WO2023025006A1 - 车辆的驾驶模式确定方法、装置、设备及介质 - Google Patents

车辆的驾驶模式确定方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023025006A1
WO2023025006A1 PCT/CN2022/113082 CN2022113082W WO2023025006A1 WO 2023025006 A1 WO2023025006 A1 WO 2023025006A1 CN 2022113082 W CN2022113082 W CN 2022113082W WO 2023025006 A1 WO2023025006 A1 WO 2023025006A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
driving mode
vehicle
cycle
effective
Prior art date
Application number
PCT/CN2022/113082
Other languages
English (en)
French (fr)
Inventor
任明星
高勇
赵凤凯
王御
刘秋铮
姜洪伟
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023025006A1 publication Critical patent/WO2023025006A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements

Definitions

  • the embodiments of the present application relate to the technical field of vehicles, for example, to a method, device, device, and medium for determining a driving mode of a vehicle.
  • Embodiments of the present application provide a method, device, device, and medium for determining a driving mode of a vehicle.
  • an embodiment of the present application provides a method for determining a driving mode of a vehicle, the method comprising: obtaining at least one driving cycle of the vehicle; wherein, the driving cycle is determined by adjacent power-on time and power-off time of;
  • a default driving mode of the vehicle is determined based on the execution parameters of each driving mode.
  • an embodiment of the present application further provides a device for determining a driving mode of a vehicle, the device comprising: a driving cycle acquisition module configured to acquire at least one driving cycle of the vehicle; wherein, the driving cycle is determined by an adjacent The power-on time and power-off time are determined;
  • An effective driving cycle determination module configured to obtain driving information in each driving cycle, and determine that the driving cycle is an effective driving cycle in response to the driving information satisfying a preset constraint condition
  • a driving mode reading module configured to read at least one driving mode of the effective driving cycle and read execution parameters of each driving mode
  • a default driving mode determination module is configured to determine the default driving mode of the vehicle based on the execution parameters of each driving mode.
  • the embodiment of the present application also provides an electronic device, the device includes:
  • processors one or more processors
  • storage means configured to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method for determining the driving mode of the vehicle according to any one of the embodiments of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the driving mode of the vehicle as described in any one of the embodiments of the present application is realized. Determine the method.
  • FIG. 1 is a flow chart of a method for determining a driving mode of a vehicle provided in an embodiment of the present application
  • FIG. 2 is a flow chart of another method for determining a driving mode of a vehicle provided in an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a device for determining a driving mode of a vehicle provided in an embodiment of the present application
  • Fig. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 1 is a flow chart of a method for determining a driving mode of a vehicle provided in an embodiment of the present application, the method may be executed by a device for determining a driving mode of a vehicle, the device may be implemented by software and/or hardware, and the device It may be arranged in an electronic device for determining the driving mode of the vehicle.
  • the method can be applied to a scene where a user drives a vehicle.
  • the technical solutions provided by the embodiments of the present application include:
  • the driving cycle is determined by adjacent power-on time and power-off time.
  • the driving cycle may be the entire driving process of the vehicle from the start of power-on to the end of power-off.
  • the user wants to change the parking position after the power is turned off and the vehicle is parked, it is necessary to re-power the vehicle until the vehicle is turned off and then parked, which is a driving cycle.
  • the user wants to check whether the vehicle is abnormal, after the vehicle is powered on, the various performances of the vehicle are checked, and after the inspection is completed, the power is turned off and the engine is turned off, which is also a driving cycle.
  • This solution can obtain at least one vehicle's power-on time and at least one power-off time, and determine a driving cycle according to the adjacent power-on time and power-off time.
  • S120 Obtain driving information in each driving cycle, and determine that the driving cycle is an effective driving cycle in response to the driving information satisfying a preset constraint condition.
  • the traveling information may include the traveling time of the vehicle, the traveling distance of the vehicle, and the traveling speed of the vehicle, and the traveling information may also include other information of the vehicle.
  • the preset constraint condition may be a preset travel time, a preset travel distance, or a preset travel speed, and the preset constraint condition may be set according to actual needs. This solution can obtain the driving information in each driving cycle, and if the driving information satisfies the preset constraint conditions, the driving cycle is determined to be an effective driving cycle.
  • acquiring the driving information in each of the driving cycles, and determining that the driving cycle is an effective driving cycle in response to the driving information satisfying a preset constraint condition includes: acquiring the driving information in each of the driving cycles total distance; for each of the driving cycles, in response to the difference between the power-off time and the power-on time being greater than a first preset duration, or in response to the total driving distance being greater than a set total distance, determine the The driving cycle described above is an effective driving cycle.
  • the first preset duration may be 1 minute or 2 minutes, which may be set according to actual needs.
  • the set total distance can be 1 kilometer or 2 kilometers, or it can be set according to actual needs.
  • the driving cycle is an effective driving cycle. If the total driving distance in the driving cycle is greater than the set total distance, the driving cycle is also an effective driving cycle.
  • the driving cycle is determined to be an effective driving cycle.
  • the situation of invalid driving cycle can be eliminated, such as the situation of temporarily moving the car and waiting for traffic lights, and the result of determining the driving mode of the vehicle can be more accurate.
  • S130 Read at least one driving mode of the effective driving cycle and read execution parameters of each driving mode.
  • the electronic control device on the vehicle can adjust the characteristic parameters of the relevant system, so that the vehicle has certain matching vehicle kinematics and dynamics characteristics , to adapt to the user's individual driving needs and experience, such as economical driving mode, comfortable driving mode, sporty driving mode, driving mode suitable for snowy roads and driving modes suitable for off-road roads, etc.
  • the driving mode of the vehicle such as the aggressive driving mode, the steady driving mode or the conservative driving mode
  • the vehicle will automatically switch the relevant characteristic parameters to achieve the vehicle driving experience that the user wants.
  • the execution parameter may be the vehicle speed, the execution parameter may also be the travel distance, and the execution parameter may also be the travel time. Execution parameters can be set as needed. This solution can read each driving mode of the effective driving cycle and read the execution parameters of each driving mode.
  • reading at least one driving mode of the effective driving cycle and reading the execution parameters of each of the driving modes includes: reading the vehicle speed in each of the driving modes; for each of the driving modes, In response to the selection duration of the driving mode being greater than a second preset duration and the vehicle speed in the driving mode being greater than a set vehicle speed, it is determined that the driving mode is an effective driving mode.
  • the second preset duration may be 20s or 40s, which may be set according to actual needs.
  • the set speed can be 2km/h or 3km/h, which can be set according to actual needs.
  • the effective driving mode may be a driving mode in which a driving operation is performed in an effective driving cycle, for example, the driving mode has been driven for a certain period of time or a certain distance has been driven in the driving mode. This solution can read the vehicle speed in each driving mode; for each driving mode, if the selection duration of the driving mode is longer than the second preset duration, and the vehicle speed in this driving mode is greater than the set speed, then the driving mode is determined to be effective driving model.
  • the driving mode is effective driving model. It can eliminate the situation of switching the driving mode due to manual error, filter the driving mode actually selected by the user, and achieve more accurate results when determining the driving mode of the vehicle.
  • S140 Determine a default driving mode of the vehicle based on execution parameters of each driving mode.
  • the default driving mode may be a driving mode determined by the vehicle after the vehicle is powered off using the historical vehicle operation data during the driving process to perform statistical calculations and is in line with the user's driving preferences, and will be prompted and displayed when the user is powered on for driving next time.
  • the default driving mode of the vehicle can be determined based on the execution parameters of each effective driving mode in each effective driving cycle.
  • determining the default driving mode of the vehicle based on the execution parameters of each of the driving modes includes: responding to the fact that in the last valid driving cycle, the mileage ratio of the target valid driving mode at the time of power-off is greater than The first set distance ratio, and the driving time ratio of the target effective driving mode is greater than the first set driving time ratio, and the target effective driving mode is determined as the default driving mode of the vehicle.
  • the first set mileage ratio can be the ratio of the mileage of the target effective driving mode to the total mileage of the last effective driving cycle
  • the first set mileage proportion can be 80%
  • the first set mileage The proportion can also be 90%, which can be set according to actual needs.
  • the first set driving time ratio can be the ratio of the driving time of the target effective driving mode to the driving time of the last effective driving cycle.
  • the first set driving time ratio can be 80%.
  • the first set driving time The proportion can also be 90%, which can be set according to actual needs.
  • the driving distance ratio of an effective driving mode is greater than the first set distance ratio, and the target is valid If the driving time ratio of the driving mode is greater than the first set driving time ratio, and the effective driving mode is the effective driving mode when the power is turned off, it indicates that the effective driving mode is the user's habitual driving mode, that is, the target effective driving mode , taking the target effective driving mode as the default driving mode of the vehicle. It will also prompt and display the target effective driving mode when the user powers on for driving next time. For example, in the latest effective driving cycle, there are three effective driving modes: comfortable driving mode, economical driving mode and sporty driving mode. And the driving time ratio of the comfortable and effective driving mode is greater than the first set driving time ratio, and the comfortable and effective driving mode is the effective driving mode when the power is turned off, then the comfortable driving mode is used as the default driving mode of the vehicle .
  • the target effective driving mode is the default driving mode of the vehicle. Accurate and efficient determination of the default driving mode of the vehicle based on a single valid driving cycle can be achieved. It can reduce user operations, reduce the design of the user interface interface of the vehicle, and improve the user's intelligent experience.
  • determining the default driving mode of the vehicle based on the execution parameters of each of the driving modes includes: if the last target effective driving modes of each of the effective driving cycles are the same, then determining the target effective driving mode Mode is the default driving mode for the vehicle.
  • the last target effective driving mode of any effective driving cycle is the same for multiple continuous effective driving cycles, it indicates that the effective driving mode when the user powers off is the target effective driving mode, which means that the user It is more inclined to use the target effective driving mode, so it is determined that the target effective driving mode is the default driving mode of the vehicle. It will also prompt and display the target effective driving mode when the user powers on for driving next time. For example, in three consecutive effective driving cycles, the last effective driving mode of any effective driving cycle is the economical driving mode, indicating that the driving mode preferred by the user is the economical driving mode, and the economical driving mode is regarded as the economical driving mode. The vehicle's default driving mode.
  • the target effective driving mode is determined to be the default driving mode of the vehicle. It can be realized to determine the default driving mode of the vehicle according to the user's driving habits in multiple effective driving cycles. It can reduce user operations, reduce the design of the user interface interface of the vehicle, and improve the user's intelligent experience.
  • determining the default driving mode of the vehicle based on the execution parameters of each of the driving modes includes: if in at least one effective driving cycle, the proportion of the travel distance of the target effective driving mode is greater than the second setting distance ratio, and the driving time ratio of the target effective driving mode is greater than the second set driving time ratio, then it is determined that the target effective driving mode is the default driving mode of the vehicle.
  • the second set mileage ratio can be the ratio of the mileage of the target effective driving mode to the total mileage of each effective driving cycle, the second set mileage ratio can be 80%, the second set mileage ratio The ratio can also be 90%, which can be set according to actual needs.
  • the second set driving time ratio can be the ratio of the driving time of the target effective driving mode to the driving time of each effective driving cycle, the second setting driving time ratio can be 80%, the second setting driving time ratio The ratio can also be 90%, which can be set according to actual needs.
  • the proportion of the travel distance of the target effective driving mode is greater than the second set distance proportion, and the proportion of the driving time of the target effective driving mode is greater than the second set proportion of the driving time, it indicates that it is In multiple consecutive effective driving cycles of the user, the larger ratio is used, which is the effective driving mode preferred by the user, and the target effective driving mode is determined to be the default driving mode of the vehicle. It will also prompt and display the target effective driving mode when the user powers on for driving next time. For example, among the three effective driving cycles, the proportion of driving distance and driving time in all effective driving cycles of the comfortable driving mode is the highest among the effective driving modes, indicating that the driving mode preferred by the user is the comfortable driving mode.
  • Comfortable driving mode set the comfortable driving mode as the default driving mode of the vehicle. And the comfortable driving mode will be automatically enabled when the user turns on the power next time.
  • the target effective driving mode is determined as the default driving mode of the vehicle.
  • the efficient and accurate determination of the default driving mode of the vehicle can be realized according to the user's selection of an effective driving mode and the probability of using it. It can reduce user operations, reduce the design of the user interface interface of the vehicle, and improve the user's intelligent experience.
  • determining the default driving mode of the vehicle based on the execution parameters of each of the driving modes includes: if the first target effective driving mode is the last driving mode of each of the effective driving cycles, and the second target is effective If the driving distance ratio of the driving mode in each of the effective driving cycles is greater than the third set distance ratio, and the driving time ratio of the second target effective driving mode is greater than the third set driving time ratio, then it is determined that the The first target effective driving mode is the default driving mode of the vehicle.
  • the third set distance ratio may be the ratio of the distance traveled in the target effective driving mode to the total distance traveled in all effective driving cycles.
  • the third set distance ratio can be 80%, and the third set distance percentage can also be 90%, which can be set according to actual needs.
  • the third set driving time ratio may be the ratio of the selection and use time of the target effective driving mode to the total driving time of all effective driving cycles.
  • the third set driving time ratio can be 80%, and the third set driving time ratio can also be 90%, which can be set according to actual needs.
  • the first target effective driving mode is the last driving mode of each effective driving cycle, which indicates that although the effective driving mode at the If it is selected last, it indicates that it is the effective driving mode preferred by the user, and the first target effective driving mode is determined as the default driving mode of the vehicle. It will also prompt and display the target effective driving mode when the user powers on for driving next time.
  • the sporty driving mode is the valid driving mode when the power is turned off for all valid driving cycles, while the proportion of driving distance and driving time of the comfortable driving mode in all valid driving cycles
  • the ratio is the highest among the effective driving modes.
  • the sporty effective driving mode is not the effective driving mode with the highest driving ratio, since the sporty effective driving mode is selected when the power is turned off, the user's preferred driving mode is the sporty driving mode.
  • the active driving mode serves as the default driving mode for the vehicle. And prompt and display the sporty and effective driving mode when the user powers on for driving next time.
  • the first target effective driving mode is the last driving mode of each effective driving cycle, and the driving distance ratio of the second target effective driving mode in each effective driving cycle is greater than the third set distance ratio, and If the driving time proportion of the second target effective driving mode is greater than the third set driving time proportion, the first target effective driving mode is determined to be the default driving mode of the vehicle. It can be realized that when the effective driving mode is the same when the power is turned off in several effective driving cycles and the driving parameters of other effective driving modes account for more, the user's driving habits in multiple effective driving cycles can be accurately determined to determine the default of the vehicle. driving mode. It can reduce user operations, reduce the design of the user interface interface of the vehicle, and improve the user's intelligent experience.
  • At least one driving cycle of the vehicle is obtained; wherein, the driving cycle is determined by the adjacent power-on time and power-off time; the driving information in each driving cycle is obtained, and if the driving information meets the preset constraint conditions, Then determine that the driving cycle is an effective driving cycle; read at least one driving mode of the effective driving cycle and read the execution parameters of each driving mode; determine the default driving mode of the vehicle based on the execution parameters of each driving mode.
  • the electronic control device on the vehicle can adjust the characteristic parameters of the relevant system so that the vehicle has certain matching vehicle kinematics and dynamics characteristics, so as to Adapt to the user's personalized driving needs and experience, such as excellent economy, good comfort, strong sports performance, adapt to snowy roads and off-road roads, etc.
  • the driving mode of the vehicle such as aggressive, steady or conservative
  • the vehicle will also automatically switch the relevant characteristic parameters to achieve the vehicle driving experience that the user wants. Users hope that their operating habits or preferred driving modes can be intelligently recognized and memorized by the vehicle, and the memorized driving mode will be used by default when driving next time.
  • the method for setting the default driving mode of the vehicle in the related art includes: the initial setting of a certain factory state remains unchanged by default.
  • the setting of the default driving mode cannot be performed, and manual operation is required for each selection of the driving mode;
  • Manually set the default driving mode the user can freely set the preferred default driving mode, but the user needs to manually set the favorite driving mode;
  • the driving mode at the end of the last driving is used as the default driving mode of the vehicle, and the default user
  • the driving mode when power off is the user's habit or the user's favorite mode.
  • the user generally uses the economical driving mode, but tries the sporty driving mode before stopping driving, or switches to the sporty driving mode by mistake.
  • the favorite driving mode is set as the default driving mode.
  • Fig. 2 is a flow chart of the method for determining the driving mode of the vehicle provided by the embodiment of the present application.
  • the technical solution provided by the embodiment of the present application may also include the following steps:
  • Step 1 Effective driving cycle judgment.
  • An effective driving cycle is one in which the total driving distance of a single driving cycle is greater than the set total distance (such as 1 kilometer) or the duration of a single driving cycle is greater than the first preset duration (such as 1 minute). Scenarios such as temporarily moving the car and turning off the power on and off temporarily can be ruled out.
  • Step 2 Judgment of the effective driving mode usage time period.
  • the engine should be in the working state or idle stop state. If it is an electric vehicle, it is in the Ready state, and the driving time of this driving mode is longer than the second preset time length (such as 20s), and the vehicle speed is greater than the set speed (such as 2km/h h), the corresponding effective driving mode usage data is valid.
  • the second preset time length such as 20s
  • the vehicle speed is greater than the set speed (such as 2km/h h)
  • the corresponding effective driving mode usage data is valid.
  • Step 3 valid power-off mode judgment.
  • Step 4 Determining the default driving mode.
  • the usage ratio of a certain target driving mode reaches the preset value (the duration ratio is greater than 80% and the usage mileage ratio is greater than 80%), and this mode is when the power is off. effective driving mode, then memorize this driving mode, otherwise keep the previous default driving mode.
  • Multiple mode b consecutive multiple (for example, three) effective driving cycles. For each effective driving cycle, the target effective driving mode when the vehicle is powered off is the effective power-off mode, and this driving mode is memorized.
  • Multi-time mode c The target driving mode is memorized when the proportion of the target driving mode reaches a preset value in consecutive multiple (for example, three) effective driving cycles.
  • Multiple mode d satisfy the rules of multiple mode b and multiple mode c at the same time, and use the memory mode determined by multiple mode b preferentially.
  • Step 5 The default driving mode of the vehicle will be prompted and displayed the next time you start power-on driving.
  • strategies such as default driving mode judgment and validity judgment are used to identify the driving mode preferred by the user, and set it as the default driving mode.
  • the evaluation criteria can be quantified, no need to consider complex algorithms, less resources are occupied, and no manual work is required. Changing the memory settings and intelligently setting the default driving mode can reduce user operations, reduce the design of the user interface interface of the vehicle, and improve the user's intelligent experience.
  • Fig. 3 is a schematic structural diagram of an apparatus for determining a driving mode of a vehicle provided in an embodiment of the present application.
  • the apparatus may be implemented by software and/or hardware, and the apparatus may be configured in an electronic device for determining a driving mode of a vehicle.
  • the device includes:
  • the driving cycle obtaining module 310 is configured to obtain at least one driving cycle of the vehicle; wherein, the driving cycle is determined by adjacent power-on time and power-off time;
  • the effective driving cycle determination module 320 is configured to acquire driving information in each driving cycle, and determine that the driving cycle is an effective driving cycle in response to the driving information satisfying a preset constraint condition;
  • the driving mode reading module 330 is configured to read at least one driving mode of the effective driving cycle and read execution parameters of each driving mode;
  • the default driving mode determination module 340 is configured to determine the default driving mode of the vehicle based on the execution parameters of each driving mode.
  • the effective driving cycle determining module 320 is specifically configured to obtain the total driving distance in each driving cycle; for each driving cycle, if the difference between the power-off time and the power-on time greater than the first preset duration, or, if the total travel distance is greater than the set total distance, the driving cycle is determined to be an effective driving cycle.
  • the driving mode reading module 330 is specifically configured to read the vehicle speed in each of the driving modes; for each of the driving modes, if the selection duration of the driving mode is greater than the second preset duration, and , the vehicle speed in the driving mode is greater than the set vehicle speed, then it is determined that the driving mode is an effective driving mode.
  • the default driving mode determination module 340 is specifically configured as follows: if in the last effective driving cycle, the driving distance ratio of the target effective driving mode at power-off is greater than the first set distance ratio, and the target If the driving time proportion of the effective driving mode is greater than the first set driving time proportion, then the target effective driving mode is determined to be the default driving mode of the vehicle.
  • the default driving mode determination module 340 is specifically configured to: if the last target effective driving modes of each of the effective driving cycles are the same, then determine that the target effective driving mode is the default driving mode of the vehicle .
  • the default driving mode determination module 340 is specifically configured as follows: if in at least one effective driving cycle, the driving distance ratio of the target effective driving mode is greater than the second set distance ratio, and the target effective driving mode If the proportion of driving time is greater than the second set proportion of driving time, it is determined that the target effective driving mode is the default driving mode of the vehicle.
  • the default driving mode determination module 340 is specifically configured as follows: if the first target effective driving mode is the last driving mode of each of the effective driving cycles, and the second target effective driving mode is in at least one effective driving cycle If the proportion of the driving distance is greater than the third set distance proportion, and the driving time proportion of the second target effective driving mode is greater than the third setting driving time proportion, then it is determined that the first target effective driving mode is the The vehicle's default driving mode.
  • the device provided in the above embodiments can execute the method for determining the driving mode of the vehicle provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • Fig. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in Fig. 4, the device includes:
  • One or more processors 410, one processor 410 is taken as an example in FIG. 4;
  • the device may also include: an input device 430 and an output device 440 .
  • the processor 410, the memory 420, the input device 430 and the output device 440 in the device may be connected through a bus or in other ways. In FIG. 4, connection through a bus is taken as an example.
  • the memory 420 can be used to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to a method for determining a driving mode of a vehicle in the embodiment of the present application.
  • the processor 410 executes various functional applications and data processing of the computer device by running the software programs, instructions and modules stored in the memory 420, that is, to realize a method for determining a driving mode of a vehicle in the above method embodiment, namely:
  • the driving cycle is determined by adjacent power-on time and power-off time;
  • a default driving mode of the vehicle is determined based on the execution parameters of each driving mode.
  • the memory 420 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the computer device, and the like.
  • the memory 420 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the storage 420 may optionally include storages that are remotely located relative to the processor 410, and these remote storages may be connected to the terminal device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 430 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the computer device.
  • the output device 440 may include a display device such as a display screen.
  • An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, a method for determining a driving mode of a vehicle as provided in the embodiment of the present application is implemented:
  • the driving cycle is determined by adjacent power-on time and power-off time;
  • a default driving mode of the vehicle is determined based on the execution parameters of each driving mode.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including - but not limited to - electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • the program code contained on the computer-readable medium can be transmitted by any appropriate medium, including—but not limited to—wireless, electric wire, optical cable, RF (Radio Frequency, radio frequency), etc., or any suitable combination of the above.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN, Local Area Network) or a wide area network (WAN, Wide Area Network), or it can be connected to an external computer (for example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种车辆的驾驶模式确定方法、装置、设备及计算机可读存储介质,驾驶模式确定方法包括:获取车辆的至少一个驾驶循环;获取驾驶循环内的行驶信息,如果行驶信息满足预设约束条件,则确定驾驶循环为有效驾驶循环;读取有效驾驶循环的至少一个驾驶模式以及读取驾驶模式的执行参数;基于驾驶模式的执行参数确定车辆的默认驾驶模式。

Description

车辆的驾驶模式确定方法、装置、设备及介质
本申请要求在2021年08月27日提交中国专利局、申请号为202110993348.5的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及车辆技术领域,例如涉及一种车辆的驾驶模式确定方法、装置、设备及介质。
背景技术
为了满足不同用户的驾驶喜好,目前市场上的大部分车辆均具有多种不同的驾驶模式。用户一般通过不同的操作方式主动地选择某种驾驶模式,实现个性化的驾车和乘车体验。但是,用户希望自己的操作习惯或者喜好的驾驶模式能够被车辆智能识别并记忆,在下次驾驶时默认使用记忆的驾驶模式。
发明内容
本申请实施例提供一种车辆的驾驶模式确定方法、装置、设备及介质。
第一方面,本申请实施例提供了一种车辆的驾驶模式确定方法,该方法包括:获取车辆的至少一个驾驶循环;其中,所述驾驶循环是由相邻的上电时间与下电时间确定的;
获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环;
读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数;
基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式。
第二方面,本申请实施例还提供了一种车辆的驾驶模式确定装置,该装置包括:驾驶循环获取模块,设置为获取车辆的至少一个驾驶循环;其中,所述驾驶循环是由相邻的上电时间与下电时间确定的;
有效驾驶循环确定模块,设置为获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环;
驾驶模式读取模块,设置为读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数;
默认驾驶模式确定模块,设置为基于每个驾驶模式的执行参数确定所述车 辆的默认驾驶模式。
第三方面,本申请实施例还提供了一种电子设备,该设备包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一项所述的车辆的驾驶模式确定方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例中任一项所述的车辆的驾驶模式确定方法。
附图说明
图1是本申请实施例提供的一种车辆的驾驶模式确定方法的流程图;
图2是本申请实施例提供的另一种车辆的驾驶模式确定方法的流程图;
图3是本申请实施例提供的一种车辆的驾驶模式确定装置结构示意图;
图4是本申请实施例提供的一种电子设备结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1是本申请实施例提供的车辆的驾驶模式确定方法的流程图,所述方法可以由车辆的驾驶模式确定装置来执行,所述装置可以由软件和/或硬件的方式实现,所述装置可以配置在用于确定车辆的驾驶模式的电子设备中。所述方法可以应用于用户驾驶车辆的场景中。如图1所示,本申请实施例提供的技术方案包括:
S110:获取车辆的至少一个驾驶循环。
其中,所述驾驶循环是由相邻的上电时间与下电时间确定的。
其中,驾驶循环可以是车辆从开始上电到下电结束的整个驾驶过程。例如,在下电停车后,用户又想改变泊车位置,需要重新给车辆上电到停车完毕后熄火停车为一个驾驶循环。又例如,用户想检查车辆有没有异常,将车辆上电之后对车辆的各项性能进行检查,检查完毕后下电熄火,也为一个驾驶循环。本方案可以获取至少一个车辆的上电时间和至少一个下电时间,并且根据相邻的 上电时间与下电时间确定一个驾驶循环。
S120:获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环。
例如,行驶信息可以包括车辆的行驶时间、车辆的行驶路程、车辆的行驶速度,行驶信息还可以包括车辆的其他信息。预设约束条件可以是预设行驶时间,可以是预设行驶路程,还可以是预设行驶速度,预设约束条件可以根据实际需要进行设置。本方案可以获取各驾驶循环内的行驶信息,若行驶信息满足预设约束条件,则确定驾驶循环为有效驾驶循环。
在一个实施方式中,获取各所述驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环,包括:获取各所述驾驶循环内的行驶总路程;针对各所述驾驶循环,响应于所述下电时间与所述上电时间的差值大于第一预设时长,或者,响应于所述行驶总路程大于设定总路程,确定所述驾驶循环为有效驾驶循环。
例如,第一预设时长可以是1分钟,也可以是2分钟,可以根据实际需要进行设置。设定总路程可以是1公里,也可以2公里,也可以根据实际需要进行设置。针对各个驾驶循环,如果驾驶循环的下电时间与上电时间的差值大于第一预设时长,则该驾驶循环为有效驾驶循环。如果驾驶循环内的行驶总路程大于设定总路程,则该驾驶循环也为有效驾驶循环。
由此,通过获取各驾驶循环内的行驶总路程;针对各所述驾驶循环,若下电时间与上电时间的差值大于第一预设时长,或者,若行驶总路程大于设定总路程,则确定驾驶循环为有效驾驶循环。可以实现排除无效驾驶循环的情况,例如临时挪车、等交通灯的情况,可以实现在确定车辆的驾驶模式时的结果更加精确。
S130:读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数。
其中,以用户驾驶为主的车辆,在用户选择某个驾驶模式后,整车上的电子控制装置可调整相关系统的特性参数,使整车具有某种相匹配的车辆运动学和动力学特性,以适应用户的个性化驾驶需求和体验,比如经济型驾驶模式、舒适型驾驶模式、运动型驾驶模式、适应于雪地路面的驾驶模式和适应于越野路面的驾驶模式等。具备自动驾驶功能车辆的用户选择激进驾驶模式、稳健驾驶模式或者保守驾驶模式等车辆的驾驶模式后,车辆也会自动切换相关特性参数,来实现用户想要的车辆驾乘体验。
执行参数可以是车速,执行参数也可以是行驶路程,执行参数还可以是行驶时间。执行参数可以根据需要进行设置。本方案可以读取有效驾驶循环的各个驾驶模式以及读取各个驾驶模式的执行参数。
在一个实施方式中,读取所述有效驾驶循环的至少一个驾驶模式以及读取各所述驾驶模式的执行参数,包括:读取各所述驾驶模式下的车速;针对各所述驾驶模式,响应于所述驾驶模式的选择时长大于第二预设时长,并且,所述驾驶模式下的车速大于设定车速,确定所述驾驶模式为有效驾驶模式。
例如,第二预设时长可以是20s,可以是40s,可以根据实际需要进行设置。设定车速可以是2km/h,也可以是3km/h,可以根据实际需要进行设置。有效驾驶模式可以是有效驾驶循环中进行了行驶操作的驾驶模式,例如在该驾驶模式下行驶了一定时间或者在该驾驶模式下行驶了一段路程。本方案可以读取各驾驶模式下的车速;针对各驾驶模式,如果驾驶模式的选择时长大于第二预设时长,并且,该驾驶模式下的车速大于设定车速,则确定驾驶模式为有效驾驶模式。
由此,通过读取各驾驶模式下的车速;针对各驾驶模式,若驾驶模式的选择时长大于第二预设时长,并且,驾驶模式下的车速大于设定车速,则确定驾驶模式为有效驾驶模式。可以实现将由于手误导致切换驾驶模式的情况排除,可以将用户实际选择的驾驶模式进行筛选,可以实现在确定车辆的驾驶模式时的结果更加精确。
S140:基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式。
其中,默认驾驶模式可以是车辆在下电之后利用行车过程中的历史车辆运行数据进行统计计算之后确定出的符合用户驾驶喜好的,并在用户下次上电驾驶时提示并显示的驾驶模式。本方案可以基于各个有效驾驶循环中各个有效驾驶模式的执行参数确定车辆的默认驾驶模式。
在一实施例中,基于各所述驾驶模式的执行参数确定所述车辆的默认驾驶模式,包括:响应于在最后一个有效驾驶循环中,下电时的目标有效驾驶模式的行驶路程占比大于第一设定路程占比,并且目标有效驾驶模式的行车时间占比大于第一设定行车时间占比,确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
其中,第一设定路程占比可以是目标有效驾驶模式的行驶路程与最后一个有效驾驶循环行驶总路程的比值,第一设定路程占比可以是百分之八十,第一设定路程占比也可以是百分之九十,可以根据实际需要进行设置。第一设定行 车时间占比可以是目标有效驾驶模式的行车时间与最后一个有效驾驶循环行车时间的比值,第一设定行车时间占比可以是百分之八十,第一设定行车时间占比也可以是百分之九十,可以根据实际需要进行设置。本方案可以获取最后一个或者最近一次的有效驾驶循环,在该有效驾驶循环中包含至少一个有效驾驶模式,如果某个有效驾驶模式的行驶路程占比大于第一设定路程占比,并且目标有效驾驶模式的行车时间占比大于第一设定行车时间占比,并且该有效驾驶模式为下电时的有效驾驶模式,则表明该有效驾驶模式即为用户的习惯驾驶模式,即目标有效驾驶模式,将该目标有效驾驶模式作为车辆的默认驾驶模式。并在用户下次上电驾驶时提示并显示目标有效驾驶模式。例如在最近一次有效驾驶循环中,包含三个有效驾驶模式:舒适型驾驶模式、经济型驾驶模式和运动型驾驶模式,如果舒适型驾驶模式的行驶路程占比大于第一设定路程占比,并且舒适型有效驾驶模式的行车时间占比大于第一设定行车时间占比,并且该舒适型有效驾驶模式为下电时的有效驾驶模式,则将该舒适型驾驶模式作为车辆的默认驾驶模式。
由此,通过若在最后一个有效驾驶循环中,下电时的目标有效驾驶模式的行驶路程占比大于第一设定路程占比,并且目标有效驾驶模式的行车时间占比大于第一设定行车时间占比,则确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。可以实现准确、高效地根据单个有效驾驶循环确定车辆的默认驾驶模式。可以减少用户操作,减少车辆的用户接口界面的设计,提升用户的智能化体验。
在一实施例中,基于各所述驾驶模式的执行参数确定所述车辆的默认驾驶模式,包括:若各所述有效驾驶循环的最后一个目标有效驾驶模式都相同,则确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
其中,如果对于多个连续的有效驾驶循环,任何一个有效驾驶循环的最后一个目标有效驾驶模式都相同,则表明用户下电时的有效驾驶模式都是该目标有效驾驶模式,也就意味着用户更倾向于使用该目标有效驾驶模式,因此确定该目标有效驾驶模式为车辆的默认驾驶模式。并在用户下次上电驾驶时提示并显示目标有效驾驶模式。例如,在三个连续的有效驾驶循环中,任何一个有效驾驶循环的最后一个有效驾驶模式都是经济型驾驶模式,说明用户喜好的驾驶模式为该经济型驾驶模式,将该经济型驾驶模式作为车辆的默认驾驶模式。
由此,通过若各有效驾驶循环的最后一个目标有效驾驶模式都相同,则确定目标有效驾驶模式为车辆的默认驾驶模式。可以实现根据用户在多个有效驾 驶循环的驾驶习惯确定车辆的默认驾驶模式。可以减少用户操作,减少车辆的用户接口界面的设计,提升用户的智能化体验。
在又一个实施方式中,基于各所述驾驶模式的执行参数确定所述车辆的默认驾驶模式,包括:若在至少一个有效驾驶循环中,目标有效驾驶模式的行驶路程占比大于第二设定路程占比,并且目标有效驾驶模式的行车时间占比大于第二设定行车时间占比,则确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
其中,第二设定路程占比可以是目标有效驾驶模式的行驶路程与各有效驾驶循环行驶总路程的比值,第二设定路程占比可以是百分之八十,第二设定路程占比也可以是百分之九十,可以根据实际需要进行设置。第二设定行车时间占比可以是目标有效驾驶模式的行车时间与各有效驾驶循环行车时间的比值,第二设定行车时间占比可以是百分之八十,第二设定行车时间占比也可以是百分之九十,可以根据实际需要进行设置。若在多个有效驾驶循环中,目标有效驾驶模式的行驶路程占比大于第二设定路程占比,并且目标有效驾驶模式的行车时间占比大于第二设定行车时间占比,则表明其在用户的多次连续的有效驾驶循环中使用比值较大,是用户喜好的有效驾驶模式,确定该目标有效驾驶模式为车辆的默认驾驶模式。并在用户下次上电驾驶时提示并显示目标有效驾驶模式。例如,在三个有效驾驶循环中,舒适型驾驶模式在所有有效驾驶循环中的行驶路程占比和行车时间占比都是有效驾驶模式中占比最高的,说明用户喜好的驾驶模式为该舒适型驾驶模式,将该舒适型驾驶模式作为车辆的默认驾驶模式。并在用户下次上电时自动启用该舒适型驾驶模式。
由此,通过若在各驾驶循环中,目标有效驾驶模式的行驶路程占比大于第二设定路程占比,并且目标有效驾驶模式的行车时间占比大于第二设定行车时间占比,则确定目标有效驾驶模式为车辆的默认驾驶模式。可以实现根据用户对有效驾驶模式的选择和使用几率高效、准确地确定车辆的默认驾驶模式。可以减少用户操作,减少车辆的用户接口界面的设计,提升用户的智能化体验。
在又一个实施方式中,基于各所述驾驶模式的执行参数确定车辆的默认驾驶模式,包括:若第一目标有效驾驶模式是各所述有效驾驶循环的最后一个驾驶模式,并且第二目标有效驾驶模式在各所述有效驾驶循环中的行驶路程占比大于第三设定路程占比,并且第二目标有效驾驶模式的行车时间占比大于第三设定行车时间占比,则确定所述第一目标有效驾驶模式为所述车辆的默认驾驶模式。
其中,第三设定路程占比可以是目标有效驾驶模式下的行驶路程与所有有效驾驶循环的行驶总路程的比值。第三设定路程占比可以是百分之八十,第三设定路程占比也可以是百分之九十,可以根据实际需要进行设置。第三设定行车时间占比可以是目标有效驾驶模式的选择和使用时间与所有有效驾驶循环的行驶总时间的比值。第三设定行车时间占比可以是百分之八十,第三设定行车时间占比也可以是百分之九十,可以根据实际需要进行设置。如果第二目标有效驾驶模式在各有效驾驶循环中的行驶路程占比大于第三设定路程占比,并且第二目标有效驾驶模式的行车时间占比大于第三设定行车时间占比,而第一目标有效驾驶模式是各有效驾驶循环的最后一个驾驶模式,则表明虽然下电时的有效驾驶模式并非行驶占比最高的有效驾驶模式,但由于其在用户的多次有效驾驶循环中都是最后被选择,则表明是用户喜好的有效驾驶模式,确定该第一目标有效驾驶模式为车辆的默认驾驶模式。并在用户下次上电驾驶时提示并显示目标有效驾驶模式。
例如,在三个连续的有效驾驶循环中,运动型驾驶模式是所有有效驾驶循环的下电时的有效驾驶模式,而舒适型驾驶模式在所有有效驾驶循环中的行驶路程占比和行车时间占比都是有效驾驶模式中占比最高的。此时,虽然运动型有效驾驶模式并非行驶占比最高的有效驾驶模式,但是由于下电时都选择该运动型有效驾驶模式,所以用户喜好的驾驶模式是该运动型驾驶模式,将该运动型有效驾驶模式作为车辆的默认驾驶模式。并在用户下次上电驾驶时提示并显示该运动型有效驾驶模式。
由此,通过若第一目标有效驾驶模式是各有效驾驶循环的最后一个驾驶模式,并且第二目标有效驾驶模式在各有效驾驶循环中的行驶路程占比大于第三设定路程占比,并且第二目标有效驾驶模式的行车时间占比大于第三设定行车时间占比,则确定第一目标有效驾驶模式为车辆的默认驾驶模式。可以实现在数个有效驾驶循环中下电时的有效驾驶模式相同并且其他有效驾驶模式驾驶参数占比更多的情况下,精确地确定用户在多个有效驾驶循环的驾驶习惯进而确定车辆的默认驾驶模式。可以减少用户操作,减少车辆的用户接口界面的设计,提升用户的智能化体验。
本申请实施例,获取车辆的至少一个驾驶循环;其中,驾驶循环是由相邻的上电时间与下电时间确定的;获取各驾驶循环内的行驶信息,若行驶信息满足预设约束条件,则确定驾驶循环为有效驾驶循环;读取有效驾驶循环的至少一个驾驶模式以及读取各驾驶模式的执行参数;基于各驾驶模式的执行参数确 定所述车辆的默认驾驶模式。通过执行本申请实施例,可以实现智能设定驾驶模式,可以减少用户操作,减少车辆的用户接口界面的设计,提升用户的智能化体验。
为了满足用户的不同驾驶喜好,车辆大部分均具有多种不同的驾驶模式。用户一般通过操作旋钮、按键、滚轮、拨钮或者娱乐主机内的软开关甚至语音命令来主动选择某种驾驶模式,实现个性化驾车和乘车体验。
以用户驾驶为主的车辆,在用户选择某个驾驶模式后,整车上的电子控制装置可调整相关系统的特性参数,使整车具有某种相匹配的车辆运动学和动力学特性,以适应于用户的个性化驾驶需求和体验,比如经济性优良、舒适性好、运动性能强、适应于雪地路面和适应于越野路面等。具备自动驾驶功能车辆的用户选择激进、稳健或者保守等车辆的驾驶模式后,车辆也会自动切换相关特性参数,来实现用户想要的车辆驾乘体验。用户希望自己的操作习惯或者喜好的驾驶模式能够被车辆智能识别并记忆,在下次驾驶时默认使用记忆的驾驶模式。
相关技术中设置车辆的默认驾驶模式的方法包括:默认某种出厂状态的初始设置不变,对用户而言,无法进行默认驾驶模式的设置,每次驾驶模式的选择都需要进行手动操作;用户手动设定的默认驾驶模式,用户可以自由设定喜好的默认驾驶模式,但需要用户手动设定喜欢的驾驶模式;采用了上一次结束驾驶时的驾驶模式作为车辆的默认驾驶模式,默认用户上一次下电时的驾驶模式就是用户的习惯或者用户喜欢的模式。这种方式存在着误设置的情况,比如用户一般都使用经济型驾驶模式,但在停止驾驶前尝试了一下运动型驾驶模式,或者误切换到了运动型驾驶模式,采用这种方法会将用户不喜欢的驾驶模式设定为默认驾驶模式。
图2是本申请实施例提供的车辆的驾驶模式确定方法的流程图,为了更清楚地表述本申请的技术方案,如图2所示,本申请实施例提供的技术方案还可以包括如下步骤:
步骤1、有效驾驶循环判断。
采集车辆上电状态,车辆准备就绪状态,车辆下电状态,各车轮轮速,车速、总里程等信息。单个驾驶循环的行驶总路程大于设定总路程(比如1公里)或者单个驾驶循环持续时间大于第一预设时长(比如1分钟)为有效驾驶循环。可以排除临时挪车等临时熄火上下电的场景。
步骤2、有效驾驶模式使用时段判断。
该模式下发动机应处于工作状态或者怠速停机状态,如果是电动汽车则处于Ready状态,且使用该驾驶模式的驾驶时长大于第二预设时长(比如20s),车速大于设定车速(比如2km/h),对应的有效驾驶模式使用数据才有效。
步骤3、有效的下电模式判断。
满足有效驾驶模式使用时段要求,且为下电时的驾驶模式。
步骤4、默认驾驶模式判断。
分析在每个有效驾驶循环内实时计算各个有效驾驶模式使用时段的使用时长、使用里程、使用时长占比、使用里程占比、总时长,总里程,并依据使用情况分析结果判断用户喜好的驾驶模式。包括但不限于单次模式a、多次模式b、多次模式c及多次模式d的组合。
单次模式a:在最后一个有效驾驶循环内,某个目标驾驶模式的使用占比达到预设值(时长占比大于80%且使用里程占比大于80%),且此模式为下电时的有效驾驶模式,则记忆此驾驶模式,否则保持上一个默认驾驶模式。
多次模式b:连续多个(比如三个)有效驾驶循环,对于每个有效驾驶循环,车辆下电时的目标有效驾驶模式为有效的下电模式,则记忆此驾驶模式。
多次模式c:目标驾驶模式在连续的多个(比如三个)有效驾驶循环内使用占比达到预设值,记忆此驾驶模式。
多次模式d:同时满足多次模式b和多次模式c的规则,优先采用多次模式b确定的记忆模式。
步骤5、下次开始上电驾驶时提示并显示车辆的默认驾驶模式。
本申请实施例,通过采集和分析车辆驾驶模式使用情况的相关数据,采用默认驾驶模式判断和有效性判断等策略识别用户喜好的驾驶模式,并设置为默认驾驶模式。从用户使用的角度,基于有效驾驶循环内各个有效驾驶模式的使用情况来分析用户喜好的驾驶模式并设置成默认驾驶模式的方法,评判准则可量化,无需考虑复杂算法,占用资源少,无需手动更改记忆设置而智能设定默认驾驶模式,可以减少用户操作,减少车辆的用户接口界面的设计,提升用户的智能化体验。
图3是本申请实施例提供的车辆的驾驶模式确定装置结构示意图,所述装置可以由软件和/或硬件的方式实现,所述装置可以配置在用于确定车辆的驾驶模式的电子设备中。如图3所示,所述装置包括:
驾驶循环获取模块310,设置为获取车辆的至少一个驾驶循环;其中,所述 驾驶循环是由相邻的上电时间与下电时间确定的;
有效驾驶循环确定模块320,设置为获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环;
驾驶模式读取模块330,设置为读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数;
默认驾驶模式确定模块340,设置为基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式。
在一实施例中,有效驾驶循环确定模块320,具体设置为获取各所述驾驶循环内的行驶总路程;针对各所述驾驶循环,若所述下电时间与所述上电时间的差值大于第一预设时长,或者,若所述行驶总路程大于设定总路程,则确定所述驾驶循环为有效驾驶循环。
在一实施例中,驾驶模式读取模块330,具体设置为读取各所述驾驶模式下的车速;针对各所述驾驶模式,若所述驾驶模式的选择时长大于第二预设时长,并且,所述驾驶模式下的车速大于设定车速,则确定所述驾驶模式为有效驾驶模式。
在一实施例中,默认驾驶模式确定模块340,具体设置为:若在最后一个有效驾驶循环中,下电时的目标有效驾驶模式的行驶路程占比大于第一设定路程占比,并且目标有效驾驶模式的行车时间占比大于第一设定行车时间占比,则确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
在一实施例中,默认驾驶模式确定模块340,具体设置为:若各所述有效驾驶循环的最后一个目标有效驾驶模式都相同,则确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
在一实施例中,默认驾驶模式确定模块340,具体设置为:若在至少一个有效驾驶循环中,目标有效驾驶模式的行驶路程占比大于第二设定路程占比,并且目标有效驾驶模式的行车时间占比大于第二设定行车时间占比,则确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
在一实施例中,默认驾驶模式确定模块340,具体设置为:若第一目标有效驾驶模式是各所述有效驾驶循环的最后一个驾驶模式,并且第二目标有效驾驶模式在至少一个有效驾驶循环中的行驶路程占比大于第三设定路程占比,并且第二目标有效驾驶模式的行车时间占比大于第三设定行车时间占比,则确定所述第一目标有效驾驶模式为所述车辆的默认驾驶模式。
上述实施例所提供的装置可以执行本申请任意实施例所提供的车辆的驾驶 模式确定方法,具备执行方法相应的功能模块和有益效果。
图4是本申请实施例提供的一种电子设备结构示意图,如图4所示,该设备包括:
一个或多个处理器410,图4中以一个处理器410为例;
存储器420;
所述设备还可以包括:输入装置430和输出装置440。
所述设备中的处理器410、存储器420、输入装置430和输出装置440可以通过总线或者其他方式连接,图4中以通过总线连接为例。
存储器420作为一种非暂态计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的一种车辆的驾驶模式确定方法对应的程序指令/模块。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行计算机设备的各种功能应用以及数据处理,即实现上述方法实施例的一种车辆的驾驶模式确定方法,即:
获取车辆的至少一个驾驶循环;其中,所述驾驶循环是由相邻的上电时间与下电时间确定的;
获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环;
读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数;
基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式。
存储器420可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据计算机设备的使用所创建的数据等。此外,存储器420可以包括高速随机存取存储器,还可以包括非暂态性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态性固态存储器件。在一些实施例中,存储器420可选包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至终端设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可用于接收输入的数字或字符信息,以及产生与计算机设备的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。
本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例提供的一种车辆的驾驶模式确定方法:
获取车辆的至少一个驾驶循环;其中,所述驾驶循环是由相邻的上电时间与下电时间确定的;
获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环;
读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数;
基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式。
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM,Random Access Memory)、只读存储器(ROM,Read-Only Memory)、可擦式可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)或闪存、光纤、便携式紧凑磁盘只读存储器(CD-ROM,Compact Disc Read-Only Memory)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、电线、光缆、RF(Radio Frequency,射频)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、 Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN,Local Area Network)或广域网(WAN,Wide Area Network)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
上述仅为本申请的一些实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种车辆的驾驶模式确定方法,包括:
    获取车辆的至少一个驾驶循环;其中,所述驾驶循环是由相邻的上电时间与下电时间确定的;
    获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环;
    读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数;
    基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式。
  2. 根据权利要求1所述的方法,其中,获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环,包括:
    获取每个驾驶循环内的行驶总路程;
    针对每个驾驶循环,响应于所述下电时间与所述上电时间的差值大于第一预设时长,或者,所述行驶总路程大于设定总路程,确定所述驾驶循环为有效驾驶循环。
  3. 根据权利要求1或2所述的方法,其中,读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数,包括:
    读取每个驾驶模式下的车速;
    针对每个驾驶模式,响应于所述驾驶模式的选择时长大于第二预设时长,并且,所述驾驶模式下的车速大于设定车速,确定所述驾驶模式为有效驾驶模式。
  4. 根据权利要求3所述的方法,其中,基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式,包括:
    响应于在最后一个有效驾驶循环中,下电时的目标有效驾驶模式的行驶路程占比大于第一设定路程占比,并且目标有效驾驶模式的行车时间占比大于第一设定行车时间占比,确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
  5. 根据权利要求3所述的方法,其中,基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式,包括:
    响应于每个有效驾驶循环的最后一个目标有效驾驶模式都相同,确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
  6. 根据权利要求3所述的方法,其中,基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式,包括:
    响应于在至少一个有效驾驶循环中,目标有效驾驶模式的行驶路程占比大于第二设定路程占比,并且目标有效驾驶模式的行车时间占比大于第二设定行车时间占比,确定所述目标有效驾驶模式为所述车辆的默认驾驶模式。
  7. 根据权利要求3所述的方法,其中,基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式,包括:
    响应于第一目标有效驾驶模式是每个有效驾驶循环的最后一个驾驶模式,并且第二目标有效驾驶模式在至少一个有效驾驶循环中的行驶路程占比大于第三设定路程占比,并且第二目标有效驾驶模式的行车时间占比大于第三设定行车时间占比,确定所述第一目标有效驾驶模式为所述车辆的默认驾驶模式。
  8. 一种车辆的驾驶模式确定装置,包括:
    驾驶循环获取模块,设置为获取车辆的至少一个驾驶循环;其中,所述驾驶循环是由相邻的上电时间与下电时间确定的;
    有效驾驶循环确定模块,设置为获取每个驾驶循环内的行驶信息,响应于所述行驶信息满足预设约束条件,确定所述驾驶循环为有效驾驶循环;
    驾驶模式读取模块,设置为读取所述有效驾驶循环的至少一个驾驶模式以及读取每个驾驶模式的执行参数;
    默认驾驶模式确定模块,设置为基于每个驾驶模式的执行参数确定所述车辆的默认驾驶模式。
  9. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7任一项所述的车辆的驾驶模式确定方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7任一项所述的车辆的驾驶模式确定方法。
PCT/CN2022/113082 2021-08-27 2022-08-17 车辆的驾驶模式确定方法、装置、设备及介质 WO2023025006A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110993348.5 2021-08-27
CN202110993348.5A CN113619594B (zh) 2021-08-27 2021-08-27 一种车辆的驾驶模式确定方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023025006A1 true WO2023025006A1 (zh) 2023-03-02

Family

ID=78387991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113082 WO2023025006A1 (zh) 2021-08-27 2022-08-17 车辆的驾驶模式确定方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN113619594B (zh)
WO (1) WO2023025006A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619594B (zh) * 2021-08-27 2023-11-28 中国第一汽车股份有限公司 一种车辆的驾驶模式确定方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108725444A (zh) * 2018-05-19 2018-11-02 智车优行科技(北京)有限公司 驾驶方法和装置、电子设备、车辆、程序及介质
US10640111B1 (en) * 2016-09-07 2020-05-05 Waymo Llc Speed planning for autonomous vehicles
CN112477872A (zh) * 2020-11-26 2021-03-12 中国第一汽车股份有限公司 一种参数标定方法、装置、设备及存储介质
CN113085864A (zh) * 2021-03-15 2021-07-09 江铃汽车股份有限公司 驾驶模式切换控制方法及系统
CN113619594A (zh) * 2021-08-27 2021-11-09 中国第一汽车股份有限公司 一种车辆的驾驶模式确定方法、装置、设备及介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9586597B2 (en) * 2014-09-04 2017-03-07 Ford Global Technologies, Llc Electrified vehicle operating mode prompt
KR20170053799A (ko) * 2015-11-06 2017-05-17 고려대학교 산학협력단 자율 주행 차량의 안전성 제공 장치 및 방법
CN105488465A (zh) * 2015-11-26 2016-04-13 广州英卓电子科技有限公司 一种车辆状态模式识别系统及其识别方法
JP6429203B2 (ja) * 2016-05-19 2018-11-28 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP6897432B2 (ja) * 2017-08-30 2021-06-30 トヨタ自動車株式会社 自動運転システム
CN108394281A (zh) * 2018-04-28 2018-08-14 北京新能源汽车股份有限公司 一种电动汽车整车上下电控制方法、装置及电动汽车
KR20200061705A (ko) * 2018-11-26 2020-06-03 현대자동차주식회사 차량의 퍼스널 주행 모드 제공 장치 및 그 방법
US20200255028A1 (en) * 2019-02-08 2020-08-13 Cartica Ai Ltd Autonomous driving using an adjustable autonomous driving pattern
CN110027562A (zh) * 2019-04-29 2019-07-19 重庆工商大学 一种汽车的控制方法、装置及系统
CN111619576B (zh) * 2020-06-03 2021-06-25 中国第一汽车股份有限公司 一种控制方法、装置、设备及存储介质
CN113085865A (zh) * 2021-03-31 2021-07-09 上海仙塔智能科技有限公司 驾驶模式控制方法、装置、车辆及计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640111B1 (en) * 2016-09-07 2020-05-05 Waymo Llc Speed planning for autonomous vehicles
CN108725444A (zh) * 2018-05-19 2018-11-02 智车优行科技(北京)有限公司 驾驶方法和装置、电子设备、车辆、程序及介质
CN112477872A (zh) * 2020-11-26 2021-03-12 中国第一汽车股份有限公司 一种参数标定方法、装置、设备及存储介质
CN113085864A (zh) * 2021-03-15 2021-07-09 江铃汽车股份有限公司 驾驶模式切换控制方法及系统
CN113619594A (zh) * 2021-08-27 2021-11-09 中国第一汽车股份有限公司 一种车辆的驾驶模式确定方法、装置、设备及介质

Also Published As

Publication number Publication date
CN113619594A (zh) 2021-11-09
CN113619594B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN108216264B (zh) 用于车辆的信息提供系统和提供用于车辆的信息的方法
CN108447472B (zh) 语音唤醒方法及装置
WO2023025006A1 (zh) 车辆的驾驶模式确定方法、装置、设备及介质
WO2017166646A1 (zh) 一种车载语音控制方法和装置、设备
EP2857276A2 (en) Driver assistance system
CN112477872B (zh) 一种参数标定方法、装置、设备及存储介质
CN105620393A (zh) 一种自适应的车辆人机交互方法及其系统
CN111526246A (zh) 缓存方法、电子设备和计算机可读存储介质
US11587375B2 (en) Wireless communication devices
CN112581654B (zh) 一种车辆功能的使用频度评价系统及方法
US20150274180A1 (en) Workload estimation for mobile device feature integration
CN110576808B (zh) 车辆、车机设备及其基于人工智能的场景信息推送方法
CN108923808A (zh) 车辆及其车载终端和语音交互模式主动触发方法
JP2012256001A (ja) 移動体における音声認識装置および方法
CN114629991A (zh) 一种基于车联的提示方法及装置
WO2021088395A1 (zh) 一种车辆导航方法及终端
WO2018045650A1 (zh) 一种车速控制方法及装置
US20210204021A1 (en) Systems and methods for managing infotainment buffer in a vehicle
CN112466005A (zh) 基于用户使用习惯的自动驾驶围栏的更新系统及方法
CN113703420A (zh) 车辆控制器刷写方法、刷写设备、车辆控制器及存储介质
JP2011012968A (ja) 車両情報処理方法および車両情報処理サーバ
CN106567783A (zh) 一种油门控制方法及装置
JP6380793B2 (ja) 車両用制御装置
WO2018009224A1 (en) Characterizing route stress and stress-based route selection
KR102441068B1 (ko) 운전자 주행 보조 시스템 사용 패턴 기반 차량 경로 안내 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE