WO2023026638A1 - 室外機、室内機、及び空気調和システム - Google Patents

室外機、室内機、及び空気調和システム Download PDF

Info

Publication number
WO2023026638A1
WO2023026638A1 PCT/JP2022/023628 JP2022023628W WO2023026638A1 WO 2023026638 A1 WO2023026638 A1 WO 2023026638A1 JP 2022023628 W JP2022023628 W JP 2022023628W WO 2023026638 A1 WO2023026638 A1 WO 2023026638A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
valve
conditioning system
air conditioning
refrigerant
Prior art date
Application number
PCT/JP2022/023628
Other languages
English (en)
French (fr)
Inventor
雄太 福山
慎也 松岡
喬也 中西
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280057454.5A priority Critical patent/CN117859032A/zh
Publication of WO2023026638A1 publication Critical patent/WO2023026638A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode

Definitions

  • the present disclosure relates to outdoor units, indoor units, and air conditioning systems.
  • Patent Document 1 discloses an air conditioning system that includes an outdoor unit (heat source unit), an indoor unit (utilization unit), and a valve unit (refrigerant flow path switching unit). In the air conditioning system, each of the outdoor unit, the indoor unit, and the valve unit is provided with a control valve. Patent Document 1 further discloses an air conditioning system in which the control valve of the indoor unit is omitted and the refrigerant supplied to the indoor unit is controlled by the control valve of the outdoor unit or the valve unit (see paragraph 0190). ).
  • the specifications of the air conditioning system include a first specification (so-called cooling/heating switching specification) in which all of the plurality of indoor units are switched to either cooling operation or heating operation, and a plurality of indoor units for each indoor unit.
  • a second specification (so-called cooling/heating free specification) that can be operated by selecting cooling operation or heating operation individually, and depending on the specification, the specifications of the outdoor unit, the presence or absence of a valve unit, and the presence or absence of a control valve in the outdoor unit. change. In other words, it is necessary to prepare at least two models of indoor units with or without control valves in the air conditioning system product lineup, and this is a factor that increases the manufacturing cost and management cost of the air conditioning system. It's becoming
  • the purpose of this disclosure is to make it possible to use a common indoor unit regardless of the specifications of the air conditioning system.
  • the outdoor unit of the present disclosure is provided in an air conditioning system that includes a refrigerant circuit that performs a refrigeration cycle and a plurality of indoor units, and is an outdoor unit in which the plurality of indoor units are connected in parallel, wherein the outdoor unit is provided with a first control valve that adjusts the pressure of the refrigerant supplied to the indoor unit, and a control unit that controls the first control valve, and the control unit controls the indoor unit and the outdoor unit If the valve unit provided between and switching the flow of refrigerant to the indoor unit is not included in the air conditioning system, the first control valve is controlled to adjust the pressure of the refrigerant supplied to the indoor unit When the air conditioning system is operated in a first control mode and the valve unit is included in the air conditioning system, the second control valve included in the valve unit is controlled to reduce the amount of refrigerant supplied to the indoor unit.
  • the air conditioning system is operated in a second control mode that regulates pressure.
  • the controller controls the first control valve of the outdoor unit, and the air conditioning system
  • the control unit controls the second control valve of the valve unit
  • the indoor unit of the present disclosure is an indoor unit that is provided in an air conditioning system that includes a refrigerant circuit that performs a refrigeration cycle and an outdoor unit, and that is connected in parallel to the outdoor unit. , comprising a first control valve that adjusts the pressure of the refrigerant supplied to the indoor unit, the indoor unit comprising a control unit that controls the first control valve, the control unit controlling the indoor unit and the outdoor unit for switching the flow of refrigerant to the indoor unit is not included in the air conditioning system, the refrigerant supplied to the indoor unit by controlling the first control valve
  • the second control valve included in the valve unit is controlled to control the indoor unit operate the air conditioning system in a second control mode for adjusting the pressure of the refrigerant supplied to the air conditioning system;
  • the air conditioning system is the first specification in which all of the indoor units are switched to either cooling operation or heating operation
  • the first control valve of the outdoor unit is controlled
  • the air conditioning system Air conditioning system specifications such as controlling the second control valve of the valve unit if the indoor units are the second specification that can be operated by individually selecting cooling operation or heating operation for each indoor unit , the valves to be controlled and the contents of control can be switched. This eliminates the need to install a control valve in the indoor unit even if the air conditioning system is of the second specification, and uses a common indoor unit that does not have a control valve regardless of the specification of the air conditioning system. becomes possible.
  • An air conditioning system of the present disclosure includes a refrigerant circuit that performs a refrigeration cycle, an outdoor unit, and a plurality of indoor units connected in parallel to the outdoor unit, wherein the air conditioning system is provided with a control unit that controls the operation of the air conditioning system, the outdoor unit includes a first control valve that adjusts the pressure of the refrigerant supplied to the indoor unit, and the indoor unit and the outdoor If the air conditioning system does not include a valve unit that is provided between the indoor units and switches the flow of refrigerant to the indoor units, the first control valve is controlled to increase the pressure of the refrigerant supplied to the indoor units.
  • the pressure of the refrigerant supplied to the indoor unit is adjusted by controlling the second control valve included in the valve unit. It operates in the second control mode.
  • the air conditioning system is the first specification in which all of the indoor units are switched to either cooling operation or heating operation
  • the first control valve of the outdoor unit is controlled
  • the air conditioning system Air conditioning system specifications such as controlling the second control valve of the valve unit if the indoor units are the second specification that can be operated by individually selecting cooling operation or heating operation for each indoor unit , the valves to be controlled and the contents of control can be switched. This eliminates the need to install a control valve in the indoor unit even if the air conditioning system is of the second specification, and uses a common indoor unit that does not have a control valve regardless of the specification of the air conditioning system. becomes possible.
  • the controller automatically selects the second control mode when the valve unit is included in the air conditioning system.
  • the second control mode suitable for the specifications of the air conditioning system can be automatically selected simply by connecting the valve units to the indoor and outdoor units.
  • the air conditioning system of the present disclosure further comprises selection means for manually selecting the first control mode and the second control mode.
  • the user can manually select the first control mode or the second control mode.
  • the control unit controls the first control valve in the first control mode
  • the controller controls the second control valve in the second control mode.
  • control unit can automatically select the first control mode or the second control mode.
  • the second control valve cuts off the supply of refrigerant to the indoor unit. preferable.
  • the second control valve of the valve unit can be used as a control valve for adjusting the pressure of the refrigerant and as a shutoff valve for shutting off the refrigerant. Since such an air conditioning system does not require a separate shutoff valve, manufacturing costs can be reduced.
  • control unit further includes an indoor control unit that controls operation of the indoor unit, the indoor unit has the indoor control unit, and the indoor unit and It is preferable that, when the outdoor unit is connected, the information of the outdoor unit is written in the indoor control unit, and the indoor control unit controls the indoor unit based on the information of the outdoor unit.
  • the control content of the indoor unit can be automatically switched to the content according to the specifications of the outdoor unit.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to a first embodiment of the present disclosure; FIG. The schematic block diagram of the air conditioning system which concerns on 2nd Embodiment of this indication. The schematic block diagram of the air conditioning system which concerns on 3rd Embodiment of this indication. The schematic block diagram of the air conditioning system which concerns on 4th Embodiment of this indication.
  • 1 is a refrigerant circuit diagram of an air conditioning system according to a first embodiment of the present disclosure;
  • FIG. 1 is a block diagram of an air conditioning system according to a first embodiment of the present disclosure;
  • FIG. 7 is a refrigerant circuit diagram of an air conditioning system according to a third embodiment of the present disclosure.
  • FIG. 4 is a control flow diagram of the control unit in the air conditioning system of the present disclosure;
  • FIG. 1A is a schematic configuration diagram of an air conditioning system according to a first embodiment of the present disclosure
  • FIG. 1B is a schematic configuration diagram of an air conditioning system according to a second embodiment of the present disclosure
  • FIG. 2A is a schematic configuration diagram of an air conditioning system according to a third embodiment of the present disclosure
  • FIG. 2B is a schematic configuration diagram of an air conditioning system according to the fourth embodiment of the present disclosure
  • 1A, 1B, 2A and 2B show a schematic configuration of an air conditioning system 10 of the present disclosure.
  • the air conditioning system 10 (see FIG. 1A) according to the first embodiment is referred to as the first air conditioning system 11, and the air conditioning system 10 (see FIG.
  • the air conditioning system 12 is referred to as the air conditioning system 12
  • the air conditioning system 10 according to the third embodiment is referred to as the third air conditioning system 13
  • the air conditioning system 10 according to the fourth embodiment is referred to as the fourth Referred to as air conditioning system 14 .
  • air conditioning system 10 when simply referred to as "air conditioning system 10", the configuration common to each of the first to fourth air conditioning systems 11 to 14 is described.
  • the "first specification” in the following description refers to a specification in which all indoor units are switched to either cooling operation or heating operation (so-called cooling/heating switching) in an air conditioner having multiple indoor units. specification)
  • the “second specification” is a specification that allows air conditioners with multiple indoor units to operate by individually selecting cooling operation or heating operation for each indoor unit (so-called cooling/heating free specification). be.
  • the air conditioning system 10 shown in FIGS. 1A, 1B, 2A, and 2B is installed in buildings, factories, etc., and realizes air conditioning of air-conditioned spaces.
  • the air conditioning system 10 includes an air conditioner 20 including an indoor unit 30 and an outdoor unit 40 .
  • the air conditioner 20 cools and heats the air-conditioned space by performing vapor compression refrigeration cycle operation.
  • the air conditioning system 10 shown in FIGS. 1A and 1B includes an air conditioner 20 of first specification.
  • the first air conditioning system 11 shown in FIG. 1A includes a first air conditioner 21 of the first specification, and the second air conditioning system 12 shown in FIG.
  • An air conditioner 22 is provided.
  • the outdoor unit 40 included in the first air conditioner 21 and the second air conditioner 22 is referred to as the first outdoor unit 41 .
  • the first air conditioner 21 and the second air conditioner 22 have a common first outdoor unit 41 .
  • the term "air conditioner 20" when the term "air conditioner 20" is simply used, the configuration common to the first to fourth air conditioners 21 to 24 is described.
  • the air conditioning system 10 shown in FIGS. 2A and 2B includes the second specification air conditioner 20 .
  • the third air conditioning system 13 shown in FIG. 2A includes a second specification third air conditioner 23, and the fourth air conditioning system 14 shown in FIG. An air conditioner 24 is provided.
  • the outdoor units 40 of the third air conditioner 23 and the fourth air conditioner 24 are referred to as second outdoor units 42 .
  • the third air conditioner 23 and the fourth air conditioner 24 have a common second outdoor unit 42 .
  • each of the first to fourth air conditioners 21 to 24 has a common indoor unit 30.
  • the air conditioner 20 is equipped with refrigerant pipes 25 .
  • the refrigerant pipes 25 of the first air conditioner 21 and the second air conditioner 22 include liquid pipes 25L and gas pipes 25G.
  • the refrigerant pipes 25 of the third air conditioner 23 and the fourth air conditioner 24 include a liquid pipe 25L, a high and low pressure gas pipe 25G1, and an intake gas pipe 25G2.
  • the second air conditioner 22, the third air conditioner 23, and the fourth air conditioner 24 further include a valve unit 50.
  • a valve unit 50 included in the second air conditioner 22 is a shutoff valve unit 51 provided between the indoor unit 30 and the first outdoor unit 41 .
  • the valve unit 50 of the third air conditioner 23 is a refrigerant channel switching unit 55 provided between the indoor unit 30 and the second outdoor unit 42 .
  • a valve unit 50 included in the fourth air conditioner 24 is a shutoff valve unit 51 and a refrigerant channel switching unit 55 provided between the indoor unit 30 and the second outdoor unit 42 .
  • FIG. 3 is a refrigerant circuit diagram of the air conditioning system according to the first embodiment of the present disclosure.
  • FIG. 4 is a block diagram of an air conditioning system according to the first embodiment of the present disclosure.
  • the first air conditioning system 11 includes a first air conditioner 21.
  • the first air conditioner 21 is a multi-type air conditioner in which a plurality of indoor units 30 are connected in parallel to the first outdoor unit 41 . In the example shown in FIG. 3 , two or more indoor units 30 are connected to one first outdoor unit 41 . However, the numbers of the first outdoor unit 41 and the number of the indoor units 30 are not limited.
  • the first air conditioner 21 can switch between cooling operation and heating operation to air-condition the target space.
  • the first air conditioner 21 has a refrigerant circuit RC1.
  • the refrigerant circuit RC ⁇ b>1 circulates the refrigerant between the first outdoor unit 41 and the indoor unit 30 .
  • the refrigerant circuit RC1 includes a compressor 81, a four-way switching valve 82, an outdoor heat exchanger 83, an outdoor expansion valve 84, a liquid shutoff valve 85, an indoor heat exchanger 31, a gas shutoff valve 86, and a refrigerant pipe 25 connecting them. (liquid pipe 25L and gas pipe 25G).
  • the indoor unit 30 has an indoor heat exchanger 31 .
  • the indoor heat exchanger 31 constitutes a refrigerant circuit RC1.
  • the indoor heat exchanger 31 is a cross-fin tube type or microchannel type heat exchanger, and is used to exchange heat with indoor air.
  • the indoor unit 30 includes an indoor fan 32 and an indoor temperature sensor 33.
  • the indoor fan 32 is configured to take indoor air into the interior of the indoor unit 30, cause heat exchange between the taken air and the indoor heat exchanger 31, and then blow the air indoors.
  • the indoor fan 32 has a motor whose operating speed can be adjusted by inverter control.
  • the indoor temperature sensor 33 detects the indoor temperature.
  • the indoor unit 30 of the present disclosure does not have an electric valve (indoor expansion valve) inside the indoor unit 30 .
  • the air conditioning system 10 of the present disclosure by using the indoor unit 30 that does not have an electric valve (indoor expansion valve) inside, the common indoor unit 30 can be used regardless of the specifications of the outdoor unit 40. making it possible.
  • the first outdoor unit 41 includes a compressor 81, a four-way switching valve 82, an outdoor heat exchanger 83, an outdoor expansion valve 84, a liquid closing valve 85, a gas closing valve 86, and the like. .
  • the compressor 81 sucks in low-pressure gaseous refrigerant and discharges high-pressure gaseous refrigerant.
  • the compressor 81 has a motor whose operating speed can be adjusted by inverter control.
  • the compressor 81 is of a variable capacity type (capacity variable type) whose capacity (capacity) can be changed by inverter-controlling the motor.
  • the compressor 81 may be of a constant capacity type.
  • the four-way switching valve 82 reverses the flow of the refrigerant in the refrigerant piping, and switches the refrigerant discharged from the compressor 81 to either the outdoor heat exchanger 83 or the indoor heat exchanger 31 and supplies it. Thereby, the first air conditioner 21 can switch between the cooling operation and the heating operation.
  • the outdoor heat exchanger 83 is, for example, a cross-fin tube type or micro-channel type heat exchanger, and is used to exchange heat with the refrigerant using air as a heat source.
  • the outdoor expansion valve 84 is composed of an electric valve capable of adjusting the flow rate and pressure of the refrigerant.
  • the first air conditioner 21 controls the degree of opening of the outdoor expansion valve 84 to adjust the pressure of the refrigerant supplied to the indoor heat exchanger 31 .
  • the liquid closing valve 85 is a manual opening/closing valve.
  • the gas shutoff valve 86 is also a manual open/close valve.
  • the liquid shut-off valve 85 and the gas shut-off valve 86 block the flow of refrigerant in the liquid pipe 25L and the gas pipe 25G by closing, and permit the flow of refrigerant in the liquid pipe 25L and the gas pipe 25G by opening.
  • the first outdoor unit 41 further includes an outdoor fan 87.
  • the outdoor fan 87 has a motor whose operating speed can be adjusted by inverter control.
  • the outdoor fan 87 takes in the outdoor air into the first outdoor unit 41 , causes heat exchange between the taken in air and the outdoor heat exchanger 83 , and then takes the air outside the first outdoor unit 41 . It is configured to blow out into
  • the first outdoor unit 41 further includes a plurality of refrigerant pressure sensors, a plurality of refrigerant temperature sensors, an outside air temperature sensor, and the like, which are not shown.
  • the four-way switching valve 82 When the first air conditioner 21 configured as described above performs cooling operation, the four-way switching valve 82 is held in the state indicated by the solid line in FIG.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 81 passes through the four-way switching valve 82 and flows into the outdoor heat exchanger 83, where the outdoor fan 87 operates to exchange heat with outdoor air to condense and liquefy.
  • the liquefied refrigerant flows into each indoor unit 30 through the fully open outdoor expansion valve 84 .
  • the refrigerant exchanges heat with indoor air in the indoor heat exchanger 31 and evaporates.
  • the indoor air cooled by the evaporation of the refrigerant is blown into the room by the indoor fan 32 to cool the room.
  • the refrigerant evaporated in the indoor heat exchanger 31 returns to the first outdoor unit 41 through the gas pipe 25G and is sucked into the compressor 81 through the four-way switching valve 82 .
  • the four-way switching valve 82 When the first air conditioner 21 performs heating operation, the four-way switching valve 82 is held in the state indicated by the dashed line in FIG.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 81 passes through the four-way switching valve 82 and flows into the indoor heat exchanger 31 of each indoor unit 30 .
  • the refrigerant exchanges heat with the indoor air and is condensed and liquefied.
  • the indoor air heated by the condensation of the refrigerant is blown into the room by the indoor fan 32 to heat the room.
  • the refrigerant liquefied in the indoor heat exchanger 31 returns to the first outdoor unit 41 through the liquid pipe 25L, is decompressed to a predetermined low pressure by the outdoor expansion valve 84, and is heat-exchanged with the outdoor air by the outdoor heat exchanger 83. evaporate.
  • the refrigerant evaporated and vaporized in the outdoor heat exchanger 83 is sucked into the compressor 81 through the four-way switching valve 82 .
  • the air conditioning system 10 includes a control section 60 that controls operations of the air conditioning system 10 .
  • the controller 60 includes an outdoor controller (first controller) 61 arranged in the outdoor unit 40 and an indoor controller (third controller) 62 arranged in the indoor unit 30 .
  • the outdoor controller 61 and the indoor controller 62 are connected via a transmission line so as to be able to communicate with each other.
  • the outdoor control unit 61 is a device that controls the operation of the outdoor unit 40, and is composed of, for example, a microcomputer equipped with a processor such as a CPU and memories such as RAM and ROM.
  • the outdoor controller 61 may be realized as hardware using LSI, ASIC, FPGA, or the like.
  • the outdoor control unit 61 exhibits a predetermined function when the processor executes a program installed in the memory.
  • the outdoor control section 61 provided in the first outdoor unit 41 is referred to as a first outdoor control section 61A.
  • Detected values of the sensors provided in the first outdoor unit 41 are input to the first outdoor controller 61A.
  • the first outdoor control unit 61A controls operations of the outdoor expansion valve 84, the compressor 81, the outdoor fan 87, etc., based on the detection values of the respective sensors.
  • the indoor control unit 62 is a device that controls the operation of the indoor unit 30, and is composed of, for example, a microcomputer equipped with a processor such as a CPU and memories such as RAM and ROM.
  • the indoor controller 62 may be implemented as hardware using LSI, ASIC, FPGA, or the like.
  • the indoor control unit 62 performs a predetermined function when the processor executes a program installed in the memory. Detected values of the sensors provided in the indoor unit 30 are input to the indoor controller 62 .
  • the indoor controller 62 controls the operation of the indoor unit 30 based on the detected values of the sensors.
  • the indoor controller 62 is connected to the remote controller 36 for the user to operate/stop the indoor unit 30 and change the set temperature.
  • the air conditioner 20 has a first control mode M1 and a second control mode M2 as control modes M selectable by the control unit 60 .
  • the first control mode M1 is the control mode M selected by the controller 60 when the air conditioning system 10 does not include the valve unit 50 .
  • the second control mode M2 is the control mode M selected by the controller 60 when the valve unit 50 is included in the air conditioning system 10 .
  • the air conditioner 20 may further have a control mode M other than the first control mode M1 and the second control mode M2 as the control mode M selectable by the control unit 60 .
  • the control unit 60 has selection means 37 for manually selecting the control mode M.
  • FIG. The user of the air conditioning system 10 can manually select the control mode M by operating the selection means 37 instead of the control mode M being selected by the control unit 60 .
  • the control board (not shown) of the outdoor control unit 61 is provided with a DIP switch, which serves as the selection means 37 .
  • the selection means 37 may be omitted.
  • the case where the selection means 37 is provided in the outdoor control section 61 is exemplified, but the selection means 37 may be provided in the indoor control section 62 .
  • FIG. 5 is a refrigerant circuit diagram of an air conditioning system according to the second embodiment of the present disclosure.
  • FIG. 6 is a block diagram of an air conditioning system according to the second embodiment of the present disclosure.
  • the second air conditioning system 12 includes a second air conditioner 22 .
  • the second air conditioner 22 includes an indoor unit 30, an outdoor unit 40, and a valve unit 50 (shutoff valve unit 51). Since the second air conditioner 22 uses a combustible refrigerant (for example, R32 having a slightly combustible property) as a refrigerant, a cutoff valve unit 51 that cuts off the refrigerant supplied to the indoor unit 30 is provided.
  • a combustible refrigerant for example, R32 having a slightly combustible property
  • the second air conditioner 22 differs from the first air conditioner 21 in that it includes a shutoff valve unit 51 .
  • the configuration of the second air conditioner 22 is common to that of the first air conditioner 21 except for the cutoff valve unit 51 .
  • the same reference numerals are given to the parts that have the same configuration as the first air conditioner 21, and the explanation of the common parts will be given in particular. omitted unless otherwise specified.
  • the shutoff valve unit 51 includes a first motor-operated valve 52 and a second motor-operated valve 53 .
  • the first electric valve 52 and the second electric valve 53 are electric valves.
  • the first motor-operated valve 52 is provided in the liquid pipe 25L, and by adjusting the opening degree of the first motor-operated valve 52, the pressure of the liquid refrigerant flowing through the liquid pipe 25L can be adjusted.
  • the first electric valve 52 can block the flow of the liquid refrigerant in the liquid pipe 25L by fully closing the valve opening.
  • the second motor-operated valve 53 is provided in the gas pipe 25G, and by fully closing the valve opening degree of the second motor-operated valve 53, it is possible to block the flow of the gaseous refrigerant in the gas pipe 25G.
  • the cutoff valve unit 51 is the valve unit 50 that switches the refrigerant flow to the indoor unit 30 between "open" and "closed”.
  • the controller 60 includes a first outdoor controller 61A, an indoor controller 62 and a shutoff valve controller 63 .
  • the first outdoor controller 61A, the indoor controller 62, and the shut-off valve controller 63 are connected to communicate with each other via transmission lines.
  • the shut-off valve control section (second control section) 63 is a device that controls the operation of the shut-off valve unit 51, and is composed of, for example, a microcomputer having a processor such as a CPU and memories such as RAM and ROM.
  • the shut-off valve control unit 63 may be implemented as hardware using LSI, ASIC, FPGA, or the like.
  • the shut-off valve control unit 63 performs a predetermined function when the processor executes a program installed in the memory.
  • the first motor-operated valve 52 and the second motor-operated valve 53 are connected to the cutoff valve control section 63 .
  • the shut-off valve control unit 63 controls the operations of the first motor-operated valve 52 and the second motor-operated valve 53 based on the detection values of sensors (not shown) of the indoor unit 30 and the first outdoor unit 41 .
  • the shut-off valve control section 63 may be omitted. In this case, the operations of the first motor-operated valve 52 and the second motor-operated valve 53 are controlled by the first outdoor controller 61A and/or the indoor controller 62 .
  • the cutoff valve control unit 63 closes the first motor-operated valve 52 and the second motor-operated valve 53, and the indoor unit Cut off the supply of coolant to 30 .
  • the first electric valve 52 is used as a control valve for adjusting the pressure of the refrigerant supplied to the indoor unit 30.
  • the shut-off valve control unit 63 adjusts the opening degree of the first motor-operated valve 52 based on the detected values of sensors (not shown) of the indoor unit 30 and the first outdoor unit 41, and supplies it to the indoor unit 30. Control the pressure of the refrigerant.
  • the motor-operated valve indoor It is possible to use an indoor unit 30 that does not have an expansion valve.
  • control main body of the control valve for adjusting the pressure of the refrigerant supplied to the indoor unit 30 is the shut-off valve control section 63 of the control section 60, but the present invention is limited to this. Instead, it may be the first outdoor controller 61A and the indoor controller 62 .
  • FIG. 7 is a refrigerant circuit diagram of an air conditioning system according to a third embodiment of the present disclosure.
  • FIG. 8 is a block diagram of an air conditioning system according to the third embodiment of the present disclosure. As shown in FIGS. 2A , 7 and 8 , the third air conditioning system 13 includes a third air conditioner 23 .
  • the third air conditioner 23 includes an indoor unit 30, a second outdoor unit 42, and a valve unit 50.
  • a valve unit 50 included in the third air conditioner 23 is a refrigerant channel switching unit 55 .
  • the third air conditioner 23 has a refrigerant circuit RC2.
  • the refrigerant circuit RC ⁇ b>2 circulates the refrigerant between the second outdoor unit 42 and the indoor unit 30 .
  • the refrigerant circuit RC2 includes a heat source side refrigerant circuit RC2A, a user side refrigerant circuit RC2B, and an intermediate refrigerant circuit RC2C, which will be described later.
  • two or more indoor units 30 are connected to one second outdoor unit 42 .
  • Each indoor unit 30 is connected to the second outdoor unit 42 via a refrigerant channel switching unit 55 .
  • the third air conditioner 23 can freely select between the cooling operation and the heating operation for each indoor unit 30 by using the refrigerant channel switching unit 55 to air-condition the target space.
  • FIG. 7 (Configuration of second outdoor unit) As shown in FIG. 7, various devices are arranged in the second outdoor unit 42, and these devices are connected via refrigerant pipes to form a heat source side refrigerant circuit RC2A.
  • the heat source side refrigerant circuit RC2A is connected to the intermediate refrigerant circuit RC2C in the refrigerant flow switching unit 55 via the refrigerant pipes 25 (liquid pipe 25L, high/low pressure gas pipe 25G1 and intake gas pipe 25G2).
  • the heat source side refrigerant circuit RC2A includes a liquid side shutoff valve 101, a gas side first shutoff valve 102, a gas side second shutoff valve 103, an accumulator 104, a compressor 105, a first flow path switching valve 106, and a second flow path switching valve. 107 , a third flow switching valve 108 , an outdoor heat exchanger 109 , a first outdoor expansion valve 110 and a second outdoor expansion valve 111 .
  • an outdoor fan 112 an outdoor controller 61 (see FIG. 8), and the like are further arranged.
  • the liquid-side shut-off valve 101, the gas-side first shut-off valve 102, and the gas-side second shut-off valve 103 are manual valves that are opened and closed when the refrigerant is charged or pumped down.
  • One end of the liquid side stop valve 101 is connected to the liquid pipe 25L.
  • the other end of the liquid side stop valve 101 is connected to a refrigerant pipe extending to the first outdoor expansion valve 110 and the second outdoor expansion valve 111 .
  • One end of the gas side first shutoff valve 102 is connected to the high and low pressure gas pipe 25G1.
  • the other end of the gas side first shutoff valve 102 is connected to a refrigerant pipe extending to the second flow path switching valve 107 .
  • One end of the second gas side shutoff valve 103 is connected to the intake gas pipe 25G2.
  • the other end of the gas side second shutoff valve 103 is connected to a refrigerant pipe extending to the accumulator 104 .
  • the accumulator 104 is a container that temporarily stores the low-pressure refrigerant sucked into the compressor 105 and separates the gaseous refrigerant from the liquid refrigerant.
  • the compressor 105 has a closed structure with a built-in compressor motor, and is, for example, a positive displacement compressor such as a scroll system or a rotary system.
  • the compressor 105 compresses the low-pressure refrigerant sucked from the suction pipe 105b and then discharges it from the discharge pipe 105a.
  • Refrigerant oil is accommodated inside the compressor 105 .
  • This refrigerating machine oil may circulate in the refrigerant circuit together with the refrigerant.
  • the second outdoor unit 42 of this embodiment includes one compressor 105, but may include two or more compressors 105 connected in parallel.
  • the first flow path switching valve 106, the second flow path switching valve 107, and the third flow path switching valve 108 are four-way switching valves.
  • the first flow path switching valve 106 , the second flow path switching valve 107 and the third flow path switching valve 108 switch the flow of the refrigerant according to the operating conditions of the third air conditioner 23 .
  • One refrigerant inlet port of the first flow path switching valve 106, the second flow path switching valve 107, and the third flow path switching valve 108 is connected to a discharge pipe 105a or a branch pipe extending from the discharge pipe 105a.
  • Refrigerant piping 105c that connects the second gas-side shutoff valve 103 and the accumulator 104 to one refrigerant inlet port of the first flow path switching valve 106, the second flow path switching valve 107, and the third flow path switching valve 108.
  • a branch pipe extending from is connected.
  • the first flow path switching valve 106, the second flow path switching valve 107, and the third flow path switching valve 108 are configured to block the flow of refrigerant in one refrigerant flow path during operation, In effect, it functions as a three-way valve.
  • the outdoor heat exchanger 109 is a cross-fin type or microchannel type heat exchanger.
  • the outdoor heat exchanger 109 includes a first heat exchange section 109a and a second heat exchange section 109b.
  • the first heat exchange section 109a is provided above the outdoor heat exchanger 109, and the second heat exchange section 109b is provided below the first heat exchange section 109a.
  • a gas side end of the first heat exchange portion 109a is connected to a refrigerant pipe extending to the third flow path switching valve 108 .
  • a liquid side end of the first heat exchange portion 109 a is connected to a refrigerant pipe extending to the first outdoor expansion valve 110 .
  • a gas side end of the second heat exchange portion 109b is connected to a refrigerant pipe extending to the first flow path switching valve 106.
  • a liquid side end of the second heat exchange portion 109 b is connected to a refrigerant pipe extending to the second outdoor expansion valve 111 .
  • the refrigerant passing through the first heat exchange portion 109a and the second heat exchange portion 109b exchanges heat with the air flow generated by the outdoor fan 112.
  • the outdoor fan 112 is, for example, a propeller fan, and is driven by an outdoor fan motor (not shown).
  • the outdoor fan 112 generates an airflow that flows into the second outdoor unit 42 , passes through the outdoor heat exchanger 109 and flows out of the second outdoor unit 42 .
  • the first outdoor expansion valve 110 and the second outdoor expansion valve 111 are, for example, electrically operated valves whose opening can be adjusted.
  • One end of the first outdoor expansion valve 110 is connected to a refrigerant pipe extending from the first heat exchange portion 109a.
  • the other end of the first outdoor expansion valve 110 is connected to a refrigerant pipe extending to the liquid side shutoff valve 101 .
  • One end of the second outdoor expansion valve 111 is connected to a refrigerant pipe extending from the second heat exchange portion 109b.
  • the other end of the second outdoor expansion valve 111 is connected to a refrigerant pipe extending to the liquid side shutoff valve 101 .
  • the opening degrees of the first outdoor expansion valve 110 and the second outdoor expansion valve 111 are adjusted according to the operating conditions, and the refrigerant passing therethrough is decompressed according to the opening degrees.
  • the compressor 105, the outdoor fan 112, the first outdoor expansion valve 110, the second outdoor expansion valve 111, the first flow path switching valve 106, the second flow path switching valve 107, and the third flow path switching valve 108 are used for outdoor control.
  • the operation is controlled by the unit 61 (see FIG. 8).
  • the outdoor controller 61 included in the second outdoor unit 42 is referred to as a second outdoor controller 61B.
  • the third air conditioner 23 has the same indoor unit 30 as the first and second air conditioners 21 and 22 . A detailed description of the indoor unit 30 in the third air conditioner 23 is omitted.
  • a user-side refrigerant circuit RC2B is provided in the indoor unit 30 .
  • the user-side refrigerant circuit RC2B is configured by connecting the indoor heat exchanger 31 with a liquid pipe 25L and a gas pipe 25G.
  • the third air conditioner 23 has a refrigerant channel switching unit 55 .
  • the refrigerant channel switching unit 55 is provided between the second outdoor unit 42 and the plurality of indoor units 30 .
  • the refrigerant channel switching unit 55 has a casing 56 .
  • the refrigerant channel switching unit 55 switches the flow of refrigerant flowing into the second outdoor unit 42 and each indoor unit 30 .
  • the refrigerant channel switching unit 55 is a valve unit 50 that switches the refrigerant flow to the indoor unit 30 for each indoor unit 30 .
  • the casing 56 accommodates a plurality of header pipes 155, 156, 157, 158 and a plurality of switching units 57. As shown in FIG.
  • the plurality of header tubes 155, 156, 157, 158 includes a first header tube 155, a second header tube 156, a third header tube 157 and a fourth header tube 158.
  • the first header pipe 155 is connected to the liquid pipe 25L.
  • the second header pipe 156 is connected to the high and low pressure gas pipes 25G1.
  • the third header pipe 157 is connected to the intake gas pipe 25G2.
  • the refrigerant channel switching unit 55 includes a plurality of switching units 57 .
  • Each switching unit 57 forms an intermediate refrigerant circuit RC2C of the refrigerant channel switching unit 55 .
  • One indoor unit 30 is connected to each switching unit 57 . However, it is not necessary to connect the indoor unit 30 to all the switching units 57 of the refrigerant flow switching unit 55, and even if the switching unit 57 to which the indoor unit 30 is not connected exists good.
  • the plurality of switching units 57 all have the same structure, and the intermediate refrigerant circuit RC2C of each switching unit 57 includes a plurality of valves EV1, EV2, EV3, EV4 and a plurality of refrigerant pipes.
  • the multiple valves EV1, EV2, EV3, EV4 include a first valve EV1, a second valve EV2, a third valve EV3, and a fourth valve EV4.
  • These valves EV1, EV2, EV3, and EV4 are electric valves with adjustable opening.
  • the second valve EV2, the third valve EV3, and the fourth valve EV4 are controlled by the flow path switching control unit 64 (see FIG. 8) so as to take any one of a fully closed state, a fully open state, and an opening adjustment state. be.
  • the operation of the first valve EV1 is controlled by the flow path switching control section 64 (see FIG. 8) so as to take any one of a minimum opening state, a fully open state, a fully closed state, and an opening degree adjustment state.
  • the switching unit 57 includes a first refrigerant pipe P1 that connects the second header pipe 156 and the first valve EV1.
  • a filter F1 is provided in the middle of the first refrigerant pipe P1.
  • the switching unit 57 has a second refrigerant pipe P2.
  • One end of the second refrigerant pipe P2 is connected to the first valve EV1.
  • the switching unit 57 has a user-side gas pipe 161 .
  • One end of the user-side gas pipe 161 is connected to the gas pipe 25G of the indoor unit 30 .
  • the other end of the user-side gas pipe 161 is connected to the second valve EV2.
  • the other end of the second refrigerant pipe P ⁇ b>2 is connected to the user-side gas pipe 161 .
  • the user-side gas pipe 161 is provided with a filter F2.
  • the switching unit 57 has a third refrigerant pipe P3.
  • One end of the third refrigerant pipe P3 is connected to the second valve EV2.
  • the other end of the third refrigerant pipe P3 is connected to the third header pipe 157 .
  • a filter F3 is provided in the middle of the third refrigerant pipe P3.
  • the switching unit 57 is equipped with a usage-side liquid pipe 162 .
  • One end of the usage-side liquid pipe 162 is connected to the liquid pipe 25L of the indoor unit 30 .
  • the other end of the utilization side liquid pipe 162 is connected to the subcooling heat exchanger 159 .
  • a fourth valve EV4 is provided in the middle of the utilization side liquid pipe 162 .
  • Inside the supercooling heat exchanger 159 a first heat transfer tube 159a and a second heat transfer tube 159b are provided inside the supercooling heat exchanger 159.
  • the subcooling heat exchanger 159 exchanges heat between the refrigerant flowing through the first heat transfer tube 159a and the refrigerant flowing through the second heat transfer tube 159b.
  • the other end of the utilization side liquid pipe 162 is connected to one end of the first heat transfer pipe 159a.
  • the switching unit 57 has a fourth refrigerant pipe P4.
  • One end of the fourth refrigerant pipe P4 is connected to the other end of the first heat transfer pipe 159a.
  • the other end of the fourth refrigerant pipe P4 is connected to the first header pipe 155 .
  • the switching unit 57 has a fifth refrigerant pipe P5 branched from the middle of the fourth refrigerant pipe P4. One end of the fifth refrigerant pipe P5 is connected to one end of the third valve EV3. A filter F4 is provided in the middle of the fifth refrigerant pipe P5.
  • the switching unit 57 includes a sixth refrigerant pipe P6 and a seventh refrigerant pipe P7.
  • One end of the sixth refrigerant pipe P6 is connected to the third valve EV3.
  • the other end of the sixth refrigerant pipe P ⁇ b>6 is connected to one end of the second heat transfer pipe 159 b of the subcooling heat exchanger 159 .
  • One end of the seventh refrigerant pipe P7 is connected to the second heat transfer pipe 159b of the subcooling heat exchanger 159 .
  • the other end of the seventh refrigerant pipe P7 is connected to the fourth header pipe 158. As shown in FIG.
  • the fourth header pipe 158 is connected to the third header pipe 157 via the connecting pipe 163 .
  • the fourth header pipe 158 from the first header pipe 155, the fourth refrigerant pipe P4, the fifth refrigerant pipe P5, the third valve EV3, the sixth refrigerant pipe P6, the supercooling heat exchanger 159, and the seventh refrigerant pipe P7. Refrigerant flows through Further, the refrigerant that has flowed into fourth header pipe 158 flows into third header pipe 157 through connection pipe 163 .
  • the control unit 60 in the third air conditioning system 13 includes a second outdoor control unit 61B, an indoor control unit 62, and a channel switching control unit 64 included in the refrigerant channel switching unit 55.
  • the second outdoor control unit 61B, the indoor control unit 62, and the flow path switching control unit 64 are connected so as to be able to communicate with each other via transmission lines.
  • the second outdoor control unit 61B is a device that controls the operation of the second outdoor unit 42. Detected values of the sensors provided in the second outdoor unit 42 are input to the second outdoor controller 61B.
  • the second outdoor control unit 61B controls the compressor 105, the outdoor fan 112, the first outdoor expansion valve 110, the second outdoor expansion valve 111, the first flow path switching valve 106, the second It controls the operations of the channel switching valve 107, the third channel switching valve 108, and the like.
  • the flow path switching control section (second control section) 64 is a device for controlling the operation of the refrigerant flow path switching unit 55, and is composed of, for example, a microcomputer having a processor such as a CPU and a memory such as RAM and ROM. be.
  • the channel switching control unit 64 may be implemented as hardware using LSI, ASIC, FPGA, or the like.
  • the flow path switching control section 64 exhibits a predetermined function when the processor executes a program installed in the memory.
  • the flow path switching control unit 64 switches the first valve EV1, the second valve EV2, the third valve EV3, and the fourth valve EV4 based on the detection values of the sensors of the second outdoor unit 42 and the indoor unit 30. control behavior.
  • the channel switching control section 64 may be omitted. In this case, the operation of each valve EV1-EV4 is controlled by the second outdoor controller 61B and/or the indoor controller 62.
  • the flow path switching control unit 64 switches the first valve
  • the refrigerant supply to the indoor unit 30 may be cut off by fully closing the EV1, the second valve EV2, and the fourth valve EV4. In this case, the leakage amount of the refrigerant from the indoor unit 30 can be suppressed without providing the cutoff valve unit 51 (see FIG. 1B).
  • the fourth valve EV4 is used as a control valve for adjusting the pressure of the refrigerant supplied to the indoor unit 30.
  • the flow path switching control unit 64 adjusts the opening degree of the fourth valve EV4 based on the detection values of the sensors (not shown) of the indoor unit 30 and the second outdoor unit 42, and supplies it to the indoor unit 30. Control the pressure of the refrigerant.
  • an electric valve It is possible to use an indoor unit 30 that does not have an indoor expansion valve.
  • control main body of the control valve for adjusting the pressure of the refrigerant supplied to the indoor unit 30 is the flow path switching control section 64 of the control section 60.
  • the second outdoor controller 61B and the indoor controller 62 may be used.
  • cooling only operation when all the operating indoor units 30 perform cooling by the third air conditioning system 13 (hereinafter also referred to as “cooling only operation”), when all the operating indoor units 30 perform heating (hereinafter also referred to as “heating only operation”) and a case where some of the operating indoor units 30 perform cooling and others perform heating (hereinafter also referred to as “cooling/heating mixed operation”).
  • each valve is adjusted by the control unit 60 as follows.
  • the first valve EV1 of the switching unit 57 is fully closed, the second valve EV2 is fully open, the openings of the third valve EV3 and the fourth valve EV4 are adjusted, and the first and second outdoor expansion valves 110 and 111 are It is considered fully open.
  • the first flow path switching valve 106 of the second outdoor unit 42 is switched so as to connect the discharge pipe 105a of the compressor 105 and the gas side end of the second heat exchange section 109b.
  • the second flow path switching valve 107 is switched to connect the discharge pipe 105a and the high and low pressure gas pipe 25G1.
  • the third flow switching valve 108 is switched so as to connect the discharge pipe 105a and the gas side end of the first heat exchange section 109a.
  • the compressor 105 When the compressor 105 is driven, the high-pressure gas refrigerant compressed by the compressor 105 flows into the outdoor heat exchanger 109 through the discharge pipe 105a, the first flow switching valve 106, the third flow switching valve 108, and the like. and condense.
  • the refrigerant condensed in the outdoor heat exchanger 109 passes through the first and second outdoor expansion valves 110, 111, the liquid-side shutoff valve 101, etc., and flows into the liquid pipe 25L.
  • the refrigerant that has flowed into the liquid pipe 25L flows through the first header pipe 155 of the refrigerant channel switching unit 55 and flows into the fourth refrigerant pipe P4 of each switching unit 57.
  • the refrigerant that has flowed into the fourth refrigerant pipe P4 flows into the first heat transfer pipe 159a of the subcooling heat exchanger 159, is further depressurized by the fourth valve EV4 on the utilization side liquid pipe 162, and flows into the indoor unit 30.
  • the refrigerant that has flowed into the fourth refrigerant pipe P4 also branches and flows into the fifth refrigerant pipe P5, is decompressed according to the degree of opening of the third valve EV3, and flows into the second heat transfer pipe 159b of the supercooling heat exchanger 159. do.
  • this supercooling heat exchanger 159 heat is exchanged between the refrigerant flowing through the first heat transfer tubes 159a and the refrigerant flowing through the second heat transfer tubes 159b, and the refrigerant flowing through the first heat transfer tubes 159a is supercooled to flow into
  • the refrigerant flowing through the second heat transfer pipes 159b of the subcooling heat exchanger 159 flows from the seventh refrigerant pipe P7 into the fourth header pipe 158, passes through the connection pipe 163, and flows into the third header pipe 157.
  • the refrigerant that has flowed into the indoor unit 30 evaporates in the indoor heat exchanger 31 .
  • the refrigerant evaporated in the indoor heat exchanger 31 flows from the gas pipe 25G into the user-side gas pipe 161, mainly passes through the second valve EV2, and flows into the third header pipe 157.
  • the refrigerant that has flowed into the third header pipe 157 passes through the intake gas pipe 25G2 and the second gas side shutoff valve 103, flows into the accumulator 104, and is sucked into the compressor 105.
  • the control unit 60 adjusts each valve as follows.
  • the first valve EV1 of the switching unit 57 is fully opened, the second valve EV2 is fully closed, the third valve EV3 is fully closed, the fourth valve EV4 is fully open, and the first and second outdoor expansion valves 110 and 111 are adjusted in degree of opening.
  • the first flow switching valve 106 of the second outdoor unit 42 is switched so as to connect the refrigerant pipe 105c and the gas side end of the second heat exchange section 109b.
  • the second flow path switching valve 107 is switched to connect the discharge pipe 105a and the high and low pressure gas pipe 25G1.
  • the third flow switching valve 108 is switched so as to connect the refrigerant pipe 105c and the gas side end of the first heat exchange section 109a.
  • the high-pressure gas refrigerant compressed by the compressor 105 flows through the discharge pipe 105a, the second flow path switching valve 107, and the like into the high and low pressure gas pipe 25G1.
  • the refrigerant that has flowed into the high and low pressure gas pipes 25G1 passes through the second header pipe 156 of the refrigerant flow switching unit 55, the first refrigerant pipe P1 of the switching unit 57, the first valve EV1, and the user-side gas pipe 161 into the room. It flows into the gas pipe 25G of the machine 30.
  • the refrigerant that has flowed into the gas pipe 25G flows into the indoor heat exchanger 31 of the indoor unit 30 and is condensed.
  • the condensed refrigerant flows through the liquid pipe 25L and flows into the utilization side liquid pipe 162 of the switching unit 57 through the fourth valve EV4.
  • the refrigerant that has flowed into the utilization side liquid pipe 162 flows into the first header pipe 155 via the subcooling heat exchanger 159 and the fourth refrigerant pipe P4.
  • the refrigerant that has flowed into the first header pipe 155 flows through the liquid pipe 25L, flows into the second outdoor unit 42, and is decompressed in the first and second outdoor expansion valves 110, 111.
  • the decompressed refrigerant evaporates when passing through the outdoor heat exchanger 109, flows through the first flow switching valve 106, the third flow switching valve 108, etc., flows into the accumulator 104, and is sucked into the compressor 105. be.
  • each valve is adjusted by the control unit 60 as follows.
  • the switching unit 57 (hereinafter also referred to as “cooling side switching unit 57”) corresponding to the indoor unit 30 (hereinafter also referred to as “cooling side indoor unit 30”) that performs cooling operation among the operating indoor units 30
  • the first valve EV1 is set to the minimum opening
  • the second valve EV2 is fully opened
  • the openings of the third valve EV3 and the fourth valve EV4 are adjusted.
  • the first flow switching valve 106 of the second outdoor unit 42 is switched so as to connect the refrigerant pipe 105c and the gas side end of the second heat exchange section 109b.
  • the second flow path switching valve 107 is switched to connect the discharge pipe 105a and the high and low pressure gas pipe 25G1.
  • the third flow switching valve 108 is switched so as to connect the discharge pipe 105a and the gas side end of the first heat exchange section 109a.
  • switching unit 57 (hereinafter also referred to as “heating side switching unit 57") corresponding to the indoor unit 30 (hereinafter also referred to as “heating side indoor unit 30") that performs heating operation among the operating indoor units 30 , the first valve EV1 is fully open, the second valve EV2 is fully closed, the third valve EV3 is fully closed, and the fourth valve EV4 is fully open.
  • part of the high pressure gas refrigerant compressed by the compressor 105 passes through the discharge pipe 105a and the second flow path switching valve 107 and flows into the high and low pressure gas pipe 25G1.
  • Another portion of the high-pressure gas refrigerant compressed by the compressor 105 passes through the discharge pipe 105a and the third flow switching valve 108, is condensed in the first heat exchanging section 109a, and passes through the first outdoor expansion valve 110.
  • the refrigerant condensed in the first heat exchange section 109a passes through the second outdoor expansion valve 111, evaporates in the second heat exchange section 109b, and is sucked into the compressor 105 through the first flow path switching valve .
  • the refrigerant that has flowed into the high and low pressure gas pipes 25G1 flows into the second header pipe 156 of the refrigerant channel switching unit 55, and flows through the first refrigerant pipe P1 of the heating side switching unit 57, the first valve EV1, and the user side gas pipe 161. flow into the gas pipe 25G.
  • the refrigerant that has flowed into the gas pipe 25G is condensed in the indoor heat exchanger 31 of the heating-side indoor unit 30.
  • the condensed refrigerant flows from the liquid pipe 25L through the fully opened fourth valve EV4 into the usage side liquid pipe 162 of the heating side switching unit 57, and flows through the supercooling heat exchanger 159 and the fourth refrigerant pipe P4. It flows into the first header pipe 155 .
  • the refrigerant that has flowed into the liquid pipe 25L from the second outdoor unit 42 also flows into the first header pipe 155.
  • the refrigerant that has flowed into the first header pipe 155 passes through the fourth refrigerant pipe P4 of the cooling side switching unit 57, the subcooling heat exchanger 159, and the usage side liquid pipe 162, and is decompressed by the fourth valve EV4 whose opening is adjusted. After that, it flows into the cooling-side indoor unit 30 through the liquid pipe 25L.
  • the refrigerant that has passed through the subcooling heat exchanger 159 is branched from the fourth refrigerant pipe P4, flows through the fifth refrigerant pipe P5, and is subcooled by the refrigerant decompressed by the third valve EV3.
  • the refrigerant that has flowed into the cooling-side indoor unit 30 evaporates in the indoor heat exchanger 31 to cool the room.
  • the evaporated refrigerant flows through the gas pipe 25G, flows into the user-side gas pipe 161 of the cooling-side switching unit 57, passes through the second valve EV2, flows into the third refrigerant pipe P3 and the third header pipe 157, and becomes suction gas. It flows through tube 25 G 2 into accumulator 104 and is sucked into compressor 105 .
  • FIG. 9 is a refrigerant circuit diagram of an air conditioning system according to a fourth embodiment of the present disclosure.
  • FIG. 10 is a block diagram of an air conditioning system according to the fourth embodiment of the present disclosure.
  • the fourth air conditioning system 14 includes a fourth air conditioner 24 .
  • the fourth air conditioner 24 includes an indoor unit 30, an outdoor unit 40, and a plurality of valve units 50 (shutoff valve unit 51 and refrigerant channel switching unit 55).
  • the fourth air conditioner 24 uses a flammable refrigerant (for example, R32 having a slightly combustible property) as a refrigerant, a shutoff valve unit 51 that shuts off the refrigerant supplied to the indoor unit 30 is provided.
  • the fourth air conditioner 24 differs from the third air conditioner 23 in that it includes a shutoff valve unit 51 .
  • the configuration of the fourth air conditioner 24 is common to that of the third air conditioner 23 except for the cutoff valve unit 51 .
  • the same reference numerals are given to the parts that have the same configuration as the third air conditioner 23, and the explanation of the common parts will be given in particular. omitted unless otherwise specified.
  • the control section 60 includes a second outdoor control section 61 B, an indoor control section 62 , a cutoff valve control section 63 and a flow path switching control section 64 .
  • the second outdoor control section 61B, the indoor control section 62, the cutoff valve control section 63, and the flow path switching control section 64 are connected so as to be able to communicate with each other via transmission lines.
  • the shut-off valve control unit 63 closes the first motor-operated valve 52 and the second motor-operated valve 53, and the indoor unit Cut off the supply of coolant to 30 .
  • the fourth valve EV4 is used as a control valve for adjusting the pressure of the refrigerant supplied to the indoor unit 30.
  • the flow path switching control unit 64 of the control unit 60 adjusts the opening degree of the fourth valve EV4 based on the detected values of sensors (not shown) of the indoor unit 30 and the first outdoor unit 41. It adjusts and controls the pressure of the refrigerant supplied to the indoor unit 30 .
  • the first electric valve 52 may be used as a control valve for adjusting the pressure of the refrigerant supplied to the indoor unit 30.
  • the shut-off valve control unit 63 adjusts the opening degree of the first motor-operated valve 52 based on the detection values of the sensors (not shown) of the indoor unit 30 and the first outdoor unit 41, and the indoor unit 30 Controls the pressure of the refrigerant supplied to
  • the fourth valve EV4 of the refrigerant flow switching unit 55 or the first electric valve 52 of the cutoff valve unit 51 is used as a control valve for adjusting the pressure of the refrigerant supplied to the indoor unit 30.
  • the control main body of the control valve for adjusting the pressure of the refrigerant supplied to the indoor unit 30 is the cutoff valve control unit 63 or the flow path switching control unit 64 of the control unit 60. Although illustrated, it is not limited to this, and may be the second outdoor controller 61B and the indoor controller 62 .
  • FIG. 11 is a control flow diagram of the control unit in the air conditioning system of the present disclosure.
  • the controller 60 performs the operation shown in FIG. 11 when the power is turned on for the first time after installation is completed.
  • the outdoor controller 61 performs the operations shown in FIG. 11 . It should be noted that the timing of executing the operation shown in FIG. 11 is not limited to the first time the power is turned on.
  • step (S01) the control unit 60 first executes step (S01).
  • step ( S ⁇ b>01 ) the control unit 60 determines whether or not the air conditioning system 10 has the valve unit 50 . If the air conditioning system 10 does not have the valve unit 50 (No), the controller 60 next executes step (S02). If the air conditioning system 10 has the valve unit 50 (Yes), the controller 60 next executes step (S05).
  • the electric valves 52 and 53 of the shutoff valve unit 51 may be used exclusively for shutting off the refrigerant.
  • the control section 60 does not judge the shutoff valve unit 51 as the valve unit 50 in step (S01).
  • step (S02) the control unit 60 selects the first control mode M1 as the control mode M of the air conditioner 20, and then executes step (S03).
  • step ( S ⁇ b>03 ) the control unit 60 writes information about the outdoor unit 40 to the indoor control unit 62 .
  • the controller 60 writes information indicating that the outdoor unit 40 is the first outdoor unit 41 (in other words, information indicating that the air conditioning system 10 is of the first specification) to the indoor controller 62 .
  • control unit 60 executes step (S04).
  • step (S04) the control unit 60 controls the air conditioner 20 in the first control mode M1.
  • the outdoor control unit 61 controls the outdoor expansion valve 84 to adjust the pressure of the refrigerant supplied to the indoor unit 30 .
  • this step (S04) is executed when the air conditioning system 10 is the first air conditioning system 11 (see FIGS. 3 and 4).
  • the indoor controller 62 controls the operation of the indoor unit 30 based on the information of the first outdoor unit 41 written in the indoor controller 62 .
  • step (S05) the control unit 60 selects the second control mode M2 as the control mode M of the air conditioner 20, and then executes step (S06).
  • step ( S ⁇ b>06 ) the control unit 60 determines whether the air conditioning system 10 has the refrigerant channel switching unit 55 . If the air conditioning system 10 does not have the refrigerant channel switching unit 55 (No), the controller 60 next executes step (S07). If the air conditioning system 10 has the refrigerant channel switching unit 55 (Yes), the controller 60 next executes step (S09).
  • step ( S ⁇ b>07 ) the control unit 60 writes information about the outdoor unit 40 to the indoor control unit 62 .
  • the controller 60 writes information indicating that the outdoor unit 40 is the first outdoor unit 41 (in other words, information indicating that the air conditioning system 10 is of the first specification) to the indoor controller 62 .
  • control unit 60 executes step (S08).
  • step (S08) the control unit 60 controls the air conditioner 20 in the second control mode M2.
  • the cutoff valve control section 63 controls the first electric valve 52 to adjust the pressure of the refrigerant supplied to the indoor unit 30 .
  • this step (S08) is executed when the air conditioning system 10 is the second air conditioning system 12 (see FIGS. 5 and 6).
  • the indoor controller 62 controls the operation of the indoor unit 30 based on the information of the first outdoor unit 41 written in the indoor controller 62 .
  • step ( S ⁇ b>09 ) the control unit 60 writes information about the outdoor unit 40 to the indoor control unit 62 .
  • the controller 60 writes to the indoor controller 62 information indicating that the outdoor unit 40 is the second outdoor unit 42 (in other words, information indicating that the air conditioning system 10 is of the second specification).
  • step (S09) control unit 60 then executes step (S10).
  • the control unit 60 controls the air conditioner 20 in the second control mode M2.
  • the channel switching control unit 64 controls the fourth valve EV4 to adjust the pressure of the refrigerant supplied to the indoor unit 30 .
  • the air conditioning system 10 is the third air conditioning system 13 (see FIGS. 7 and 8) and the fourth air conditioning system 14 (FIGS. 9 and 10). ) is the case.
  • the indoor controller 62 controls the operation of the indoor unit 30 based on the information of the second outdoor unit 42 written in the indoor controller 62 .
  • control unit 60 determines the specifications of the air conditioning system 10 (presence or absence of the valve unit 50 and the air conditioning system) through the operations of steps (S01) to (S10).
  • the common indoor unit 30 can be used by the control unit 60 selecting the control mode M of the air conditioner 20 according to its specifications.
  • the operations of steps (S01) to (S10) are executed by the outdoor control unit 61 provided in the outdoor unit 40, but the indoor control unit 62 provided in the indoor unit 30 may perform the above operations. Further, the operations of steps (S01) to (S10) described above may be executed by the control section 60 other than the outdoor control section 61 and the indoor control section 62.
  • FIG. For example, if the air conditioning system 10 has a central monitoring device (not shown) or a management server connected via the Internet, the control unit 60 includes the central monitoring device, the management server, etc., and the central monitoring device , the management server or the like may execute the operations of the above steps (S01) to (S10).
  • the outdoor unit 40 of the present disclosure is provided in the air conditioning system 10 including refrigerant circuits RC1, RC2 that perform a refrigeration cycle and a plurality of indoor units 30, and the plurality of indoor units 30 are connected in parallel.
  • the first control valve (outdoor expansion valve 84 or first outdoor expansion valve 110 and second outdoor expansion valve 111) for adjusting the pressure of the refrigerant supplied to the indoor unit 30 by the outdoor unit 40, and the first control valve ( An outdoor control unit 61 that controls the outdoor expansion valve 84, or the first outdoor expansion valve 110 and the second outdoor expansion valve 111).
  • the outdoor control unit 61 controls the outdoor expansion valve 84 when the air conditioning system 10 does not include the valve unit 50 provided between the indoor unit 30 and the outdoor unit 40 for switching the flow of the refrigerant to the indoor unit 30. Then, the air conditioning system 10 is operated in the first control mode M1 in which the pressure of the refrigerant supplied to the indoor units 30 is adjusted.
  • the valve unit 50 is included in the air conditioning system 10
  • the refrigerant supplied to the indoor unit 30 by controlling the second control valve (first electric valve 52 or fourth valve EV4) included in the valve unit 50
  • the air conditioning system 10 is operated in the second control mode M2 for adjusting the pressure of .
  • the controller 60 controls the outdoor expansion valve 84 of the outdoor unit 40, and the air conditioning system 10 is of the second specification.
  • the controller 60 switches the control mode M of the air conditioner 20 according to the specifications of the air conditioning system 10, such as controlling the fourth valve EV4 of the refrigerant flow switching unit 55. be able to. This eliminates the need to provide a control valve in the indoor unit 30 even if the air conditioning system 10 is the second specification, and regardless of the specification of the air conditioning system 10, a common indoor unit that does not have a control valve. 30 can be used.
  • the indoor unit 30 of the present disclosure is provided in the air conditioning system 10 including the refrigerant circuits RC1 and RC2 that perform the refrigerating cycle and the outdoor unit 40, and is connected in parallel to the outdoor unit 40.
  • the outdoor unit 40 includes a first control valve (the outdoor expansion valve 84 or the first outdoor expansion valve 110 and the second outdoor expansion valve 111) that adjusts the pressure of the refrigerant supplied to the indoor unit 30.
  • the indoor unit 30 includes an indoor controller 62 that controls the first control valve (the outdoor expansion valve 84 or the first outdoor expansion valve 110 and the second outdoor expansion valve 111).
  • the indoor control unit 62 controls the outdoor expansion valve 84 when the air conditioning system 10 does not include the valve unit 50 provided between the indoor unit 30 and the outdoor unit 40 for switching the flow of the refrigerant to the indoor unit 30. Then, the air conditioning system 10 is operated in the first control mode M1 in which the pressure of the refrigerant supplied to the indoor units 30 is adjusted.
  • the indoor control unit 62 controls the second control valve (the first electric valve 52 or the fourth valve EV4) included in the valve unit 50 to The air conditioning system 10 is operated in the second control mode M2 in which the pressure of the refrigerant supplied to the air conditioner 30 is adjusted.
  • the controller 60 controls the outdoor expansion valve 84 of the outdoor unit 40, and the air conditioning system 10 is of the second specification.
  • the control mode M of the air conditioner 20 is set by the indoor control unit 62 according to the specifications of the air conditioning system 10, such that the control unit 60 controls the fourth valve EV4 of the refrigerant channel switching unit 55. can be switched. This eliminates the need to provide a control valve in the indoor unit 30 even if the air conditioning system 10 is the second specification, and regardless of the specification of the air conditioning system 10, a common indoor unit that does not have a control valve. 30 can be used.
  • the air conditioning system 10 of the present disclosure includes refrigerant circuits RC1 and RC2 that perform a refrigeration cycle, an outdoor unit 40, and a plurality of indoor units 30 connected in parallel to the outdoor unit 40.
  • the air conditioning system 10 has a control section 60 that controls the operation of the air conditioning system 10 .
  • the outdoor unit 40 includes a first control valve (the outdoor expansion valve 84 or the first outdoor expansion valve 110 and the second outdoor expansion valve 111) that adjusts the pressure of the refrigerant supplied to the indoor unit 30.
  • the air conditioning system 10 controls the outdoor expansion valve 84 when the valve unit 50 provided between the indoor unit 30 and the outdoor unit 40 and switching the flow of the refrigerant to the indoor unit 30 is not included in the air conditioning system 10.
  • the pressure of the refrigerant supplied to the indoor unit 30 is adjusted in the first control mode M1.
  • the air conditioning system 10 controls the second control valve (first electric valve 52 or fourth valve EV4) included in the valve unit 50 to operate the indoor unit. It operates in the second control mode M2 in which the pressure of the refrigerant supplied to 30 is adjusted.
  • the controller 60 controls the outdoor expansion valve 84 of the outdoor unit 40, and the air conditioning system 10 is of the second specification.
  • the control mode M of the air conditioner 20 is switched by the outdoor control unit 61 according to the specifications of the air conditioning system 10, such that the control unit 60 controls the fourth valve EV4 of the refrigerant channel switching unit 55. be able to.
  • the controller 60 automatically selects the second control mode M2 when the valve unit 50 is included in the air conditioning system 10. In this case, by simply connecting the valve unit 50 to the indoor unit 30 and the outdoor unit 40, the second control mode M2 suitable for the specifications of the air conditioning system 10 can be automatically selected.
  • the air conditioning system 10 of the present disclosure further includes selection means 37 for manually selecting the first control mode M1 and the second control mode M2. In this case, the user can manually select the first control mode M1 or the second control mode M2.
  • the controller 60 controls the outdoor expansion valve 84 in the first control mode M1. do.
  • the control unit 60 (the shutoff valve control unit 63 and/or the flow path switching control unit 64) is controlled by the first motor operated valve 52 or the fourth The valve MV4 is controlled in the second control mode M2. In this case, the controller 60 can automatically select the first control mode M1 or the second control mode M2.
  • the fourth valve EV4 prevents the supply of refrigerant to the indoor unit 30. Cut off.
  • the fourth valve EV4 can be used as a control valve for adjusting the pressure of the refrigerant and as a cutoff valve for shutting off the refrigerant. In such an air conditioning system 10, since it is not necessary to separately provide a shutoff valve, manufacturing costs can be suppressed.
  • the controller 60 further includes an indoor controller 62 that controls the operation of the indoor unit 30 , and the indoor unit 30 has the indoor controller 62 .
  • the indoor controller 62 controls the indoor unit 30 based on the information of the outdoor unit 40 .
  • the control content of the indoor unit 30 can be automatically switched to the content according to the specification of the outdoor unit 40.
  • Air conditioning system 11 First air conditioning system 12: Second air conditioning system 13: Third air conditioning system 14: Fourth air conditioning system 20: Air conditioner 30: Indoor unit 40: Outdoor unit 50: Valve unit 51: Shutoff valve unit (valve unit) 52: First electric valve (second control valve) 55: Refrigerant channel switching unit (valve unit) 60: control unit 62: indoor control unit 84: outdoor expansion valve (first control valve) 110: First outdoor expansion valve (first control valve) 111: Second outdoor expansion valve (first control valve) EV4: 4th valve (second control valve) RC1: refrigerant circuit RC2: refrigerant circuit M: control mode M1: first control mode M2: second control mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和システム(10)は、冷媒回路(RC1)、室外機(40)、及び室外機(40)に対して並列に接続される複数の室内機(30)を含んでおり、室外機(40)が、室内機(30)へ供給する冷媒の圧力を調整する室外膨張弁(84)等と、室外膨張弁(84)等を制御する室外制御部(61)と、を備え、室内機(30)と室外機(40)との間に設けられ室内機(30)への冷媒の流れを切り換える弁ユニット(50)が空気調和システム(10)に含まれていない場合、室外膨張弁(84)等を制御して室内機(30)へ供給する冷媒の圧力を調整する第1制御モード(M1)で動作し、弁ユニット(50)が空気調和システム(10)に含まれている場合、弁ユニット(50)に含まれる第1電動弁(52)等を制御して室内機(30)へ供給する冷媒の圧力を調整する第2制御モード(M2)で動作する。

Description

室外機、室内機、及び空気調和システム
 本開示は、室外機、室内機、及び空気調和システムに関する。
 特許文献1には、室外機(熱源ユニット)、室内機(利用ユニット)、及び弁ユニット(冷媒流路切換ユニット)を備えた空気調和システムが開示されている。前記空気調和システムでは、室外機、室内機、及び弁ユニットにおいて、それぞれ制御弁を設けている。特許文献1には、さらに、室内機の制御弁を省略し、室外機又は弁ユニットの制御弁で室内機へ供給する冷媒を制御する構成とした空気調和システムが開示されている(段落0190参照)。
国際公開第2019/064566号
 前記空気調和システムの仕様には、複数の室内機を全て冷房運転又は暖房運転のいずれか一方に切り換えて運転する第1仕様(いわゆる冷暖切換仕様)、及び複数の室内機を、室内機ごとに冷房運転又は暖房運転を個別に選択して運転可能な第2仕様(いわゆる冷暖フリー仕様)があり、その仕様に応じて、室外機の仕様、弁ユニットの有無、室外機における制御弁の有無が変わる。言い換えると、前記空気調和システムの商品ラインナップには、制御弁の有無が異なる少なくとも2機種の室内機を準備する必要があり、このことが、空気調和システムの製造コスト及び管理コストを増大させる要因となっている。
 本開示は、空気調和システムの仕様に関わらず、共通の室内機を使用可能にすることを目的とする。
 (1)本開示の室外機は、冷凍サイクルを行う冷媒回路及び複数の室内機を含む空気調和システムに備えられ、前記複数の室内機が並列に接続される室外機であって、前記室外機が、前記室内機へ供給する冷媒の圧力を調整する第1制御弁と、前記第1制御弁を制御する制御部と、を備えており、前記制御部が、前記室内機と前記室外機との間に設けられ前記室内機への冷媒の流れを切り換える弁ユニットが前記空気調和システムに含まれていない場合、前記第1制御弁を制御して前記室内機へ供給する冷媒の圧力を調整する第1制御モードで前記空気調和システムを動作させ、前記弁ユニットが前記空気調和システムに含まれている場合、前記弁ユニットに含まれる第2制御弁を制御して前記室内機へ供給する冷媒の圧力を調整する第2制御モードで前記空気調和システムを動作させる。
 空気調和システムが、複数の室内機を全て冷房運転又は暖房運転のいずれか一方に切り換えて運転する第1仕様である場合、制御部によって室外機の第1制御弁を制御し、空気調和システムが、複数の室内機を、室内機ごとに冷房運転又は暖房運転を個別に選択して運転可能な第2仕様である場合、制御部によって弁ユニットの第2制御弁を制御する、のように、空気調和システムの仕様に応じて、制御部によって制御する弁及び制御内容を切り換えることができる。これにより、空気調和システムが第2仕様であっても室内機に制御弁を設ける必要がなくなり、空気調和システムの仕様に関わらず、制御弁を有さない仕様とした共通の室内機を使用することが可能となる。
 (2)本開示の室内機は、冷凍サイクルを行う冷媒回路及び室外機を含む空気調和システムに備えられ、前記室外機に対して並列に複数接続される室内機であって、前記室外機が、前記室内機へ供給する冷媒の圧力を調整する第1制御弁を備えており、前記室内機が、前記第1制御弁を制御する制御部を備えており、前記制御部が、前記室内機と前記室外機との間に設けられ前記室内機への冷媒の流れを切り換える弁ユニットが前記空気調和システムに含まれていない場合、前記第1制御弁を制御して前記室内機へ供給する冷媒の圧力を調整する第1制御モードで前記空気調和システムを動作させ、前記弁ユニットが前記空気調和システムに含まれている場合、前記弁ユニットに含まれる第2制御弁を制御して前記室内機へ供給する冷媒の圧力を調整する第2制御モードで前記空気調和システムを動作させる。
 空気調和システムが、複数の室内機を、全て冷房運転又は暖房運転のいずれか一方に切り換えて運転する第1仕様である場合、室外機の第1制御弁を制御し、空気調和システムが、複数の室内機を、室内機ごとに冷房運転又は暖房運転を個別に選択して運転可能な第2仕様である場合、弁ユニットの第2制御弁を制御する、のように、空気調和システムの仕様に応じて、制御する弁及び制御内容を切り換えることができる。これにより、空気調和システムが第2仕様であっても室内機に制御弁を設ける必要がなくなり、空気調和システムの仕様に関わらず、制御弁を有さない仕様とした共通の室内機を使用することが可能となる。
 (3)本開示の空気調和システムは、冷凍サイクルを行う冷媒回路、室外機、及び前記室外機に対して並列に接続される複数の室内機を含む空気調和システムであって、前記空気調和システムが、当該空気調和システムの動作を制御する制御部を備えており、前記室外機が、前記室内機へ供給する冷媒の圧力を調整する第1制御弁を備えており、前記室内機と前記室外機との間に設けられ前記室内機への冷媒の流れを切り換える弁ユニットが前記空気調和システムに含まれていない場合、前記第1制御弁を制御して前記室内機へ供給する冷媒の圧力を調整する第1制御モードで動作し、前記弁ユニットが前記空気調和システムに含まれている場合、前記弁ユニットに含まれる第2制御弁を制御して前記室内機へ供給する冷媒の圧力を調整する第2制御モードで動作する。
 空気調和システムが、複数の室内機を、全て冷房運転又は暖房運転のいずれか一方に切り換えて運転する第1仕様である場合、室外機の第1制御弁を制御し、空気調和システムが、複数の室内機を、室内機ごとに冷房運転又は暖房運転を個別に選択して運転可能な第2仕様である場合、弁ユニットの第2制御弁を制御する、のように、空気調和システムの仕様に応じて、制御する弁及び制御内容を切り換えることができる。これにより、空気調和システムが第2仕様であっても室内機に制御弁を設ける必要がなくなり、空気調和システムの仕様に関わらず、制御弁を有さない仕様とした共通の室内機を使用することが可能となる。
 (4)本開示の空気調和システムは、前記制御部が、前記弁ユニットが前記空気調和システムに含まれている場合に、前記第2制御モードを自動的に選択すると好ましい。
 この場合、室内機及び室外機に対して弁ユニットを繋ぐだけで、空気調和システムの仕様に適した第2制御モードを自動的に選択することができる。
 (5)本開示の空気調和システムは、前記第1制御モード及び前記第2制御モードを手動で選択する選択手段をさらに備えると好ましい。
 この場合、ユーザが第1制御モード又は第2制御モードを手動で選択することができる。
 (6)本開示の空気調和システムは、前記弁ユニットが前記空気調和システムに含まれていない場合、前記制御部が、前記第1制御弁を前記第1制御モードで制御し、
 前記弁ユニットが前記空気調和システムに含まれている場合、前記制御部が、前記第2制御弁を前記第2制御モードで制御すると好ましい。
 この場合、制御部によって第1制御モード又は第2制御モードを自動的に選択することができる。
 (7)本開示の空気調和システムは、前記弁ユニットを含む前記空気調和システムにおいて、前記室内機で冷媒が漏洩した場合、前記第2制御弁が、前記室内機への冷媒の供給を遮断すると好ましい。
 この場合、空気調和システムが第2仕様である場合、弁ユニットの第2制御弁を、冷媒の圧力を調整する制御弁として使用するとともに、冷媒を遮断する遮断弁として使用することができる。このような空気調和システムでは、遮断弁を別途設ける必要がないため、製造コストを抑制することができる。
 (8)本開示の空気調和システムは、前記制御部が、前記室内機の動作を制御する室内制御部をさらに含み、前記室内機が、前記室内制御部を有しており、前記室内機及び前記室外機が接続されたときに、前記室内制御部に前記室外機の情報が書き込まれ、前記室内制御部が、前記室外機の情報に基づいて前記室内機を制御すると好ましい。
 この場合、室内機及び室外機を接続するだけで、室内機の制御内容を、室外機の仕様に応じた内容に自動的に切り換えることができる。
本開示の第1実施形態に係る空気調和システムの概略的な構成図。 本開示の第2実施形態に係る空気調和システムの概略的な構成図。 本開示の第3実施形態に係る空気調和システムの概略的な構成図。 本開示の第4実施形態に係る空気調和システムの概略的な構成図。 本開示の第1実施形態に係る空気調和システムの冷媒回路図。 本開示の第1実施形態に係る空気調和システムのブロック図。 本開示の第2実施形態に係る空気調和システムの冷媒回路図。 本開示の第2実施形態に係る空気調和システムのブロック図。 本開示の第3実施形態に係る空気調和システムの冷媒回路図。 本開示の第3実施形態に係る空気調和システムのブロック図。 本開示の第4実施形態に係る空気調和システムの冷媒回路図。 本開示の第4実施形態に係る空気調和システムのブロック図。 本開示の空気調和システムにおける制御部の制御フロー図。
(空気調和システムの概要)
 図1Aは、本開示の第1の実施形態に係る空気調和システムの概略的な構成図である。図1Bは、本開示の第2の実施形態に係る空気調和システムの概略的な構成図である。図2Aは、本開示の第3の実施形態に係る空気調和システムの概略的な構成図である。図2Bは、本開示の第4の実施形態に係る空気調和システムの概略的な構成図である。図1A、図1B、図2A及び図2Bは、本開示の空気調和システム10の概略的な構成を示している。なお、以下の説明では、第1実施形態に係る空気調和システム10(図1A参照)を第1空気調和システム11と称し、第2実施形態に係る空気調和システム10(図1B参照)を第2空気調和システム12と称し、第3実施形態に係る空気調和システム10(図2A参照)を第3空気調和システム13と称し、第4実施形態に係る空気調和システム10(図2B参照)を第4空気調和システム14と称する。以下の説明において、単に「空気調和システム10」と記載する場合は、第1~第4の各空気調和システム11~14で共通する構成について説明している。なお、以下の説明でいう「第1仕様」とは、複数の室内機を有する空気調和機において、全ての室内機を冷房運転又は暖房運転のいずれか一方に切り換えて運転する仕様(いわゆる冷暖切換仕様)であり、「第2仕様」とは、複数の室内機を有する空気調和機において、室内機ごとに冷房運転又は暖房運転を個別に選択して運転可能な仕様(いわゆる冷暖フリー仕様)である。
 図1A、図1B、図2A及び図2Bに示す空気調和システム10は、ビルや工場等に設置されて空調対象空間の空気調和を実現する。空気調和システム10は、室内機30及び室外機40を含む空気調和機20を備えている。空気調和機20は、蒸気圧縮式の冷凍サイクル運転を行うことで空調対象空間を冷暖房する。
 図1A及び図1Bに示す空気調和システム10は、第1仕様の空気調和機20を備えている。具体的には、図1Aに示す第1空気調和システム11は、第1仕様の第1空気調和機21を備えており、図1Bに示す第2空気調和システム12は、第1仕様の第2空気調和機22を備えている。以下の説明では、第1空気調和機21及び第2空気調和機22が有する室外機40を第1室外機41と称する。言い換えると、第1空気調和機21及び第2空気調和機22は、共通の第1室外機41を備えている。以下の説明において、単に「空気調和機20」と記載する場合は、第1~第4の各空気調和機21~24で共通する構成について説明している。
 図2A及び図2Bに示す空気調和システム10は、第2仕様の空気調和機20を備えている。具体的には、図2Aに示す第3空気調和システム13は、第2仕様の第3空気調和機23を備えており、図2Bに示す第4空気調和システム14は、第2仕様の第4空気調和機24を備えている。以下の説明では、第3空気調和機23及び第4空気調和機24が有する室外機40を第2室外機42と称する。言い換えると、第3空気調和機23及び第4空気調和機24は、共通の第2室外機42を備えている。
 図1A、図1B、図2A及び図2Bに示すように、第1~第4の各空気調和機21~24は、共通の室内機30を備えている。
 空気調和機20は、冷媒配管25を備えている。第1空気調和機21及び第2空気調和機22が有する冷媒配管25は、液管25L及びガス管25Gを含んでいる。第3空気調和機23及び第4空気調和機24が有する冷媒配管25は、液管25L、高低圧ガス管25G1、及び吸入ガス管25G2を含んでいる。
 図1B、図2A及び図2Bに示すように、第2空気調和機22、第3空気調和機23、及び第4空気調和機24は、さらに弁ユニット50を備えている。第2空気調和機22が有する弁ユニット50は、室内機30と第1室外機41との間に設けられる遮断弁ユニット51である。第3空気調和機23が有する弁ユニット50は、室内機30と第2室外機42との間に設けられる冷媒流路切換ユニット55である。第4空気調和機24が有する弁ユニット50は、室内機30と第2室外機42との間に設けられる遮断弁ユニット51及び冷媒流路切換ユニット55である。
(第1空気調和システムについて)
 図3は、本開示の第1実施形態に係る空気調和システムの冷媒回路図である。図4は、本開示の第1実施形態に係る空気調和システムのブロック図である。図1A、図3及び図4に示すように、第1空気調和システム11は、第1空気調和機21を備えている。第1空気調和機21は、第1室外機41に対して複数台の室内機30が並列に接続されたマルチタイプの空気調和機である。図3に示す例では、1台の第1室外機41に2台以上の室内機30が接続されている。ただし、第1室外機41及び室内機30の台数は限定されない。第1空気調和機21は、冷房運転及び暖房運転を切り換えて、対象空間の空調を行うことができる。
 第1空気調和機21は、冷媒回路RC1を有している。冷媒回路RC1は、第1室外機41と室内機30との間で冷媒を循環させる。冷媒回路RC1は、圧縮機81、四路切換弁82、室外熱交換器83、室外膨張弁84、液閉鎖弁85、室内熱交換器31、ガス閉鎖弁86、及びこれらを接続する冷媒配管25(液管25L及びガス管25G)を含んでいる。
(室内機について)
 室内機30は、室内熱交換器31を備えている。室内熱交換器31は、冷媒回路RC1を構成する。室内熱交換器31は、クロスフィンチューブ式又はマイクロチャネル式の熱交換器とされ、室内の空気と熱交換するために用いられる。
 室内機30は、室内ファン32及び室内温度センサ33を備えている。室内ファン32は、室内の空気を室内機30の内部に取り込み、取り込んだ空気と室内熱交換器31との間で熱交換を行わせた後、当該空気を室内に吹き出すように構成されている。室内ファン32は、インバータ制御によって運転回転数を調整可能なモータを備えている。室内温度センサ33は、室内の温度を検出する。
 以上に説明した通り、本開示の室内機30は、当該室内機30の内部に電動弁(室内膨張弁)を有していない。本開示の空気調和システム10では、内部に電動弁(室内膨張弁)を有していない室内機30を使用することにより、室外機40の仕様に関わらず、共通の室内機30を使用することを可能にしている。
(第1室外機について)
 図3に示すように、第1室外機41は、圧縮機81、四路切換弁82、室外熱交換器83、室外膨張弁84、液閉鎖弁85、及びガス閉鎖弁86等を備えている。
 圧縮機81は、低圧のガス状冷媒を吸引し高圧のガス状冷媒を吐出する。圧縮機81は、インバータ制御によって運転回転数を調整可能なモータを備えている。圧縮機81は、モータがインバータ制御されることによって容量(能力)を変更可能な可変容量型(能力可変型)である。ただし、圧縮機81は一定容量型であってもよい。
 四路切換弁82は、冷媒配管における冷媒の流れを反転させ、圧縮機81から吐出される冷媒を室外熱交換器83と室内熱交換器31との一方に切り換えて供給する。これにより、第1空気調和機21は、冷房運転と暖房運転とを切り換えて行うことができる。
 室外熱交換器83は、例えばクロスフィンチューブ式又はマイクロチャネル式の熱交換器であり、空気を熱源として冷媒と熱交換するために用いられる。室外膨張弁84は、冷媒の流量及び圧力を調節することが可能な電動弁により構成されている。第1空気調和機21では、室外膨張弁84の開度を制御して、室内熱交換器31に供給する冷媒の圧力を調節する。
 液閉鎖弁85は、手動の開閉弁である。ガス閉鎖弁86も手動の開閉弁である。液閉鎖弁85及びガス閉鎖弁86は、閉じることによって液管25L及びガス管25Gにおける冷媒の流れを遮蔽し、開くことによって、液管25L及びガス管25Gにおける冷媒の流れを許容する。
 第1室外機41は、さらに室外ファン87を備えている。室外ファン87は、インバータ制御によって運転回転数を調整可能なモータを備えている。室外ファン87は、屋外の空気を第1室外機41の内部に取り込み、取り込んだ空気と室外熱交換器83との間で熱交換を行わせた後、当該空気を第1室外機41の外部に吹き出すように構成されている。なお、第1室外機41は、図示しない複数の冷媒圧力センサ、複数の冷媒温度センサ、及び外気温度センサ等をさらに備えている。
 上記構成の第1空気調和機21が冷房運転を行う場合に、四路切換弁82が図3において実線で示す状態に保持される。圧縮機81から吐出された高温高圧のガス状冷媒は、四路切換弁82を経て室外熱交換器83に流入し、室外ファン87の作動により室外空気と熱交換して凝縮・液化する。液化した冷媒は、全開状態の室外膨張弁84を通過して各室内機30に流入する。室内機30において、冷媒は、室内熱交換器31で室内空気と熱交換して蒸発する。冷媒の蒸発によって冷却された室内空気は、室内ファン32によって室内に吹き出され、当該室内を冷房する。室内熱交換器31で蒸発した冷媒は、ガス管25Gを通って第1室外機41に戻り、四路切換弁82を経て圧縮機81に吸い込まれる。
 第1空気調和機21が暖房運転を行う場合、四路切換弁82が図3において破線で示す状態に保持される。圧縮機81から吐出された高温高圧のガス状冷媒は、四路切換弁82を通過して各室内機30の室内熱交換器31に流入する。室内熱交換器31において、冷媒は室内空気と熱交換して凝縮・液化する。冷媒の凝縮によって加熱された室内空気は、室内ファン32によって室内に吹き出され、当該室内を暖房する。室内熱交換器31において液化した冷媒は、液管25Lを通って第1室外機41に戻り、室外膨張弁84で所定の低圧に減圧され、さらに室外熱交換器83で室外空気と熱交換して蒸発する。室外熱交換器83で蒸発して気化した冷媒は、四路切換弁82を経て圧縮機81に吸い込まれる。
(制御部について)
 空気調和システム10は、当該空気調和システム10の動作を制御する制御部60を備えている。制御部60は、室外機40に配置された室外制御部(第1制御部)61と、室内機30に配置された室内制御部(第3制御部)62とを含んでいる。室外制御部61と室内制御部62とは、伝送線を介して相互に通信可能に接続されている。
 室外制御部61は、室外機40の動作を制御する装置であり、例えば、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータにより構成される。室外制御部61は、LSI、ASIC、FPGA等を用いてハードウェアとして実現されるものであってもよい。室外制御部61は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。以下の説明では、第1室外機41に設けられた室外制御部61を第1室外制御部61Aと称する。第1室外機41に設けられた各センサの検出値は、第1室外制御部61Aに入力される。第1室外制御部61Aは、各センサの検出値等に基づいて、室外膨張弁84、圧縮機81、室外ファン87等の動作を制御する。
 室内制御部62は、室内機30の動作を制御する装置であり、例えば、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータにより構成される。室内制御部62は、LSI、ASIC、FPGA等を用いてハードウェアとして実現されるものであってもよい。室内制御部62は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。室内機30に設けられた各センサの検出値は、室内制御部62に入力される。室内制御部62は、各センサの検出値等に基づいて、室内機30の動作を制御する。室内制御部62は、ユーザが室内機30の運転・停止、及び設定温度の変更等を行うリモコン36が接続されている。
(空気調和機の運転モードについて)
 空気調和機20は、制御部60が選択可能な制御モードMとして、第1制御モードM1及び第2制御モードM2を有する。第1制御モードM1は、空気調和システム10に弁ユニット50が含まれていない場合に、制御部60が選択する制御モードMである。第2制御モードM2は、空気調和システム10に弁ユニット50が含まれている場合に制御部60が選択する制御モードMである。なお、空気調和機20は、制御部60が選択可能な制御モードMとして、第1制御モードM1及び第2制御モードM2以外の制御モードMをさらに有していても良い。
(選択手段について)
 制御部60は、制御モードMを手動で選択するための選択手段37を有する。空気調和システム10のユーザは、選択手段37を操作することにより、制御部60が制御モードMを選択する代わりに、手動で制御モードMを選択することができる。本開示の空気調和機20では、室外制御部61の制御基板(図示省略)にディップスイッチを設けており、これを選択手段37としている。なお、空気調和システム10において、選択手段37は省略してもよい。本開示では、選択手段37を室外制御部61に設けた場合を例示しているが、選択手段37は、室内制御部62に設けてもよい。
(第2空気調和システムについて)
 図5は、本開示の第2実施形態に係る空気調和システムの冷媒回路図である。図6は、本開示の第2実施形態に係る空気調和システムのブロック図である。図1B、図5及び図6に示すように、第2空気調和システム12は、第2空気調和機22を備えている。第2空気調和機22は、室内機30と室外機40と弁ユニット50(遮断弁ユニット51)を備えている。第2空気調和機22は、冷媒として可燃性を有する冷媒(例えば、微燃焼性を有するR32)を使用するため、室内機30へ供給する冷媒を遮断する遮断弁ユニット51が設けられている。第2空気調和機22は、遮断弁ユニット51を備えている点で、第1空気調和機21と異なっている。言い換えると、第2空気調和機22は、遮断弁ユニット51以外の構成については、第1空気調和機21と共通している。図5及び図6に示す第2空気調和機22において、第1空気調和機21と構成が共通している部分については同じ符号を付しており、その共通する部分の説明は、特に説明する場合を除き省略する。
(遮断弁ユニットについて)
 図5及び図6に示すように、遮断弁ユニット51は、第1電動弁52及び第2電動弁53を備えている。第1電動弁52及び第2電動弁53は電動弁である。第1電動弁52は、液管25Lに設けられており、当該第1電動弁52の開度を調整することによって、液管25Lを流れる液状冷媒の圧力を調整することができる。第1電動弁52は、その弁開度を全閉とすることによって、液管25Lにおける液状冷媒の流れを遮断することができる。第2電動弁53は、ガス管25Gに設けられており、当該第2電動弁53の弁開度を全閉とすることによって、ガス管25Gにおけるガス状冷媒の流れを遮断することができる。言い換えると、遮断弁ユニット51は、室内機30への冷媒の流れを「開」又は「閉」に切り換える弁ユニット50である。
(第2空気調和システムの制御部について)
 第2空気調和システム12において、制御部60は、第1室外制御部61Aと、室内制御部62と、遮断弁制御部63とを含んでいる。第1室外制御部61A、室内制御部62、及び遮断弁制御部63は、伝送線を介して相互に通信可能に接続されている。
(遮断弁制御部について)
 遮断弁制御部(第2制御部)63は、遮断弁ユニット51の動作を制御する装置であり、例えば、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータにより構成される。遮断弁制御部63は、LSI、ASIC、FPGA等を用いてハードウェアとして実現されるものであってもよい。遮断弁制御部63は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。第1電動弁52及び第2電動弁53は、遮断弁制御部63に接続されている。遮断弁制御部63は、室内機30及び第1室外機41が有する各センサ(図示省略)の検出値等に基づいて、第1電動弁52及び第2電動弁53の動作を制御する。なお、第2空気調和システム12において、遮断弁制御部63は省略してもよい。この場合、第1電動弁52及び第2電動弁53の動作は、第1室外制御部61A及び/又は室内制御部62によって制御する。
 第2空気調和システム12では、室内機30に設けた冷媒センサ(図示省略)が冷媒を検知した場合、遮断弁制御部63が第1電動弁52及び第2電動弁53を閉として、室内機30への冷媒の供給を遮断する。
 第2空気調和システム12では、第1電動弁52を、室内機30へ供給する冷媒の圧力調整用の制御弁として使用する。遮断弁制御部63は、室内機30及び第1室外機41が有する各センサ(図示省略)の検出値等に基づいて、第1電動弁52の開度を調整し、室内機30へ供給する冷媒の圧力を制御する。第2空気調和システム12では、室内機30へ供給する冷媒の圧力を調整する制御弁として遮断弁ユニット51(弁ユニット50)の第1電動弁52を使用することで、内部に電動弁(室内膨張弁)を有していない室内機30を使用することが可能になっている。なお、本実施形態では、室内機30へ供給する冷媒の圧力調整用の制御弁の制御主体が、制御部60のうちの遮断弁制御部63である場合を例示しているが、これに限定されず、第1室外制御部61A、及び室内制御部62であってもよい。
(第3空気調和システムについて)
 図7は、本開示の第3実施形態に係る空気調和システムの冷媒回路図である。図8は、本開示の第3実施形態に係る空気調和システムのブロック図である。図2A、図7及び図8に示すように、第3空気調和システム13は、第3空気調和機23を備えている。
 第3空気調和機23は、室内機30、第2室外機42、及び弁ユニット50を備えている。第3空気調和機23が有する弁ユニット50は、冷媒流路切換ユニット55である。第3空気調和機23は、冷媒回路RC2を有している。冷媒回路RC2は、第2室外機42と室内機30との間で冷媒を循環させる。冷媒回路RC2は、後で説明する熱源側冷媒回路RC2A、利用側冷媒回路RC2B、及び中間冷媒回路RC2Cを含んでいる。第3空気調和機23は、1台の第2室外機42に対して2台以上の室内機30が接続されている。各室内機30は、冷媒流路切換ユニット55を介して第2室外機42に接続されている。第3空気調和機23は、冷媒流路切換ユニット55によって室内機30毎に冷房運転及び暖房運転を自由に選択して、対象空間の空調を行うことができる。
(第2室外機の構成)
 図7に示すように、第2室外機42内には、各種の機器が配設され、これらの機器が冷媒配管を介して接続されることで、熱源側冷媒回路RC2Aが構成されている。熱源側冷媒回路RC2Aは、冷媒配管25(液管25L、高低圧ガス管25G1及び吸入ガス管25G2)を介して、冷媒流路切換ユニット55内の中間冷媒回路RC2Cに接続されている。
 熱源側冷媒回路RC2Aは、液側閉鎖弁101、ガス側第1閉鎖弁102、ガス側第2閉鎖弁103、アキュムレータ104、圧縮機105、第1流路切換弁106、第2流路切換弁107、第3流路切換弁108、室外熱交換器109、第1室外膨張弁110、及び第2室外膨張弁111を備えている。第2室外機42内には、さらに室外ファン112や室外制御部61(図8参照)等が配設されている。
 液側閉鎖弁101、ガス側第1閉鎖弁102、及びガス側第2閉鎖弁103は、冷媒の充填やポンプダウン等の際に開閉される手動の弁である。液側閉鎖弁101の一端は、液管25Lに接続されている。液側閉鎖弁101の他端は、第1室外膨張弁110及び第2室外膨張弁111まで延びる冷媒配管に接続されている。ガス側第1閉鎖弁102の一端は、高低圧ガス管25G1に接続されている。ガス側第1閉鎖弁102の他端は、第2流路切換弁107まで延びる冷媒配管に接続されている。ガス側第2閉鎖弁103の一端は、吸入ガス管25G2に接続されている。ガス側第2閉鎖弁103の他端は、アキュムレータ104まで延びる冷媒配管に接続されている。
 アキュムレータ104は、圧縮機105に吸入される低圧冷媒を一時的に貯留し、ガス状冷媒と液状冷媒とを分離するための容器である。
 圧縮機105は、圧縮機用モータを内蔵する密閉式の構造を有しており、例えばスクロール方式やロータリ方式などの容積式の圧縮機である。圧縮機105は、吸入配管105bから吸入した低圧冷媒を圧縮した後、吐出配管105aから吐出する。圧縮機105の内部には、冷凍機油が収容されている。この冷凍機油は、冷媒とともに冷媒回路内を循環することがある。本実施形態の第2室外機42は、1台の圧縮機105を備えているが、並列に接続された2台以上の圧縮機105を備えていてもよい。
 第1流路切換弁106、第2流路切換弁107、及び第3流路切換弁108は、四路切換弁である。第1流路切換弁106、第2流路切換弁107、及び第3流路切換弁108は、第3空気調和機23の運転状況に応じて冷媒の流れを切り換える。第1流路切換弁106、第2流路切換弁107、及び第3流路切換弁108の一の冷媒流入口には、吐出配管105a又は吐出配管105aから延びる分岐管が接続されている。第1流路切換弁106、第2流路切換弁107、及び第3流路切換弁108の一の冷媒流入口には、ガス側第2閉鎖弁103とアキュムレータ104とを接続する冷媒配管105cから延びる分岐管が接続されている。第1流路切換弁106、第2流路切換弁107、及び第3流路切換弁108は、運転時において、一の冷媒流路における冷媒の流れが遮断されるように構成されており、事実上、三方弁として機能している。
 室外熱交換器109は、クロスフィン型式やマイクロチャネル型式の熱交換器である。室外熱交換器109は、第1熱交換部109aと、第2熱交換部109bとを含んでいる。第1熱交換部109aは室外熱交換器109の上部に設けられており、第2熱交換部109bは第1熱交換部109aよりも下部に設けられている。
 第1熱交換部109aのガス側端は、第3流路切換弁108まで延びる冷媒配管に接続されている。第1熱交換部109aの液側端は、第1室外膨張弁110まで延びる冷媒配管に接続されている。
 第2熱交換部109bのガス側端は、第1流路切換弁106まで延びる冷媒配管に接続されている。第2熱交換部109bの液側端は、第2室外膨張弁111まで延びる冷媒配管に接続されている。
 第1熱交換部109a及び第2熱交換部109bを通過する冷媒は、室外ファン112が生成する空気流と熱交換する。室外ファン112は、例えばプロペラファンであり、室外ファン用モータ(図示省略)により駆動される。室外ファン112は、第2室外機42内に流入し室外熱交換器109を通過して第2室外機42外へ流出する空気流を生成する。
 第1室外膨張弁110及び第2室外膨張弁111は、例えば開度調整が可能な電動弁である。第1室外膨張弁110の一端は、第1熱交換部109aから延びる冷媒配管に接続されている。第1室外膨張弁110の他端は、液側閉鎖弁101まで延びる冷媒配管に接続されている。
 第2室外膨張弁111の一端は、第2熱交換部109bから延びる冷媒配管に接続されている。第2室外膨張弁111の他端は、液側閉鎖弁101まで延びる冷媒配管に接続されている。第1室外膨張弁110及び第2室外膨張弁111は、運転状況に応じて開度が調整され、内部を通過する冷媒をその開度に応じて減圧する。
 圧縮機105、室外ファン112、第1室外膨張弁110、第2室外膨張弁111、第1流路切換弁106、第2流路切換弁107、及び第3流路切換弁108は、室外制御部61(図8参照)により動作制御される。なお、以下の説明では、第2室外機42が有する室外制御部61を第2室外制御部61Bと称する。
(室内機)
 第3空気調和機23は、第1及び第2空気調和機21,22と同じ室内機30を有する。第3空気調和機23における室内機30の詳細な説明については割愛する。室内機30内には、利用側冷媒回路RC2Bが設けられている。利用側冷媒回路RC2Bは、室内熱交換器31が液管25L及びガス管25Gによって接続されることで構成されている。
(冷媒流路切換ユニット)
 図7及び図8に示すように、第3空気調和機23は、冷媒流路切換ユニット55を有している。冷媒流路切換ユニット55は、第2室外機42と複数の室内機30との間に設けられている。冷媒流路切換ユニット55は、ケーシング56を有している。冷媒流路切換ユニット55は、第2室外機42及び各室内機30へ流入する冷媒の流れを切り換える。冷媒流路切換ユニット55は、室内機30への冷媒の流れを、室内機30ごとに切り換える弁ユニット50である。図7に示すように、ケーシング56内には、複数のヘッダ管155,156,157,158と複数の切換ユニット57とが収容されている。
 (ヘッダ管)
 図7に示すように、複数のヘッダ管155,156,157,158は、第1ヘッダ管155と、第2ヘッダ管156と、第3ヘッダ管157と、第4ヘッダ管158とを含む。第1ヘッダ管155は、液管25Lに接続される。第2ヘッダ管156は、高低圧ガス管25G1に接続される。第3ヘッダ管157は、吸入ガス管25G2に接続される。
 (切換ユニット)
 冷媒流路切換ユニット55は、複数の切換ユニット57を備えている。各切換ユニット57は、冷媒流路切換ユニット55の中間冷媒回路RC2Cを形成する。各切換ユニット57には、それぞれ1台の室内機30が接続される。ただし、冷媒流路切換ユニット55のすべての切換ユニット57に室内機30が接続される必要はなく、室内機30が接続されていない切換ユニット57が冷媒流路切換ユニット55に存在していてもよい。
 (中間冷媒回路について)
 複数の切換ユニット57は、すべて同一の構造であり、各切換ユニット57の中間冷媒回路RC2Cは、それぞれ複数の弁EV1,EV2,EV3,EV4と、複数の冷媒配管と、を備えている。
 切換ユニット57において、複数の弁EV1,EV2,EV3,EV4は、第1弁EV1と、第2弁EV2と、第3弁EV3と、第4弁EV4とを含む。これらの弁EV1,EV2,EV3,EV4は、開度を調整可能な電動弁により構成されている。第2弁EV2、第3弁EV3及び第4弁EV4は、全閉状態、全開状態、及び開度調整状態のいずれかを取るように流路切換制御部64(図8参照)によって動作制御される。第1弁EV1は、最小開度状態、全開状態、全閉状態、及び開度調整状態のいずれかの状態を取るように流路切換制御部64(図8参照)によって動作制御される。
 切換ユニット57は、第2ヘッダ管156と、第1弁EV1とを接続する第1冷媒管P1を備えている。第1冷媒管P1の途中には、フィルタF1が設けられている。切換ユニット57は、第2冷媒管P2を備えている。第2冷媒管P2の一端は、第1弁EV1に接続されている。切換ユニット57は、利用側ガス配管161を備えている。利用側ガス配管161の一端は、室内機30のガス管25Gに接続されている。利用側ガス配管161の他端は、第2弁EV2に接続されている。第2冷媒管P2の他端は、利用側ガス配管161に接続されている。利用側ガス配管161には、フィルタF2が設けられている。
 切換ユニット57は、第3冷媒管P3を備えている。第3冷媒管P3の一端は、第2弁EV2に接続されている。第3冷媒管P3の他端は、第3ヘッダ管157に接続されている。第3冷媒管P3の途中には、フィルタF3が設けられている。
 切換ユニット57は、利用側液配管162を備えている。利用側液配管162の一端は、室内機30の液管25Lに接続されている。利用側液配管162の他端は、過冷却熱交換器159に接続されている。利用側液配管162の途中には、第4弁EV4が設けられている。過冷却熱交換器159の内部には、第1伝熱管159aと、第2伝熱管159bとが設けられている。過冷却熱交換器159は、第1伝熱管159aを流れる冷媒と第2伝熱管159bを流れる冷媒との間で熱交換を行う。利用側液配管162の他端は、第1伝熱管159aの一端に接続されている。
 切換ユニット57は、第4冷媒管P4を備えている。第4冷媒管P4の一端は、第1伝熱管159aの他端に接続されている。第4冷媒管P4の他端は、第1ヘッダ管155に接続されている。
 切換ユニット57は、第4冷媒管P4の途中から分岐する第5冷媒管P5を備えている。第5冷媒管P5の一端は、第3弁EV3の一端に接続されている。第5冷媒管P5の途中には、フィルタF4が設けられている。
 切換ユニット57は、第6冷媒管P6及び第7冷媒管P7を備えている。第6冷媒管P6の一端は、第3弁EV3に接続されている。第6冷媒管P6の他端は、過冷却熱交換器159の第2伝熱管159bの一端に接続されている。第7冷媒管P7の一端は、過冷却熱交換器159の第2伝熱管159bに接続されている。第7冷媒管P7の他端は、第4ヘッダ管158に接続されている。第4ヘッダ管158は、接続管163を介して、第3ヘッダ管157に接続されている。
 第4ヘッダ管158には、第1ヘッダ管155から第4冷媒管P4、第5冷媒管P5、第3弁EV3、第6冷媒管P6、過冷却熱交換器159、及び第7冷媒管P7を経て冷媒が流入する。さらに第4ヘッダ管158に流入した冷媒は、接続管163を通って第3ヘッダ管157に流入する。
(第3空気調和システムの制御部について)
 第3空気調和システム13における制御部60は、第2室外制御部61B、室内制御部62、及び冷媒流路切換ユニット55が有する流路切換制御部64を含んでいる。第2室外制御部61B、室内制御部62、及び流路切換制御部64は、伝送線を介して相互に通信可能に接続されている。
 第2室外制御部61Bは、第2室外機42の動作を制御する装置である。第2室外機42に設けられた各センサの検出値は、第2室外制御部61Bに入力される。第2室外制御部61Bは、各センサの検出値等に基づいて、圧縮機105、室外ファン112、第1室外膨張弁110、第2室外膨張弁111、第1流路切換弁106、第2流路切換弁107、及び第3流路切換弁108等の動作を制御する。
 流路切換制御部(第2制御部)64は、冷媒流路切換ユニット55の動作を制御する装置であり、例えば、CPU等のプロセッサ、RAM、ROM等のメモリを備えたマイクロコンピュータにより構成される。流路切換制御部64は、LSI、ASIC、FPGA等を用いてハードウェアとして実現されるものであってもよい。流路切換制御部64は、メモリにインストールされたプログラムをプロセッサが実行することによって、所定の機能を発揮する。流路切換制御部64は、第2室外機42及び室内機30が有する各センサの検出値等に基づいて、第1弁EV1、第2弁EV2、第3弁EV3、及び第4弁EV4の動作を制御する。なお、第3空気調和システム13において、流路切換制御部64は省略してもよい。この場合、各弁EV1~EV4の動作は、第2室外制御部61B及び/又は室内制御部62によって制御する。
 例えば、第3空気調和システム13で可燃性を有する冷媒を使用しており、室内機30に設けた冷媒センサ(図示省略)が冷媒を検知した場合、流路切換制御部64が、第1弁EV1、第2弁EV2、及び第4弁EV4を全閉として、室内機30への冷媒の供給を遮断してもよい。この場合、遮断弁ユニット51(図1B参照)を設けなくても、室内機30からの冷媒の漏洩量を抑制することができる。
 第3空気調和システム13では、第4弁EV4を、室内機30へ供給する冷媒の圧力調整用の制御弁として使用する。流路切換制御部64は、室内機30及び第2室外機42が有する各センサ(図示省略)の検出値等に基づいて、第4弁EV4の開度を調整し、室内機30へ供給する冷媒の圧力を制御する。第3空気調和システム13では、室内機30へ供給する冷媒の圧力を調整する制御弁として冷媒流路切換ユニット55(弁ユニット50)の第4弁EV4を使用することで、内部に電動弁(室内膨張弁)を有していない室内機30を使用することが可能になっている。なお、本実施形態では、室内機30へ供給する冷媒の圧力調整用の制御弁の制御主体が、制御部60のうちの流路切換制御部64である場合を例示しているが、これに限定されず、第2室外制御部61B、及び室内制御部62であってもよい。
(第3空気調和システムの運転動作について)
 以下、第3空気調和システム13によって、稼働している室内機30のすべてが冷房を行う場合(以下、「全冷房運転」ともいう)、稼働している室内機30のすべてが暖房を行う場合(以下、「全暖房運転」ともいう)、及び、稼働している室内機30の一部が冷房、他が暖房を行う場合(以下、「冷暖房混合運転」ともいう)について、説明する。
 (全冷房運転)
 全冷房運転では、制御部60によって、以下のように各弁が調整される。切換ユニット57の第1弁EV1は全閉とされ、第2弁EV2は全開とされ、第3弁EV3及び第4弁EV4は開度調整され、第1及び第2室外膨張弁110,111は全開とされる。第2室外機42の第1流路切換弁106は、圧縮機105の吐出配管105aと第2熱交換部109bのガス側端とを接続するように切り換えられる。第2流路切換弁107は、吐出配管105aと高低圧ガス管25G1とを接続するように切り換えられる。第3流路切換弁108は、吐出配管105aと第1熱交換部109aのガス側端とを接続するように切り換えられる。
 圧縮機105が駆動すると、圧縮機105により圧縮された高圧のガス冷媒は、吐出配管105a、第1流路切換弁106及び第3流路切換弁108等を経て、室外熱交換器109に流入し、凝縮する。室外熱交換器109において凝縮した冷媒は、第1及び第2室外膨張弁110,111、液側閉鎖弁101等を通過して液管25Lに流入する。
 液管25Lに流入した冷媒は、冷媒流路切換ユニット55の第1ヘッダ管155を流れ、各切換ユニット57の第4冷媒管P4へ流入する。第4冷媒管P4へ流入した冷媒は、過冷却熱交換器159の第1伝熱管159aに流入し、さらに利用側液配管162上の第4弁EV4で減圧されて室内機30に流入する。
 第4冷媒管P4へ流入した冷媒は、第5冷媒管P5にも分岐して流れ、第3弁EV3の開度に応じて減圧され、過冷却熱交換器159の第2伝熱管159bに流入する。この過冷却熱交換器159において、第1伝熱管159aを流れる冷媒と第2伝熱管159bを流れる冷媒との間で熱交換され、第1伝熱管159aを流れる冷媒が過冷却されて室内機30に流入する。
 過冷却熱交換器159の第2伝熱管159bを流れる冷媒は、第7冷媒管P7から第4ヘッダ管158に流入し、接続管163を経て第3ヘッダ管157に流入する。室内機30に流入した冷媒は、室内熱交換器31において蒸発する。
 室内機30において、室内熱交換器31で蒸発した冷媒は、ガス管25Gから利用側ガス配管161に流入し、主に第2弁EV2を通過して第3ヘッダ管157に流入する。第3ヘッダ管157に流入した冷媒は、吸入ガス管25G2及びガス側第2閉鎖弁103を経て、アキュムレータ104に流入し、圧縮機105へ吸入される。
 (全暖房運転について)
 全暖房運転では、制御部60によって、以下のように各弁が調整される。切換ユニット57の第1弁EV1は全開とされ、第2弁EV2は全閉とされ、第3弁EV3は全閉とされ、第4弁EV4は全開とされ、第1及び第2室外膨張弁110,111は開度調整される。第2室外機42の第1流路切換弁106は、冷媒配管105cと第2熱交換部109bのガス側端とを接続するように切り換えられる。第2流路切換弁107は、吐出配管105aと高低圧ガス管25G1とを接続するように切り換えられる。第3流路切換弁108は、冷媒配管105cと第1熱交換部109aのガス側端とを接続するように切り換えられる。
 圧縮機105が駆動すると、圧縮機105により圧縮された高圧のガス冷媒は、吐出配管105a及び第2流路切換弁107等を経て、高低圧ガス管25G1に流入する。高低圧ガス管25G1に流入した冷媒は、冷媒流路切換ユニット55の第2ヘッダ管156、切換ユニット57の第1冷媒管P1を経て第1弁EV1を通過し、利用側ガス配管161から室内機30のガス管25Gに流入する。
 ガス管25Gに流入した冷媒は、室内機30の室内熱交換器31に流入して凝縮する。凝縮した冷媒は、液管25Lを流れて、第4弁EV4を通って切換ユニット57の利用側液配管162に流入する。利用側液配管162に流入した冷媒は、過冷却熱交換器159、第4冷媒管P4を経て、第1ヘッダ管155に流入する。
 第1ヘッダ管155に流入した冷媒は、液管25Lを流れ第2室外機42に流入し、第1及び第2室外膨張弁110,111において減圧される。減圧された冷媒は、室外熱交換器109を通過する際に蒸発し、第1流路切換弁106及び第3流路切換弁108等を経て、アキュムレータ104に流入し、圧縮機105に吸入される。
 (冷暖混合運転)
 冷暖混合運転では、制御部60によって、以下のように各弁が調整される。稼働している室内機30のうち、冷房運転を行う室内機30(以下、「冷房側室内機30」ともいう)に対応する切換ユニット57(以下、「冷房側切換ユニット57」ともいう)において、第1弁EV1は最小開度とされ、第2弁EV2は全開とされ、第3弁EV3及び第4弁EV4は開度調整される。第2室外機42の第1流路切換弁106は、冷媒配管105cと第2熱交換部109bのガス側端とを接続するように切り換えられる。第2流路切換弁107は、吐出配管105aと高低圧ガス管25G1とを接続するように切り換えられる。第3流路切換弁108は、吐出配管105aと第1熱交換部109aのガス側端とを接続するように切り換えられる。
 稼働している室内機30のうち、暖房運転を行う室内機30(以下、「暖房側室内機30」ともいう)に対応する切換ユニット57(以下、「暖房側切換ユニット57」ともいう)において、第1弁EV1は全開とされ、第2弁EV2は全閉とされ、第3弁EV3は全閉とされ、第4弁EV4は全開とされる。
 圧縮機105が駆動すると、圧縮機105により圧縮された高圧のガス冷媒の一部は、吐出配管105a及び第2流路切換弁107を経て、高低圧ガス管25G1に流入する。圧縮機105により圧縮された高圧のガス冷媒の他の一部は、吐出配管105a及び第3流路切換弁108を経て第1熱交換部109aにおいて凝縮され、第1室外膨張弁110を経て一部が液管25Lに流入し、残りが第2室外膨張弁111に流入する。第1熱交換部109aにおいて凝縮された冷媒は、第2室外膨張弁111を経て第2熱交換部109bにおいて蒸発し、第1流路切換弁106を経て圧縮機105に吸入される。
 高低圧ガス管25G1に流入した冷媒は、冷媒流路切換ユニット55の第2ヘッダ管156に流入し、暖房側切換ユニット57の第1冷媒管P1、第1弁EV1、利用側ガス配管161を流れて、ガス管25Gに流入する。
 ガス管25Gに流入した冷媒は、暖房側室内機30の室内熱交換器31において凝縮する。凝縮した冷媒は、液管25Lから全開とされた第4弁EV4を通って暖房側切換ユニット57の利用側液配管162に流入し、過冷却熱交換器159、第4冷媒管P4を流れて第1ヘッダ管155に流入する。
 第2室外機42から液管25Lに流入した冷媒も第1ヘッダ管155に流入する。第1ヘッダ管155に流入した冷媒は、冷房側切換ユニット57の第4冷媒管P4、過冷却熱交換器159、利用側液配管162を通り、開度調整された第4弁EV4で減圧されたのちに液管25Lを経て冷房側室内機30に流入する。このとき過冷却熱交換器159を通過した冷媒は、第4冷媒管P4から分岐して第5冷媒管P5を流れ第3弁EV3で減圧された冷媒によって過冷却される。
 冷房側室内機30に流入した冷媒は、室内熱交換器31において蒸発し、室内を冷房する。蒸発した冷媒は、ガス管25Gを流れて、冷房側切換ユニット57の利用側ガス配管161に流入し、第2弁EV2を経て第3冷媒管P3及び第3ヘッダ管157に流入し、吸入ガス管25G2を流れてアキュムレータ104に流入し、圧縮機105に吸入される。
(第4空気調和システムについて)
 図9は、本開示の第4実施形態に係る空気調和システムの冷媒回路図である。図10は、本開示の第4実施形態に係る空気調和システムのブロック図である。図2B、図9及び図10に示すように、第4空気調和システム14は、第4空気調和機24を備えている。第4空気調和機24は、室内機30と室外機40と複数の弁ユニット50(遮断弁ユニット51及び冷媒流路切換ユニット55)を備えている。第4空気調和機24は、冷媒として可燃性を有する冷媒(例えば、微燃焼性を有するR32)を使用するため、室内機30へ供給する冷媒を遮断する遮断弁ユニット51が設けられている。第4空気調和機24は、遮断弁ユニット51を備えている点で、第3空気調和機23と異なっている。言い換えると、第4空気調和機24は、遮断弁ユニット51以外の構成については、第3空気調和機23と共通している。図9及び図10に示す第4空気調和機24において、第3空気調和機23と構成が共通している部分については同じ符号を付しており、その共通する部分の説明は、特に説明する場合を除き省略する。
(第4空気調和システムの制御部について)
 第4空気調和システム14において、制御部60は、第2室外制御部61Bと、室内制御部62と、遮断弁制御部63と、流路切換制御部64とを含んでいる。第2室外制御部61B、室内制御部62、遮断弁制御部63、及び流路切換制御部64は、伝送線を介して相互に通信可能に接続されている。
 第4空気調和システム14では、室内機30に設けた冷媒センサ(図示省略)が冷媒を検知した場合、遮断弁制御部63が第1電動弁52及び第2電動弁53を閉として、室内機30への冷媒の供給を遮断する。
 第4空気調和システム14では、第4弁EV4を、室内機30へ供給する冷媒の圧力調整用の制御弁として使用する。本実施形態では、制御部60の流路切換制御部64が、室内機30及び第1室外機41が有する各センサ(図示省略)の検出値等に基づいて、第4弁EV4の開度を調整し、室内機30へ供給する冷媒の圧力を制御する。
 第2空気調和システム12では、第1電動弁52を、室内機30へ供給する冷媒の圧力調整用の制御弁として使用してもよい。この場合、遮断弁制御部63が、室内機30及び第1室外機41が有する各センサ(図示省略)の検出値等に基づいて、第1電動弁52の開度を調整し、室内機30へ供給する冷媒の圧力を制御する。第4空気調和システム14では、室内機30へ供給する冷媒の圧力を調整する制御弁として冷媒流路切換ユニット55の第4弁EV4、又は遮断弁ユニット51の第1電動弁52を使用することで、内部に電動弁(室内膨張弁)を有していない室内機30を使用することが可能になっている。なお、本実施形態では、室内機30へ供給する冷媒の圧力調整用の制御弁の制御主体が、制御部60のうちの遮断弁制御部63、又は、流路切換制御部64である場合を例示しているが、これに限定されず、第2室外制御部61B、及び室内制御部62であってもよい。
(制御部による制御モードの選択動作について)
 図11は本開示の空気調和システムにおける制御部の制御フロー図である。本開示の空気調和システム10は、設置完了後における最初の電源投入時に、制御部60が、図11に示す動作を実行する。本開示の空気調和システム10では、室外制御部61が図11に示す動作を実行する。なお、図11に示す動作を実行するタイミングは、最初の電源投入時には限定されない。
 図11に示す動作が開始すると、制御部60は、まずステップ(S01)を実行する。ステップ(S01)において、制御部60は、空気調和システム10が弁ユニット50を有しているか否かを判定する。空気調和システム10が弁ユニット50を有していない場合(Noの場合)、制御部60は、次にステップ(S02)を実行する。空気調和システム10が弁ユニット50を有している場合(Yesの場合)、制御部60は、次にステップ(S05)を実行する。なお、前述した第2空気調和システム12では、遮断弁ユニット51の各電動弁52,53を、冷媒の遮断専用として使用する場合がある。第2空気調和システム12において各電動弁52,53を、冷媒遮断用として専用で使用する場合、制御部60は、ステップ(S01)において、遮断弁ユニット51を弁ユニット50とは判断しない。
 ステップ(S02)において、制御部60は、空気調和機20の制御モードMとして、第1制御モードM1を選択し、次いで、ステップ(S03)を実行する。
 ステップ(S03)において、制御部60は、室内制御部62に室外機40の情報を書き込む。この場合の制御部60は、室外機40が第1室外機41である旨の情報(言い換えると、空気調和システム10が第1仕様である旨の情報)を室内制御部62に書き込む。制御部60は、ステップ(S02)を実行すると、次いで、ステップ(S04)を実行する。
 ステップ(S04)において、制御部60は、第1制御モードM1による空気調和機20の制御を実行する。この場合、室外制御部61によって、室外膨張弁84を制御して、室内機30へ供給する冷媒の圧力を調整する。なお、このステップ(S04)を実行する場合に該当するのは、空気調和システム10が、第1空気調和システム11(図3及び図4参照)の場合である。第1空気調和システム11において、室内制御部62は、当該室内制御部62に書き込まれた第1室外機41の情報に基づいて室内機30の動作を制御する。
 ステップ(S05)において、制御部60は、空気調和機20の制御モードMとして、第2制御モードM2を選択し、次いで、ステップ(S06)を実行する。
 ステップ(S06)において、制御部60は、空気調和システム10が冷媒流路切換ユニット55を有しているか否かを判定する。空気調和システム10が冷媒流路切換ユニット55を有していない場合(Noの場合)、制御部60は、次にステップ(S07)を実行する。空気調和システム10が冷媒流路切換ユニット55を有している場合(Yesの場合)、制御部60は、次にステップ(S09)を実行する。
 ステップ(S07)において、制御部60は、室内制御部62に室外機40の情報を書き込む。この場合の制御部60は、室外機40が第1室外機41である旨の情報(言い換えると、空気調和システム10が第1仕様である旨の情報)を室内制御部62に書き込む。制御部60は、ステップ(S07)を実行すると、次いで、ステップ(S08)を実行する。
 ステップ(S08)において、制御部60は、第2制御モードM2による空気調和機20の制御を実行する。この場合、遮断弁制御部63によって、第1電動弁52を制御して、室内機30へ供給する冷媒の圧力を調整する。なお、このステップ(S08)を実行する場合に該当するのは、空気調和システム10が、第2空気調和システム12(図5及び図6参照)の場合である。第2空気調和システム12において、室内制御部62は、当該室内制御部62に書き込まれた第1室外機41の情報に基づいて室内機30の動作を制御する。
 ステップ(S09)において、制御部60は、室内制御部62に室外機40の情報を書き込む。この場合の制御部60は、室外機40が第2室外機42である旨の情報(言い換えると、空気調和システム10が第2仕様である旨の情報)を室内制御部62に書き込む。制御部60は、ステップ(S09)を実行すると、次いで、ステップ(S10)を実行する。
 ステップ(S10)において、制御部60は、第2制御モードM2による空気調和機20の制御を実行する。この場合、流路切換制御部64によって、第4弁EV4を制御して、室内機30へ供給する冷媒の圧力を調整する。なお、このステップ(S10)を実行する場合に該当するのは、空気調和システム10が、第3空気調和システム13(図7及び図8参照)及び第4空気調和システム14(図9及び図10参照)の場合である。第3空気調和システム13及び第4空気調和システム14において、室内制御部62は、当該室内制御部62に書き込まれた第2室外機42の情報に基づいて室内機30の動作を制御する。
 本開示の空気調和システム10では、上記のステップ(S01)~(S10)の動作を経て、制御部60が、空気調和システム10の仕様(弁ユニット50の有無、及び空調方式)を判断する。空気調和システム10では、その仕様に応じて、制御部60が空気調和機20の制御モードMを選択することで、共通の室内機30を使用することが可能となる。
 なお、本実施形態では、上記のステップ(S01)~(S10)の動作を、室外機40に備えられた室外制御部61が実行しているが、室内機30に備えられた室内制御部62が上記動作を実行してもよい。さらに、上記のステップ(S01)~(S10)の動作は、室外制御部61及び室内制御部62以外の制御部60が実行してもよい。例えば、空気調和システム10が、図示しない中央監視装置や、インターネットを介して接続されている管理サーバ等を有する場合、中央監視装置や管理サーバ等を上記制御部60に含ませるとともに、中央監視装置や管理サーバ等によって、上記のステップ(S01)~(S10)の動作を実行してもよい。
[実施形態の作用効果]
 (1)本開示の室外機40は、冷凍サイクルを行う冷媒回路RC1,RC2及び複数の室内機30を含む空気調和システム10に備えられ、複数の室内機30が並列に接続されている。室外機40が、室内機30へ供給する冷媒の圧力を調整する第1制御弁(室外膨張弁84、又は、第1室外膨張弁110及び第2室外膨張弁111)と、第1制御弁(室外膨張弁84、又は、第1室外膨張弁110及び第2室外膨張弁111)を制御する室外制御部61と、を備えている。室外制御部61は、室内機30と室外機40との間に設けられ室内機30への冷媒の流れを切り換える弁ユニット50が空気調和システム10に含まれていない場合、室外膨張弁84を制御して室内機30へ供給する冷媒の圧力を調整する第1制御モードM1で空気調和システム10を動作させる。弁ユニット50が空気調和システム10に含まれている場合、弁ユニット50に含まれる第2制御弁(第1電動弁52、又は、第4弁EV4)を制御して室内機30へ供給する冷媒の圧力を調整する第2制御モードM2で空気調和システム10を動作させる。
 このような構成の室外機40を用いた場合、空気調和システム10が第1仕様である場合、制御部60によって室外機40の室外膨張弁84を制御し、空気調和システム10が第2仕様である場合、制御部60によって冷媒流路切換ユニット55の第4弁EV4を制御する、のように、空気調和システム10の仕様に応じて、制御部60によって空気調和機20の制御モードMを切り換えることができる。これにより、空気調和システム10が第2仕様であっても室内機30に制御弁を設ける必要がなくなり、空気調和システム10の仕様に関わらず、制御弁を有さない仕様とした共通の室内機30を使用することが可能となる。
 (2)本開示の室内機30は、冷凍サイクルを行う冷媒回路RC1,RC2及び室外機40を含む空気調和システム10に備えられ、室外機40に対して並列に複数接続される。室外機40が、室内機30へ供給する冷媒の圧力を調整する第1制御弁(室外膨張弁84、又は、第1室外膨張弁110及び第2室外膨張弁111)を備えている。室内機30が、第1制御弁(室外膨張弁84、又は、第1室外膨張弁110及び第2室外膨張弁111)を制御する室内制御部62を備えている。室内制御部62は、室内機30と室外機40との間に設けられ室内機30への冷媒の流れを切り換える弁ユニット50が空気調和システム10に含まれていない場合、室外膨張弁84を制御して室内機30へ供給する冷媒の圧力を調整する第1制御モードM1で空気調和システム10を動作させる。室内制御部62は、弁ユニット50が空気調和システム10に含まれている場合、弁ユニット50に含まれる第2制御弁(第1電動弁52、又は、第4弁EV4)を制御して室内機30へ供給する冷媒の圧力を調整する第2制御モードM2で空気調和システム10を動作させる。
 このような構成の室内機30を用いた場合、空気調和システム10が第1仕様である場合、制御部60によって室外機40の室外膨張弁84を制御し、空気調和システム10が第2仕様である場合、制御部60によって冷媒流路切換ユニット55の第4弁EV4を制御する、のように、空気調和システム10の仕様に応じて、室内制御部62によって空気調和機20の制御モードMを切り換えることができる。これにより、空気調和システム10が第2仕様であっても室内機30に制御弁を設ける必要がなくなり、空気調和システム10の仕様に関わらず、制御弁を有さない仕様とした共通の室内機30を使用することが可能となる。
 (3)本開示の空気調和システム10は、冷凍サイクルを行う冷媒回路RC1,RC2、室外機40、及び室外機40に対して並列に接続される複数の室内機30を含んでいる。空気調和システム10が、空気調和システム10の動作を制御する制御部60を備えている。室外機40が、室内機30へ供給する冷媒の圧力を調整する第1制御弁(室外膨張弁84、又は、第1室外膨張弁110及び第2室外膨張弁111)を備えている。空気調和システム10は、室内機30と室外機40との間に設けられ室内機30への冷媒の流れを切り換える弁ユニット50が空気調和システム10に含まれていない場合、室外膨張弁84を制御して室内機30へ供給する冷媒の圧力を調整する第1制御モードM1で動作する。空気調和システム10は、弁ユニット50が空気調和システム10に含まれている場合、弁ユニット50に含まれる第2制御弁(第1電動弁52、又は、第4弁EV4を制御して室内機30へ供給する冷媒の圧力を調整する第2制御モードM2で動作する。
 このような構成の空気調和システム10では、当該空気調和システム10が第1仕様である場合、制御部60によって室外機40の室外膨張弁84を制御し、空気調和システム10が第2仕様である場合、制御部60によって冷媒流路切換ユニット55の第4弁EV4を制御する、のように、空気調和システム10の仕様に応じて、室外制御部61によって空気調和機20の制御モードMを切り換えることができる。これにより、空気調和システム10が第2仕様であっても室内機30に制御弁を設ける必要がなくなり、空気調和システム10の仕様に関わらず、制御弁を有さない仕様とした共通の室内機30を使用することが可能となる。
 (4)本開示の空気調和システム10は、制御部60が、弁ユニット50が空気調和システム10に含まれている場合に、第2制御モードM2を自動的に選択する。この場合、室内機30及び室外機40に対して弁ユニット50を繋ぐだけで、空気調和システム10の仕様に適した第2制御モードM2を自動的に選択することができる。
 (5)本開示の空気調和システム10は、第1制御モードM1及び第2制御モードM2を手動で選択する選択手段37をさらに備えている。この場合、ユーザが第1制御モードM1又は第2制御モードM2を手動で選択することができる。
 (6)本開示の空気調和システム10は、弁ユニット50が空気調和システム10に含まれていない場合、制御部60(室外制御部61)が、室外膨張弁84を第1制御モードM1で制御する。空気調和システム10は、弁ユニット50が空気調和システム10に含まれている場合、制御部60(遮断弁制御部63及び/又は流路切換制御部64)が、第1電動弁52又は第4弁MV4を第2制御モードM2で制御する。この場合、制御部60によって第1制御モードM1又は第2制御モードM2を自動的に選択することができる。
 (7)本開示の空気調和システム10は、弁ユニット50を含む第3空気調和システム13において、室内機30で冷媒が漏洩した場合、第4弁EV4が、室内機30への冷媒の供給を遮断する。この場合、第4弁EV4を、冷媒の圧力を調整する制御弁として使用するとともに、冷媒を遮断する遮断弁として使用することができる。このような空気調和システム10では、遮断弁を別途設ける必要がないため、製造コストを抑制することができる。
 (8)本開示の空気調和システム10は、制御部60が、室内機30の動作を制御する室内制御部62をさらに含み、室内機30が、室内制御部62を有している。室内機30及び室外機40が接続されたときに、室内制御部62に室外機40の情報が書き込まれ、室内制御部62が、室外機40の情報に基づいて室内機30を制御する。この場合、室内機30及び室外機40を接続するだけで、室内機30の制御内容を、室外機40の仕様に応じた内容に自動的に切り換えることができる。
 なお、本開示は、以上の例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
10    :空気調和システム
11    :第1空気調和システム
12    :第2空気調和システム
13    :第3空気調和システム
14    :第4空気調和システム
20    :空気調和機
30    :室内機
40    :室外機
50    :弁ユニット
51    :遮断弁ユニット(弁ユニット)
52    :第1電動弁(第2制御弁)
55    :冷媒流路切換ユニット(弁ユニット)
60    :制御部
62    :室内制御部
84    :室外膨張弁(第1制御弁)
110   :第1室外膨張弁(第1制御弁)
111   :第2室外膨張弁(第1制御弁)
EV4   :第4弁(第2制御弁)
RC1   :冷媒回路
RC2   :冷媒回路
M     :制御モード
M1    :第1制御モード
M2    :第2制御モード

Claims (8)

  1.  冷凍サイクルを行う冷媒回路(RC1,RC2)及び複数の室内機(30)を含む空気調和システム(10)に備えられ、前記複数の室内機(30)が並列に接続される室外機(40)であって、
     前記室外機(40)が、前記室内機(30)へ供給する冷媒の圧力を調整する第1制御弁(84,110,111)と、前記第1制御弁(84,110,111)を制御する制御部(60)と、を備えており、
     前記制御部(60)が、
     前記室内機と前記室外機との間に設けられ前記室内機(30)への冷媒の流れを切り換える弁ユニット(50)が前記空気調和システム(10)に含まれていない場合、前記第1制御弁(84)を制御して前記室内機(30)へ供給する冷媒の圧力を調整する第1制御モード(M1)で前記空気調和システム(10)を動作させ、
     前記弁ユニット(50)が前記空気調和システム(10)に含まれている場合、前記弁ユニット(50)に含まれる第2制御弁(52,EV4)を制御して前記室内機(30)へ供給する冷媒の圧力を調整する第2制御モード(M2)で前記空気調和システム(10)を動作させる、室外機(40)。
  2.  冷凍サイクルを行う冷媒回路(RC1,RC2)及び室外機(40)を含む空気調和システム(10)に備えられ、前記室外機(40)に対して並列に複数接続される室内機(30)であって、
     前記室外機(40)が、前記室内機(30)へ供給する冷媒の圧力を調整する第1制御弁(84,110,111)を備えており、
     前記室内機(30)が、前記第1制御弁(84,110,111)を制御する制御部(60)を備えており、
     前記制御部(60)が、
     前記室内機と前記室外機との間に設けられ前記室内機(30)への冷媒の流れを切り換える弁ユニット(50)が前記空気調和システム(10)に含まれていない場合、前記第1制御弁(84)を制御して前記室内機(30)へ供給する冷媒の圧力を調整する第1制御モード(M1)で前記空気調和システム(10)を動作させ、
     前記弁ユニット(50)が前記空気調和システム(10)に含まれている場合、前記弁ユニット(50)に含まれる第2制御弁(52,MV4)を制御して前記室内機(30)へ供給する冷媒の圧力を調整する第2制御モード(M2)で前記空気調和システム(10)を動作させる、室内機(30)。
  3.  冷凍サイクルを行う冷媒回路(RC1,RC2)、室外機(40)、及び前記室外機(40)に対して並列に接続される複数の室内機(30)を含む空気調和システム(10)であって、
     前記空気調和システム(10)が、当該空気調和システム(10)の動作を制御する制御部(60)を備えており、
     前記室外機(40)が、前記室内機(30)へ供給する冷媒の圧力を調整する第1制御弁(84,110,111)を備えており、
     前記室内機と前記室外機との間に設けられ前記室内機(30)への冷媒の流れを切り換える弁ユニット(50)が前記空気調和システム(10)に含まれていない場合に、前記第1制御弁(84,110,111)を制御して前記室内機(30)へ供給する冷媒の圧力を調整する第1制御モード(M1)と、
     前記弁ユニット(50)が前記空気調和システム(10)に含まれている場合に、前記弁ユニット(50)に含まれる第2制御弁(52,MV4)を制御して前記室内機(30)へ供給する冷媒の圧力を調整する第2制御モード(M2)と、を備える空気調和システム(10)。
  4.  前記制御部(60)が、
     前記弁ユニット(50)が前記空気調和システム(10)に含まれている場合に、前記第2制御モード(M2)を自動的に選択する、請求項3に記載の空気調和システム(10)。
  5.  前記第1制御モード(M1)及び前記第2制御モード(M2)を手動で選択する選択手段(37)をさらに備える、請求項3又は請求項4に記載の空気調和システム(10)。
  6.  前記弁ユニット(50)が前記空気調和システム(10)に含まれていない場合、前記制御部(60)が、前記第1制御弁(84)を前記第1制御モード(M1)で制御し、
     前記弁ユニット(50)が前記空気調和システム(10)に含まれている場合、前記制御部(60)が、前記第2制御弁(52,MV4)を前記第2制御モード(M2)で制御する、請求項3に記載の空気調和システム(10)。
  7.  前記弁ユニット(50)を含む前記空気調和システム(13)において、前記室内機(30)で冷媒が漏洩した場合、前記第2制御弁(MV4)が、前記室内機(30)への冷媒の供給を遮断する、請求項3~6の何れか一項に記載の空気調和システム(10)。
  8.  前記制御部(60)が、前記室内機(30)の動作を制御する室内制御部(62)を含み、前記室内機(30)が、前記室内制御部(62)を有しており、
     前記室内機(30)及び前記室外機(40)が接続されたときに、前記室内制御部(62)に前記室外機(40)の情報が書き込まれ、
     前記室内制御部(62)が、前記室外機(40)の情報に基づいて前記室内機(30)を制御する、請求項3~7の何れか一項に記載の空気調和システム(10)。
     
PCT/JP2022/023628 2021-08-23 2022-06-13 室外機、室内機、及び空気調和システム WO2023026638A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280057454.5A CN117859032A (zh) 2021-08-23 2022-06-13 室外机、室内机以及空调系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021135510A JP2023030403A (ja) 2021-08-23 2021-08-23 室外機、室内機、及び空気調和システム
JP2021-135510 2021-08-23

Publications (1)

Publication Number Publication Date
WO2023026638A1 true WO2023026638A1 (ja) 2023-03-02

Family

ID=85321738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023628 WO2023026638A1 (ja) 2021-08-23 2022-06-13 室外機、室内機、及び空気調和システム

Country Status (3)

Country Link
JP (1) JP2023030403A (ja)
CN (1) CN117859032A (ja)
WO (1) WO2023026638A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123512A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd 多室用空気調和機
JP2001174033A (ja) * 1999-12-17 2001-06-29 Matsushita Refrig Co Ltd 空気調和機の制御装置
JP2008116085A (ja) * 2006-11-01 2008-05-22 Mitsubishi Heavy Ind Ltd 空気調和機
JP2018115780A (ja) * 2017-01-16 2018-07-26 ダイキン工業株式会社 冷媒開放部を有する冷凍装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123512A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd 多室用空気調和機
JP2001174033A (ja) * 1999-12-17 2001-06-29 Matsushita Refrig Co Ltd 空気調和機の制御装置
JP2008116085A (ja) * 2006-11-01 2008-05-22 Mitsubishi Heavy Ind Ltd 空気調和機
JP2018115780A (ja) * 2017-01-16 2018-07-26 ダイキン工業株式会社 冷媒開放部を有する冷凍装置

Also Published As

Publication number Publication date
JP2023030403A (ja) 2023-03-08
CN117859032A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US20210131706A1 (en) Air conditioner and indoor unit
KR101678324B1 (ko) 냉동장치
AU2014219807B2 (en) Air-conditioning apparatus
CN109804209B (zh) 空调装置
JP5984960B2 (ja) 空気調和装置
KR101901540B1 (ko) 공기 조화 장치
EP3812662A1 (en) Air conditioning system
US20210318041A1 (en) Air conditioner and flow path switching valve
WO2023026638A1 (ja) 室外機、室内機、及び空気調和システム
WO2023026639A1 (ja) 空気調和システム
CN114127479B (zh) 制冷装置
JP2002243307A (ja) 空気調和装置
WO2023276584A1 (ja) 空気調和システム
WO2023276535A1 (ja) 空気調和システム
JP6747226B2 (ja) 冷凍装置
JP7445140B2 (ja) 空気調和機、空気調和機の設置方法、及び、室外機
JP2023007076A (ja) 空気調和システム
WO2021065677A1 (ja) 空気調和機
WO2022224390A1 (ja) 冷凍サイクル装置
JP7473836B2 (ja) 冷凍サイクルシステム
WO2023132010A1 (ja) 空気調和装置
WO2022264399A1 (ja) 空気調和装置
US20240167735A1 (en) Heat source unit and air conditioner
JP2021196024A (ja) 接続配管
CN118056103A (zh) 热源机组及空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057454.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022860932

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022860932

Country of ref document: EP

Effective date: 20240325