.2 ⁇ m
  • the second metal layer has a thickness of 1.2-2.0 ⁇ m.
  • the metal foil has suitable thickness and good mechanical properties, and is suitable for being used as a battery current collector.
  • the total thickness of the metal foil is 7.2-8.4 ⁇ m.
  • the metal foil has suitable thickness and good mechanical properties, and is suitable for being used as a battery current collector.
  • the tensile strength of the metal foil is above 34kg/mm 2 , optionally 34-40kg/mm 2 .
  • the metal foil has improved mechanical properties and is suitable for use as a battery current collector.
  • the metal foil has an elongation of 3.2% or more, optionally 3.2-3.8% or more.
  • the metal foil has improved mechanical properties and is suitable for use as a battery current collector.
  • the adhesive force of the metal foil is above 12 N/m 2 , optionally 12-17 N/m 2 .
  • the metal foil has improved adhesion and is suitable for use as a battery current collector.
  • the material of the first metal layer, the metal base layer and the second metal layer is independently copper, aluminum, nickel, titanium, silver or any alloy thereof.
  • the metal foil has stable chemical properties and is suitable for use as a battery collector.
  • the materials of the first metal layer, the metal base layer and the second metal layer are copper or copper alloy.
  • the metal foil is suitable for use as battery current collectors, especially negative electrode current collectors
  • the second aspect of the present application provides a method for preparing metal foil, which is characterized in that it includes the following steps:
  • the metal foil obtained by this method has improved adhesion.
  • the third aspect of the present application provides a method for preparing metal foil, a method for preparing metal foil, which is characterized in that it includes the following steps:
  • the metal foil obtained by this method has improved adhesion.
  • step S2 one or more of the following methods are used to process the roughness of the two side surfaces of the original metal foil: chemical etching, electrochemical etching, or a combination thereof.
  • the metal foil obtained by this method has improved adhesion.
  • step S3 In any embodiment, in step S3,
  • the original metal foil is prepared by the first electrodeposition method
  • the surface of both sides of the original metal foil is roughened by chemical etching
  • a first metal layer and a second metal layer are respectively deposited on the first roughened surface and the second roughened surface by the second electrodeposition method.
  • the metal foil obtained by this method has improved adhesion.
  • step S3 the first electrodeposition is implemented in a first electroplating solution, and the first electroplating solution includes the following components:
  • the first electroplating solution also contains a gloss agent, a leveling agent, or a combination thereof;
  • the pH value of the first electroplating solution is ⁇ 4.
  • the metal foil obtained by this method has improved adhesion.
  • step S2 chemical etching is carried out in etching solution, and described etching solution comprises following composition:
  • Copper sulfate 50g/L-250g/L The metal foil obtained by this method has improved adhesion.
  • the second electrodeposition is carried out in a second electroplating solution comprising the following components:
  • the metal foil obtained by this method has improved adhesion.
  • the second electroplating solution also contains electroplating additives, such as gloss agents, leveling agents, or combinations thereof;
  • the pH value of the first electroplating solution is ⁇ 4.
  • the current density of the first electrodeposition is C 1 A/dm 2
  • the current density of the second electrodeposition is C 2 A/dm 2 , then 1.25 ⁇ C 1 :C 2 ⁇ 5;
  • the metal foil obtained by this method has improved adhesion.
  • the fourth aspect of the present application provides a current collector, which is characterized by comprising the metal foil described in any one of the above or the metal foil prepared by the method described in any one of the above.
  • the fifth aspect of the present application provides a battery, which is characterized by comprising any one of the above current collectors.
  • a sixth aspect of the present application provides an electric device, characterized in that the electric device includes the battery according to any one of the above, and the battery is used to provide electric energy.
  • the metal foil is used as a current collector, and the adhesion between the current collector and the active material is improved, and then the stability of the electrode based on the current collector is improved, and the overall performance of the electrode is improved.
  • the metal foils of some embodiments have improved strength and toughness
  • the metal foil of some embodiments is easy to produce, has the advantages of low production cost, high production efficiency, and good performance.
  • Fig. 1 is the schematic diagram of the metal foil production system of some embodiments of the present application
  • Fig. 2 is the schematic diagram of the metal foil of some embodiments of the present application.
  • Fig. 3 is the schematic diagram of the electrode of some embodiments of the present application.
  • Figure 4 shows an exemplary stress-strain graph
  • FIG. 6 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 7 is an exploded view of the secondary battery according to one embodiment of the present application shown in FIG. 6 .
  • FIG. 8 is a schematic diagram of a battery module according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 10 is an exploded view of the battery pack according to one embodiment of the present application shown in FIG. 9 .
  • FIG. 11 is a schematic diagram of an electrical device in which a secondary battery is used as a power source according to an embodiment of the present application.
  • the first electrodeposition equipment 11 The first electrodeposition equipment 11; the first electroplating solution tank 111; the first anode plate 112; the first cathode roller 116; Two A anode plate 122; second B anode plate 128; second cathode roll 126; roll 130; raw metal foil 110; etched metal foil 150; product metal foil 120.
  • battery pack 1 upper case 2; lower case 3; battery module 4; secondary battery 5; case 51; electrode assembly 52; top cover assembly 53
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • step (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • the metal foil has improved adhesion to the active material.
  • a relatively high roughness eg ⁇ 3 ⁇ m
  • laminated refers to the direct or indirect attachment of two layers to each other.
  • directly means that there is no intervening layer between two layers
  • indirect means that there is an intervening layer between two layers.
  • the metal foil includes a laminated first metal layer, a metal base layer, and a second metal layer, the metal base layer is located between the first metal layer and the second metal layer, and the metal base layer faces the
  • the roughness Rz of the surface of the second metal layer is ⁇ 2 ⁇ m
  • the roughness Rz of the surface of the second metal layer facing away from the metal base layer is ⁇ 2 ⁇ m
  • ⁇ 1 1.8 ⁇ 2.9 (for example, 1.8 ⁇ 2.9 1.9, 1.9 ⁇ 2, 2 ⁇ 2.1, 2.1 ⁇ 2.2, 2.2 ⁇ 2.3, 2.3 ⁇ 2.4, 2.4 ⁇ 2.5, 2.5 ⁇ 2.6, 2.6 ⁇ 2.7, 2.7 ⁇ 2.8 or 2.8 ⁇ 2.9)
  • ⁇ 1 1 ⁇ 1.4( 1 ⁇ 1.1, 1.1 ⁇ 1.2, 1.2 ⁇ 1.3 or 1.3 ⁇ 1.4). Both sides of the metal foil have improved adhesion to the active material.
  • the surface of the metal base layer facing the first metal layer and the second metal layer has a relatively high roughness (for example, ⁇ 3 ⁇ m).
  • a relatively high roughness for example, ⁇ 3 ⁇ m.
  • the ratio of ⁇ 1 to ⁇ 2 is 0.9-1.1 (eg 1). Both sides of the metal foil have uniform structure and properties, good symmetry, and exhibit improved performance when used in battery current collectors.
  • the ratio of ⁇ 1 to ⁇ 2 is 0.9-1.1 (for example, 1). Both sides of the metal foil have uniform structure and properties, good symmetry, and exhibit improved performance when used in battery current collectors.
  • the metal foil has improved adhesion to the active material.
  • the metal foil has lower cost and better performance.
  • the metal foil was used as a current collector, and the adhesion between the current collector and the active material was shown to be further improved. It is advantageous for production to use a metal base layer with a larger grain size. It is more efficient and less costly to produce metal deposition layers with large grain sizes than with small grain sizes, without sacrificing the properties of the product metal foil.
  • the average grain size a of the first metal layer satisfies 10 ⁇ a ⁇ 70 (for example, 10-20, 20-30, 30-40, 40-50, 50-60, 60 ⁇ 70), in nm, the average grain size z of the metal base layer satisfies 100 ⁇ z ⁇ 1000 (such as 10 ⁇ 20, 20 ⁇ 30, 30 ⁇ 40, 40 ⁇ 50, 50 ⁇ 60, 60 ⁇ 70 , 70 ⁇ 80, 80 ⁇ 90 or 90 ⁇ 100), in nm, the average grain size of the second metal layer satisfies 10 ⁇ b ⁇ 70 (such as 10 ⁇ 20, 20 ⁇ 30, 30 ⁇ 40, 40 ⁇ 50, 50 ⁇ 60, 60 ⁇ 70).
  • the metal foil has improved adhesion to the active material.
  • the average grain size a of the first metal layer satisfies 15 ⁇ a ⁇ 57
  • the average grain size z of the metal base layer satisfies 114 ⁇ z ⁇ 925
  • the average grain size of the second metal layer satisfies 14 ⁇ b ⁇ 69.
  • the metal foil has improved adhesion to the active material.
  • the first metal layer has a thickness of 1.2-2.0 ⁇ m
  • the metal base layer has a thickness of 4.4-5.2 ⁇ m
  • the second metal layer has a thickness of 1.2-2.0 ⁇ m.
  • the metal foil has moderate thickness and good mechanical properties, and is suitable for being used as a battery collector.
  • the total thickness of the metal foil is 7.2 to 8.4 ⁇ m.
  • the metal foil has suitable thickness and good mechanical properties, and is suitable for being used as a battery current collector.
  • the tensile strength of the metal foil is above 34kg/mm 2 , optionally 34-40kg/mm 2 .
  • the metal foil has improved mechanical properties and is suitable for use as a battery current collector.
  • the metal foil has an elongation of 3.2% or more, optionally 3.2-3.8% or more.
  • the metal foil has improved mechanical properties and is suitable for use as a battery current collector.
  • the adhesive force of the metal foil is above 12 N/m 2 , optionally 12-17 N/m 2 .
  • the metal foil has improved adhesion and is suitable for use as a battery current collector.
  • the material of the first metal layer, the metal base layer and the second metal layer is independently copper, aluminum, nickel, titanium, silver or any alloy thereof.
  • the metal foil has stable chemical properties and is suitable for use as a battery collector.
  • the materials of the first metal layer, the metal base layer and the second metal layer are copper or copper alloy.
  • the metal foil has good compatibility with battery negative electrode materials, and is suitable for battery current collectors, especially negative electrode current collectors
  • the second aspect of the present application provides a method for preparing metal foil, which is characterized in that it includes the following steps:
  • the metal foil obtained by this method has improved adhesion.
  • the metal foil obtained by this method has improved adhesion.
  • the third aspect of the present application provides a method for preparing metal foil, a method for preparing metal foil, which is characterized in that it includes the following steps:
  • the metal foil obtained by the method has improved adhesion on both sides of the surface.
  • step S2 one or more of the following methods are used to process the roughness of the two side surfaces of the original metal foil: chemical etching, electrochemical etching, or a combination thereof.
  • the metal foil obtained by this method has improved adhesion.
  • step S3 In any embodiment, in step S3,
  • the original metal foil is prepared by the first electrodeposition method
  • the surface of both sides of the original metal foil is roughened by chemical etching
  • a first metal layer and a second metal layer are respectively deposited on the first roughened surface and the second roughened surface by the second electrodeposition method.
  • the metal foil obtained by this method has improved adhesion.
  • the first metal layer and/or the second metal layer are deposited on the surface of the metal base layer by one or more of the following methods. For example, sputtering, electroplating, molding, chemical vapor deposition (Chemical Vapor Deposition, CVD), physical vapor deposition (Physical Vapor Deposition, PVD), evaporation, hybrid physical-chemical vapor deposition (Hybrid Physical-Chemical Vapor Deposition, HPCVD) , Plasma Enhanced Chemical Vapor Deposition (PECVD), Low Pressure Chemical Vapor Deposition (LPCVD), etc.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • evaporation hybrid physical-chemical vapor deposition
  • HPCVD Hybrid Physical-Chemical Vapor Deposition
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • LPCVD Low Pressure Chemical Vapor Deposition
  • the first metal layer and/or the second metal layer are respectively stacked on the surface of the metal base layer by electrodeposition.
  • Electrodeposition refers to the process of donating electrons to ionic metals to form a non-ionic coating on a conductive surface.
  • a corresponding system may include a chemical solution having the metal in ionic form, an anode (i.e., a negatively charged electrode that may correspond to the metal to be plated) and a cathode (i.e., a positively charged electrode that provides electrons to produce a non-ionic metal film on a conductive surface). electric electrodes).
  • anode i.e., a negatively charged electrode that may correspond to the metal to be plated
  • a cathode i.e., a positively charged electrode that provides electrons to produce a non-ionic metal film on a conductive surface.
  • electric electrodes For electroplating or electrodeposition of metals such as copper, water-based solutions containing the metal to be deposited as ions, in particular dissolved metal salts, may be used. The electric field between the anode and cathode can force the
  • Electrodeposition and “electroplating” are used interchangeably.
  • step S2 one or more of the following methods are used to process the roughness of the two side surfaces of the original metal foil: chemical etching, electrochemical etching, or a combination thereof.
  • the metal foil obtained by this method has improved adhesion.
  • the term "chemical etching” refers to removing at least part of the material on the surface of the metal foil by a chemical etching solution to form a specific texture and/roughness.
  • electrochemical etching refers to removing at least part of the material on the surface under the action of an electric current to form a specific texture and/roughness by using the metal foil as an anode in the electrolyte.
  • step S3 In any embodiment, in step S3,
  • the original metal foil is prepared by the first electrodeposition method
  • the surface of both sides of the original metal foil is roughened by chemical etching
  • a first metal layer and a second metal layer are respectively deposited on the first roughened surface and the second roughened surface by the second electrodeposition method.
  • the metal foil obtained by this method has improved adhesion.
  • step S3 the first electrodeposition is implemented in a first electroplating solution, and the first electroplating solution includes the following components:
  • Cu 2+ 50g/L-100g/L such as 60g/L-70g/L, such as 70g/L-80g/L, such as 80g/L-90g/L, such as 90g/L-100g/L;
  • H 2 SO 4 150g/L-250g/L, such as 150g/L-170g/L, such as 170g/L-190g/L, such as 190g/L-210g/L, such as 210g/L-230g/L, such as 230g /L-250g/L;
  • the first electroplating solution further contains a gloss agent, a leveler, or a combination thereof.
  • the metal foil obtained by this method has improved adhesion.
  • the pH value of the first electroplating solution is ⁇ 4.
  • the metal foil obtained by this method has improved adhesion.
  • step S2 chemical etching is carried out in etching solution, and described etching solution comprises following composition:
  • 1-butyl-3 methylimidazolium chloride 0.5g/L-5g/L, for example 0.5g/L-1g/L, for example 1g/L-2g/L, for example 2g/L-3g/L, for example 3g /L ⁇ 4g/L, such as 4g/L ⁇ 5g/L;
  • Copper sulfate 50g/L-250g/L The metal foil obtained by this method has improved adhesion.
  • the second electrodeposition is carried out in a second electroplating solution comprising the following components:
  • Cu 2+ 50g/L-100g/L such as 60g/L-70g/L, such as 70g/L-80g/L, such as 80g/L-90g/L, such as 90g/L-100g/L;
  • H 2 SO 4 150g/L-250g/L, such as 150g/L-170g/L, such as 170g/L-190g/L, such as 190g/L-210g/L, such as 210g/L-230g/L, such as 230g /L-250g/L;
  • the second electroplating solution also contains electroplating additives, such as gloss agents, leveling agents, or combinations thereof;
  • the pH value of the first electroplating solution is ⁇ 4.
  • the current density of the first electrodeposition is C 1 A/dm 2
  • the current density of the second electrodeposition is C 2 A/dm 2 , then 1.25 ⁇ C 1 :C 2 ⁇ 5.
  • the metal foil obtained by this method has improved adhesion.
  • the metal foil obtained by this method has improved adhesion.
  • the fourth aspect of the present application provides a current collector, which is characterized by comprising the metal foil described in any one of the above or the metal foil prepared by the method described in any one of the above.
  • the fifth aspect of the present application provides a battery, which is characterized by comprising any one of the above current collectors.
  • a sixth aspect of the present application provides an electric device, characterized in that the electric device includes the battery according to any one of the above, and the battery is used to provide electric energy.
  • a secondary battery is provided.
  • a secondary battery typically includes a positive pole piece, a negative pole piece, an electrolyte, and a separator.
  • active ions are intercalated and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows ions to pass through.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode collector, and the positive electrode film layer includes the positive electrode active material according to the first aspect of the present application.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • the positive electrode current collector can be a metal foil or a composite current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode active material may be a positive electrode active material known in the art for batteries.
  • the positive active material may include at least one of the following materials: olivine-structured lithium-containing phosphate, lithium transition metal oxide, and their respective modified compounds.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials of batteries can also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also abbreviated as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also abbreviated as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also abbreviated as NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as LiNi
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also may be abbreviated as LFP)), composite materials of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon At least one of a composite material, lithium manganese iron phosphate, and a composite material of lithium manganese iron phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also may be abbreviated as LFP)
  • composite materials of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of ethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • the negative electrode current collector can use a metal foil or a composite current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material may be selected from at least one of simple tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode film layer may further optionally include a binder.
  • the binder can be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), poly At least one of methacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer may also optionally include a conductive agent.
  • the conductive agent can be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the negative electrode film layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the present application has no specific limitation on the type of electrolyte, which can be selected according to requirements.
  • electrolytes can be liquid, gel or all solid.
  • the electrolyte is an electrolytic solution.
  • the electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethanesulfonyl imide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium difluorodifluorooxalatephosphate and lithium tetrafluorooxalatephosphate.
  • the solvent may be selected from ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte may optionally include additives.
  • additives may include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performances of the battery, such as additives that improve battery overcharge performance, additives that improve high-temperature or low-temperature performance of batteries, and the like.
  • a separator is further included in the secondary battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 6 shows a square-shaped secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating chamber. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 8 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 may be fixed by fasteners.
  • the battery module 4 may also include a case having a housing space in which a plurality of secondary batteries 5 are accommodated.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3 , the upper box body 2 can cover the lower box body 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electric device, which includes at least one of the secondary battery, battery module, or battery pack provided in the present application.
  • the secondary battery, battery module, or battery pack can be used as a power source of the electric device, and can also be used as an energy storage unit of the electric device.
  • the electric devices may include mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, etc.) , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • a secondary battery, a battery module or a battery pack can be selected according to its use requirements.
  • Fig. 11 is an example of an electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module may be used.
  • a device may be a cell phone, tablet, laptop, or the like.
  • the device is generally required to be light and thin, and a secondary battery can be used as a power source.
  • Fig. 1 shows a schematic diagram of a metal foil production system used in the following examples.
  • the metal foil production system used in the following embodiments includes: a first electrodeposition device 11 , an etching device 15 , a second electrodeposition device 12 , and a plurality of rollers 130 for pulling the metal foil.
  • the first electrodeposition apparatus 11 produces electrodeposited metal foil by a first electrodeposition method.
  • the first electrodeposition device 11 includes: a first electroplating bath 111 , a first anode plate 112 and a first cathode roller 116 .
  • the first electroplating solution tank 111 contains electroplating solution.
  • the first anode plate 112 and the first cathode roll 116 are immersed in the electroplating solution.
  • the first anode plate 112 and the first cathode roll 116 are arranged face to face, and the raw metal foil 110 is produced between the first anode plate 112 and the first cathode roll 116 .
  • the material of the first anode plate 112 and the first cathode roller 116 is metal titanium.
  • the electroplating solution containing metal ions in the electrolytic tank 111 is electrolyzed, so that the metal ions are deposited on the first cathode roller 116, a metal deposition layer is formed, and the metal deposition layer is peeled off from the first cathode roller 116 to obtain the original metal foil 110.
  • the surface roughness of both sides of the original metal foil 110 is different, the side close to the first cathode roller 116 is relatively smooth, called the smooth side, and the other side presents a convex-concave crystal structure, which is relatively rough, called the rough side.
  • the surface roughness of the two sides of the original metal foil 110 is quite different, and the adhesion between the two surfaces and the active material is still insufficient.
  • the raw metal foil 110 produced by the first electrodeposition equipment 11 is directly sent to the etching equipment 15 under the traction of the roller 130.
  • the etching device 15 includes: an etching solution tank 151 containing an etching solution.
  • a roller 130 for pulling the metal foil is also provided in the etching solution tank.
  • the original metal foil 110 is etched by the etching solution in the etching device 15 to obtain an etched metal foil 150 .
  • the surface roughness of both sides of the etched metal foil 150 is higher than that of the original metal foil 110 .
  • the roughness of the surfaces on both sides of the etched metal foil 150 is relatively similar. However, the adhesion between the surfaces on both sides of the etched copper foil and the active material is still insufficient.
  • the etched metal foil 150 is directly sent to the second electrodeposition device 12 under the traction of the roller 130 for the second electrodeposition.
  • the second electrodeposition device 12 includes: a second electroplating bath 121 , a second A anode plate 122 , a second B anode plate 128 and a second cathode roller 126 .
  • the second electroplating solution tank 121 is filled with electroplating solution.
  • the second cathode roll 126, the second A anode plate 122 and the second B anode plate 128 are immersed in the electroplating bath.
  • the second A anode plate 122 faces one side of the metal foil and the second B anode plate 128 faces the other side of the metal foil.
  • the metal foil Under the traction of the roller 130, the metal foil first passes between the second A anode plate 122 and the second cathode roller 126, and then passes between the second cathode roller 126 and the second B anode plate 128 to obtain a Product metal foil 120 of layer structure.
  • the material of the second cathode roller 126 , the second A anode plate 122 and the second B anode plate 128 is metal titanium.
  • the first metal layer and the second metal layer are respectively deposited on both sides of the etched metal foil 150 to obtain a product metal foil 120 with a multi-layer structure.
  • the surface roughness of both sides of the product metal foil 120 is lower than that of the etched metal foil 150 .
  • the roughness values of the surfaces on both sides of the product metal foil 120 are basically equal.
  • FIG. 2 shows a schematic view of a product foil 120 .
  • the product metal foil 120 includes a laminated first metal layer 21 , a metal base layer 22 and a second metal layer 23 , and the metal base layer 22 is located between the first metal layer 21 and the second metal layer 23 .
  • the roughness Rz of the surface 221 of the metal base layer facing the first metal layer is ⁇ 1 ⁇ m
  • the roughness Rz of the surface 223 of the metal base layer facing the second metal layer is ⁇ 2 ⁇ m
  • the roughness Rz of the surface 230 of the second metal layer facing away from the metal base layer is ⁇ 2 ⁇ m, ⁇ 2 ⁇ m ⁇ 3, 0.5 ⁇ 2 - ⁇ 2 ⁇ 1.5.
  • the adhesion of the product metal foil 120 to the active material exhibited a significant and unexpected improvement.
  • the reason for the increased adhesion may be that the second electrodeposited metal layer inherits the rough profile of the etched copper foil 150 surface on the one hand, and modifies and improves the microstructure of the etched copper foil 150 surface on the other hand. A surface that is particularly suitable for bonding active materials is obtained.
  • FIG. 3 illustrates electrodes of some embodiments.
  • the electrode includes a product metal foil 120 , a first active material layer 31 and a second active material layer 33 stacked on each other with the product metal foil 120 positioned between the first active material layer 31 and the second active material layer 33 .
  • the first active material layer 31 is stacked on the surface 210 of the first metal layer facing away from the metal base layer
  • the second active material layer 33 is stacked on the surface 230 of the second metal layer facing away from the metal base layer.
  • copper foil was produced using the above-mentioned metal foil production system, and an electrode was prepared using the copper foil as a current collector.
  • Embodiment 1 ⁇ 18 is a diagrammatic representation of Embodiment 1 ⁇ 18:
  • the electroplating solution composition of the first electroplating solution tank and the second electroplating solution tank is shown in the following table:
  • Raw material composition (chemical formula) Concentration g/L 1-Butyl-3 methylimidazolium chloride salt 2g/L Copper Sulfate (CuSO 4 ) 200g/L solvent water pH value less than 4
  • the process parameters of the electrolytic copper foil preparation system such as the first electrodeposition time, the first electrodeposition current density, the etching time, the second electrodeposition time, and the second electrodeposition current density, are shown in Table 3 below.
  • Comparative Examples 1-2 and Example 1 lies in the different process parameters of the electrolytic copper foil preparation system, as shown in Table 3 below.
  • Comparative Example 1 cancels the etching step, directly transports the original copper foil produced by the first electrodeposition equipment to the second electrodeposition equipment, and performs the second electrodeposition on the etched copper foil, The first copper layer and the second copper layer were deposited on both sides of the etched copper foil to obtain the product copper foil of Comparative Example 1.
  • Comparative Example 1 Other step parameters of Comparative Example 1 (such as the first electrodeposition step and the second electrodeposition step) are the same as those of Example 1.
  • Comparative Example 2 Other step parameters (such as the first electrodeposition step and etching step) of Comparative Example 2 are the same as those of Example 1.
  • the surface roughness Rz was measured with reference to the following standard: JIS B 0601,0031-1994 Surface Roughness and Graphical Representation.
  • the surface roughness parameters of the copper foils prepared in Examples 1-18 and the intermediate products of each step are shown in Table 4.1 below.
  • the surface roughness parameters of the copper foils prepared in Comparative Examples 1-2 and the intermediate products of each step are shown in Table 4.2 below.
  • the ratio R 1:2 represents the ratio of the first surface roughness Rz 1 to the second surface roughness Rz 2 .
  • the difference ( ⁇ - ⁇ ) represents the difference between the roughness Rz 1 of the first surface of the etched copper foil and the roughness Rz 1 of the first surface of the product copper foil, and the difference between the roughness Rz 1 of the second surface of the etched copper foil and the roughness of the product copper foil. Difference in the roughness Rz 1 of the second side of the foil.
  • the difference ( ⁇ - ⁇ ) represents the difference between the first surface roughness Rz 1 of the original copper foil and the first surface roughness Rz 1 of the product copper foil, and the difference between the second surface roughness Rz 1 of the original copper foil and the product copper foil. Difference in the roughness Rz 1 of the second side of the foil.
  • test method for the adhesion between copper foil as a current collector and active materials is as follows:
  • an active material layer is arranged on both sides of the current collector, the method is as follows:
  • the negative electrode active material slurry of the lithium ion battery is coated on the surface to be tested of the copper foil to be tested, dried and rolled to obtain a pole piece.
  • the compacted density of the pole piece is 1.68g/cm 3
  • the coated surface density is 134g/m 2 .
  • Lithium-ion battery negative electrode active material slurry formula is as follows: 96.8wt% graphite, 0.4wt% conductive carbon, 1.8wt% styrene polybutadiene rubber, 1wt% sodium carboxymethyl cellulose, and appropriate amount of solvent (solvent is dried in subsequent step will evaporate).
  • FIG. 5 show the flowchart of a peel test.
  • a steel plate 510 is provided, and the size of the steel plate is 30 mm wide ⁇ 100 mm long.
  • the size of double-sided adhesive tape 520 is wide 20mm * long 30mm, double-sided adhesive tape 520 is pasted on the steel plate 510, a wide side of double-sided adhesive tape 520 Align with one broad side of the steel plate 510.
  • a pole piece 530 to be tested is provided, and the size of the pole piece 530 to be tested is 30 mm in width ⁇ 30 mm in length.
  • the pole piece 530 to be tested is covered on the double-sided adhesive tape 520 , the coated surface of the pole piece 530 faces the double-sided adhesive tape 520 , and one wide side of the pole piece 530 to be tested is aligned with one wide side of the steel plate 510 . Since the length of the pole piece 530 to be tested is greater than that of the double-sided adhesive tape 520 , part of the area of the pole piece 520 to be tested is not adhered to the double-sided adhesive tape.
  • the steel plate 510 is fixed on the base of the tensile testing machine, and the end of the pole piece 530 to be tested that is not bonded with the double-sided adhesive is clamped with a clamp, and then the clamp is moved to the other end.
  • direction (as shown by the arrow), the direction of the stretching force is parallel to the strength direction of the steel plate 510, and is close to the surface of the steel plate 510.
  • the stretching causes the pole piece 530 to be gradually peeled off from the steel plate.
  • the stretching speed of the clamps was 50mm/min.
  • record the pulling force of the jig and continue to peel off 70mm of length after the pulling force is stable, and take the average pulling force under this peeling length as the bonding force.
  • the room temperature tensile strength and elongation of the copper foil are measured by referring to the following method: the copper foil that has been placed for 24 hours is stamped into a dumbbell shape (gauge length 50mm, gauge width 3mm), then tensile test is performed, and the stress-strain curve is drawn picture. Fig.
  • the X-axis is the strain value
  • the strain value 0.005 refers to the elongation of 0.5%
  • the tensile strength of 0.5% elongation is the curve stress value when the strain value is 0.005; From the position of the 0.005 curve on the strain axis, the point where a straight line 402 parallel to a line segment 400 intersects with the stress-strain curve is exactly the plastic deformation stress value of 0.5% elongation (yield strength of 0.5% elongation), and the line segment 400 is the stress-strain The curve is tangent at a strain of 0.
  • the product copper foil obtained in Examples 1 to 18 includes a first copper layer, a copper-based layer and a second copper layer, the copper-based layer is located between the first copper layer and the second copper layer, and the copper-based layer faces the surface of the first copper layer.
  • the bonding force between the copper foil and the active material of the products prepared in Examples 1-18 shows an unexpected significant improvement, reaching 12-17N, and the bonding force on both sides of the copper foil is very uniform, especially suitable for double-sided coating
  • the bonding force between the copper foil of Comparative Example 1 and the active material was about 10N.
  • the binding force between Comparative Example 2 and the active material is about 1-3N.
  • Comparative Example 3 only implemented the first electrodeposition step and etching step, and did not perform the second electrodeposition step.
  • the copper foil of Comparative Example 2 has no layered structure, and its surface roughness on both sides is 2.5 ⁇ m and 2.5 ⁇ m, respectively.
  • the bonding force between the copper foil and the active material is only 1-2N.
  • Comparative Example 4 did not carry out the etching step, and directly carried out the second electrodeposition on the original copper foil obtained by the first electrodeposition, and deposited the first copper layer and the second copper layer on the surfaces of both sides of the original copper foil.
  • the bonding force between the copper foil and the active material is only 8-9N.
  • the reason for the improvement of the copper foil adhesion in Examples 1 to 18 may be as follows: the surface of the copper base layer facing the first copper layer and the second copper layer has a relatively high roughness (eg ⁇ 1.8-2.9 ⁇ m). Although the surface with too high roughness has poor adhesion to the active material, after the surface is covered with the first copper layer and the second copper layer, the first copper layer and the second copper layer inherit the copper on the one hand.
  • the rough profile of the surface of the base layer modifies and improves the microtopography of the surface of the copper base layer, and finally obtains a surface suitable for bonding active materials, showing unexpected adhesion to active materials.
  • the copper foils of Examples 1-18 also performed better in terms of tensile strength and elongation.
  • the average grain size of the cross section of the copper foils of the examples and comparative examples was also analyzed.
  • the average grain size of the copper foil section is measured with reference to the following standard: GBT 38532-2020 Determination of average grain size by electron backscattering diffraction by microbeam analysis. The test results are shown in Table 4 below.
  • the cross-section of the copper foil of Examples 1-18 is divided into three layered regions: the first layered region, the core layered region, and the second layered region.
  • the first layered region, the core layered region and the second layered region are substantially parallel to the foil surface of the metal foil, and the core layered region is located between the first layered region and the second layered region. between layers.
  • the first layered area, the core layered area, and the second layered area correspond to the cross-sections of the first copper layer, the copper base layer, and the second copper layer respectively
  • Examples 1-18 the use of a copper-based layer with a larger grain size (eg, 114-925 nm) is beneficial for production. It is more efficient and less costly to produce copper deposits with large grain sizes than with small grain sizes, without sacrificing the performance of the finished copper foil.
  • a copper foil with improved adhesion can also be obtained by using a copper base layer with a smaller grain size (eg, 10-100 nm).
  • the first copper layer and the second copper layer with a smaller grain size (eg, 10-100 nm) to improve the adhesion of the product copper foil.
  • the copper deposition layer with small grain size inherits the rough profile of the copper base layer on the one hand, and improves and modifies the microtopography of the copper base layer surface on the other hand, forming a surface suitable for bonding with active materials. .
  • the cross-section of the copper foil of Comparative Example 3 has no obvious partition interface, and the average size of the cross-section of Comparative Example 2 is tested according to the layered region structure of Example 1. The results show that the grain size of each region is 493nm.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本申请提供了一种金属箔,该金属箔包括层叠的第一金属层和金属基层,所述金属基层朝向所述第一金属层的表面的粗糙度Rz为α1μm,所述第一金属层背向所述金属基层一侧的表面的粗糙度Rz为β1μm,α1=1.8~2.9,β1=1~1.4。

Description

金属箔及制备方法、集流体、电极、电池及用电装置 技术领域
本申请涉及锂电池技术领域,尤其涉及一种金属箔及制备方法、集流体、电极、电池及用电装置。
背景技术
近年来,随着锂离子电池的应用范围越来越广泛,锂离子电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于锂离子电池取得了极大的发展,因此对其能量密度、循环性能和安全性能等也提出了更高的要求。
在锂离子电池中,集流体是承载电极活性材料的载体。锂离子电池活性材料在充放电循环过程中容易发生一定的膨胀及收缩,这种反复的体积变化容易造成活性材料与集流体脱离。因此,改善活性材料与集流体的粘结力有助于获得稳定的电池性能。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种与活性材料粘结力改善的集流体。
为了达到上述目的,本申请第一方面提供一种金属箔,其特征在于,包括层叠的第一金属层和金属基层,所述金属基层朝向所述第一金属层的表面的粗糙度Rz为α 1μm,所述第一金属层背向所述金属基层一侧的表面的粗糙度Rz为β 1μm,α 1=1.8~2.9,β 1=1~1.4。该金属箔具有改善的与活性材料的粘结力。
在任意实施方式中,金属箔包括层叠的第一金属层、金属基层、第二金属层,所述金属基层于所述第一金属层和第二金属层之间,所述金属基层朝向所述第二金属层的表面的粗糙度Rz为α 2μm,所述第二金属层背向所述金属基层一侧的表面的粗糙度Rz为β 2μm, α 2=1.8~2.9,β 2=1~1.4。该金属箔的两侧具有改善的与活性材料的粘结力。
在任意实施方式中,所述α 1与所述α 2的比值为0.9~1.1,可选为1。该金属箔的两侧具有均一的结构、性质。
在任意实施方式中,所述β 1与所述β 2的比值为0.9~1.1,可选为1。该金属箔的两侧具有均一的结构、性质。
在任意实施方式中,α 1=2.4~2.6,β 1=1.1~1.3,该金属箔具有改善的与活性材料的粘结力。
在任意实施方式中,α 2=2.4~2.6,β 2=1.1~1.3。该金属箔具有改善的与活性材料的粘结力。
在任意实施方式中,第一金属层的平均晶粒尺寸a与所述金属基层的平均晶粒尺寸z满足:a:z=1:3~35;例如a:z=1:5.4~32.9。该金属箔具有较低的成本和较好的性能。
在任意实施方式中,第二金属层的平均晶粒尺寸b与所述金属基层的平均晶粒尺寸z满足:a:z=1:3~35;例如b:z=1:3.5~35.2。该金属箔具有较低的成本和较好的性能。
在任意实施方式中,以nm计,所述第一金属层的平均晶粒尺寸a满足10≤a≤70,以nm计,所述金属基层的平均晶粒尺寸z满足100≤z≤1000,以nm计,所述第二金属层的平均晶粒尺寸满足10≤b≤70。该金属箔具有较低的成本和较好的力学性能。
在任意实施方式中,以nm计,所述第一金属层的平均晶粒尺寸a满足15≤a≤57,以nm计,所述金属基层的平均晶粒尺寸z满足114≤z≤925,以nm计,所述第二金属层的平均晶粒尺寸满足14≤b≤69。该金属箔具有较低的成本和较好的力学性能。
在任意实施方式中,所述第一金属层的厚度为1.2~2.0μm,所述金属基层的厚度为4.4~5.2μm,所述第二金属层的厚度为1.2~2.0μm。该金属箔具有合适的厚度和较好的力学性能,适合用作电池集流体。
在任意实施方式中,所述金属箔的总厚度为所述金属箔的总厚度为7.2~8.4μm。该金属箔具有合适的厚度和较好的力学性能,适合用作电池集流体。
在任意实施方式中,所述金属箔的抗拉强度为34kg/mm 2以上,可选为34~40kg/mm 2。该金属箔具有改善的力学性能,适合用作电池集流体。
在任意实施方式中,所述金属箔的延伸率为3.2%以上,可选为3.2~3.8%以上。该金属箔具有改善的力学性能,适合用作电池集流体。
在任意实施方式中,所述金属箔的粘结力为12N/m 2以上,可选为12~17N/m 2。该金属箔具有改善的粘结力,适合用作电池集流体。
在任意实施方式中,所述第一金属层、所述金属基层和所述第二金属层的材质各自独立地为铜、铝、镍、钛、银或其任一种的合金。该金属箔具有稳定的化学性质,适合用做电池集流体。
在任意实施方式中,所述第一金属层、所述金属基层和所述第二金属层的材质均为铜或铜合金。该金属箔适合用作电池集流体,特别是负极集流体
本申请第二方面提供一种制备金属箔的方法,其特征在于,包括如下步骤:
S1:提供原金属箔;
S2:对原金属箔的一侧表面进行粗化处理,在原金属箔的一侧表面形成第一粗化面,所述第一粗化面的粗糙度Rz为α 1μm,α 1=1.8~2.9;
S3:在所述第一粗化面上沉积第一金属层;其中,
所述第一金属层背向所述第一粗化面的表面的粗糙度Rz为β 1μm,β 1=1~1.4。该方法获得的金属箔具有改善的粘结力。
本申请第三方面提供一种制备金属箔的方法,一种制备金属箔的方法,其特征在于,包括如下步骤:
S1:提供原金属箔;
S2:对原金属箔的两侧表面进行粗化处理,在原金属箔的两侧表面分别形成第一粗化面和第二粗化面,所述第一粗化面的粗糙度Rz为α 1μm,所述第二粗化面的粗糙度Rz为α 2μm,α1=1.8~2.9,α 2=1.8~2.9;
S3:在所述第一粗化面上沉积第一金属层,在所述第二粗糙面上沉积第二金属层;其中,
所述第一金属层背向所述第一粗化面的表面的粗糙度Rz为β 1μm,β 1=1~1.4,
所述第二金属层背向所述第二粗化面的表面的粗糙度Rz为β 2μm,β 2=1~1.4。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,在步骤S2中,采用以下一种或多种方法加工所述原金属箔的两侧表面的粗糙度:化学蚀刻、电化学蚀刻、或其组合。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,在步骤S3中,
采用第一电沉积的方法制备原金属箔,
采用化学蚀刻的方法对原金属箔的两侧表面粗化处理,
采用第二电沉积的方法在所述第一粗化面和第二粗化面分别沉积第一金属层和第二金属层。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,在步骤S3中,第一电沉积在第一电镀液中实施,所述第一电镀液包括以下成分:
Cu 2+  50g/L-100g/L;
H 2SO 4 150g/L-250g/L;
Cl -   0.03g/L-0.08g/L;
可选地,所述第一电镀液还含有光泽剂、整平剂、或其组合;
可选地,所述第一电镀液的pH值<4。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,在步骤S2中,化学蚀刻在蚀刻液中实施,所述蚀刻液包括以下成分:
1-丁基-3甲基咪唑氯盐0.5g/L-5g/L;
硫酸铜 50g/L-250g/L。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,第二电沉积在第二电镀液中实施,所述第二电镀液包括以下成分:
Cu 2+  50g/L-100g/L;
H 2SO 4 150g/L-250g/L;
Cl -   0.03g/L-0.08g/L。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,第二电镀液还含有电镀添加剂,例如光泽剂、整平剂、或其组合;
在任意实施方案中,所述第一电镀液的pH值<4。
在任意实施方案中,所述第一电沉积的电流密度为C 1A/dm 2,第二电沉积的电流密度为C 2A/dm 2,则1.25≤C 1:C 2≤5;
可选地,C 1=25-100,C 2=10-40。该方法获得的金属箔具有改善的粘结力。
本申请第四方面提供一种集流体,其特征在于,包括上述任一项所述的金属箔或上述任一项所述的方法制备的金属箔。
本申请第五方面提供一种电池,其特征在于,包括上述任一项的集流体。
本申请第六方面提供一种用电装置,其特征在于,所述用电装置包括如上述任一项的电池,所述电池用于提供电能。
有益效果
本公开一个或多个实施方案具有以下一个或多个有益效果:
(1)金属箔用作集流体,集流体与活性材料的粘结力获得改善,进而基于该集流体的电极的稳定性得到改善,进而基于该电极的综合性能得到改善。
(2)一些实施方案的金属箔具有改善的强度和韧性;
(3)一些实施方案的金属箔易于生产,具有生产成本低、生产效率高,同时性能好的优点。
附图说明
图1为本申请一些实施方式的金属箔生产系统的示意图
图2为本申请一些实施方式的金属箔的示意图
图3为本申请一些实施方式的电极的示意图
图4示出一种示例性应力-应变曲线图
图5的(a)~(d)示出剥离测试的流程图。
图6是本申请一实施方式的二次电池的示意图。
图7是图6所示的本申请一实施方式的二次电池的分解图。
图8是本申请一实施方式的电池模块的示意图。
图9是本申请一实施方式的电池包的示意图。
图10是图9所示的本申请一实施方式的电池包的分解图。
图11是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
第一电沉积设备11;第一电镀液槽111;第一阳极板112;第一阴极辊116;蚀刻设备15;蚀刻液槽151;第二电沉积设备12;第二电镀液槽121;第二A阳极板122;第二B阳极板128;第二阴极辊126;辊130;原金属箔110;刻蚀金属箔150;产品金属箔120。
第一金属层21;金属基层22;第二金属层23;金属基层朝向第一金属层的表面221;第一金属层背向金属基层一侧的表面210;金属基层朝向第二金属层的表面223;第二金属层背向金属基层一侧的表面230。第一活性材料层31;第二活性材料层33。
电池包1;上箱体2;下箱体3;电池模块4;二次电池5;壳体51;电极组件52;顶盖组件53
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的金属箔及其制造方法、极片、二次电池、电池模块、电池包和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的 范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,可选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
为了达到上述目的,本申请第一方面提供一种金属箔,其特征在于,包括层叠的第一金属层和金属基层,所述金属基层朝向所述第一金属层的表面的粗糙度Rz为α 1μm,所述第一金属层背向所述金属基层一侧的表面的粗糙度Rz为β 1μm,α 1=1.8~2.9(例如1.8~1.9、 1.9~2、2~2.1、2.1~2.2、2.2~2.3、2.3~2.4、2.4~2.5、2.5~2.6、2.6~2.7、2.7~2.8或2.8~2.9),β 1=1~1.4(1~1.1、1.1~1.2、1.2~1.3或1.3~1.4)。该金属箔具有改善的与活性材料的粘结力。
虽然机理尚不明确,但本申请人意外地发现:本申请通过金属基层朝向第一金属层的表面具有较高的粗糙度(例如≥3μm)。尽管该粗糙度过高的表面与活性材料的粘结力并不好,但是在该表面覆盖了第一金属层后,第一金属层一方面继承了金属基层表面的粗糙轮廓,另一方面修饰和改善了金属基层表面的微形貌,最终获得了适合于活性材料粘接的表面,表现出与活性材料出人意料的粘结力。
在任意实施方式中,术语“层叠”指的两个层彼此直接或间接贴合。在此上下文中,术语“直接”表示两个层之间没有诸如中间层,术语“间接”表示两个层之间存在中间层。
在任意实施方式中,金属箔包括层叠的第一金属层、金属基层、第二金属层,所述金属基层于所述第一金属层和第二金属层之间,所述金属基层朝向所述第二金属层的表面的粗糙度Rz为α 2μm,所述第二金属层背向所述金属基层一侧的表面的粗糙度Rz为β 2μm,α 1=1.8~2.9(例如1.8~1.9、1.9~2、2~2.1、2.1~2.2、2.2~2.3、2.3~2.4、2.4~2.5、2.5~2.6、2.6~2.7、2.7~2.8或2.8~2.9),β 1=1~1.4(1~1.1、1.1~1.2、1.2~1.3或1.3~1.4)。该金属箔的两侧具有改善的与活性材料的粘结力。
虽然机理尚不明确,但本申请人意外地发现:本申请通过金属基层朝向第一金属层和第二金属层的表面具有较高的粗糙度(例如≥3μm)。尽管该粗糙度过高的表面与活性材料的粘结力并不好,但是在该表面覆盖了第一金属层和第二金属层后,第一金属层和第二金属层一方面继承了金属基层表面的粗糙轮廓,另一方面修饰和改善了金属基层表面的微形貌,最终获得了适合于活性材料粘接的表面,表现出与活性材料出人意料的粘结力。
在任意实施方式中,所述α 1与所述α 2的比值为0.9~1.1(例如1)。该金属箔的两侧具有均一的结构、性质,对称性好,用于电池集流体表现出改善的性能。
在任意实施方式中,所述β 1与所述β 2的比值为0.9~1.1(例如1)。该金属箔的两侧具有均一的结构、性质,对称性好,用于电池集流体表现出改善的性能。
在任意实施方式中,α 1=2.4~2.6,β 1=1.1~1.3,该金属箔具有改善的与活性材料的粘结力。
在任意实施方式中,α 2=2.4~2.6,β 2=1.1~1.3。该金属箔具有改善的与活性材料的粘结力。
在任意实施方式中,第一金属层的平均晶粒尺寸a与所述金属基层的平均晶粒尺寸z满足:a:z=1:3~35(例如3~10、10~20、20~30、30~35),b:z=1:3~35(例如3~10、10~20、20~30、30~35)。该金属箔具有较低的成本和较好的性能。该金属箔用作集流体,集流体与活性材料的粘结力表现出进一步改善。采用具有较大的晶粒尺寸的金属基层对于生产是有利的。相较于小晶粒尺寸,生产具有大晶粒尺寸的金属沉积层具有更高的效率和更低的成本,而且不会牺牲产品金属箔的性能。
在任意实施方式中,以nm计,所述第一金属层的平均晶粒尺寸a满足10≤a≤70(例如10~20、20~30、30~40、40~50、50~60、60~70),以nm计,所述金属基层的平均晶粒尺寸z满足100≤z≤1000(例如10~20、20~30、30~40、40~50、50~60、60~70、70~80、80~90或90~100),以nm计,所述第二金属层的平均晶粒尺寸满足10≤b≤70(例如10~20、20~30、30~40、40~50、50~60、60~70)。该金属箔具有改善的与活性材料的粘结力。
在任意实施方式中,以nm计,所述第一金属层的平均晶粒尺寸a满足15≤a≤57,以nm计,所述金属基层的平均晶粒尺寸z满足114≤z≤925,以nm计,所述第二金属层的平均晶粒尺寸满足14≤b≤69。该金属箔具有改善的与活性材料的粘结力。
在任意实施方式中,所述第一金属层的厚度为1.2~2.0μm,所述金属基层的厚度为4.4~5.2μm,所述第二金属层的厚度为1.2~2.0μm。该金属箔具有适中的厚度,和较好的力学性能,适合用作电池集流体。
在任意实施方式中,所述金属箔的总厚度为所述金属箔的总厚度 为7.2~8.4μm。该金属箔具有合适的厚度和较好的力学性能,适合用作电池集流体。
在任意实施方式中,所述金属箔的抗拉强度为34kg/mm 2以上,可选为34~40kg/mm 2。该金属箔具有改善的力学性能,适合用作电池集流体。
在任意实施方式中,所述金属箔的延伸率为3.2%以上,可选为3.2~3.8%以上。该金属箔具有改善的力学性能,适合用作电池集流体。
在任意实施方式中,所述金属箔的粘结力为12N/m 2以上,可选为12~17N/m 2。该金属箔具有改善的粘结力,适合用作电池集流体。
在任意实施方式中,所述第一金属层、所述金属基层和所述第二金属层的材质各自独立地为铜、铝、镍、钛、银或其任一种的合金。该金属箔具有稳定的化学性质,适合用做电池集流体。
在任意实施方式中,所述第一金属层、所述金属基层和所述第二金属层的材质均为铜或铜合金。该金属箔与电池负极材料具有好的适配性,适合用作电池集流体,特别是负极集流体
本申请第二方面提供一种制备金属箔的方法,其特征在于,包括如下步骤:
S1:提供原金属箔;
S2:对原金属箔的一侧表面进行粗化处理,在原金属箔的一侧表面形成第一粗化面,所述第一粗化面的粗糙度Rz为α 1μm,α 1=1.8~2.9;
S3:在所述第一粗化面上沉积第一金属层;其中,
所述第一金属层背向所述第一粗化面的表面的粗糙度Rz为β 1μm,β 1=1~1.4。该方法获得的金属箔具有改善的粘结力。
该方法获得的金属箔具有改善的粘结力。
本申请第三方面提供一种制备金属箔的方法,一种制备金属箔的方法,其特征在于,包括如下步骤:
S1:提供原金属箔;
S2:对原金属箔的两侧表面进行粗化处理,在原金属箔的两侧表面分别形成第一粗化面和第二粗化面,所述第一粗化面的粗糙度Rz为α 1μm,所述第二粗化面的粗糙度Rz为α 2μm,α 1=1.8~2.9,α 2=1.8~2.9;
S3:在所述第一粗化面上沉积第一金属层,在所述第二粗糙面上沉积第二金属层;其中,
所述第一金属层背向所述第一粗化面的表面的粗糙度Rz为β 1μm,β 1=1~1.4,
所述第二金属层背向所述第二粗化面的表面的粗糙度Rz为β 2μm,β 2=1~1.4。该方法获得的金属箔两侧表面具有改善的粘结力。
在任意实施方案中,在步骤S2中,采用以下一种或多种方法加工所述原金属箔的两侧表面的粗糙度:化学蚀刻、电化学蚀刻、或其组合。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,在步骤S3中,
采用第一电沉积的方法制备原金属箔,
采用化学蚀刻的方法对原金属箔的两侧表面粗化处理,
采用第二电沉积的方法在所述第一粗化面和第二粗化面分别沉积第一金属层和第二金属层。该方法获得的金属箔具有改善的粘结力。
在任意实施方式中,通过以下一种或多种方法在金属基层的表面沉积第一金属层和/或第二金属层。例如,溅射、电镀、模塑、化学气相沉积(Chemical Vapor Deposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)、蒸发、混合物理-化学气相沉积(Hybrid Physical-Chemical Vapor Deposition,HPCVD)、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、低压化学气相沉积(Low Pressure Chemical Vapor Deposition,LPCVD)等。
在任意实施方式中,第一金属层和/或第二金属层分别通过电沉积的方法层叠在金属基层的表面。
术语“电沉积”是指向离子金属提供电子以在导电表面上形成非离子涂层的过程。相应的系统可以包括具有离子形式的金属的化学溶液,阳极(即,可对应于待镀金属的带负电的电极)和阴极(即,提供电子以在导电表面上产生非离子金属膜的带正电的电极)。对于诸如铜的金属的电镀或电沉积,可以使用包含要作为离子沉积的金属(特别是溶解的金属盐)的水基溶液。阳极和阴极之间的电场可以迫使带正电荷的金属离子移动到阴极,在阴极表面上沉积。
术语“电沉积”和“电镀”可以互换使用。
在任意实施方案中,在步骤S2中,采用以下一种或多种方法加工所述原金属箔的两侧表面的粗糙度:化学蚀刻、电化学蚀刻、或其组合。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,术语“化学蚀刻”是指通过化学蚀刻液去除金属箔表面的至少部分材料,以形成特定的纹理和/粗糙度。
在任意实施方案中,术语“电化学蚀刻”是指通过金属箔在电解液中作为阳极,在电流的作用下使表面的至少部分材料被去除,以形成特定的纹理和/粗糙度。
在任意实施方案中,在步骤S3中,
采用第一电沉积的方法制备原金属箔,
采用化学蚀刻的方法对原金属箔的两侧表面粗化处理,
采用第二电沉积的方法在所述第一粗化面和第二粗化面分别沉积第一金属层和第二金属层。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,在步骤S3中,第一电沉积在第一电镀液中实施,所述第一电镀液包括以下成分:
Cu 2+  50g/L-100g/L,例如60g/L-70g/L,例如70g/L-80g/L,例如80g/L-90g/L,例如90g/L-100g/L;
H 2SO 4 150g/L-250g/L,例如150g/L-170g/L,例如170g/L-190g/L,例如190g/L-210g/L,例如210g/L-230g/L,例如230g/L-250g/L;
Cl -   0.03g/L-0.08g/L,例如0.03g/L-0.05g/L,例如0.05g/L-0.07g/L,例如0.07g/L-0.08g/L。
在任意实施方案中,所述第一电镀液还含有光泽剂、整平剂、或其组合。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,所述第一电镀液的pH值<4。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,在步骤S2中,化学蚀刻在蚀刻液中实施,所述蚀刻液包括以下成分:
1-丁基-3甲基咪唑氯盐0.5g/L-5g/L,例如0.5g/L-1g/L,例如1g/L~2g/L,例如2g/L~3g/L,例如3g/L~4g/L,例如4g/L~5g/L;
硫酸铜 50g/L-250g/L。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,第二电沉积在第二电镀液中实施,所述第二电镀液包括以下成分:
Cu 2+  50g/L-100g/L,例如60g/L-70g/L,例如70g/L-80g/L,例如80g/L-90g/L,例如90g/L-100g/L;
H 2SO 4 150g/L-250g/L,例如150g/L-170g/L,例如170g/L-190g/L,例如190g/L-210g/L,例如210g/L-230g/L,例如230g/L-250g/L;
Cl -   0.03g/L-0.08g/L,例如0.03g/L-0.05g/L,例如0.05g/L-0.07g/L,例如0.07g/L-0.08g/L。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,第二电镀液还含有电镀添加剂,例如光泽剂、整平剂、或其组合;
在任意实施方案中,所述第一电镀液的pH值<4。
在任意实施方案中,所述第一电沉积的电流密度为C 1A/dm 2,第二电沉积的电流密度为C 2A/dm 2,则1.25≤C 1:C 2≤5。该方法获得的金属箔具有改善的粘结力。
在任意实施方案中,C 1=25-100(例如30-40、40-50、50-60、60-70、70-80、80-90或90-100),C 2=10-40(例如10-15、15-25、25-35、35-40)。该方法获得的金属箔具有改善的粘结力。
本申请第四方面提供一种集流体,其特征在于,包括上述任一项所述的金属箔或上述任一项所述的方法制备的金属箔。
本申请第五方面提供一种电池,其特征在于,包括上述任一项的集流体。
本申请第六方面提供一种用电装置,其特征在于,所述用电装置包括如上述任一项的电池,所述电池用于提供电能。
另外,以下适当参照附图对本申请的二次电池、电池模块、电池包和用电装置进行说明。
本申请的一个实施方式中,提供一种二次电池。
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返 嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。
[正极极片]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,正极活性材料可采用本领域公知的用于电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂 (如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少 一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸 甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图6是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图7,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于 所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图8是作为一个示例的电池模块4。参照图8,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图9和图10是作为一个示例的电池包1。参照图9和图10,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图11是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
图1示出以下实施例使用的金属箔生产系统示意图。如图1所示,以下实施例使用的金属箔生产系统包括:第一电沉积设备11、蚀刻设备15、第二电沉积设备12,以及多个用于牵引金属箔的辊130。第一电沉积设备11以通过第一电沉积的方法生产电解金属箔(electrodeposited metal foil)。
第一电沉积设备11包括:第一电镀液槽111、第一阳极板112和第一阴极辊116。第一电镀液槽111内盛有电镀液。第一阳极板112和第一阴极辊116浸在电镀液内。第一阳极板112和第一阴极辊116面面相对设置,原金属箔110产生自第一阳极板112和第一阴极辊116之间。第一阳极板112和第一阴极辊116的材质为金属钛。
在第一电沉积设备11中,通过第一阳极板112和第一阴极辊116之间的电流作用,使电解槽111中含金属离子的电镀液被电解,使金属离子沉积在第一阴极辊116的表面,形成金属沉积层,将该金属沉积层从第一阴极辊116上剥离,即可获得原金属箔110。原金属箔110的两侧表面粗糙度不同,贴近第一阴极辊116的一面比较光滑,称为光面,另一面呈现凸凹形状的结晶组织结构,比较粗糙,称为粗面。原金属箔110的两侧表面粗糙度差异较大,而且两侧表面与活性材料的粘结力均尚有不足。
第一电沉积设备11生产的原金属箔110在辊130的牵引下被直 接送往蚀刻设备15。蚀刻设备15包括:蚀刻液槽151,蚀刻液槽151内盛有蚀刻液。蚀刻液槽内还设有用于牵引金属箔的辊130。在蚀刻设备15中原金属箔110被蚀刻液蚀刻,获得蚀刻金属箔150。蚀刻金属箔150两侧表面的粗糙度均高于原金属箔110。而且蚀刻金属箔150两侧表面的粗糙度较为接近。但是,蚀刻铜箔两侧表面与活性材料的粘结力均尚有不足。
蚀刻金属箔150在辊130的牵引下被直接送往第二电沉积设备12进行第二电沉积。第二电沉积设备12包括:第二电镀液槽121、第二A阳极板122、第二B阳极板128和第二阴极辊126。第二电镀液槽121内盛有电镀液。第二阴极辊126、第二A阳极板122和第二B阳极板128浸在电镀液内。对于第二阴极辊126牵引的金属箔,第二A阳极板122面向金属箔的一侧,第二B阳极板128面向金属箔的另一侧。在辊130的牵引下,金属箔先从第二A阳极板122和第二阴极辊126之间穿过,再从第二阴极辊126和第二B阳极板128之间穿过,获得具有多层结构的产品金属箔120。第二阴极辊126、第二A阳极板122和第二B阳极板128的材质为金属钛。
在第二电沉积设备12中,在蚀刻金属箔150的两侧表面分别沉积了第一金属层和第二金属层,获得具有多层结构的产品金属箔120。产品金属箔120两侧表面的粗糙度均低于蚀刻金属箔150。而且产品金属箔120两侧表面的粗糙度值基本相等。
图2示出一个产品金属箔120的示意图。如图所示,产品金属箔120,包括层叠的第一金属层21、金属基层22和第二金属层23,金属基层22位于第一金属层21和第二金属层23之间。金属基层朝向第一金属层的表面221的粗糙度Rz为α 1μm,第一金属层背向金属基层一侧的表面210的粗糙度Rz为β 1μm,α1=1.8~2.9,0.5≤α 11≤1.5;金属基层朝向第二金属层的表面223的粗糙度Rz为α 2μm,第二金属层背向金属基层一侧的表面230的粗糙度Rz为β 2μm,α 2≥3,0.5≤α 22≤1.5。
而且,产品金属箔120与活性材料的粘结力表现出预料不到的显著提高。虽然机理尚不明确,但是粘结力提高的原因可能是第二电沉 积的金属层一方面继承了蚀刻铜箔150表面的粗糙轮廓,另一方面修饰和改善了蚀刻铜箔150表面的微形貌,获得了特别适合于活性材料粘接的表面。
图3示出一些实施例的电极。电极包括彼此层叠的产品金属箔120、第一活性材料层31和第二活性材料层33,产品金属箔120位于第一活性材料层31和第二活性材料层33之间。第一活性材料层31层叠在第一金属层背向金属基层一侧的表面210上,第二活性材料层33层叠在第二金属层背向金属基层一侧的表面230上。
下面使用上述金属箔生产系统生产铜箔,并使用该铜箔作为集流体制备电极。
实施例1~18:
第一电镀液槽和第二电镀液槽的电镀液成分如下表所示:
表1
Figure PCTCN2021116426-appb-000001
蚀刻槽内蚀刻液配方如下表所示:
表2
原料成分(化学式) 浓度g/L
1-丁基-3甲基咪唑氯盐 2g/L
硫酸铜(CuSO 4) 200g/L
溶剂
pH值 小于4
使用电解铜箔制备系统制备电解铜箔的步骤如下:
(1)使用第一电沉积设备实施第一电沉积,制备获得的原铜箔;
(2)将原铜箔输送至蚀刻槽中进行蚀刻,原铜箔的两面均被蚀刻,获得蚀刻铜箔;
(3)将蚀刻铜箔输送至第二电沉积设备,对蚀刻铜箔的进行第二电沉积,在蚀刻铜箔的两面沉积第一铜层和第二铜层,获得第二铜箔。
(4)对第二铜箔进行水洗、干燥处理,获得产品铜箔。
电解铜箔制备系统的工艺参数如第一电沉积时间、第一电沉积电流密度、刻蚀时间、第二电沉积时间、第二电沉积电流密度,如下表3所示。
对比例1~2
对比例1~2与实施例1的区别在于电解铜箔制备系统的工艺参数不同,具体如下表3所示。
对比例3
对比例1与实施例1的区别在于:对比例1取消了蚀刻步骤,直接将第一电沉积设备生产的原铜箔输送至第二电沉积设备,对蚀刻铜箔的进行第二电沉积,在蚀刻铜箔的两面沉积第一铜层和第二铜层,获得对比例1的产品铜箔。
对比例1的其它步骤参数(如第一电沉积步骤和第二电沉积步骤)与实施例1相同。
对比例4
对比例2与实施例1的区别在于:
(1)对比例2进行第一电沉积时,第一电沉积的沉积时间为1h。
(2)对比例2取消了第二电沉积步骤,直接将蚀刻后的铜箔进行水洗、干燥和收卷,获得对比例2的产品铜箔。
对比例2其它步骤参数(如第一电沉积步骤和蚀刻步骤)与实施例1相同。
分析检测
1、表面粗糙度分析
对于实施例以及对比例制备的铜箔,其表面的粗糙度Rz参照以下标准进行测定:JIS B 0601,0031-1994表面粗糙度及图面表示方法。实施例1~18制备的铜箔及各步骤中间产物的表面粗糙度参数如下表4.1所示。对比例1~2制备的铜箔及各步骤中间产物的表面粗糙度参数如下表4.2所示。表4.1~4.2中,比值R 1:2表示第一面粗糙度Rz 1与第二面粗糙度Rz 2的比值。表4.1中,差值(α-β)表示蚀刻铜箔第一面粗糙度Rz 1与产品铜箔第一面粗糙度Rz 1的差值、蚀刻铜箔第二面粗糙度Rz 1与产品铜箔第二面粗糙度Rz 1的差值。表4.2中,差值(α-β)表示原铜箔第一面粗糙度Rz 1与产品铜箔第一面粗糙度Rz 1的差值、原铜箔第二面粗糙度Rz 1与产品铜箔第二面粗糙度Rz 1的差值。
2、粘结力、室温抗拉强度、延伸率测试
铜箔作为集流体与活性材料的粘结力测试方法如下:
1、电极的制备
以实施例和对比例的铜箔作为集流体,在集流体的两侧表面设置活性材料层,方法如下:
将锂离子电池负极活性材料浆料涂覆在待测试的铜箔的待测试面上,经烘干、辊压后,得到极片。极片的压实密度为1.68g/cm 3,涂布面密度为134g/m 2。锂离子电池负极活性材料浆料配方如下:96.8wt%石墨,0.4wt%导电碳,1.8wt%苯乙烯聚丁橡胶、1wt%羧甲基纤维素钠,以及适量溶剂(溶剂在后续的烘干步骤中会挥发掉)。
2、剥离测试
图5的(a)~(d)示出剥离测试的流程图。如图5的(a)所示,首先提供一块钢板510,钢板尺寸宽30mm×长100mm。如图5的(b)所示,然后提供一块双面胶520,双面胶520的尺寸为宽20mm×长30mm,将双面胶520贴在钢板510上,双面胶520的一个宽边与钢板510的一个宽边对齐。如图5的(c)所示,然后提供一块待测试极片530,待测试极片530的尺寸为宽30mm×长30mm。将待测试极片530覆盖在双面胶520上,极片530的涂布面朝向双面胶520,待测试极片530的一个宽边与钢板510的一个宽边对齐。由于待测试极片530的长度大于双面胶520的长度,故待测试极片520的部分区域未与双面胶粘接。如图5的(d)所示,将钢板510固定在拉伸试验机的基座上,用夹具夹持待测试极片530未与双面胶粘接的一端,然后使夹具向另一端的方向(如箭头所示方向)拉伸,拉伸的力的方向平行于钢板510的强度方向,且紧贴钢板510表面。在拉伸过程中,拉伸使极片530从钢板上被逐渐剥离。在拉伸过程中,夹具的拉伸速度为50mm/min。拉伸过程中,记录夹具的拉力,待拉力稳定后继续剥离70mm长度,以该剥离长度下的平均拉力为粘结力。
铜箔的室温抗拉强度及延伸率参照以下方法进行测定:将已放置24小时的产品铜箔冲压成哑铃形(标距长50mm、标距宽3mm)后进行拉伸试验,绘制应力应变曲线图。图4示出一种示例性应力-应变曲线图,其中X轴是应变值,应变值0.005就是指0.5%的延伸率,0.5%延伸率的抗拉强度就是应变值0.005时的曲线应力值;从应变轴上0.005曲线位置画平行于一线段400的直线402与应力-应变曲线相交的点就是0.5%延伸率的塑性变形应力值(0.5%延伸率的屈服强度),线段400是应力-应变曲线在应变为0的切线。
实施例1~18和对比例1~4的拉伸强度,延伸率和粘结力数据如下表4.3所示:
Figure PCTCN2021116426-appb-000002
Figure PCTCN2021116426-appb-000003
Figure PCTCN2021116426-appb-000004
Figure PCTCN2021116426-appb-000005
分析表3-4,可获得如下结论:
实施例1~18获得的产品铜箔,包括第一铜层、铜基层和第二铜层,铜基层位于第一铜层和第二铜层之间,铜基层朝向第一铜层的表面的粗糙度Rz为α 1μm,第一铜层背向铜基层一侧的表面的粗糙度Rz为β 1μm,α 1=1.8~2.9,β 1=1~1.4;铜基层朝向第二铜层的表面的粗糙度Rz为α 2μm,第一铜层背向铜基层一侧的表面的粗糙度Rz为β 2μm,α 2=1.8~2.9,β 2=1~1.4。实施例1~18制备的产品铜箔与活性材料的粘结力表现出预料不到的显著提升,达到12~17N,而且铜箔两侧粘结力非常均匀,特别适合双面涂布使用。
与实施例1~18不同,对比例1获得的产品铜箔,包括第一铜层、铜基层和第二铜层,铜基层位于第一铜层和第二铜层之间,α 1=1.5,β 1=1,α 2=1.5,β 2=1.1。对比例1的铜箔与活性材料的粘结力约10N。
与实施例1~18不同,对比例2获得的产品铜箔,包括第一铜层、铜基层和第二铜层,铜基层位于第一铜层和第二铜层之间,α 1=3,β 1=2.8,α 2=3.1,β 2=2.7。对比例2与活性材料的粘结力约1-3N。
与实施例1~18不同,对比例3仅实施了第一电沉积步骤和蚀刻步骤,没有进行第二电沉积步骤。对比例2的铜箔无分层结构,其两侧表面粗糙度分别为2.5μm和2.5μm。该铜箔与活性材料的粘结力仅为1-2N。
与实施例1~18不同,对比例4没有进行蚀刻步骤,直接对第一电沉积获得的原铜箔进行第二电沉积,在原铜箔的两侧表面沉积第一铜层和第二铜层。对比例1的铜箔尽管包括第一铜层、铜基层和第二铜层,铜基层位于第一铜层和第二铜层之间,其α 1=1.2,β 1=1,α 2=1.3,β 2=1.1。如表4.3所示,该铜箔与活性材料的粘结力仅为8~9N。
综合上述实验数据可知,虽然机理尚不明确,但是实施例1~18的铜箔粘结力提高的原因可能如下:铜基层朝向第一铜层和第二铜层的表面具有较高的粗糙度(例如≥1.8~2.9μm)。尽管该粗糙度过高的表面与活性材料的粘结力并不好,但是在该表面覆盖了第一铜层和第二铜层后,第一铜层和第二铜层一方面继承了铜基层表面的粗糙轮廓, 另一方面修饰和改善了铜基层表面的微形貌,最终获得了适合于活性材料粘接的表面,表现出与活性材料出人意料的粘结力。
如表4所示,实施例1~18的铜箔在抗拉强度和延伸率方面也表现较佳。
2、晶粒尺寸分析
最后,还分析了实施例和对比例的铜箔的截面的平均晶粒尺寸。铜箔截面的平均晶粒尺寸参照以下标准进行测定:GBT 38532-2020微束分析电子背散射衍射平均晶粒尺寸的测定。测试结果如下表4示。
由下表可知,通过分析铜箔的横截面,实施例1~18的铜箔的横截面分为3个层状区:第一层状区,芯层状区,第二层状区。其中,所述第一层状区、芯层状区和第二层状区基本平行于所述金属箔的箔表面,所述芯层状区位于所述第一层状区和所述第二层状区之间。第一层状区的平均晶粒尺寸(a)为15~57nm;芯层状区的平均晶粒尺寸(z)为114~925nm;第二层状区(b)的平均晶粒尺寸为14~69nm;其中,a:z=1:5.4~32.9,b:z=1:3.5~35.2。第一层状区,芯层状区,第二层状区分别对应第一铜层、铜基层和第二铜层的横截面
实施例1~18中,采用具有较大的晶粒尺寸(如114~925nm)的铜基层对于生产是有利的。相较于小晶粒尺寸,生产具有大晶粒尺寸的铜沉积层具有更高的效率和更低的成本,而且不会牺牲产品铜箔的性能。采用具有较小的晶粒尺寸(如10-100nm)的铜基层同样能够获得粘结力改善的铜箔。
实施例1~18中,采用较小晶粒尺寸(如10-100nm)的第一铜层和第二铜层对于改善产品铜箔的粘结力是有利的。虽然机理尚不明确,但具有小晶粒尺寸的铜沉积层一方面继承了铜基层的粗糙轮廓,另一方面改善和修饰了铜基层表面的微形貌,形成适合与活性材料粘接的表面。
对比例3的铜箔横截面没有明显的分区界面,按照与实施例1的层状区结构对对比例2的横截面的平均经历尺寸进行分区检测,结果 显示各区晶粒尺寸均为493nm。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (23)

  1. 一种金属箔,其特征在于,
    包括层叠的第一金属层和金属基层,
    所述金属基层朝向所述第一金属层的表面的粗糙度Rz为α 1μm,所述第一金属层背向所述金属基层一侧的表面的粗糙度Rz为β 1μm,α 1=1.8~2.9,β 1=1~1.4。
  2. 根据权利要求1所述的金属箔,其特征在于,
    包括层叠的第一金属层、金属基层、第二金属层,所述金属基层于所述第一金属层和第二金属层之间,
    所述金属基层朝向所述第二金属层的表面的粗糙度Rz为α 2μm,所述第二金属层背向所述金属基层一侧的表面的粗糙度Rz为β 2μm,α 2=1.8~2.9,β 2=1~1.4。
  3. 根据权利要求1或2所述的金属箔,其特征在于以下任一项,
    所述α 1与所述α 2的比值为0.9~1.1;
    所述β 1与所述β 2的比值为0.9~1.1。
  4. 根据权利要求1-3中任一项所述的金属箔,其特征在于,
    α 1=2.4~2.6;β 1=1.1~1.3。
  5. 根据权利要求1-4中任一项所述的金属箔,其特征在于,
    α 2=2.4~2.6;β 2=1.1~1.3。
  6. 根据权利要求1-5中任一项所述的金属箔,其特征在于,
    第一金属层的平均晶粒尺寸a与所述金属基层的平均晶粒尺寸z满足:a:z=1:3~35。
  7. 根据权利要求1-6中任一项所述的金属箔,其特征在于,
    第二金属层的平均晶粒尺寸b与所述金属基层的平均晶粒尺寸z满足:b:z=1:3~35。
  8. 根据权利要求1-9中任一项所述的金属箔,其特征在于,
    以nm计,所述第一金属层的平均晶粒尺寸a满足10≤a≤70;
    以nm计,所述金属基层的平均晶粒尺寸z满足100≤z≤1000;
    以nm计,所述第二金属层的平均晶粒尺寸满足10≤b≤70。
  9. 根据权利要求1-8中任一项所述的金属箔,其特征在于,
    所述第一金属层的厚度为1.2~2.0μm,所述金属基层的厚度为4.4~5.2μm,所述第二金属层的厚度为1.2~2.0μm。
  10. 根据权利要求1-9中任一项所述的金属箔,其特征在于,
    所述金属箔的总厚度为7.2~8.4μm。
  11. 根据权利要求1-10中任一项所述的金属箔,其特征在于,
    所述金属箔具有以下一项或多项特征:
    所述金属箔的抗拉强度为34kg/mm 2以上,可选为34~40kg/mm 2
    所述金属箔的延伸率为3.2%以上,可选为3.2~3.8%以上;
    所述金属箔的粘结力为12N/m 2以上,可选为12~17N/m 2
  12. 根据权利要求1-11中任一项所述的金属箔,其特征在于,
    所述第一金属层、所述金属基层和所述第二金属层的材质各自独立地为铜、铝、镍、钛、银或其任一种的合金;
    可选地,所述第一金属层、所述金属基层和所述第二金属层的材质均为铜或铜合金。
  13. 一种制备金属箔的方法,其特征在于,包括如下步骤:
    S1:提供原金属箔;
    S2:对原金属箔的一侧表面进行粗化处理,在原金属箔的一侧表面形成第一粗化面,所述第一粗化面的粗糙度Rz为α 1μm,α 1=1.8~2.9;
    S3:在所述第一粗化面上沉积第一金属层;其中,
    所述第一金属层背向所述第一粗化面的表面的粗糙度Rz为β 1μm,β 1=1~1.4。
  14. 一种制备金属箔的方法,其特征在于,包括如下步骤:
    S1:提供原金属箔;
    S2:对原金属箔的两侧表面进行粗化处理,在原金属箔的两侧表面分别形成第一粗化面和第二粗化面,所述第一粗化面的粗糙度Rz为α 1μm,所述第二粗化面的粗糙度Rz为α 2μm,α 1=1.8~2.9,α 2=1.8~2.9;
    S3:在所述第一粗化面上沉积第一金属层,在所述第二粗糙面上沉积第二金属层;其中,
    所述第一金属层背向所述第一粗化面的表面的粗糙度Rz为β 1μm,β 1=1~1.4,
    所述第二金属层背向所述第二粗化面的表面的粗糙度Rz为β 2μm,β 2=1~1.4。
  15. 根据权利要求13或14的方法,其特征在于,
    在步骤S2中,采用以下一种或多种方法加工所述原金属箔的两侧表面的粗糙度:化学蚀刻、电化学蚀刻、或其组合。
  16. 根据权利要13-15中任一项所述的方法,其特征在于,
    在步骤S3中,
    采用第一电沉积的方法制备原金属箔,
    采用化学蚀刻的方法对原金属箔的两侧表面粗化处理,
    采用第二电沉积的方法在所述第一粗化面和第二粗化面分别沉积第一金属层和第二金属层。
  17. 根据权利要13-16中任一项所述的方法,其特征在于,
    在步骤S3中,第一电沉积在第一电镀液中实施,所述第一电镀液包括以下成分:
    Cu 2+  50g/L-100g/L;
    H 2SO 4  150g/L-250g/L;
    Cl -  0.03g/L-0.08g/L;
    可选地,所述第一电镀液还含有光泽剂、整平剂、或其组合;
    可选地,所述第一电镀液的pH值<4。
  18. 根据权利要13-17中任一项所述的方法,其特征在于,
    在步骤S2中,化学蚀刻在蚀刻液中实施,所述蚀刻液包括以下成分:
    1-丁基-3甲基咪唑氯盐  0.5g/L-5g/L;
    硫酸铜  50g/L-250g/L。
  19. 根据权利要13-18中任一项所述的方法,其特征在于,
    第二电沉积在第二电镀液中实施,所述第二电镀液包括以下成分:
    Cu 2+  50g/L-100g/L;
    H 2SO 4  150g/L-250g/L;
    Cl -  0.03g/L-0.08g/L;
    可选地,第二电镀液还含有电镀添加剂,例如光泽剂、整平剂、或其组合;
    可选地,所述第一电镀液的pH值<4。
  20. 根据权利要13-19中任一项所述的方法,其特征在于,
    所述第一电沉积的电流密度为C 1 A/dm 2,第二电沉积的电流密度为C 2 A/dm 2,则1.25≤C 1:C 2≤5;
    可选地,C 1=25-100,C 2=10-40。
  21. 一种集流体,其特征在于,
    包括权利要求1-12任一项所述的金属箔或权利要求13-20中任一项所述的方法制备的金属箔。
  22. 一种电池,其特征在于,
    包括权利要求21所述的集流体。
  23. 一种用电装置,其特征在于,
    所述用电装置包括如权利要求22所述的电池,所述电池用于提供电能。
PCT/CN2021/116426 2021-09-03 2021-09-03 金属箔及制备方法、集流体、电极、电池及用电装置 WO2023028983A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21926044.5A EP4166696A4 (en) 2021-09-03 2021-09-03 METAL FOIL AND METHOD OF MANUFACTURE THEREOF, AND CURRENT COLLECTOR, ELECTRODE, BATTERY AND ELECTRICAL DEVICE
PCT/CN2021/116426 WO2023028983A1 (zh) 2021-09-03 2021-09-03 金属箔及制备方法、集流体、电极、电池及用电装置
CN202180085643.9A CN116762194A (zh) 2021-09-03 2021-09-03 金属箔及制备方法、集流体、电极、电池及用电装置
US17/900,908 US20230082055A1 (en) 2021-09-03 2022-09-01 Metal foil and preparation method thereof, current collector, electrode, battery, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116426 WO2023028983A1 (zh) 2021-09-03 2021-09-03 金属箔及制备方法、集流体、电极、电池及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/900,908 Continuation US20230082055A1 (en) 2021-09-03 2022-09-01 Metal foil and preparation method thereof, current collector, electrode, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2023028983A1 true WO2023028983A1 (zh) 2023-03-09

Family

ID=85410777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116426 WO2023028983A1 (zh) 2021-09-03 2021-09-03 金属箔及制备方法、集流体、电极、电池及用电装置

Country Status (4)

Country Link
US (1) US20230082055A1 (zh)
EP (1) EP4166696A4 (zh)
CN (1) CN116762194A (zh)
WO (1) WO2023028983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072884A (zh) * 2023-03-20 2023-05-05 安徽维纳物联科技有限公司 一种锂电池复合多孔集流体铜箔及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102725892A (zh) * 2010-01-25 2012-10-10 吉坤日矿日石金属株式会社 二次电池负极集电体用铜箔
CN102884660A (zh) * 2010-03-01 2013-01-16 古河电气工业株式会社 铜箔的表面处理方法、表面处理铜箔及锂离子充电电池的负极集电体用铜箔
CN104271812A (zh) * 2012-03-30 2015-01-07 Jx日矿日石金属株式会社 金属箔
WO2021131359A1 (ja) * 2019-12-24 2021-07-01 日本電解株式会社 表面処理銅箔及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466367B (zh) * 2010-12-27 2014-12-21 Furukawa Electric Co Ltd A lithium ion secondary battery, an electrode for the secondary battery, an electrode for an electrolytic copper foil
KR102399930B1 (ko) * 2017-08-29 2022-05-18 에스케이넥실리스 주식회사 노듈층을 갖는 동박의 제조방법, 이 방법으로 제조된 동박, 이를 포함하는 이차전지용 전극 및 이차전지
CN109860514B (zh) * 2019-03-25 2021-09-07 河北师范大学 一种改变锂电池集流体铜箔表面形貌的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102725892A (zh) * 2010-01-25 2012-10-10 吉坤日矿日石金属株式会社 二次电池负极集电体用铜箔
CN102884660A (zh) * 2010-03-01 2013-01-16 古河电气工业株式会社 铜箔的表面处理方法、表面处理铜箔及锂离子充电电池的负极集电体用铜箔
CN104271812A (zh) * 2012-03-30 2015-01-07 Jx日矿日石金属株式会社 金属箔
WO2021131359A1 (ja) * 2019-12-24 2021-07-01 日本電解株式会社 表面処理銅箔及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072884A (zh) * 2023-03-20 2023-05-05 安徽维纳物联科技有限公司 一种锂电池复合多孔集流体铜箔及其制备方法
CN116072884B (zh) * 2023-03-20 2023-06-13 安徽维纳物联科技有限公司 一种锂电池复合多孔集流体铜箔及其制备方法

Also Published As

Publication number Publication date
US20230082055A1 (en) 2023-03-16
EP4166696A1 (en) 2023-04-19
EP4166696A4 (en) 2023-08-09
CN116762194A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
JP5276158B2 (ja) リチウムイオン二次電池、該電池用負極電極、該電池負極集電体用電解銅箔
US9379387B2 (en) Cathode current collector coated with primer and magnesium secondary battery comprising the same
WO2010110205A1 (ja) リチウムイオン二次電池、該電池用電極、該電池電極用電解銅箔
CN111554883A (zh) 一种基于干法制备电极膜的预锂化方法
CN102332558A (zh) 锂离子电池及其正极极片
JP2016146232A (ja) 電池用リチウム薄膜積層体
EP4167333A1 (en) Secondary battery and method for producing same
WO2023028983A1 (zh) 金属箔及制备方法、集流体、电极、电池及用电装置
CN116344741B (zh) 正极极片、二次电池以及用电装置
WO2023087218A1 (zh) 负极极片及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023130791A1 (zh) 电极极片及其制备方法、二次电池、电池模块和电池包
WO2023050842A1 (zh) 复合隔离膜、电化学储能装置及用电装置
WO2023236152A1 (zh) 二次电池、含有该二次电池的电池模块、电池包及用电装置
WO2022199301A1 (zh) 一种锂离子电池的阳极极片及其应用
JP4746328B2 (ja) 非水電解液二次電池用負極
WO2023097437A1 (zh) 集流体及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023077516A1 (zh) 负极极片及其制备方法、二次电池、电池模块、电池包及用电装置
WO2023070319A1 (zh) 一种镀铜镀液及由其制备的负极复合集流体
WO2023035661A1 (zh) 电解铜箔及其制备方法、负极极片、二次电池、电池模块、电池包及用电装置
WO2022168296A1 (ja) リチウム2次電池
WO2023044753A1 (zh) 电解液、二次电池、电池模块、电池包和用电装置
WO2023216240A1 (zh) 二次电池及其制备方法、电池模块、电池包和用电装置
WO2023133882A1 (zh) 隔膜及其相关的二次电池、电池模块、电池包和用电装置
WO2023097433A1 (zh) 负极极片、二次电池、电池模块、电池包和用电装置
WO2023141954A1 (zh) 锂离子电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021926044

Country of ref document: EP

Effective date: 20220823

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180085643.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE