WO2023027438A1 - 탄성 항균 폴리우레탄, 그 제조방법 및 이를 포함하는 물품 - Google Patents

탄성 항균 폴리우레탄, 그 제조방법 및 이를 포함하는 물품 Download PDF

Info

Publication number
WO2023027438A1
WO2023027438A1 PCT/KR2022/012465 KR2022012465W WO2023027438A1 WO 2023027438 A1 WO2023027438 A1 WO 2023027438A1 KR 2022012465 W KR2022012465 W KR 2022012465W WO 2023027438 A1 WO2023027438 A1 WO 2023027438A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyurethane polymer
formula
less
antibacterial polyurethane
Prior art date
Application number
PCT/KR2022/012465
Other languages
English (en)
French (fr)
Inventor
허윤형
강순희
백이현
최형삼
정선정
이지석
이정윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220102689A external-priority patent/KR20230029532A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280039610.5A priority Critical patent/CN117413001A/zh
Priority to EP22861648.8A priority patent/EP4328251A1/en
Publication of WO2023027438A1 publication Critical patent/WO2023027438A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3275Hydroxyamines containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3802Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
    • C08G18/3804Polyhydroxy compounds
    • C08G18/3806Polyhydroxy compounds having chlorine and/or bromine atoms
    • C08G18/381Polyhydroxy compounds having chlorine and/or bromine atoms having bromine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • This application relates to elastic antibacterial polyurethane and a manufacturing method thereof.
  • the present application relates to an article comprising the elastic antibacterial polyurethane.
  • Polyurethane one of engineering plastics, is used in various fields such as synthetic fibers, paints, and interior materials for vehicles.
  • polyurethane can be used with nylon to make up a synthetic fiber called spandex, which can be used for underwear, socks, swimwear, and the like.
  • spandex a synthetic fiber called spandex
  • polyurethane since polyurethane has a three-dimensional foam structure, it is elastic and robust, and thus is widely used in mattresses and fabrics, as well as foam sponges.
  • One object of the present application is to provide a polyurethane having excellent elasticity and antibacterial properties.
  • Another object of the present application is to provide a polyurethane having excellent heat resistance.
  • Another object of the present application relates to an article comprising a polyurethane of the above characteristics.
  • the present application relates to elastic antibacterial polyurethane polymers and methods of making the same.
  • the polyurethane polymer of the present application has excellent antibacterial properties, heat resistance (durability) and tensile properties and the like.
  • alkyl group may be an alkyl group having 1 to 40 carbon atoms.
  • the alkyl group has 1 to 36 carbon atoms, 1 to 32 carbon atoms, 1 to 28 carbon atoms, 1 to 24 carbon atoms, 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 8 carbon atoms.
  • It may be an alkyl group of 4.
  • the alkyl group may be a straight-chain, branched-chain or cyclic alkyl group.
  • the alkyl group may be optionally substituted with one or more substituents.
  • haloalkyl group may refer to a compound in which a hydrogen atom of an alkyl group is substituted with a halogen atom.
  • the alkyl group may be used in the same meaning as described above.
  • alkenyl group may be an alkenyl group having 2 to 40 carbon atoms.
  • the alkenyl group has 2 to 36 carbon atoms, 2 to 32 carbon atoms, 2 to 28 carbon atoms, 2 to 24 carbon atoms, 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 carbon atoms. to 4 alkenyl groups.
  • the alkenyl group may be a linear, branched or cyclic alkenyl group.
  • the alkenyl group may be optionally substituted with one or more substituents.
  • alkynyl group may be an alkynyl group having 2 to 40 carbon atoms.
  • the alkynyl group has 2 to 36 carbon atoms, 2 to 32 carbon atoms, 2 to 28 carbon atoms, 2 to 24 carbon atoms, 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 carbon atoms. to 4 alkynyl.
  • the alkynyl group may be a straight-chain, branched-chain or cyclic alkynyl group.
  • the alkynyl group may be optionally substituted with one or more substituents.
  • aryl group refers to a benzene ring structure, or two or more benzene rings connected while sharing one or two carbon atoms, or linked by an arbitrary linker. It may mean a monovalent residue derived from a compound or a derivative thereof containing a structure having
  • the aryl group may be an aryl group having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms. In this case, the aryl group may be optionally substituted with one or more substituents.
  • heteroaryl group may mean an aryl group containing one or more of O, N, Si, and S.
  • the aryl group may be used in the same meaning as described above.
  • the hetero aryl group may have 2 to 30 carbon atoms.
  • aryloxy group may mean a group RO- in which R is an aryl group.
  • the allyl group may be used in the same meaning as described above.
  • an "alkoxy group” may be an alkoxy group having 1 to 40 carbon atoms.
  • the alkoxy group has 1 to 36 carbon atoms, 1 to 32 carbon atoms, 1 to 28 carbon atoms, 1 to 24 carbon atoms, 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 8 carbon atoms.
  • 4 may be an alkoxy group.
  • the alkoxy group may be a straight-chain, branched-chain or cyclic alkoxy group.
  • the alkoxy group may be optionally substituted with one or more substituents.
  • alicyclic structure is a cyclic hydrocarbon structure other than an aromatic ring structure, and may mean a compound represented by -Y.
  • the alicyclic ring structure may be, for example, an alicyclic ring structure having 3 to 30 carbon atoms, 3 to 25 carbon atoms, 3 to 21 carbon atoms, 3 to 18 carbon atoms, or 3 to 13 carbon atoms.
  • the alicyclic structure may be optionally substituted with one or more substituents.
  • heteroalicyclic structure may mean an alicyclic structure including one or more of O, N, Si, and S.
  • an alicyclic structure may be used in the same meaning as described above.
  • alkylthio group may mean RS-, where R is an alkyl group.
  • R is an alkyl group.
  • the alkyl group may be used in the same meaning as described above.
  • arylthio group may mean RS-, where R is an aryl group.
  • the aryl group may be used in the same meaning as described above.
  • direct bond means a case where no atom exists at a position that can be a direct bond.
  • an "alkylene group” may be an alkylene group having 1 to 40 carbon atoms.
  • the alkylene group has 1 to 36 carbon atoms, 1 to 32 carbon atoms, 1 to 28 carbon atoms, 1 to 24 carbon atoms, 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 carbon atom. to 4 alkylene groups.
  • the alkylene group may be a straight-chain, branched-chain or cyclic alkylene group.
  • the alkylene group may be optionally substituted with one or more substituents.
  • a "heteroalkylene group” may be an alkylene group containing one or more of O, N, Si, and S.
  • the alkylene group may be used in the same meaning as described above.
  • a "cycloalkylene group” is a divalent functional group derived from a cycloalkane and may have 3 to 20 carbon atoms.
  • the cycloalkylene group may be a cycloalkylene group having 3 to 15 carbon atoms, 3 to 10 carbon atoms, or 3 to 5 carbon atoms.
  • the cycloalkylene group may be optionally substituted with one or more substituents.
  • an "arylene group” may mean a divalent aromatic hydrocarbon group.
  • the arylene group includes a benzene ring structure, or a structure in which two or more benzene rings are connected while sharing one or two carbon atoms, or are connected by an arbitrary linker, or a compound or derivative thereof It may mean a divalent residue derived from.
  • the arylene group may be an arylene group having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms. In this case, the arylene group may be optionally substituted with one or more substituents.
  • heteroarylene group may be an arylene group containing one or more of O, N, Si, and S.
  • the arylene group may be used in the same meaning as described above.
  • the hetero arylene group may have 2 to 30 carbon atoms.
  • the above-mentioned groups may be substituted or unsubstituted.
  • substituted or unsubstituted refers to deuterium; halogen group; cyano group; nitro group; hydroxy group; carbonyl group; ester group; imide group; amino group; phosphine oxide group; alkoxy group; aryloxy group; Alkyl thioxy group; Arylthioxy group; an alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; Aralkenyl group; Alkyl aryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of hetero
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms in the aforementioned group may mean the number of carbon atoms in the length of the main chain or the number of carbon atoms in the main backbone.
  • the elastic antibacterial polyurethane polymer includes a predetermined unit means that a unit derived therefrom is included in the polymer structure as the compound is polymerized in a polymer structure (main chain or side chain) formed by the reaction of one or more compounds. can do.
  • molecular weight may be a weight average molecular weight (eg, g/mol) in terms of polystyrene measured by GPC.
  • the present application is directed to a resilient antimicrobial polyurethane.
  • Polyurethane described below has excellent antibacterial properties, mechanical properties (eg, tensile strength, tensile strain) and heat resistance.
  • the elastic antibacterial polyurethane of the present application includes (A) an isocyanate compound; and (B) a unit derived from a polyol comprising polyether glycol and a diol represented by Formula 1 below, wherein the polyol (B) includes 0.01 to 40 mol% of the diol represented by Formula 1.
  • R1 and R2 are each independently hydrogen, an alkyl group, a haloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxy group, an alicyclic structure, a heteroalicyclic structure, or an alkylthio group or an aryl group. is tigi,
  • L1 and L2 each independently, an alkylene group, a heteroalkylene group, a cycloalkylene group, an arylene group, or a heteroarylene group;
  • L3 is a direct bond, an alkylene group, a heteroalkylene group, a cycloalkylene group, an arylene group, or a heteroarylene group;
  • A is an alkylene group having more than 6 carbon atoms
  • X - means an anion
  • the number of carbon atoms of A in Formula 1 may mean the number of carbon atoms in the main chain.
  • the elastic antimicrobial polyurethane of the present application is prepared by reacting an isocyanate compound with a polyol component including at least two different polyols, that is, polyether glycol and a compound of Formula 1 (quaternary ammonium diol) may have been
  • the type of the (A) isocyanate compound is not particularly limited, and, for example, the isocyanate compound may be selected in consideration of physical properties (eg, processability, heat resistance, etc.) of the polymer and reactivity between polymer forming components.
  • the isocyanate compound used to form the polyurethane may be an aromatic isocyanate.
  • aromatic isocyanate can compensate for the low heat resistance of the ammonium diol represented by Chemical Formula 1.
  • an isocyanate compound included in polyurethane toluene diisocyanate, xylene diisocyanate, methylene diphenyl diisocyanate (MDI), or any of the compounds listed above
  • An aromatic isocyanate compound having a skeleton or the like can be used.
  • the aromatic isocyanates used in preparing the polymers of the present application are not limited to those listed above.
  • the (B) polyol may mean an alcohol compound including two or more hydroxyl groups.
  • the polyol includes (b1) polyether glycol and (b2) a diol represented by Formula 1.
  • the polyether glycol (b1) is a major component enabling the elastic properties of the polyurethane of the present application to be secured.
  • polyether glycol used is not particularly limited.
  • poly(tetramethylene ether) glycol (PTMG) or polypropylene glycol (PPG) may be used.
  • the polyether glycol may have a weight average molecular weight in the range of 500 to 3000.
  • the lower limit of the molecular weight is 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1100 or more, 1200 or more, 1300 or more, 1400 or more, 1500 or more, 1600 or more, 1700 or more, 1800 or more, 1900 or more, 2000 or more, 2100 or more, 2200 or more, 2300 or more, 2400 or more, or 2500 or more
  • the upper limit is, for example, 2900 or less, 2800 or less, 2700 or less, 2600 or less, 2500 or less, 2400 or less, 2300 or less, 2200 or less.
  • the polyether glycol may have a weight average molecular weight of 1000 or more or 1500 or more, and 2500 or less or 2000 or less.
  • molecular weight of polyether glycol is appropriately adjusted within the above range, it is advantageous to secure mechanical properties (eg, elasticity or tensile properties).
  • the diol component (b2) represented by Formula 1 may impart antibacterial properties to polyurethane.
  • R1 in Formula 1 is, except for hydrogen, an alkyl group, a haloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxy group, an alicyclic structure, a heteroalicyclic structure Or it may be an alkylthio group or an arylthio group.
  • Polyurethanes containing units derived from quaternary ammonium monomers in the form of diols (or diol-based quaternary ammonium monomers) are more advantageous in providing excellent antibacterial properties.
  • the A may be an alkylene group having more than 6 and 20 carbon atoms, more specifically, 8 to 20, 8 to 18, 8 to 16, 8 to 14, 8 to 12, or 8 to 10 carbon atoms.
  • a of Formula 1 is an alkylene group satisfying the above number of carbon atoms, it is advantageous in imparting excellent antibacterial properties and low toxicity to the compound of Formula 1 or the polyurethane polymer.
  • A may be a straight-chain alkylene group.
  • the ammonium cation is adsorbed on the anionic membrane of bacteria, and the straight-chain alkylene group, that is, the hydrophobic group A of Formula 1 destroys the cell membrane structure of the bacteria to release proteins and enzymes, and has an antibacterial effect.
  • the antibacterial action by destroying the cell membrane structure may be more effective when A has a structure favorable to cell membrane penetration of bacteria while securing some degree of hydrophobicity.
  • the A may have a structure represented by Formula 2 below.
  • n is a number of 4 or more (for example, n is 4 or more, 5 or more, or 6 or more), and L3 and R2 may be respectively bonded to both ends indicated by *. However, when L3 is a direct bond, one end indicated by * is bonded to the N atom.
  • n in Formula 2 becomes too large, the toxicity of the compound or polymer of Formula 1 may increase.
  • the upper limit of n may be, for example, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, or 5 or less.
  • R1 and/or R2 in Formula 1 may be a straight-chain alkyl group.
  • R1 and/or R2 of Formula 1 may be an alkyl group having 12 or less, 8 or less, or 4 or less carbon atoms. Specifically, R1 and/or R2 may be a propyl group, an ethyl group or a methyl group.
  • R1 and R2 in Formula 1 may be the same as each other.
  • L1 and/or L2 may be a straight-chain alkylene group.
  • L1 and/or L2 in Formula 1 may be an alkylene group having 12 or less, 8 or less, or 4 or less carbon atoms.
  • L1 and/or L2 may be a propylene group, an ethylene group, or a methylene group.
  • L1 and L2 may be identical to each other.
  • the L3 may be a straight-chain alkylene group.
  • L3 may be an alkylene group having 12 or less carbon atoms, 8 or less carbon atoms, or 4 or less carbon atoms.
  • L3 may be a propylene group, an ethylene group, or a methylene group.
  • X - is F - , Cl - , Br - , I - , NO 3 - , (CN) 2 N - , BF 4 - , ClO 4 - , RSO 3 - (Where R is 1-C 9 alkyl group or phenyl group), RCOO - (where R is an alkyl group or phenyl group having 1 to 9 carbon atoms), PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , (CF 3 SO 3 - ) 2 , (CF 2 CF 2 SO 3 - ) 2 , (C 2 F 5 SO 2 ) 2 N - , (CF 3 SO 3 ) 2 N - , (CF 3 SO 2 )
  • the molecular weight of the monomer represented by Formula 1 may be adjusted in consideration of antibacterial properties. For example, if the molecular weight is large for reasons such as too many carbon atoms of other groups bonded to N atoms constituting ammonium of Formula 1, toxicity harmful to the human body may be expressed. In addition, it is difficult to secure sufficient antibacterial activity when the molecular weight is low for the same reason as the number of carbon atoms of other groups bonded to the N atom constituting ammonium is too small.
  • the compound represented by Chemical Formula 1, that is, the ammonium monomer in the form of a diol may have a weight average molecular weight of 300 or more.
  • the lower limit of the weight average molecular weight of the diol-type ammonium monomer may be 310 or more, 320 or more, 330 or more, 340 or more, 350 or more, 360 or more, 370 or more, 380 or more, 390 or more, or 400 or more.
  • the upper limit may be 500 or less.
  • the upper limit of the weight average molecular weight of the diol-type ammonium monomer is, for example, 490 or less, 480 or less, 470 or less, 460 or less, 450 or less, 440 or less, 430 or less, 420 or less, 410 or less, 400 or less, 390 It may be 380 or less, 370 or less, 360 or less, or 350 or less.
  • the polyol (B) includes 0.01 to 40 mol% of the diol represented by Formula 1.
  • the content of the diol represented by Formula 1 in the polyol (B) is, for example, 0.05 mol% or more, 0.1 mol% or more, or 0.5 mol% or more, specifically 1 mol% or more, 2 mol% or more, 3 mol% or more, 4 mol% or more, 5 mol% or more, 6 mol% or more, 7 mol% or more, 8 mol% or more, 9 mol% or more, 10 mol% or more, 11 mol% or more, 12 mol% or more, 13 mol% or more, 14 mol% or more, 15 mol% or more, 16 mol% or more, 17 mol% or more, 18 mol% or more, 19 mol% or more, 20 mol% or more, 21 mol% or more, 22 mol% or more, 23 mol% or more, 24 mol% or more, 25 mol% or more, 26 mol% or more, 27 mol% or more, 28 mol% or more, 29 mol% or more, 20
  • the upper limit is, for example, 39 mol% or less, 38 mol% or less, 37 mol% or less, 36 mol% or less, 35 mol% or less, 34 mol% or less, 33 mol% or less, 32 mol% or less, 31 mol% or less, 30 mol% or less, 29 mol% or less, 28 mol% or less, 27 mol% or less, 26 mol% or less, 25 mol% or less, 24 mol% or less, 23 mol% or less, 22 mol% or less, 21 mol% or less, 20 mol% or less, 19 mol% or less, 18 mol% or less, 17 mol% or less, 16 mol% or less, 15 mol% or less, 14 mol% or less, 13 mol% or less, 12 mol% or less, 11 mol% or less, 10 mol% or less, 9 mol% or less, 8 mol% or less, 7 mol% or less, 6 mol% or less, or 5 mol% or less
  • the content of polyether glycol in the polyol (B) may be, for example, the remaining amount after excluding the content (mol %) of the diol represented by Chemical Formula 1 in the polyol.
  • the content of polyether glycol in the polyol (B) is 60 mol% or more, 65 mol% or more, 70 mol% or more, 75 mol% or more, 80 mol% or more, 85 mol% or more, 90 mol% or more or 95 mol% or more.
  • the upper limit is, for example, 99.99 mol% or less, 99.95 mol% or less, 99.9 mol% or less, or 99.5 mol% or less, specifically 99 mol% or less, 95 mol% or less, 90 mol% or less, 85 mol% or less, 80 mol% or less, 75 mol% or less, 70 mol% or less, or 65 mol% or less.
  • the molar ratio of (A) isocyanate to the polyol (B) may be in the range of 1.0 to 2.0. At this time, the molar ratio means dividing the number of moles of the isocyanate compound used in polymer production by the total number of moles of the polyol.
  • the lower limit of the molar ratio of (A) isocyanate to polyol (B) may be 1.1 or more, 1.2 or more, 1.3 or more, 1.4 or more, 1.5 or more, 1.6 or more, 1.7 or more, 1.8 or more, or 1.9 or more.
  • the upper limit may be, for example, 1.9 or less, 1.8 or less, 1.7 or less, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, or 1.2 or less.
  • the polyurethane polymer is an isocyanate compound, methylenediphenyl diisocyanate (MDI); polytetramethylene glycol (PTMG), which is a polyether glycol; and a unit derived from the compound of Formula 1.
  • MDI methylenediphenyl diisocyanate
  • PTMG polytetramethylene glycol
  • the polyurethane polymer may include a structure represented by the formula below.
  • n may be an integer capable of satisfying the above-described molecular weight of polyether glycol.
  • m in the above structural formula may be an integer that satisfies the molecular weight of the urethane polymer to be described later, for example, it may be 3 to 100.
  • the polyurethane polymer may further include a unit including methylenediphenyl diisocyanate (MDI), which is an isocyanate compound, and polytetramethylene glycol (PTMG), which is a polyether glycol, in addition to the unit represented by Structural Formula 1. (ie, a unit that does not include a unit derived from the compound of Formula 1). Such a unit does not include a unit derived from Formula 1 in Structural Formula 1, and in such a unit, the integer m may be 3 to 100 or greater than 100.
  • MDI methylenediphenyl diisocyanate
  • PTMG polytetramethylene glycol
  • the elastic antibacterial polyurethane polymer may further include a unit derived from a diamine compound.
  • the elastic antibacterial polyurethane polymer is (A) an isocyanate compound; (B) a polyol containing polyether glycol and a diol represented by Formula 1 below; and (C) a unit derived from a diamine compound. More specifically, (A) an isocyanate compound; And (B) the elastic antibacterial polyurethane polymer may be prepared by further reacting a diamine compound with a polymer (eg, a prepolymer) of a polyol including polyether glycol and a diol represented by Formula 1 below.
  • a polymer eg, a prepolymer
  • the diamine compound can function as a so-called chain extender.
  • the type of diamine that can be used is not particularly limited, but, for example, ethylenediamine, 1,2'-propylenediamine, hexamethylene diamine, xylenediamine, 4, Compounds such as 4,4'-diphenylmethane diamine or hydrazine may be used in this application. Alternatively, one or more of the compounds listed above may be used.
  • the molar ratio of the (C) diamine compound to the polyol (B) may be less than 1.0.
  • the molar ratio of the diamine compound (C) to the polyol (B) may be 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, or 0.4 or less.
  • the lower limit may be, for example, 0.1 mol or more, 0.2 mol or more, 0.3 mol or more, or 0.4 mol or more.
  • the polyurethane may have a molecular weight of 10,000 or more. Specifically, the polyurethane may have a molecular weight of 50,000 or more or 100,000 or more. And, the upper limit may be, for example, 300,000 or less, 250,000 or less, 200,000 or less, 150,000 or less, or 100,000 or less. When the above-described range is satisfied, it may be advantageous to secure mechanical properties (eg, tensile properties), and in particular, exhibit elasticity in fiber applications.
  • mechanical properties eg, tensile properties
  • the antimicrobial elastomeric polyurethane polymer may exhibit certain properties.
  • the polyurethane polymer of the present application may exhibit an antibacterial rate (bacteriostatic reduction rate) of 90% or more when measured according to JIS Z 2801.
  • the antibacterial rate may be 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, or 99.9% or more.
  • the polyurethane polymer may exhibit an antibacterial rate of substantially 100%. If the antibacterial rate is less than the above value, it is difficult to see that it has excellent antibacterial properties.
  • the polyurethane polymer of the present application may have a thermal decomposition temperature (Td) of 280 °C or higher.
  • Td thermal decomposition temperature
  • the thermal decomposition temperature is, as in the experiment related to FIG. 1, when the weight loss of the polymer is evaluated while raising the temperature to 700 ° C. at a rate of 10 ° C./min under N 2 , the weight loss of the polymer ( weight loss) may mean the temperature (Td) (thermal decomposition start temperature) at the point when it becomes 10%.
  • the thermal decomposition temperature may be, for example, 285 °C or higher, 290 °C or higher, 295 °C or higher, 300 °C or higher, 305 °C or higher, or 310 °C or higher.
  • the upper limit is, for example, 350 °C or less, 345 °C or less, 340 °C or less, 335 °C or less, 330 °C or less, 325 °C or less, 320 °C or less, 315 °C or less, 310 °C or less, 305 °C or less or 300 It may be below °C. Within the above range, the polymer may have excellent processability and heat resistance durability.
  • the polyurethane polymer of the present application may have a tensile strain of 900% or more measured according to the ASTM D882 tensile test method.
  • the tensile strain is, for example, the ratio of width and length (width: length) of 1: 1 to 100, 1: 1 to 50, 1: 1 to 30, or 1: 1 to 10 elastic antibacterial polyurethane polymer can be measured for the sample.
  • the tensile strain is, for example, 910% or more, 920% or more, 930% or more, 940% or more, 950% or more, 960% or more, 970% or more, 980% or more, 990% or more, 1000% or more or 1010% or more.
  • the upper limit is, for example, 1100% or less, 1090% or less, 1080% or less, 1070% or less, 1060% or less, 1050% or less, 1040% or less, 1030% or less, 1020% or less, 1010% or less, or 1000% may be below.
  • the polymer of the present application can maintain a high tensile strain rate while introducing the diol of Formula 1 to secure antibacterial properties.
  • the polyurethane polymer of the present application may have a tensile strength of 30 Mpa or more measured according to the ASTM D882 tensile test method.
  • the tensile strength is, for example, the ratio of width and length (width: length) of 1: 1 to 100, 1: 1 to 50, 1: 1 to 30, or 1: 1 to 10 elastic antibacterial polyurethane polymer can be measured for the sample.
  • the tensile strength may be, for example, 35 Mpa or more, 40 Mpa or more, 45 Mpa or more, 50 Mpa or more, 55 Mpa or more, or 60 Mpa or more.
  • the upper limit may be, for example, 65 Mpa or less, 60 Mpa or less, 55 Mpa or less, 50 Mpa or less, 45 Mpa or less, 40 Mpa or less, or 35 Mpa or less.
  • the polymer of the present application can maintain high tensile strength while introducing the diol of Formula 1 to secure antibacterial properties.
  • the polyurethane polymer of the present application may have an unreacted diol content of 1,000 ppm or less based on the total amount of the polymer.
  • the unreacted content may be confirmed using HPLC (High Performance Liquid Chromatography).
  • the content of the unreacted diol represented by Formula 1 relative to the entire polymer is 950 ppm or less, 900 ppm or less, 850 ppm or less, 800 ppm or less, 750 ppm or less, 700 ppm or less, 650 ppm or less, 600 ppm or less, 550 ppm or less, 500 ppm or less, 450 ppm or less, 400 ppm or less, 350 ppm or less, 300 ppm or less, 250 ppm or less, 200 ppm or less, 150 ppm or less, 100 ppm or less, or 50 ppm or less.
  • mechanical properties tensile properties
  • the polyurethane polymer is not particularly limited.
  • the polymer is used as a raw material for fibers (e.g., elastic yarns such as spandex), fabrics, clothing (e.g., underwear, swimwear, socks, etc.), paints, interior materials for vehicles, interior materials for vehicles, mattresses, or foams.
  • fibers e.g., elastic yarns such as spandex
  • clothing e.g., underwear, swimwear, socks, etc.
  • paints interior materials for vehicles, interior materials for vehicles, mattresses, or foams.
  • the present application is directed to a method of making a resilient antimicrobial polyurethane polymer. According to this method, elastic antibacterial polyurethane polymers of the above-described construction are produced.
  • the manufacturing method (A) an isocyanate compound; and (B) a step (S1) of mixing and reacting polyether glycol with a polyol including a diol represented by Formula 1 below.
  • the polyol (B) includes 0.01 to 40 mol% of the diol represented by Formula 1.
  • R1 and R2 are each independently hydrogen, an alkyl group, a haloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkoxy group, an alicyclic structure, a heteroalicyclic structure, or an alkylthio group or an aryl group. is tigi,
  • L1 and L2 each independently, an alkylene group, a heteroalkylene group, a cycloalkylene group, an arylene group, or a heteroarylene group;
  • L3 is a direct bond, an alkylene group, a heteroalkylene group, a cycloalkylene group, an arylene group, or a heteroarylene group;
  • A is an alkylene group having more than 6 carbon atoms
  • X - means an anion
  • the number of carbon atoms in Chemical Formula 1A may mean the number of carbon atoms in the main chain.
  • the reaction may proceed at a temperature of 100 °C or less.
  • diisocyanate may generate a dimer through a side reaction, which is an obstacle to polymer synthesis.
  • the reaction temperature may be 95 °C or less, 90 °C or less, 85 °C or less, 80 °C or less, 75 °C or less, 70 °C or less, 65 °C or less, or 60 °C or less.
  • the lower limit may be, for example, 50 °C or higher, 55 °C or higher, 60 °C or higher, 65 °C or higher, or 70 °C or higher.
  • the reaction may be performed over several tens of minutes to several tens of hours. Specifically, the reaction may be performed for, for example, 30 minutes or more, 60 minutes or more, or 90 minutes or more. And the upper limit of the reaction time may be, for example, 30 hours or less, 25 hours or less, 20 hours or less, 15 hours or less, 10 hours or less, or 5 hours or less. Within the above time range, the molecular weight of the polymer may be appropriately controlled and the occurrence of side reactions may be controlled.
  • the method further reacts (C) a diamine compound to a prepolymer obtained by reacting (A) an isocyanate compound and (B) a polyol containing a polyether glycol and a diol represented by Formula 1 below A step S2 may be further included.
  • a diluted solution is prepared by diluting the prepolymer or its solution in a solvent.
  • the type of solvent for preparing the diluted solution is not particularly limited, but, for example, DMAc (dimethylacetamide) may be used.
  • the concentration of the diluted solution may be adjusted so that the content of the prepolymer in the range of about 10 to 40 or 20 to 30% by weight of the total weight of the diluted solution.
  • a diamine compound is added to the prepolymer dilution solution prepared as described above.
  • the temperature when the diamine compound is added to the prepolymer diluent may be adjusted to 10 ° C. or less, for example, about 0 to 4 ° C., so that a rapid reaction does not occur when the diamine compound is added.
  • the reaction may be carried out for about several hours, for example, 1 to 2 hours.
  • the antibacterial elastic polyurethane of the present application may be provided through the reaction of the diamine compound, which is a chain extender, with the prepolymer.
  • the antibacterial elastic polyurethane prepared by the above-described method satisfies the above-described properties (eg, antibacterial rate, tensile strain, tensile strength, and unreacted diol content).
  • the present application relates to engineering plastics including the antimicrobial elastic polyurethane polymer.
  • the engineering plastics are, for example, plastics used as parts materials for industrial or industrial machines and instruments, and their specific uses are not particularly limited.
  • the present application relates to an article comprising the antimicrobial elastic polyurethane polymer.
  • the article may be a fiber (eg, elastic yarn such as spandex), fabric, clothing (eg, underwear, swimwear, socks, etc.), paint, vehicle interior material, mattress, or foams.
  • the article may be a spandex fiber including the above-described antibacterial elastomer, a fabric or a garment including the fiber.
  • the present application relates to a spinning composition (or spinning solution) for producing elastic yarn.
  • the spinning composition includes at least the elastomer described above.
  • the present application relates to a method for preparing the spinning composition (or spinning solution) for preparing the elastic yarn.
  • the method includes all of the methods and processes for producing the above-described elastic antibacterial polyurethane polymer.
  • the present application relates to an elastic yarn (eg, spandex) including the antimicrobial elastic polyurethane polymer.
  • the elastic yarn includes the polyurethane polymer having the same characteristics as described above, antibacterial properties may be provided without deterioration in tensile properties or heat resistance durability. These elastic yarns can be used for sanitary or medical textiles.
  • the type of elastic yarn is not particularly limited as it can be mono or multifilament.
  • the fineness is also not particularly limited, and may be appropriately adjusted depending on the purpose for which the fiber is used.
  • the present application relates to a method for manufacturing the elastic yarn. Specifically, the method includes preparing a spinning solution (S1) and spinning the spinning solution (S2).
  • the step (S1) includes (A) mixing and reacting an isocyanate compound, and (B) a polyol containing polyether glycol and the diol represented by Formula 1 (S11); and (A) an isocyanate compound; and (B) further reacting (C) a diamine compound with a prepolymer obtained by reacting polyether glycol with a polyol containing the diol represented by Formula 1 (S12).
  • the polyol (B) includes 0.01 to 40 mol% of the diol represented by Formula 1.
  • the contents of preparing the elastic antibacterial polyurethane which is the main component of the spinning solution (eg, preparation of the prepolymer, reaction between the prepolymer and diamine, etc.) are the same as those described in the elastic antibacterial polyurethane and its manufacturing method. Since they are the same, we omit them.
  • the spinning process for producing fibers is not particularly limited.
  • a spinning device equipped with a spinneret may be used, and the temperature during spinning may be adjusted to a level of, for example, 200° C. or higher or 250° C. or higher.
  • cooling by air or liquid eg, water or other solvent-containing liquid
  • liquid e.g, water or other solvent-containing liquid
  • the method may further include winding (S3).
  • the fiber cooled after spinning or spinning may be wound through a known method or device such as a winding roller.
  • polyurethane having excellent antibacterial properties, mechanical properties (eg, tensile strength and tensile strain) and heat resistance can be provided.
  • FIG. 1 is a graph showing experimental results regarding heat resistance. Specifically, FIG. 1A relates to Comparative Example 1, FIG. 1B relates to Example 1, and FIG. 1C relates to Example 2.
  • MDI methylene diphenyl diisocyanate
  • PTMG Poly (tetramethylene ether) glycol
  • Mw molecular weight 2000.0 52.3 g
  • quaternary ammonium diol having the structure of [Formula 1-1] below (Mw molecular weight 368.00 ) 1.1 g was introduced into the reactor, and the inside of the reactor was substituted with N 2 . Thereafter, a DMAc solvent was introduced into the reactor, and the temperature of the reactor was raised to 90° C., and the reaction proceeded for 90 minutes to prepare a polyurethane prepolymer.
  • the prepared polyurethane prepolymer solution was mixed with a DMAc solvent to prepare a prepolymer solution diluted to a concentration of about 25% by weight, and 0.9 g of ethylene diamine (Mw molecular weight 60.10) within a temperature range of about 0 to 4 ° C. was added. Thereafter, after adding ethylene diamine, the reaction proceeded for about 1.5 hours, and a polyurethane polymer was prepared.
  • ethylene diamine Mw molecular weight 60.10
  • MDI methylene diphenyl diisocyanate
  • PTMG Poly (tetramethylene ether) glycol
  • Mw molecular weight 2000.0 53.3 g
  • quaternary ammonium diol having the structure of [Formula 1-1] (Mw molecular weight 368.00 ) 0.5 g and 0.9 g of ethylene diamine (Mw molecular weight 60.10) were added into the reactor, and polyurethane was prepared in the same manner as in Example 1.
  • MDI Methylene diphenyl diisocyanate
  • PTMG Poly (tetramethylene ether) glycol
  • Mw molecular weight 2000.0 54.0 g
  • quaternary ammonium diol having the structure of [Formula 1-1] (Mw molecular weight 368.00 ) 0.1 g and 0.9 g of ethylene diamine (Mw molecular weight 60.10) were added into the reactor, and polyurethane was prepared in the same manner as in Example 1.
  • Polyurethane was prepared using the same contents of PTMG, MDI and [Formula 1-1] as those used in Example 3. However, unlike Example 3 in which PTMG, MDI and [Formula 1-1] are reacted together, PTMG and MDI are reacted first (reacted until the reaction rate of NCO of MDI reaches about 99%), and the [ Chemical Formula 1-1] was introduced into the chain extender to react with the remaining -NCO groups.
  • MDI polyol polyol PTMG Formula 1-1 Example 1 1.60 1.00 0.90 0.10
  • Example 2 1.60 1.00 0.95 0.05
  • the molar ratio between MDI and polyol was calculated by dividing the number of moles of isocyanate compound by the total number of moles of polyol.
  • the ratio of the number of moles of PTMG or Chemical Formula 1-1 in the polyol which means mol% when expressed as a % ratio.
  • the remaining monomer of Chemical Formula 1-1 in the polyurethane was quantitatively measured using an HPLC (High Performance Liquid Chromatography) analysis device. More specifically, first, the prepared resin pellets are put in a certain amount of solvent (saline), stirred for 24 hours, and then the extract is filtered to extract unreacted components in the resin. After taking the solution thus obtained, HPLC analysis was performed, and the components of the compound of Formula 1 remaining in the resin were measured by comparing with the previously measured HPLC analysis result of the copolymer monomer. In view of the experimental results described later, the remaining unreacted monomer of Chemical Formula 1-1 in the polymerized polyurethane is determined to be a cause of deterioration in mechanical properties.
  • HPLC High Performance Liquid Chromatography
  • Example 1-3 The antimicrobial activity of each polymer of Example 1-3 and Comparative Example 1-2 was evaluated. Specifically, a film (5 cm x 5 cm) was prepared by solvent casting a polymerization solution having a concentration of 20 wt% prepared using DMF (dimethylformamide) as a solvent, and antibacterial evaluation was performed according to the JIS Z2801 method.
  • DMF dimethylformamide
  • Examples 1-2 and Comparative Examples The heat resistance of each polymer was evaluated. Specifically, while raising the temperature to 700 °C at a rate of 10 °C/min under N 2 , the weight loss of the polymers was compared. The results are shown in FIGS. 1A (Comparative Example 1), 1B (Example 1) and 1C (Example 2).
  • Example 1-3 The tensile properties of each polymer of Example 1-3 and Comparative Example 1-2 were evaluated. Specifically, the tensile strength and tensile strain of the sample were measured according to the tensile test method of ASTM D882.
  • ASTM D882 relates to a tensile test of a thin film (about less than 1 mm in thickness), and the size of the sample in the experiment for the present invention is 5 mm x 50 mm (width x length) (thickness: about 200 to 300 ⁇ m ).
  • tensile strength means a maximum stress until a material is fractured by a tensile load, and is a value obtained by dividing the maximum load by the cross-sectional area of the material.
  • tensile strain means the strain when the material is deformed by tensile stress. It is expressed as the ratio of the change in length from the initial length.
  • Examples 1-3 have higher tensile strength than Comparative Examples 1-2. In the case of tensile strain, Examples 1-3, which additionally secured antibacterial properties, show tensile strain comparable to Comparative Example 1. That is, Example 1-3 shows good elasticity (even though Chemical Formula 1-1 was additionally reacted).

Abstract

본 출원은 탄성 항균 폴리우레탄 중합체 및 그 제조방법에 관한 것이다. 상기 폴리우레탄 중합체는 우수한 항균성, 기계적 물성 및 내열 내구성을 갖는다.

Description

탄성 항균 폴리우레탄, 그 제조방법 및 이를 포함하는 물품
관련출원(들)과의 상호 참조
본 출원은 2021년 08월 23일자 한국 특허 출원 제 10-2021-0110765호 및 2022년 08월 17일자 한국 특허 출원 제10-2022-0102689호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 출원은 탄성 항균 폴리우레탄 및 그 제조방법에 관한 것이다. 또한, 본 출원은 상기 탄성 항균 폴리우레탄을 포함하는 물품에 관한 것이다.
엔지니어링 플라스틱 중에 하나인 폴리우레탄(PU: poly(urethane))은 합성 섬유, 페인트, 차량용 내장재 등 다양한 분야에서 사용되고 있다. 예를 들어, 폴리우레탄은 나일론과 함께 사용되어 스판덱스라 불리는 합성 섬유를 구성할 수 있고, 속옷, 양말, 수영복 등에 사용될 수 있다. 또한, 폴리우레탄은 3차원 거품 구조를 갖기 때문에, 탄성이 있고 견고하여 매트리스나 직물 외에도, 폼 스펀지 등에서 널리 사용되고 있다.
한편, PU 관련 제품이 장기간 사용되는 경우에는 균이 번식할 수 있는 문제가 있으므로, 항균성을 확보하는 것이 필요하다.
본 출원의 일 목적은, 우수한 탄성 및 항균성을 갖는 폴리우레탄을 제공하는 것이다.
본 출원의 다른 목적은, 내열성이 우수한 폴리우레탄을 제공하는 것이다.
본 출원의 또 다른 목적은, 상기 특성의 폴리우레탄을 포함하는 물품에 관한 것이다.
본 출원의 상기 목적 및 기타 그 밖의 목적은 하기 상세히 설명되는 본 출원에 의해 모두 해결될 수 있다.
본 출원에 관한 구체예에서, 본 출원은 탄성 항균 폴리우레탄 중합체 및 그 제조방법에 관한 것이다. 본 출원의 폴리우레탄 중합체는 우수한 항균성, 내열성(내구성) 및 인장 특성 등을 갖는다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 용어 「알킬기」는 탄소수가 1 내지 40인 알킬기일 수 있다. 예를 들어, 상기 알킬기는 탄소수 1 내지 36, 탄소수 1 내지 32, 탄소수 1 내지 28, 탄소수 1 내지 24, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기일 수 있다. 이때, 상기 알킬기는 직쇄, 분지쇄 또는 고리형의 알킬기 수 있다. 또한, 상기 알킬기는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 용어 「할로 알킬기」는 알킬기의 수소 원자가 할로겐 원자로 치환된 화합물을 의미할 수 있다. 이때, 알킬기는 상술한 것과 동일한 의미로 사용될 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 용어 「알케닐기」는 탄소수가 2 내지 40인 알케닐기일 수 있다. 예를 들어, 상기 알케닐기는 탄소수 2 내지 36, 탄소수 2 내지 32, 탄소수 2 내지 28, 탄소수 2 내지 24, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기일 수 있다. 이때, 상기 알케닐기는 직쇄, 분지쇄 또는 고리형의 알케닐기일 수 있다. 또한, 상기 알케닐기는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 용어 「알키닐기」는 탄소수가 2 내지 40인 알키닐기일 수 있다. 예를 들어, 상기 알키닐기는 탄소수 2 내지 36, 탄소수 2 내지 32, 탄소수 2 내지 28, 탄소수 2 내지 24, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알키닐일 수 있다. 이때, 상기 알키닐기는 직쇄, 분지쇄 또는 고리형의 알키닐기일 수 있다. 또한, 상기 알키닐기는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 용어 「아릴기」는 하나의 벤젠 고리 구조, 또는 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나 또는 임의의 링커에 의해 연결되어 있는 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 예를 들어, 상기 아릴기는 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18, 탄소수 6 내지 13의 아릴기일 수 있다. 이때, 상기 아릴기는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 용어 「헤테로 아릴기」는 O, N, Si 및 S 중 1개 이상을 포함하는 아릴기를 의미할 수 있다. 예를 들어, 상기 헤테로 아릴기에서 아릴기는 상술한 것과 동일한 의미로 사용될 수 있다. 또는, 상기 헤테로 아릴기의 탄소수는 2 내지 30일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 용어 「아릴옥시기」는 R이 아릴기인 기 RO- 를 의미할 수 있다. 이때, 알릴기는 상술한 것과 동일한 의미로 사용될 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「알콕시기」는 탄소수 1 내지 40의 알콕시기일 수 있다. 예를 들어, 상기 알콕시기는 탄소수 1 내지 36, 탄소수 1 내지 32, 탄소수 1 내지 28, 탄소수 1 내지 24, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기일 수 있다. 상기 알콕시기는 직쇄, 분지쇄 또는 고리형의 알콕시기일 수 있다. 또한, 상기 알콕시기는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「지환족 구조」는 방향족 고리 구조가 아닌 고리형 탄화수소 구조로서, -Y로 표시되는 화합물을 의미할 수 있다. 상기 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 3 내지 30, 탄소수 3 내지 25, 탄소수 3 내지 21, 탄소수 3 내지 18 또는 탄소수 3 내지 13의 지환족 고리 구조일 수 있다. 상기 지환족 구조는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「헤테로 지환족 구조」는 O, N, Si 및 S 중 1개 이상을 포함하는 지환족 구조를 의미할 수 있다. 예를 들어, 지환족 구조는 상술한 것과 동일한 의미로 사용될 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「알킬티오기」는 R이 알킬기인 RS-를 의미할 수 있다. 이때, 알킬기는 상술한 것과 동일한 의미로 사용될 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「아릴티오기」는 R이 아릴기인 RS-를 의미할 수 있다. 이때, 아릴기는 상술한 것과 동일한 의미로 사용될 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「직접결합」은 직접결합일 수 있는 위치에 원자가 존재하지 않는 경우를 의미한다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「알킬렌기」는 탄소수가 1 내지 40인 알킬렌기일 수 있다. 예를 들어, 상기 알킬렌기는 탄소수 1 내지 36, 탄소수 1 내지 32, 탄소수 1 내지 28, 탄소수 1 내지 24, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기일 수 있다. 상기 알킬렌기는 직쇄, 분지쇄 또는 고리형의 알킬렌기일 수 있다. 또한, 상기 알킬렌기는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「헤테로 알킬렌기」는 O, N, Si 및 S 중 1개 이상을 포함하는 알킬렌기일 수 있다. 이때, 알킬렌기는 상술한 것과 동일한 의미로 사용될 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「싸이클로알킬렌기」는 시클로알케인(cycloalkane)으로부터 유래한 2가의 작용기로, 탄소수가 3 내지 20일 수 있다. 예를 들어, 상기 싸이클로알킬렌기는 탄소수 3 내지 15, 탄소수 3 내지 10 또는 탄소수 3 내지 5인 싸이클로알킬렌기일 수 있다. 또한, 상기 싸이클로알킬렌기는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 「아릴렌기」는 2가 방향족 탄화수소기를 의미할 수 있다. 예를 들어, 상기 아릴렌기는 하나의 벤젠 고리 구조, 또는 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나 또는 임의의 링커에 의해 연결되어 있는 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 2가 잔기를 의미할 수 있다. 예를 들어, 상기 아릴렌기는 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18, 탄소수 6 내지 13의 아릴렌기일 수 있다. 이때, 상기 아릴렌기는 임의로 하나 이상의 치환기에 의해 치환된 것일 수 있다.
본 명세서에서, 특별히 달리 정의하지 않는 이상, 용어 「헤테로 아릴렌기」는 O, N, Si 및 S 중 1개 이상을 포함하는 아릴렌기일 수 있다. 예를 들어, 상기 헤테로 아릴렌기에서 아릴렌기는 상술한 것과 동일한 의미로 사용될 수 있다. 또는, 상기 헤테로 아릴렌기의 탄소수는 2 내지 30일 수 있다.
특별히 제한되지 않으나, 상술한 기(基)(group)는 치환 또는 비치환된 것일 수 있다. 본 명세서에서 용어 「치환 또는 비치환된」은, 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미할 수 있다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐이기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서 특별히 달리 정의하지 않는 이상, 상술한 기(基)(group)의 탄소수는 주쇄(main chain) 길이에 관한 탄소수 또는 주된 골격의 탄소수를 의미할 수 있다.
본 명세서에서 탄성 항균 폴리우레탄 중합체가 소정의 단위를 포함한다는 것은, 하나 이상의 화합물이 반응하여 형성된 중합체 구조(주쇄나 측쇄)에 상기 화합물이 중합되면서 그로부터 유래하는 단위가 중합체 구조 내에 포함되어 있는 것을 의미할 수 있다.
본 명세서에서 특별히 달리 정의하지 않는 이상, 「분자량」은 GPC법에 의해 측정한 폴리스티렌 환산의 중량평균분자량(예: g/mol)일 수 있다.
이하, 본 발명을 보다 상세히 설명한다.
본 출원에 관한 일례에서, 본 출원은 탄성 항균 폴리우레탄에 관한 것이다. 이하 설명되는 폴리우레탄은 항균성, 기계적 물성(예: 인장강도, 인장변형률) 및 내열성 등이 우수하다.
구체적으로, 본 출원의 탄성 항균 폴리우레탄은, (A) 이소시아네이트 화합물; 및 (B) 폴리에테르글리콜과 하기 화학식 1로 표시되는 디올을 포함하는 폴리올 유래의 단위를 포함하고, 상기 (B) 폴리올은 화학식 1로 표시되는 디올을 0.01 내지 40 몰% 포함한다.
[화학식 1]
Figure PCTKR2022012465-appb-img-000001
상기 화학식 1에서,
R1 및 R2는, 각각 독립적으로, 수소, 알킬기, 할로알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로 아릴기, 아릴옥시기, 알콕시기, 지환족 구조, 헤테로 지환족 구조 또는 알킬티오기 또는 아릴티오기이고,
L1 및 L2, 각각 독립적으로, 알킬렌기, 헤테로아킬렌기, 싸이클로알킬렌기, 아릴렌기 또는 헤테로아릴렌기이며,
L3는 직접결합, 알킬렌기, 헤테로아킬렌기, 싸이클로알킬렌기, 아릴렌기 또는 헤테로아릴렌기이고,
상기 A는 탄소수가 6 초과인 알킬렌기이며,
X-는 음이온을 의미한다.
이때, 상기 화학식 1의 A의 탄소수는 주쇄의 탄소수를 의미할 수 있다.
상기와 같이, 본 출원의 탄성 항균 폴리우레탄은, 이소시아네이트 화합물에, 적어도 서로 상이한 2 종의 폴리올, 즉, 폴리에테르글리콜과 화학식 1의 화합물(4급 암모늄 디올)을 포함하는 폴리올 성분이 반응하여 제조된 것일 수 있다.
상기 (A) 이소시아네이트 화합물의 종류는 특별히 제한되지 않고, 예를 들어, 중합체의 물성(예: 가공성, 내열성 등)과 중합체 형성 성분 간의 반응성 등을 고려하여 이소시아네이트 화합물이 선택될 수 있다.
본 출원의 구체예에서, 상기 폴리우레탄을 형성하는데 사용되는 이소시아네이트 화합물은 방향족 이소시아네이트일 수 있다. 예를 들어, 방향족 이소시아네이트는, 상기 화학식 1로 표시되는 암모늄 디올의 낮은 내열성을 보완할 수 있다.
하나의 예시에서, 폴리우레탄에 포함되는 이소시아네이트 화합물로는, 톨루엔디이소시아네이트(toluene diisocyanate), 자일렌 디이소시아네이트(Xylylene Diisocyanate), 메틸렌디페닐디이소시아네이트(methylene diphenyl diisocyancate: MDI), 또는 상기 나열된 화합물의 골격을 갖는 방향족 이소시아네이트 화합물 등이 사용될 수 있다. 그러나, 본 출원 중합체 제조에 사용되는 방향족 이소시아네이트가 상기 나열된 것들로 제한되는 것은 아니다.
상기 (B) 폴리올은 2 이상의 수산화기를 포함한 알코올 화합물을 의미할 수 있다. 본 출원에서 상기 폴리올은 (b1) 폴리에테르글리콜과 (b2) 화학식 1로 표시되는 디올을 포함한다.
상기 폴리에테르글리콜(b1)은 본 출원 폴리우레탄의 탄성 특성을 확보할 수 있게 하는 주요 구성이다.
본 출원의 기술 과제 달성에 반하지 않는 이상, 사용되는 폴리에테르글리콜의 종류는 특별히 제한되지 않는다. 예를 들어, 폴리테트라메틸렌글리콜(PTMG: Poly(tetramethylene ether)glycol)이나 폴리프로필렌글리콜(PPG) 등과 같은 것들이 사용될 수 있다.
하나의 예시에서, 상기 폴리에테르글리콜은 중량평균 분자량이 500 내지 3000 범위일 수 있다. 구체적으로, 상기 분자량의 하한은 600 이상, 700 이상, 800 이상, 900 이상, 1000 이상, 1100 이상, 1200 이상, 1300 이상, 1400 이상, 1500 이상, 1600 이상, 1700 이상, 1800 이상, 1900 이상, 2000 이상, 2100 이상, 2200 이상, 2300 이상, 2400 이상 또는 2500 이상일 수 있고, 그 상한은 예를 들어, 2900 이하, 2800 이하, 2700 이하, 2600 이하, 2500 이하, 2400 이하, 2300 이하, 2200 이하, 2100 이하, 2000 이하, 1900 이하, 1800 이하, 1700 이하, 1600 이하 또는 1500 이하일 수 있다. 본 출원의 구체예에서, 상기 폴리에테르글리콜은 중량평균 분자량은 1000 이상 또는 1500 이상이고, 그리고 2500 이하 또는 2000 이하일 수 있다. 상술한 범위 내에서 폴리에테르글리콜의 분자량을 적절히 조절하는 경우, 기계적 물성(예: 탄성 또는 인장 특성)을 확보하는데 유리하다.
상기 화학식 1로 표시되는 디올 성분(b2)은 폴리우레탄에 항균성을 부여할 수 있다.
하나의 예시에서, 상기 화학식 1의 R1은, 수소를 제외하고, 알킬기, 할로 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로 아릴기, 아릴옥시기, 알콕시기, 지환족 구조, 헤테로 지환족 구조 또는 알킬티오기 또는 아릴티오기일 수 있다. 디올 형태인 4급 암모늄 단량체(또는 디올계 4급 암모늄 단량체) 유래의 단위를 포함하는 폴리우레탄은 우수한 항균성을 제공하는데 보다 유리하다.
하나의 예시에서, 상기 A는 탄소수가 6 초과 20 이하, 보다 구체적으로는 8 내지 20 이하, 8 내지 18, 8 내지 16, 8 내지 14, 8 내지 12 또는 8 내지 10인 알킬렌기일 수 있다. 화학식 1의 A가 상기 탄소수를 만족하는 알킬렌기인 경우, 화학식 1의 화합물 또는 폴리우레탄 중합체에 우수한 항균성 및 낮은 독성을 부여하는데 유리하다.
하나의 예시에서, 상기 A는 직쇄형 알킬렌기일 수 있다. 상기 화학식 1로 표시되는 단량체에서 암모늄 양이온은 세균의 음이온 막에 흡착하는데, 직쇄형 알킬렌기, 즉 소수성기인 화학식 1의 A는 균의 세포막 구조를 파괴하여 단백질 및 효소를 유출시키면서 항균 작용을 하는데 유리하게 기능한다.
이러한 세포막 구조 파괴에 의한 항균 작용은, A가 어느 정도의 소수성을 확보하면서도 균의 세포막 침투에 유리한 구조를 갖는 경우에 보다 효과적일 수 있다. 이를 고려하여, 본 출원의 구체예에서, 상기 A는 아래 화학식 2로 표시되는 구조를 가질 수 있다.
[화학식 2]
Figure PCTKR2022012465-appb-img-000002
상기 화학식 2에서,
n은 4 이상의 수이고(예를 들어 n은 4 이상, 5 이상, 또는 6 이상), 상기 *로 표시되는 양 말단에는 L3 및 R2가 각각 결합될 수 있다. 단, L3가 직접결합인 경우에는 상기 *로 표시되는 하나의 말단은 N 원자와 결합된다.
화학식 2의 n 이 지나치게 커지는 경우, 화학식 1의 화합물 또는 중합체의 독성이 증가할 수 있다. 이를 고려하여, 상기 n의 상한은 예를 들어, 10 이하, 9 이하, 8 이하, 7 이하, 6 이하 또는 5 이하일 수 있다.
하나의 예시에서, 상기 화학식 1의 R1 및/또는 R2는 직쇄형 알킬기일 수 있다.
화학식 1의 단량체에 의한 항균 작용은 암모늄의 양이온이 세균 음이온 막에 흡착되는 것으로 그 기작이 시작되는데, R1 및/또는 R2의 탄소수가 많은 경우(예: 사슬이 긴 경우 등)에는 일종의 입체효과(steric hindrance)에 의해 흡착이 원활히 이루어지지 않고, 중합체의 항균 특성이 충분히 발현되지 않을 수 있다. 이를 고려할 때, 본 출원의 구체예에서, 상기 화학식 1의 R1 및/또는 R2는, 탄소수 12 이하, 8 이하, 또는 4 이하의 알킬기일 수 있다. 구체적으로, 상기 R1 및/또는 R2는 프로필기, 에틸기 또는 메틸기일 수 있다.
하나의 예시에서, 상기 화학식 1의 R1 및 R2는 서로 동일할 수 있다.
하나의 예시에서, 상기 L1 및/또는 L2는 직쇄형 알킬렌기일 수 있다.
상술한 바와 같이, 화학식 1 단량체에 의한 항균 작용은 암모늄의 양이온이 세균 음이온 막에 흡착되는 것으로 그 기작이 시작되는데, L1 및/또는 L2의 탄소수가 많은 경우에는 일종의 입체효과(steric hindrance)에 의해 흡착이 원활히 이루어지지 않고, 중합체의 항균 특성이 충분히 발현되지 않을 수 있다. 이를 고려할 때, 본 출원의 구체예에서, 상기 화학식 1의 L1 및/또는 L2는 탄소수 12 이하, 8 이하, 또는 4 이하의 알킬렌기일 수 있다. 예를 들어, 상기 L1 및/또는 L2는 프로필렌기, 에틸렌기 또는 메틸렌기일 수 있다.
항균 특성 확보와 단량체 제조에 관한 수율을 고려할 때, 본 출원의 구체예에서, 상기 L1과 L2는 서로 동일할 수 있다.
하나의 예시에서, 상기 L3는 직쇄형 알킬렌기일 수 있다.
상술한 바와 같이, 화학식 1 단량체에 의한 항균성 발현 정도를 고려하여, 상기 L3의 탄소수가 결정될 수 있다. 본 출원의 구체예에서, 상기 L3는 탄소수 12 이하, 8 이하, 또는 탄소수 4 이하의 알킬렌기일 수 있다. 예를 들어, 상기 L3는 프로필렌기, 에틸렌기 또는 메틸렌기일 수 있다.
화학식 1과 관련하여, 상기 X-는 특별히 제한되지 않는다. 예를 들어, 상기 X-는 F-, Cl-, Br-, I-, NO3 -, (CN)2N-, BF4 -, ClO4 -, RSO3 - (여기서, R은 탄소수 1-9의 알킬기 또는 페닐기), RCOO- (여기서, R은 탄소수 1-9의 알킬기 또는 페닐기), PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, (CF3SO3 -)2, (CF2CF2SO3 -)2, (C2F5SO2)2N-, (CF3SO3)2N-, (CF3SO2)(CF3CO)N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3COO-, C3F7COO-, CF3SO3 -, 또는 C4F9SO3 - 일 수 있다.
화학식 1로 표시되는 단량체의 분자량은, 항균 특성을 고려하여 조절될 수 있다. 예를 들어, 화학식 1의 암모늄을 이루는 N 원자에 결합된 다른 기(group)의 탄소수가 너무 많은 것과 같은 이유로 분자량이 큰 경우에는 인체에 유해한 독성이 발현될 수 있다. 그리고, 암모늄을 이루는 N 원자에 결합된 다른 기(group)의 탄소수가 너무 적은 것과 같은 이유로 분자량이 적은 경우에는 충분한 항균력을 확보하기 어렵다.
상술한 점을 고려하여, 본 출원의 구체예에서, 상기 화학식 1로 표시되는 화합물, 즉 디올 형태인 암모늄 단량체는 300 이상의 중량평균 분자량을 가질 수 있다. 구체적으로, 상기 디올 형태 암모늄 단량체의 중량평균분자량 하한은, 310 이상, 320 이상, 330 이상, 340 이상, 350 이상, 360 이상, 370 이상, 380 이상, 390 이상 또는 400 이상일 수 있다. 그리고, 그 상한은 500 이하일 수 있다. 구체적으로, 상기 디올 형태 암모늄 단량체의 중량평균분자량 상한은, 예를 들어, 490 이하, 480 이하, 470 이하, 460 이하, 450 이하, 440 이하, 430 이하, 420 이하, 410 이하, 400 이하, 390 이하, 380 이하, 370 이하, 360 이하 또는 350 이하일 수 있다.
본 출원의 구체예예서, 상기 (B) 폴리올은 화학식 1로 표시되는 디올을 0.01 내지 40 몰% 포함한다.
구체적으로, 상기 (B) 폴리올 중 화학식 1로 표시되는 디올의 함량은 예를 들어, 0.05 몰% 이상, 0.1 몰% 이상 또는 0.5 몰% 이상, 구체적으로는 1 몰% 이상, 2 몰% 이상, 3 몰% 이상, 4 몰% 이상, 5 몰% 이상, 6 몰% 이상, 7 몰% 이상, 8 몰% 이상, 9 몰% 이상, 10 몰% 이상, 11 몰% 이상, 12 몰% 이상, 13 몰% 이상, 14 몰% 이상, 15 몰% 이상, 16 몰% 이상, 17 몰% 이상, 18 몰% 이상, 19 몰% 이상, 20 몰% 이상, 21 몰% 이상, 22 몰% 이상, 23 몰% 이상, 24 몰% 이상, 25 몰% 이상, 26 몰% 이상, 27 몰% 이상, 28 몰% 이상, 29 몰% 이상, 30 몰% 이상, 31 몰% 이상, 32 몰% 이상, 33 몰% 이상, 34 몰% 이상 또는 35 몰% 이상일 수 있다. 그리고, 그 상한은 예를 들어, 39 몰% 이하, 38 몰% 이하, 37 몰% 이하, 36 몰% 이하, 35 몰% 이하, 34 몰% 이하, 33 몰% 이하, 32 몰% 이하, 31 몰% 이하, 30 몰% 이하, 29 몰% 이하, 28 몰% 이하, 27 몰% 이하, 26 몰% 이하, 25 몰% 이하, 24 몰% 이하, 23 몰% 이하, 22 몰% 이하, 21 몰% 이하, 20 몰% 이하, 19 몰% 이하, 18 몰% 이하, 17 몰% 이하, 16 몰% 이하, 15 몰% 이하,14 몰% 이하, 13 몰% 이하, 12 몰% 이하, 11 몰% 이하, 10 몰% 이하, 9 몰% 이하, 8 몰% 이하, 7 몰% 이하, 6 몰% 이하 또는 5 몰% 이하일 수 있다.
화학식 1로 표시되는 디올이 상술한 함량 범위를 만족하는 경우, 본 출원이 기술적 과제로 하는 우수한 내열성, 탄성 및 항균성을 함께 확보하는데 유리하다.
상기 (B) 폴리올 중 폴리에테르글리콜의 함량은 예를 들어, 폴리올 중 화학식 1로 표시되는 디올의 함량(몰%)을 제외한 잔량일 수 있다.
예를 들어, 상기 (B) 폴리올 중 폴리에테르글리콜의 함량은 60 몰% 이상, 65 몰% 이상, 70 몰% 이상, 75 몰% 이상, 80 몰% 이상, 85 몰% 이상, 90 몰% 이상 또는 95 몰% 이상일 수 있다. 그리고, 그 상한은 예를 들어, 99.99 몰% 이하, 99.95 몰% 이하, 99.9 몰% 이하 또는 99.5 몰% 이하, 구체적으로는 99 몰% 이하, 95 몰% 이하, 90 몰% 이하, 85 몰% 이하, 80 몰% 이하, 75 몰% 이하, 70 몰% 이하 또는 65 몰% 이하일 수 있다.
폴리에테르글리콜이 상술한 함량 범위를 만족하는 경우, 본 출원이 기술적 과제로 하는 우수한 내열성, 탄성 및 항균성을 함께 확보하는데 유리하다.
하나의 예시에서, 상기 (B) 폴리올에 대한 (A) 이소시아네이트의 몰비는 1.0 내지 2.0 범위일 수 있다. 이때, 몰비란, 중합체 제조에 사용되는 이소시아네이트 화합물의 몰수를 폴리올의 전체 몰수로 나눈 것을 의미한다.
예를 들어, 상기 (B) 폴리올에 대한 (A) 이소시아네이트의 몰비 하한은 1.1 이상, 1.2 이상, 1.3 이상, 1.4 이상, 1.5 이상, 1.6 이상, 1.7 이상, 1.8 이상 또는 1.9 이상일 수 있다. 그리고, 그 상한은 예를 들어 1.9 이하, 1.8 이하, 1.7 이하, 1.6 이하, 1.5 이하, 1.4 이하, 1.3 이하 또는 1.2 이하일 수 있다.
본 출원의 구체예에서, 상기 폴리우레탄 중합체는 이소시아네이트 화합물인 메틸렌디페닐디이소시아네이트(MDI); 폴리에테르 글리콜인 폴리테트라메틸렌글리콜(PTMG); 및 화학식 1 화합물 유래의 단위를 포함할 수 있다. 이 경우, 폴리우레탄 중합체는 아래 식으로 표현되는 구조를 포함할 수 있다.
[구조식 1]
Figure PCTKR2022012465-appb-img-000003
상기 구조식에서, n은 상술한 폴리에테르글리콜의 분자량을 만족할 수 있도록 하는 정수일 수 있다.
또한, 상기 구조식에서 m은 후술하는 우레탄 중합체의 분자량을 만족할 수 있도록 하는 정수일 수 있는데, 예를 들어, 3 내재 100 일 수 있다.
또 하나의 예시에서, 상기 폴리우레탄 중합체는 상기 구조식 1의 단위 외에, 이소시아네이트 화합물인 메틸렌디페닐디이소시아네이트(MDI) 및 폴리에테르 글리콜인 폴리테트라메틸렌글리콜(PTMG)을 포함하는 단위를 더 포함할 수 있다(즉, 화학식 1 화합물 유래의 단위가 포함되지 않은 단위). 이러한 단위는 상기 구조식 1에서 화학식 1 유래의 단위가 포함되지 않은 것으로, 이러한 단위에서는 정수 m이 3 내지 100 이거나 100 보다 더 클 수 있다.
하나의 예시에서, 상기 탄성 항균 폴리우레탄 중합체는 디아민 화합물 유래의 단위를 더 포함할 수 있다. 구체적으로, 상기 탄성 항균 폴리우레탄 중합체는 (A) 이소시아네이트 화합물; (B) 폴리에테르글리콜과 하기 화학식 1로 표시되는 디올을 포함하는 폴리올; 및 (C) 디아민 화합물 유래의 단위를 포함할 수 있다. 보다 구체적으로, (A) 이소시아네이트 화합물; 및 (B) 폴리에테르글리콜과 하기 화학식 1로 표시되는 디올을 포함하는 폴리올의 중합물(예: 프리폴리머)에 대해 디아민 화합물을 추가로 반응시켜 상기 탄성 항균 폴리우레탄 중합체가 제조될 수 있다.
상기 디아민 화합물은 소위 사슬 연장제로서 기능할 수 있다. 사용 가능한 디아민의 종류는 특별히 제한되지 않으나, 예를 들어, 에틸렌디아민, 1,2'-프로필렌디아민(1,2'-propylenediamine), 헥사메틸렌디아민(hexamethylene diamine), 크실렌디아민(xylenediamine), 4,4'-디페닐메탄디아민(4,4'-diphenylmethane diamine) 또는 하이드라진(hydrazine)과 같은 화합물이 본 출원에 사용될 수 있다. 또는 상기 나열된 화합물 중 1 이상이 사용될 수 있다.
하나의 예시에서, 상기 (B) 폴리올에 대한 (C) 디아민 화합물의 몰비는 1.0 미만일 수 있다. 예를 들어, 상기 (B) 폴리올에 대한 (C) 디아민 화합물의 몰비는 0.9 이하, 0.8 이하, 0.7 이하, 0.6 이하, 0.5 이하 또는 0.4 이하일 수 있다. 그리고, 그 하한은 예를 들어, 0.1 몰 이상, 0.2 몰 이상, 0.3 몰 이상 또는 0.4 몰 이상일 수 있다. 상기 범위 내에서 상술한 에틸렌 디아민의 기능을 적절히 확보할 수 있다.
특별히 제한되지는 않으나, 본 출원의 구체예예서, 상기 폴리우레탄은 1 만 이상의 분자량을 가질 수 있다. 구체적으로, 상기 폴리우레탄의 분자량은 5 만 이상 또는 10 만 이상일 수 있다. 그리고, 그 상한은 예를 들어, 30 만 이하, 25만 이하, 20 만 이하, 15 만 이하 또는 10만 이하일 수 있다. 상술한 범위를 만족하는 경우, 기계적 물성(예: 인장 특성)을 확보하는데 유리하고, 특히, 섬유 용도에서 탄성을 발휘하는데 유리할 수 있다.
상기 항균 탄성 폴리우레탄 중합체는 소정의 특성을 보일 수 있다.
하나의 예시에서, 본 출원의 폴리우레탄 중합체는 JIS Z 2801에 따른 측정시 90 % 이상의 항균율(정균 감소율)을 보일 수 있다. 예를 들어, 상기 항균율은 91 % 이상, 92 % 이상, 93 % 이상, 94 % 이상, 95 % 이상, 96 % 이상, 97 % 이상, 98 % 이상, 99 % 이상 또는 99.9 % 이상일 수 있다. 본 출원의 구체예에서 상기 폴리우레탄 중합체는 실질적으로 100 %의 항균율을 보일 수 있다. 항균율이 상기 수치 미만인 경우에는 우수한 항균성을 갖는다고 보기 어렵다.
하나의 예시에서, 본 출원의 폴리우레탄 중합체는 280 ℃ 이상의 열분해온도(Td)를 가질 수 있다. 이때 열분해 온도란, 도 1에 관한 실험에서와 같이, N2하에서 10 ℃/min 속도로 700 ℃까지 온도를 승온하면서, 중합체의 중량 감소(weight loss)를 평가하는 경우에, 중합체의 중량 감소(weight loss)가 10% 가 되는 시점의 온도(Td)(열분해 시작온도)를 의미할 수 있다. 상기 열분해 온도는 예를 들어, 285 ℃ 이상, 290 ℃ 이상, 295 ℃ 이상, 300 ℃ 이상, 305 ℃ 이상 또는 310 ℃ 이상일 수 있다. 그리고, 그 상한은 예를 들어, 350 ℃ 이하, 345 ℃ 이하, 340 ℃ 이하, 335 ℃ 이하, 330 ℃ 이하, 325 ℃ 이하, 320 ℃ 이하, 315 ℃ 이하, 310 ℃ 이하, 305 ℃ 이하 또는 300 ℃ 이하일 수 있다. 상기 범위 내에서 중합체는 우수한 가공성 및 내열 내구성을 가질 수 있다.
하나의 예시에서, 본 출원의 폴리우레탄 중합체는 ASTM D882 인장 시험법에 따라 측정된 인장변형률이 900 % 이상일 수 있다. 이때, 상기 인장변형률은 예를 들어, 폭과 길이의 비(폭 : 길이)가 1 : 1 내지 100, 1 : 1 내지 50, 1 : 1 내지 30 또는 1 : 1 내지 10인 탄성 항균 폴리우레탄 중합체 시료에 대하여 측정될 수 있다. 구체적으로, 상기 인장변형률은 예를 들어, 910 % 이상, 920 % 이상, 930 % 이상, 940 % 이상, 950 % 이상, 960 % 이상, 970 % 이상, 980 % 이상, 990 % 이상, 1000 % 이상 또는 1010 % 이상일 수 있다. 그리고, 그 상한은 예를 들어 1100 % 이하, 1090 % 이하, 1080 % 이하, 1070 % 이하, 1060 % 이하, 1050 % 이하, 1040 % 이하, 1030 % 이하, 1020 % 이하, 1010 % 이하 또는 1000 % 이하일 수 있다. 후술하는 실험에서 확인되는 것과 같이, 본 출원의 중합체는 항균성 확보를 위해 화학식 1의 디올을 도입하면서도, 높은 인장변형률을 유지할 수 있다.
하나의 예시에서, 본 출원의 폴리우레탄 중합체는 ASTM D882 인장 시험법에 따라 측정된 인장강도가 30 Mpa 이상일 수 있다. 이때, 상기 인장강도는 예를 들어, 폭과 길이의 비(폭 : 길이)가 1 : 1 내지 100, 1 : 1 내지 50, 1 : 1 내지 30 또는 1 : 1 내지 10인 탄성 항균 폴리우레탄 중합체 시료에 대하여 측정될 수 있다. 구체적으로, 상기 인장강도는 예를 들어, 35 Mpa 이상, 40 Mpa 이상, 45 Mpa 이상, 50 Mpa 이상, 55 Mpa 이상 또는 60 Mpa 이상일 수 있다. 그리고, 그 상한은 예를 들어, 65 Mpa 이하, 60 Mpa 이하, 55 Mpa 이하, 50 Mpa 이하, 45 Mpa 이하, 40 Mpa 이하 또는 35 Mpa 이하일 수 있다. 후술하는 실험에서 확인되는 것과 같이, 본 출원의 중합체는 항균성 확보를 위해 화학식 1의 디올을 도입하면서도, 높은 인장강도를 유지할 수 있다.
하나의 예시에서, 본 출원의 폴리우레탄 중합체는, 전체 중합체에 대하여 화학식 1로 표시되는 미반응 디올의 함량이 1,000 ppm 이하를 만족할 수 있다. 상기 미반응 함량은 HPLC(High Perfomance Liquid Chromatography)를 이용하여 확인될 수 있다. 구체적으로, 전체 중합체에 대한 화학식 1로 표시되는 미반응 디올의 함량은 950 ppm 이하, 900 ppm 이하, 850 ppm 이하, 800 ppm 이하, 750 ppm 이하, 700 ppm 이하, 650 ppm 이하, 600 ppm 이하, 550 ppm 이하, 500 ppm 이하, 450 ppm 이하, 400 ppm 이하, 350 ppm 이하, 300 ppm 이하, 250 ppm 이하, 200 ppm 이하, 150 ppm 이하, 100 ppm 이하 또는 50 ppm 이하일 수 있다. 미반응 단량체의 함량이 증가하거나 상기 범위를 초과하게 되는 경우, 화학결합을 하지 못한 화학식 1 단량체로 인해 기계적 물성(인장 특성)이 저하할 수 있다.
상기 폴리우레탄 중합체의 용도는 특별히 제한되지 않는다. 예를 들어, 상기 중합체는 섬유(예: 스판덱스와 같은 탄성사 등), 직물, 의복(예: 속옷, 수영복, 양말 등), 페인트, 차량용 내장재, 차량용 내장재, 매트리스 또는 발포체(foams) 등의 원료로 사용될 수 있다.
본 출원에 관한 다른 일례에서, 본 출원은 탄성 항균 폴리우레탄 중합체를 제조하는 방법에 관한 것이다. 이러한 방법에 따라 상술한 구성의 탄성 항균 폴리우레탄 중합체가 제조된다.
구체적으로, 상기 제조방법은, (A) 이소시아네이트 화합물; 및 (B) 폴리에테르글리콜과 하기 화학식 1로 표시되는 디올을 포함하는 폴리올을 혼합하고, 반응시키는 단계(S1)를 포함한다. 이때, 상기 (B) 폴리올은 화학식 1로 표시되는 디올을 0.01 내지 40 몰% 포함한다.
[화학식 1]
Figure PCTKR2022012465-appb-img-000004
상기 화학식 1에서,
R1 및 R2는, 각각 독립적으로, 수소, 알킬기, 할로알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로 아릴기, 아릴옥시기, 알콕시기, 지환족 구조, 헤테로 지환족 구조 또는 알킬티오기 또는 아릴티오기이고,
L1 및 L2, 각각 독립적으로, 알킬렌기, 헤테로아킬렌기, 싸이클로알킬렌기, 아릴렌기 또는 헤테로아릴렌기이며,
L3는 직접결합, 알킬렌기, 헤테로아킬렌기, 싸이클로알킬렌기, 아릴렌기 또는 헤테로아릴렌기이고,
상기 A는 탄소수가 6 초과인 알킬렌기이며,
X-는 음이온을 의미한다.
이때, 상기 화학식 1 A의 탄소수는 주쇄의 탄소수를 의미할 수 있다.
본 출원의 폴리우레탄을 형성하는 성분, 즉 폴리우레탄 제조에 사용되는 중합성분과 그 함량, 그리고 제조된 폴리우레탄 중합체의 특성 등에 관한 설명은 상술한 것과 동일하므로 이를 생략한다.
하나의 예시에서, 상기 반응은 100 ℃ 이하의 온도에서 진행될 수 있다. 반응온도가 100 ℃ 보다 높을 경우에는 디이소시아네이트는 부반응을 통해 다이머(dimer)를 생성할 수 있고, 이는 고분자 합성에 장애가 된다. 구체적으로, 상기 반응 온도는 95 ℃ 이하, 90 ℃ 이하, 85 ℃ 이하, 80 ℃ 이하, 75 ℃ 이하, 70 ℃ 이하, 65 ℃ 이하 또는 60 ℃ 이하일 수 있다. 그 하한은 예를 들어, 50 ℃ 이상, 55 ℃ 이상, 60 ℃ 이상, 65 ℃ 이상 또는 70 ℃ 이상일 수 있다.
하나의 예시에서, 상기 반응은 수십분 내지 수십 시간 동알 이루어질 수 있다. 구체적으로, 상기 반응은 예를 들어, 30 분 이상, 60 분 이상 또는 90 분 이상 이루어질 수 있다. 그리고 상기 반응 시간의 상한은 예를 들어, 30 시간 이하, 25 시간 이하, 20 시간 이하, 15 시간 이하, 10 시간 이하 또는 5 시간 이하일 수 있다. 상기 시간 범위 내에서 중합체의 분자량을 적절히 조절하고, 부반응의 발생을 조절할 수 있다.
하나의 예시에서, 상기 방법은 (A) 이소시아네이트 화합물 및 (B) 폴리에테르글리콜과 하기 화학식 1로 표시되는 디올을 포함하는 폴리올을 반응시켜 얻어진 프리폴리머(prepolymer)에 (C) 디아민 화합물을 추가 반응시키는 단계(S2)를 더 포함할 수 있다.
구체적으로, 상기 프리폴리머 또는 그 용액을 용매에 희석하여 희석액을 제조한다. 희석액 제조를 위한 용매의 종류는 특별히 제한되지 않으나, 예를 들어, DMAc(dimethylacetamide)가 사용될 수 있다. 이때, 상기 희석액의 농도는, 전체 희석액 중량 중 프리폴리머의 함량이 약 10 내지 40 또는 20 내지 30 중량% 범위로 조절될 수 있다. 그리고 상기와 같이 제조된 프리폴리머 희석액에 디아민 화합물이 첨가된다. 본 출원의 구체예에 따르면, 디아민 화합물을 첨가할 때 급격한 반응이 일어나지 않도록, 디아민 화합물이 프리폴리머 희석액에 첨가될 때의 온도를 10 ℃ 이하, 예를 들어 약 0 내지 4 ℃ 수준으로 조절할 수 있다. 디아민 화합물 첨가 후에는, 약 수 시간 동안 예를 들어, 1 내지 2 시간 동안 반응이 이루어질 수 있다.
상기와 같이 사슬 연장제인 디아민 화합물과 프리폴리머의 반응을 통해 본 출원의 항균 탄성 폴리우레탄이 제공될 수 있다.
상술한 방법에 의해 제조된 항균 탄성 폴리우레탄은 상술한 특성(예: 항균율, 인장 변형률, 인장강도 및 미반응 디올 함량)을 만족한다.
본 출원에 관한 또 다른 일례에서, 본 출원은 상기 항균 탄성 폴리우레탄 중합체를 포함하는 엔지니어링 플라스틱에 관한 것이다.
상기 엔지니어링 플라스틱은 예를 들어, 산업용 또는 공업용 기계, 기구 등의 부품재료로 사용되는 플라스틱으로서, 그 구체적인 용도는 특별히 제한되지 않는다.
본 출원에 관한 또 다른 일례에서, 본 출원은 상기 항균 탄성 폴리우레탄 중합체를 포함하는 물품에 관한 것이다.
하나의 예시에서, 상기 물품은 섬유(예: 스판덱스와 같은 탄성사 등), 직물, 의복(예: 속옷, 수영복, 양말 등), 페인트, 차량용 내장재, 차량용 내장재, 매트리스 또는 발포체(foams) 일 수 있다. 본 출원의 구체예에 따르면, 상기 물품은 상술한 항균 탄성 중합체를 포함하는 스판덱스 섬유, 상기 섬유를 포함하는 직물 또는 의복일 수 있다.
본 출원에 관한 또 다른 일례에서, 본 출원은 탄성사 제조용 방사 조성물(또는 방사액)에 관한 것이다. 상기 방사 조성물은 적어도 상술한 탄성 중합체를 포함한다.
본 출원에 관한 또 다른 일례에서, 본 출원은 상기 탄성사 제조용 방사 조성물(또는 방사액)을 제조하는 방법에 관한 것이다. 상기 방법은 상술한 탄성 항균 폴리우레탄 중합체를 제조하는 방법 및 공정 등에 관한 내용을 모두 포함한다.
본 출원에 관한 또 다른 일례에서, 본 출원은 상기 항균 탄성 폴리우레탄 중합체를 포함하는 탄성사(예: 스판덱스)에 관한 것이다.
상기 탄성사는 상술한 것과 같은 특성의 폴리우레탄 중합체를 포함하기 때문에, 인장 특성이나 내열 내구성의 저하 없이도 항균성을 제공할 수 있다. 이러한 탄성사는 위생용 또는 의료용 섬유에 사용될 수 있다.
탄성사의 형태는 모노 또는 멀티 필라멘트일 수 있는 것과 같이 특별히 제한되지 않는다. 또한, 그 섬도 역시 특별히 제한되지 않고, 섬유가 사용되는 용도에 따라 적절히 조절될 수 있다.
폴리우레탄 중합체에 관한 설명은 상술한 것과 동일하므로, 이를 생략한다.
본 출원에 관한 또 다른 일례에서, 본 출원은 상기 탄성사를 제조하는 방법에 관한 것이다. 구체적으로, 상기 방법은 방사액 제조 단계(S1), 및 상기 방사액을 방사하는 단계(S2)를 포함한다.
본 출원의 구체예에서, 상기 단계(S1)은 (A) 이소시아네이트 화합물, 및 (B) 폴리에테르글리콜과 상기 화학식 1로 표시되는 디올을 포함하는 폴리올을 혼합 및 반응시키는 단계(S11); 및 (A) 이소시아네이트 화합물; 및 (B) 폴리에테르글리콜과 상기 화학식 1로 표시되는 디올을 포함하는 폴리올을 반응시켜 얻어진 프리폴리머(prepolymer)에 (C) 디아민 화합물을 추가 반응시키는 단계(S12)를 포함한다. 이때, 상기 (B) 폴리올은 화학식 1로 표시되는 디올을 0.01 내지 40 몰% 포함한다.
그 외, 상기 방사액 제조 단계와 관련하여, 방사액의 주성분인 탄성 항균 폴리우레탄을 제조하는 내용(예: 프리폴리머 제조, 프리폴리머와 디아민의 반응 등)은 탄성 항균 폴리우레탄 및 그 제조방법에서 설명한 것과 동일하므로, 이를 생략한다.
상기 단계(S2)와 관련하여, 섬유 제조를 위한 방사 공정은 특별히 제한되지 않는다. 예를 들어, 스피너렛(spinneret)을 구비한 방사 장치가 사용될 수 있고, 방사 시의 온도는 예를 들어 200 ℃ 이상 또는 250℃ 이상 수준으로 조절될 수 있다.
방사 이후에는 공기나 액체(예: 물이나 기타 용매를 포함하는 액체)에 의한 냉각이 이루어질 수 있다.
하나의 예시에서, 상기 방법은 권취하는 단계(S3)를 더 포함할 수 있다. 방사 또는 방사 후 냉각된 섬유는 권취 롤러와 같이 공지된 방법이나 기기를 통해 권취될 수 있다.
본 출원의 구체예에 따르면, 우수한 항균성, 기계적 물성(예: 인장강도 및 인장변형률) 및 내열성 등을 갖는 폴리우레탄이 제공될 수 있다.
도 1은 내열성에 관한 실험 결과를 도시한 그래프이다. 구체적으로, 도 1a는 비교예 1에 관한 것이고, 도 1b는 실시예 1에 관한 것이며, 도 1c는 실시예 2에 관한 것이다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
중합체의 제조
실시예 1
MDI(Methylene diphenyl diisocyanate)(Mw 분자량 250.25) 11.6g, PTMG(Poly(tetramethylene ether)glycol)(Mw 분자량 2000.0) 52.3g 및 아래 [화학식 1-1]의 구조를 갖는 4급 암모늄 디올(Mw 분자량 368.00) 1.1 g을 반응기 내에 투입하고, 반응기 내부를 N2로 치환하였다. 그 후, DMAc 용매를 반응기에 투입하고, 반응기를 90 ℃ 로 승온시켜 90 분 간 반응을 진행하여 폴리우레탄 프리폴리머를 제조하였다.
[화학식 1-1]
Figure PCTKR2022012465-appb-img-000005
그리고, 제조된 폴리우레탄 프리폴리머 용액을 DMAc 용매와 혼합하여 약 25 중량% 농도로 희석된 프리폴리머 용액을 제조하고, 약 0 내지 4 ℃ 온도 범위 내에서 에틸렌디아민(Ethylene diamine)(Mw 분자량 60.10) 0.9g을 첨가하였다. 이후, 에틸렌 디아민 첨가 후 약 1.5 시간 가량 반응을 진행하고, 폴리우레탄 중합체를 제조하였다.
실시예 2
MDI(Methylene diphenyl diisocyanate)(Mw 분자량 250.25) 11.2g, PTMG(Poly(tetramethylene ether)glycol)(Mw 분자량 2000.0) 53.3g, 상기 [화학식 1-1]의 구조를 갖는 4급 암모늄 디올(Mw 분자량 368.00) 0.5 g, 및 에틸렌디아민(Ethylene diamine)(Mw 분자량 60.10) 0.9g을 반응기 내에 투입한 것을 제외하고, 실시예 1과 동일하게 폴리우레탄을 제조하였다.
실시예 3
MDI(Methylene diphenyl diisocyanate)(Mw 분자량 250.25) 10.9g, PTMG(Poly(tetramethylene ether)glycol)(Mw 분자량 2000.0) 54.0g, 상기 [화학식 1-1]의 구조를 갖는 4급 암모늄 디올(Mw 분자량 368.00) 0.1 g, 및 에틸렌디아민(Ethylene diamine)(Mw 분자량 60.10) 0.9g을 반응기 내에 투입한 것을 제외하고, 실시예 1과 동일하게 폴리우레탄을 제조하였다.
비교예 1
MDI(Methylene diphenyl diisocyanate)(Mw 분자량 250.25) 10.8g, PTMG(Poly(tetramethylene ether)glycol)(Mw 분자량 2000.0) 54.2g, 및 에틸렌디아민(Ethylene diamine)(Mw 분자량 60.10) 0.9g을 반응기 내에 투입한 것을 제외하고, 실시예 1과 동일하게 폴리우레탄을 제조하였다.
비교예 2
실시예 3에서 사용한 것과 동일한 함량의 PTMG, MDI 및 [화학식 1-1]을 이용하여 폴리우레탄을 제조하였다. 다만, PTMG, MDI 및 [화학식 1-1]을 함께 반응시키는 실시예 3과 달리, PTMG와 MDI를 먼저 반응시키고(MDI의 NCO의 반응율 수준이 약 99 %에 이를 때까지 반응시킴), 상기 [화학식 1-1]을 chain extender로 투입하여 잔여 -NCO 기에 반응시켰다.
실시예와 비교예의 각 중합체 제조에 사용된 성분 중 MDI, PTMG 및 [화학식 1-1] 성분 간 몰비는 아래 표 1과 같다.
MDI 폴리올
폴리올 PTMG 화학식 1-1
실시예 1 1.60 1.00 0.90 0.10
실시예 2 1.60 1.00 0.95 0.05
실시예 3 1.60 1.00 0.99 0.01
비교예 1 1.49 1.00 1.00 -
비교예 2 1.60 1.00 0.99 0.01
* 단위
(1) MDI와 폴리올 간 몰 비로서, 이소시아네이트 화합물의 몰수를 폴리올의 전체 몰수로 나누어 계산하였다.
(2) 폴리올 중 PTMG 또는 화학식 1-1이 이 차지하는 몰수의 비율로서, % 비율로 표현하면 몰%를 의미한다.
평가
(1) 미반응된 [화학식 1-1]의 함량
중합 후 폴리우레탄 내 잔류하는 화학식 1-1 모노머를 HPLC(High Perfomance Liquid Chromatography) 분석 장치를 통해 정량적으로 측정하였다. 보다 구체적으로, 먼저 제조된 수지 펠렛을 일정량의 용매(식염수)에 넣고 24 시간 교반 후 추출액을 필터하여 수지 내 미반응 성분을 추출한다. 이렇게 얻어진 용액을 취한 후 HPLC 분석하고, 미리 측정한 공중합체 모노머의 HPLC 분석 결과와 비교하여, 수지 내 잔류하는 화학식 1 화합물의 성분을 측정하였다. 후술하는 실험 결과를 볼 때, 중합된 폴리우레탄 내 잔류하는 미반응 화학식 1-1의 모노머는 기계적 물성 저하의 원인으로 판단된다.
(2) 항균성 평가
실시예 1-3 및 비교예 1-2 각 중합체의 항균력을 평가하였다. 구체적으로, DMF(dimethylformamide)를 용매로 사용하여 제조된 20wt% 농도의 중합용액을 solvent casting하여 필름(5cm x 5cm)을 제조하고, JIS Z2801 방법에 따라 항균 평가를 진행하였다.
(3) 내구성(내열성) 평가
실시예 1-2 및 비교예 각 중합체의 내열성을 평가하였다. 구체적으로, N2하에서 10 ℃/min 속도로 700 ℃까지 온도를 승온하면서, 중합체의 weight loss를 비교하였다. 그 결과는 도 1a(비교예 1), 도 1b(실시예 1) 및 도 1c(실시예 2)과 같다.
도 1을 보면, 실시예에서와 같이 폴리우레탄 중합시 화학식 1(또는 화학식 1-1) 화합물의 단위를 도입하더라도, 폴리우레탄의 내열성 저하가 없음이 확인된다.
(4) 인장 특성 평가
실시예 1-3 및 비교예 1-2 각 중합체의 인장 특성을 평가하였다. 구체적으로, ASTM D882의 인장 시험법에 따라 시료의 인장강도와 인장변형률을 측정하였다. 참고로, ASTM D882는 박막(약 두께가 1 mm 미만) 필름의 인장 시험에 관한 것이고, 본 발명에 대한 실험시 시료의 규격은 5mm x 50mm (폭 x 길이) 이다(두께: 약 200 내지 300 ㎛).
참고로, 인장강도(Tensile strength)는 재료가 인장 하중에 의해 파단할 때까지의 최대 응력을 의미하고, 최대 하중을 재료의 단면적으로 나눈 값이다. 그리고, 인장변형률(Tensile strain)은 재료가 인장 응력에 의해 변형을 일으켰을 때의 변형률을 의미하는 것으로. 처음 길이에서 길이의 변화량에 대한 비로 나타낸다.
화학식 1-1의
미반응량(ppm)
E.Coli (ATCC 8739)에 대한 항균력 (%) 인장강도(MPa) 인장변형률(%)
실시예 1 648 100 34.8±1.26 976.6±24.83
실시예 2 330 100 61.2±1.28 934.2±24.8
실시예 3 272 100 54.8±5.02 986.6±30.93
비교예 1 - 0 29.9±1.32 1023.1±50.45
비교예 2 1,271 100 25.3±2.76 736.1±36.35
상기 표 1에서와 같이, 실시예 1-3은 비교예 1 -2 대비 높은 인장강도를 갖는다. 인장 변형률의 경우, 항균성을 추가로 확보한 실시예 1-3은 비교예 1에 준하는 인장 변형률을 보인다. 즉, 실시예 1-3은 (화학식 1-1이 추가 반응되었음에도) 준수한 탄성을 보인다.
한편, 본 출원 폴리우레탄 중합체의 제조 과정과 달리 화학식 1-1의 디올이 사슬연장제로 사용된 비교예 2의 경우에는, 미반응 단량체가 과량 존재하여 기계적 물성(인장강도, 인장 변형률)이 좋지 못하다는 것이 확인된다.

Claims (22)

  1. (A) 이소시아네이트 화합물; 및 (B) 폴리에테르글리콜과 하기 화학식 1로 표시되는 디올을 포함하는 폴리올 유래의 단위를 포함하고,
    상기 (B) 폴리올은 화학식 1로 표시되는 디올을 0.01 내지 40 몰% 포함하는,
    탄성 항균 폴리우레탄 중합체:
    [화학식 1]
    Figure PCTKR2022012465-appb-img-000006
    (단, 상기 화학식 1에서,
    R1 및 R2는, 각각 독립적으로, 수소, 알킬기, 할로알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로 아릴기, 아릴옥시기, 알콕시기, 지환족 구조, 헤테로 지환족 구조 또는 알킬티오기 또는 아릴티오기이고,
    L1 및 L2, 각각 독립적으로, 알킬렌기, 헤테로아킬렌기, 싸이클로알킬렌기, 아릴렌기 또는 헤테로아릴렌기이며,
    L3는 직접결합, 알킬렌기, 헤테로아킬렌기, 싸이클로알킬렌기, 아릴렌기 또는 헤테로아릴렌기이고,
    상기 A는 탄소수가 6 초과인 알킬렌기이며,
    X-는 음이온을 의미한다.)
  2. 제 1 항에 있어서,
    JIS Z 2801에 따른 측정시 90 % 이상의 항균율을 보이는,
    탄성 항균 폴리우레탄 중합체.
  3. 제 1 항에 있어서,
    ASTM D882 인장 시험법에 따라 측정된 인장변형률이 900 % 이상인,
    탄성 항균 폴리우레탄 중합체(단, 상기 인장변형률은 폭과 길이의 비(폭 : 길이)가 1 : 1 내지 100인 탄성 항균 폴리우레탄 중합체 시료에 대하여 측정한 것이다).
  4. 제 1 항에 있어서,
    ASTM D882 인장 시험법에 따라 측정된 인장강도가 30 Mpa 이상인,
    탄성 항균 폴리우레탄 중합체(단, 상기 인장강도는 폭과 길이의 비(폭 : 길이)가 1 : 1 내지 100인 탄성 항균 폴리우레탄 중합체 시료에 대하여 측정한 것이다).
  5. 제 1 항에 있어서,
    화학식 1로 표시되는 미반응 디올의 함량이 전체 중합체에 대하여 1,000 ppm 이하인,
    탄성 항균 폴리우레탄 중합체.
  6. 제 1 항에 있어서,
    상기 (B) 폴리올에 대한 (A) 이소시아네이트 화합물의 몰비가 1.0 내지 2.0 범위인,
    탄성 항균 폴리우레탄 중합체.
  7. 제 1 항에 있어서,
    상기 A는 탄소수가 6 초과 20 이하의 알킬렌기인,
    탄성 항균 폴리우레탄 중합체.
  8. 제 1 항에 있어서,
    상기 A는 아래 화학식 2로 표시되는 구조를 갖는,
    탄성 항균 폴리우레탄 중합체:
    [화학식 2]
    Figure PCTKR2022012465-appb-img-000007
    (상기 화학식 2에서,
    n은 4 이상의 수이고, 상기 *로 표시되는 양 말단에는 L3 및 R2가 각각 결합될 수 있다. 단, L3가 직접결합인 경우에는 상기 *로 표시되는 하나의 말단은 N 원자와 결합된다.)
  9. 제 1 항에 있어서,
    상기 X-는 F-, Cl-, Br-, I-, NO3 -, (CN)2N-, BF4 -, ClO4 -, RSO3 - (여기서, R은 탄소수 1-9의 알킬기 또는 페닐기), RCOO- (여기서, R은 탄소수 1-9의 알킬기 또는 페닐기), PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, (CF3SO3 -)2, (CF2CF2SO3 -)2, (C2F5SO2)2N-, (CF3SO3)2N-, (CF3SO2)(CF3CO)N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3COO-, C3F7COO-, CF3SO3 -, 또는 C4F9SO3 - 인,
    탄성 항균 폴리우레탄 중합체.
  10. 제 1 항에 있어서,
    사슬 연장제인 (C) 디아민 화합물 유래의 단위를 더 포함하는,
    탄성 항균 폴리우레탄 중합체.
  11. (A) 이소시아네이트 화합물, 및 (B) 폴리에테르글리콜과 하기 화학식 1로 표시되는 디올을 포함하는 폴리올을 반응시키는 단계를 포함하고,
    상기 (B) 폴리올은 화학식 1로 표시되는 디올을 0.01 내지 40 몰% 포함하는,
    탄성 항균 폴리우레탄 중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2022012465-appb-img-000008
    (상기 화학식 1에서,
    R1 및 R2는, 각각 독립적으로, 수소, 알킬기, 할로알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로 아릴기, 아릴옥시기, 알콕시기, 지환족 구조, 헤테로 지환족 구조 또는 알킬티오기 또는 아릴티오기이고,
    L1 및 L2, 각각 독립적으로, 알킬렌기, 헤테로아킬렌기, 싸이클로알킬렌기, 아릴렌기 또는 헤테로아릴렌기이며,
    L3는 직접결합, 알킬렌기, 헤테로아킬렌기, 싸이클로알킬렌기, 아릴렌기 또는 헤테로아릴렌기이고,
    상기 A는 탄소수가 6 초과인 알킬렌기이며,
    X-는 음이온을 의미한다.)
  12. 제 11 항에 있어서,
    상기 (B) 폴리올에 대한 상기 (A) 이소시아네이트 화합물의 몰비가 1.0 내지 2.0 범위가 되도록 상기 (B) 폴리올과 상기 (A) 이소시아네이트 화합물을 혼합하고 반응시키는,
    탄성 항균 폴리우레탄 중합체의 제조방법.
  13. 제 11 항에 있어서,
    상기 반응을 100 ℃ 이하의 온도에서 진행하는,
    탄성 항균 폴리우레탄 중합체의 제조방법.
  14. 제 11 항에 있어서,
    상기 A는 탄소수가 6 초과 20 이하의 알킬렌기인,
    탄성 항균 폴리우레탄 중합체의 제조방법.
  15. 제 11 항에 있어서,
    상기 A는 아래 화학식 2로 표시되는 구조를 갖는,
    탄성 항균 폴리우레탄 중합체의 제조방법:
    [화학식 2]
    Figure PCTKR2022012465-appb-img-000009
    (상기 화학식 2에서,
    n은 4 이상의 수이고, 상기 *로 표시되는 양 말단에는 L3 및 R2가 각각 결합될 수 있다. 단, L3가 직접결합인 경우에는 상기 *로 표시되는 하나의 말단은 N 원자와 결합된다.)
  16. 제 11 항에 있어서,
    상기 X-는 F-, Cl-, Br-, I-, NO3 -, (CN)2N-, BF4 -, ClO4 -, RSO3 - (여기서, R은 탄소수 1-9의 알킬기 또는 페닐기), RCOO- (여기서, R은 탄소수 1-9의 알킬기 또는 페닐기), PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, (CF3SO3 -)2, (CF2CF2SO3 -)2, (C2F5SO2)2N-, (CF3SO3)2N-, (CF3SO2)(CF3CO)N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3COO-, C3F7COO-, CF3SO3 -, 또는 C4F9SO3 - 인, 탄성 항균 폴리우레탄 중합체의 제조방법.
  17. 제 11 항에 있어서,
    (A) 이소시아네이트 화합물; 및 (B) 폴리에테르글리콜과 하기 화학식 1로 표시되는 디올을 포함하는 폴리올을 반응시켜 얻어진 프리폴리머(prepolymer)에 사슬 연장제인 (C) 디아민 화합물을 추가 반응시키는 단계
    를 더 포함하는, 탄성 항균 폴리우레탄 중합체의 제조방법.
  18. 제 11 항에 있어서,
    상기 탄성 항균 폴리우레탄 중합체는 JIS Z 2801에 따른 측정시 90 % 이상의 항균율을 보이는,
    탄성 항균 폴리우레탄 중합체의 제조방법.
  19. 제 11 항에 있어서,
    상기 탄성 항균 폴리우레탄 중합체는 ASTM D882 인장 시험법에 따라 측정된 인장변형률이 900 % 이상인,
    탄성 항균 폴리우레탄 중합체의 제조방법(단, 상기 인장변형률은 폭과 길이의 비(폭 : 길이)가 1 : 1 내지 100인 탄성 항균 폴리우레탄 중합체 시료에 대하여 측정한 것이다).
  20. 제 11 항에 있어서,
    상기 탄성 항균 폴리우레탄 중합체는 ASTM D882 인장 시험법에 따라 측정된 인장강도가 30 Mpa 이상인,
    탄성 항균 폴리우레탄 중합체의 제조방법(단, 상기 인장강도는 폭과 길이의 비(폭 : 길이)가 1 : 1 내지 100인 탄성 항균 폴리우레탄 중합체 시료에 대하여 측정한 것이다).
  21. 제 11 항에 있어서,
    상기 탄성 항균 폴리우레탄 중합체는 화학식 1로 표시되는 미반응 디올의 함량이 전체 중합체에 대하여 1,000 ppm 이하인,
    탄성 항균 폴리우레탄 중합체의 제조방법
  22. 제 1 항에 따른 폴리우레탄 중합체를 포함하는 물품이고,
    상기 물품은 섬유, 직물, 의복, 페인트, 차량용 내장재, 차량용 내장재, 매트리스 또는 발포체(foams)인, 물품.
PCT/KR2022/012465 2021-08-23 2022-08-19 탄성 항균 폴리우레탄, 그 제조방법 및 이를 포함하는 물품 WO2023027438A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280039610.5A CN117413001A (zh) 2021-08-23 2022-08-19 具有弹性的抗菌聚氨酯、其制备方法和包含其的制品
EP22861648.8A EP4328251A1 (en) 2021-08-23 2022-08-19 Elastic and antibacterial polyurethane, preparation method therefor, and product comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0110765 2021-08-23
KR20210110765 2021-08-23
KR10-2022-0102689 2022-08-17
KR1020220102689A KR20230029532A (ko) 2021-08-23 2022-08-17 탄성 항균 폴리우레탄, 그 제조방법 및 이를 포함하는 물품

Publications (1)

Publication Number Publication Date
WO2023027438A1 true WO2023027438A1 (ko) 2023-03-02

Family

ID=85323307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012465 WO2023027438A1 (ko) 2021-08-23 2022-08-19 탄성 항균 폴리우레탄, 그 제조방법 및 이를 포함하는 물품

Country Status (2)

Country Link
EP (1) EP4328251A1 (ko)
WO (1) WO2023027438A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250649A (en) * 1990-06-29 1993-10-05 Becton, Dickinson And Company Melt processable polyurethaneurea copolymers and method for their preparation
US20120015574A1 (en) * 2009-03-27 2012-01-19 Carl Freudenberg Kg Method for formulating a reactive polyurethane emulsion
KR20130122622A (ko) * 2010-10-19 2013-11-07 도레이 오페론텍스 가부시키가이샤 폴리우레탄 탄성사 및 그 제조 방법
US20180146665A1 (en) * 2016-11-28 2018-05-31 Aleo Bme, Inc. Clickable antimicrobial molecules and polymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250649A (en) * 1990-06-29 1993-10-05 Becton, Dickinson And Company Melt processable polyurethaneurea copolymers and method for their preparation
US20120015574A1 (en) * 2009-03-27 2012-01-19 Carl Freudenberg Kg Method for formulating a reactive polyurethane emulsion
KR20130122622A (ko) * 2010-10-19 2013-11-07 도레이 오페론텍스 가부시키가이샤 폴리우레탄 탄성사 및 그 제조 방법
US20180146665A1 (en) * 2016-11-28 2018-05-31 Aleo Bme, Inc. Clickable antimicrobial molecules and polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUEI-HSIUNG WANG ; MEI-SHOW LIN: "Poly(urea-urethane) polymers with multi-functional properties", JOURNAL OF POLYMER RESEARCH, KLUWER ACADEMIC PUBLISHERS-CONSULTANTS BUREAU, NL, vol. 7, no. 2, 1 June 2000 (2000-06-01), NL , pages 81 - 90, XP019222041, ISSN: 1572-8935, DOI: 10.1007/s10965-006-0107-y *

Also Published As

Publication number Publication date
EP4328251A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
EP1489129B1 (de) Organopolysiloxan/Polyharnstoff/Polyurethan-Blockcopolymere
US20050171320A1 (en) Continuous preparation of thermoplastically processable polyurethanes
CA1239729A (en) P-tmxdi polyurethane elastomers with good compression set properties
WO2021118124A1 (ko) 비혼합형 양친매성 열가소성 폴리우레탄, 이의 제조방법 및 이를 포함하는 삽입형 의료장치
US4448905A (en) Alcohol substituted amides as chain extenders for polyurethanes
WO2020159282A1 (ko) 폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법
WO2016010261A1 (ko) 고기능성 천연원료 유래 에폭시 수지 및 그의 제조방법과 이를 이용한 에폭시수지 경화 조성물
WO2012060516A1 (ko) 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물
WO2023027438A1 (ko) 탄성 항균 폴리우레탄, 그 제조방법 및 이를 포함하는 물품
WO2021206269A1 (ko) 폴리티올 화합물의 제조 방법과 이를 포함한 광학 재료용 중합성 조성물 및 광학 렌즈
WO2017204509A1 (en) Bio-based polyol for preparing polyurethane
WO2018236192A1 (ko) 친환경 폴리우레탄 폼 형성용 조성물 및 폴리우레탄 폼의 제조 방법
WO2017164504A1 (ko) 폴리유산 수지 조성물 및 이를 포함한 성형용품
WO2021071250A1 (ko) 열접착성 섬유 및 이를 포함하는 자동차 내외장재용 섬유집합체
WO2022005223A1 (ko) 고강도 자가치유성 폴리우레탄 중합체 및 이를 포함하는 온도센서용 웹-필름
WO2023085797A1 (ko) 알데히드 화합물 및 알데히드 화합물의 딜스-알더 반응물을 이용한 환경 친화적인 폴리우레탄 폼과 그 제조 방법
KR101893728B1 (ko) 우레탄 기반의 형상기억고분자 및 이를 포함하는 조성물
WO2013176349A1 (ko) 신규 폴리실록산, 그 제조방법 및 이를 포함하는 폴리카보네이트-폴리실록산 공중합체
KR20230029532A (ko) 탄성 항균 폴리우레탄, 그 제조방법 및 이를 포함하는 물품
WO2017122879A1 (ko) 해사성 개선 및 핫멜트 접착제와의 접착특성이 향상된 스판덱스 및 이의 제조방법
WO2018088775A1 (ko) 세포막-모방 브러쉬 고분자 및 그 제조방법
WO2021125880A1 (ko) 자동차 도막 보호용 시트 및 이의 제조방법
WO2022010208A1 (ko) 포도당 함유 당류 조성물을 이용한 폴리올 조성물 및 이를 포함하는 폴리우레탄 폼
KR100415729B1 (ko) 열가소성 폴리우레탄 탄성체의 제조방법
US3816425A (en) Polyol n,n",n"-tris(2-hydroxy-3-(beta-cyanoethoxy)propyl)-n'-aminoethyl-piperazine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022861648

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023574262

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022861648

Country of ref document: EP

Effective date: 20231121