WO2023024661A1 - 抗菌剂、抗菌聚砜复合材料及其制备方法 - Google Patents

抗菌剂、抗菌聚砜复合材料及其制备方法 Download PDF

Info

Publication number
WO2023024661A1
WO2023024661A1 PCT/CN2022/098801 CN2022098801W WO2023024661A1 WO 2023024661 A1 WO2023024661 A1 WO 2023024661A1 CN 2022098801 W CN2022098801 W CN 2022098801W WO 2023024661 A1 WO2023024661 A1 WO 2023024661A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
temperature
solution
antibacterial agent
zone
Prior art date
Application number
PCT/CN2022/098801
Other languages
English (en)
French (fr)
Inventor
姜鹏
王俊
林兴旺
赵立伟
宋鑫
朱提允
Original Assignee
山东海科创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东海科创新研究院有限公司 filed Critical 山东海科创新研究院有限公司
Publication of WO2023024661A1 publication Critical patent/WO2023024661A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the application belongs to the technical field of polymer materials, and in particular relates to an antibacterial agent, an antibacterial polysulfone composite material and a preparation method thereof.
  • antibacterial materials As a new type of functional material with antibacterial and bactericidal properties, have become a hot spot in the research and development of countries all over the world. Compared with conventional physical and chemical disinfection methods, antibacterial materials have the advantages of long antibacterial time, economy and convenience. The demand for antibacterial materials is also increasing. Antibacterial materials have been widely used in many fields such as home appliances, building materials, environmental protection, and sanitary ware.
  • PSU Polysulfone
  • inorganic antibacterial agents or silver-based antibacterial agents are the most used in polymer materials.
  • inorganic antibacterial agents have the advantages of good safety and long antibacterial time, they are easy to vulcanize or oxidize, and have poor light stability. Antimicrobials are expensive.
  • the application provides an antibacterial agent, an antibacterial polysulfone composite material and a preparation method thereof.
  • the application provides a kind of antibacterial agent, adopts following steps to prepare:
  • the reaction temperature is 70-90°C, and the reaction time is 8-12h;
  • the reaction temperature is 60-80° C. and the reaction time is 8-10 h.
  • the mass ratio of 2-ethylacrylic acid, potassium hydroxide, lauroyl peroxide and water in the step 1) is (30-40):(24-30):(0.2-0.4 ): (60-80).
  • the mass ratio of potassium poly-2-ethylacrylate solution, copper nitrate solution and water in step 2) is (50-60):(40-50):(60-70).
  • the application also provides an antibacterial polysulfone composite material, which comprises the following components in parts by weight:
  • the antibacterial agent is the antibacterial agent described in any one of the above schemes.
  • modified carbon fiber 10-14 parts by weight of modified carbon fiber is also included; the modified carbon fiber is prepared by mixing carbon fiber, Ce(NO 3 ) 3 solution and concentrated sulfuric acid for reaction.
  • the temperature of the reaction is 60-80° C., and the time is 2-4 hours.
  • the Ce(NO 3 ) 3 solution consists of Ce(NO 3 ) 3 . 6H2O and acetone, the Ce(NO 3 ) 3 .
  • the mass ratio of 6H2O and acetone is (30-40): (100-120).
  • the mass ratio of the carbon fiber, Ce(NO 3 ) 3 solution and concentrated sulfuric acid is (18-24):(120-160):(30-40).
  • the antioxidant is one or more of phosphite compounds, hindered phenolic compounds and hindered amine compounds.
  • the present application also provides a preparation method of the antibacterial polysulfone composite material described in any one of the above schemes, comprising the following steps:
  • the materials are mixed, and the obtained mixed materials are extruded and granulated to obtain antibacterial polysulfone composite materials;
  • the extrusion granulation is carried out in a twin-screw extruder, and the twin-screw extruder adopts six temperature zones arranged in sequence during the extrusion granulation, which are respectively: the temperature of the first zone is 290-330 °C, the temperature in the second zone is 310 ⁇ 350°C, the temperature in the third zone is 310 ⁇ 350°C, the temperature in the fourth zone is 310 ⁇ 350°C, the temperature in the fifth zone is 310 ⁇ 350°C, the temperature in the sixth zone is 310 ⁇ 350°C, the temperature of the machine head is 310 ⁇ 350°C,
  • the screw speed is 200-280r/min.
  • the antibacterial agent provided in the examples of the present application uses Cu 2+ as an effective antibacterial component.
  • the copper element is in an ionic state, and the ionic Cu 2+ is connected to the carboxylate on the polymer chain, and the Cu 2+ is stabilized by the action of the carboxylate. + state, thus adding the antibacterial agent to the polysulfone composite material can achieve high-efficiency antibacterial.
  • the embodiment of the present application modifies the carbon fiber, and then introduces some organic active groups rich in oxygen and nitrogen to the surface of the carbon fiber, and combines the modified carbon fiber with polysulfone to improve the polysulfone composite material and carbon fiber. Interfacial bonding force, thereby improving the mechanical properties of polysulfone composites.
  • the embodiment of the present application provides an antibacterial agent, which is prepared by the following steps:
  • 2-ethylacrylic acid, potassium hydroxide, lauroyl peroxide and water were mixed and reacted to obtain a polypotassium 2-ethylacrylate solution.
  • the temperature of the reaction is preferably 70-90° C., and the reaction time is preferably 8-12 hours.
  • the mass ratio of the 2-ethylacrylic acid, potassium hydroxide, lauroyl peroxide and water is preferably (30-40):(24-30):(0.2-0.4):( 60-80). It can be understood that those skilled in the art can select a suitable reaction ratio within the above-mentioned preferred ratio range, such as 30:24:0.2:60 or 40:30:0.4:80 or 35:25:0.3:70, etc. .
  • the potassium poly-2-ethylacrylate solution, the copper nitrate solution and water were mixed and reacted to obtain an antibacterial agent.
  • the temperature of the reaction is preferably 60-80° C.
  • the time is preferably 8-10 h.
  • the mass ratio of the potassium poly-2-ethylacrylate solution, copper nitrate solution and water is preferably (50-60):(40-50):(60-70). It can be understood that those skilled in the art can select a suitable reaction ratio within the above preferred ratio range, such as 50:40:60, 60:50:70 or 55:45:65, etc.
  • 2-ethylacrylic acid and potassium hydroxide are first generated under the action of the initiator lauroyl peroxide to form a poly-2-ethylacrylic acid potassium polymer, and then poly-2-ethylacrylic acid potassium is used as a stabilizer.
  • Cu 2+ is supported by the in-situ synthesis method, and an antibacterial agent (copper-polypotassium 2-ethylacrylate) with excellent antibacterial properties is obtained.
  • the copper element in the antibacterial agent prepared in the examples of the present application is in an ionic state, and the ionic Cu 2+ is connected to the carboxylate on the polymer chain, and the state of Cu 2+ is stabilized by the action of the carboxylate, so that high efficiency can be achieved. antibacterial.
  • the antibacterial mechanism of the embodiment of the present application is as follows: Cu 2+ , an effective antibacterial component in copper-poly 2-potassium ethacrylate, contacts with bacteria through electrostatic interaction, and after penetrating and damaging the bacterial cell membrane, the balance of intracellular metal ions is disturbed, resulting in cell membrane The selective permeability is impaired, and the bacterial content flows out, eventually leading to the death of the bacteria.
  • the embodiment of the present application also provides an antibacterial PSU composite material, which includes the following components in parts by weight:
  • antibacterial agent is the antibacterial agent described in any one of the above schemes.
  • the antibacterial PSU composite material provided in the embodiment of the present application includes PSU, including 80-100 parts by weight. It can be understood that the content of PSU can be 80, 81, 85, 90, 95, 100 parts or any point value within the above range. In the embodiment of the present application, there is no special limitation on the source of the PSU, and conventional commercially available products in the field can be used.
  • the antibacterial PSU composite material provided in the embodiment of the present application includes an antibacterial agent, including 12-16 parts by weight. It can be understood that the content of the antibacterial agent can be 12, 13, 14, 15, 16 parts or any value within the above range.
  • the antibacterial PSU composite material provided in the embodiment of the present application includes an antioxidant, in parts by weight, including 0.1-0.5 parts, preferably 0.2-0.4 parts. It can be understood that the content of the antioxidant can be 0.1, 0.2, 0.3, 0.4, 0.5 or any value within the above range. In some embodiments of the present application, the antioxidant is preferably one or more of phosphite compounds, hindered phenolic compounds and hindered amine compounds.
  • the antibacterial PSU composite material provided by some embodiments of the present application also includes 10-14 parts by weight of modified carbon fiber. It can be understood that the content of the modified carbon fiber can be 10, 11, 12, 13, 14 parts or any value within the above range. It can be understood that if the amount of modified carbon fiber added exceeds the scope of protection of this application, too much added amount of modified carbon fiber will lead to excessive fiber leakage and uneven dispersion, while too little will not effectively improve the mechanical properties of the PSU. performance.
  • the modified carbon fiber is prepared by mixing carbon fiber, Ce(NO 3 ) 3 solution and concentrated sulfuric acid for reaction.
  • the temperature of the reaction is preferably 60-80° C., and the reaction time is preferably 2-4 hours.
  • the Ce(NO 3 ) 3 solution is preferably composed of Ce(NO 3 ) 3 . 6H2O and acetone, the Ce(NO 3 ) 3 .
  • the mass ratio of 6H2O and acetone is preferably (30-40):(100-120). It can be understood that those skilled in the art can select a suitable reaction ratio within the above preferred ratio range, such as 40:100, 30:120 or 35:10, etc.
  • the mass ratio of the carbon fiber, Ce(NO 3 ) 3 solution and concentrated sulfuric acid is preferably (18-24):(120-160):(30-40). It can be understood that those skilled in the art can select a suitable reaction ratio within the above preferred ratio range, such as 18:120:30, 24:160:40 or 20:120:35, etc.
  • the modified carbon fiber can improve the mechanical properties of the PSU composite material.
  • the principle of improving the physical properties of the PSU composite material by the modified carbon fiber described in the examples of the present application is as follows: when the carbon fiber is treated with the Ce(NO 3 ) 3 solution, the Ce element can coordinate with the N and O in the organic active group in the solution The chemical reaction eventually introduces some organic active groups rich in oxygen and nitrogen to the surface of carbon fibers, improving the interfacial bonding force between PSU composites and carbon fibers, and improving the mechanical properties of PSU composites.
  • the embodiment of the present application also provides a preparation method of the above-mentioned antibacterial PSU composite material, comprising the following steps:
  • the materials are mixed, and the obtained mixed materials are extruded and granulated to obtain antibacterial PSU composite materials;
  • the extrusion granulation is carried out in a twin-screw extruder, and the twin-screw extruder adopts six temperature zones arranged in sequence during the extrusion granulation, which are respectively: the temperature of the first zone is 290-330 °C, the temperature in the second zone is 310 ⁇ 350°C, the temperature in the third zone is 310 ⁇ 350°C, the temperature in the fourth zone is 310 ⁇ 350°C, the temperature in the fifth zone is 310 ⁇ 350°C, the temperature in the sixth zone is 310 ⁇ 350°C, the temperature of the machine head is 310 ⁇ 350°C,
  • the screw speed is 200-280r/min.
  • step (2) Extrude and granulate the mixture obtained in step (1) from an extruder to obtain PSU composite material P1.
  • the twin-screw extruder includes six temperature zones arranged in sequence, the temperature of the first zone is 295°C, the temperature of the second zone is 325°C, the temperature of the third zone is 325°C, the temperature of the fourth zone is 325°C, the temperature of the fifth zone is 325°C, and the temperature of the sixth zone 325°C, head temperature 325°C, screw speed 200r/min.
  • antibacterial agent M1 is prepared by the following steps:
  • modified carbon fiber N1 is prepared by the following steps:
  • step (2) Extrude and granulate the mixture obtained in step (1) from an extruder to obtain PSU composite material P2.
  • the twin-screw extruder includes six temperature zones arranged in sequence, the temperature of the first zone is 310°C, the temperature of the second zone is 330°C, the temperature of the third zone is 330°C, the temperature of the fourth zone is 330°C, the temperature of the fifth zone is 330°C, and the temperature of the sixth zone 330°C, head temperature 330°C, screw speed 240r/min.
  • antimicrobial agent M2 is prepared by the following steps:
  • modified carbon fiber N2 is prepared by the following steps:
  • the twin-screw extruder includes six temperature zones arranged in sequence, the temperature of the first zone is 310°C, the temperature of the second zone is 330°C, the temperature of the third zone is 330°C, the temperature of the fourth zone is 330°C, the temperature of the fifth zone is 330°C, and the temperature of the sixth zone 330°C, head temperature 330°C, screw speed 280r/min.
  • antimicrobial agent M3 adopts following steps to prepare:
  • modified carbon fiber N3 is prepared by the following steps:
  • the twin-screw extruder includes six temperature zones arranged in sequence, the temperature of the first zone is 295°C, the temperature of the second zone is 325°C, the temperature of the third zone is 325°C, the temperature of the fourth zone is 325°C, the temperature of the fifth zone is 325°C, and the temperature of the sixth zone 325°C, head temperature 325°C, screw speed 245r/min.
  • antimicrobial agent M4 adopts following steps to prepare:
  • modified carbon fiber N4 is prepared by the following steps:
  • the twin-screw extruder includes six temperature zones arranged in sequence, the temperature of the first zone is 315°C, the temperature of the second zone is 335°C, the temperature of the third zone is 335°C, the temperature of the fourth zone is 335°C, the temperature of the fifth zone is 335°C, and the temperature of the sixth zone 335°C, head temperature 335°C, screw speed 265r/min.
  • antimicrobial agent M5 adopts following steps to prepare:
  • modified carbon fiber N5 is prepared by the following steps:
  • Example 1 The difference with Example 1 is that no modified carbon fiber is added, and the specific scheme is as follows:
  • the twin-screw extruder includes six temperature zones arranged in sequence, the temperature of the first zone is 295°C, the temperature of the second zone is 325°C, the temperature of the third zone is 325°C, the temperature of the fourth zone is 325°C, the temperature of the fifth zone is 325°C, and the temperature of the sixth zone 325°C, head temperature 325°C, screw speed 200r/min.
  • Example 5 The difference with Example 5 is that no modified carbon fiber and antibacterial agent are added, and the specific formula is as follows:
  • Example 5 The difference from Example 5 is that ordinary carbon fibers are used to replace modified carbon fibers, and the specific formula is as follows:
  • Example 5 The difference with Example 5 is that no antibacterial agent is added, and the specific formula is as follows:
  • Example 5 The difference with Example 5 is that the antibacterial agent is the AntibacMax copper ion antibacterial agent produced by Shanghai Langyi Functional Materials Co., Ltd., and the specific formula is as follows:
  • the antibacterial agent prepared in the embodiment of the present application has good antibacterial performance when added to the PSU material, and the addition of modified carbon fiber to the PSU material can effectively improve the mechanical properties of the PSU.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本申请提出一种抗菌剂、抗菌聚砜复合材料及其制备方法,属于高分子材料技术领域。所述抗菌剂,采用如下步骤制备得到:1)将2-乙基丙烯酸、氢氧化钾、过氧化月桂酰和水混合,进行反应,得到聚2-乙基丙烯酸钾溶液;2)将聚2-乙基丙烯酸钾溶液、硝酸铜溶液和水混合,进行反应,得到抗菌剂。本申请提供的抗菌剂添加到聚砜材料中能够高效、长时抑菌。

Description

抗菌剂、抗菌聚砜复合材料及其制备方法
本申请要求在2022年04月20日提交中国专利局、申请号为202210413466.9、申请名称为“一种抗菌剂、抗菌PSU复合材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于高分子材料技术领域,尤其涉及一种抗菌剂、抗菌聚砜复合材料及其制备方法。
背景技术
随着人们生活水平的提高和对健康卫生生活环境的关注,抗菌材料作为一类具有抑菌和杀菌性能的新型功能材料成为世界各国研制开发的热点。抗菌材料与常规的物理和化学消毒方法相比,具有抗菌时效长、既经济又方便等优点。抗菌材料的需求量也越来越高,抗菌材料目前已经广泛地应用于家电、建材、环保、卫浴等许多领域。
聚砜(PSU)是一种广泛应用的高分子树脂,PSU具有良好的耐疲劳性、耐热性及优良的尺寸稳定性等优点。然而PSU虽然具有良好的耐疲劳性和耐热性,但不具有抗菌性,且力学性能较差,这限制了其在一些更高需求领域中的应用。
目前,在高分子材料中使用量最多的是无机抗菌剂或银系抗菌剂,然而无机抗菌剂虽然具有安全性好、抗菌时效长等优点,但易硫化或氧化,光稳定性差,而银系抗菌剂的成本较高。
发明内容
为解决以上提出的至少一个问题,本申请提供了一种抗菌剂、抗菌聚砜 复合材料及其制备方法。
为了达到上述目的,本申请提供了一种抗菌剂,采用如下步骤制备得到:
1)将2-乙基丙烯酸、氢氧化钾、过氧化月桂酰和水混合,进行反应,得到聚2-乙基丙烯酸钾溶液;
2)将聚2-乙基丙烯酸钾溶液、硝酸铜溶液和水混合,进行反应,得到抗菌剂。
在本申请一些实施例中,所述步骤1)中,反应的温度为70-90℃,时间为8-12h;
所述步骤2)中,反应的温度为60-80℃,时间为8-10h。
在本申请一些实施例中,所述步骤1)中2-乙基丙烯酸、氢氧化钾、过氧化月桂酰和水的质量比为(30-40):(24-30):(0.2-0.4):(60-80)。
在本申请一些实施例中,所述步骤2)中聚2-乙基丙烯酸钾溶液、硝酸铜溶液和水的质量比为(50-60):(40-50):(60-70)。
本申请还提供了一种抗菌聚砜复合材料,按重量份计,包括如下组分:
聚砜80-100份、抗菌剂12-16份和抗氧剂0.1-0.5份;所述抗菌剂为上述任意一项方案所述的抗菌剂。
在本申请一些实施例中,还包括10-14重量份的改性碳纤维;所述改性碳纤维是由碳纤维、Ce(NO 3) 3溶液与浓硫酸混合,进行反应制备得到。
在本申请一些实施例中,所述反应的温度为60-80℃,时间为2-4h。
在本申请一些实施例中,所述Ce(NO 3) 3溶液由Ce(NO 3) 3﹒6H2O和丙酮配制得到,所述Ce(NO 3) 3﹒6H2O和丙酮的质量比为(30-40):(100-120)。
在本申请一些实施例中,所述碳纤维、Ce(NO 3) 3溶液与浓硫酸的质量比为(18-24):(120-160):(30-40)。
在本申请一些实施例中,所述抗氧剂为亚磷酸酯化合物、受阻酚类化合物和受阻胺类化合物中的一种或几种。
本申请还提供了一种上述任意一项方案所述的抗菌聚砜复合材料的制备方法,包括如下步骤:
将物料混合,将得到的混合物料进行挤压造粒,得到抗菌聚砜复合材料;
所述挤压造粒在双螺杆挤出机中进行,所述双螺杆挤出机在进行挤压造粒时采用顺次排布的六个温度区,依次分别为:一区温度290~330℃,二区温度310~350℃,三区温度310~350℃,四区温度310~350℃,五区温度310~350℃,六区温度310~350℃,机头温度310~350℃,螺杆转速为200~280r/min。
与现有技术相比,本申请的优点和积极效果在于:
本申请实施例提供的抗菌剂,采用Cu 2+作为有效抗菌成分,铜元素呈离子态,且离子态的Cu 2+与聚合物链上的羧酸根相连,通过羧酸根的作用稳定了Cu 2+的状态,从而将该抗菌剂添加到聚砜复合材料中,可以达到高效抑菌。
进一步的,本申请实施例通过对碳纤维改性,进而把一些富含氧元素和氮元素的有机活性基团引入到碳纤维表面,将改性碳纤维与聚砜结合,改善聚砜复合材料和碳纤维的界面结合力,从而提高聚砜复合材料的力学性能。
具体实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种抗菌剂,采用如下步骤制备得到:
1)将2-乙基丙烯酸、氢氧化钾、过氧化月桂酰和水混合,进行反应,得到聚2-乙基丙烯酸钾溶液;
2)将聚2-乙基丙烯酸钾溶液、硝酸铜溶液和水混合,进行反应,得到抗菌剂。
本申请实施例将2-乙基丙烯酸、氢氧化钾、过氧化月桂酰和水混合,进行反应,得到聚2-乙基丙烯酸钾溶液。在本申请一些实施例中,所述反应的温度优选为70-90℃,时间优选为8-12h。在本申请一些实施例中,所述2-乙基丙烯酸、氢氧化钾、过氧化月桂酰和水的质量比优选为(30-40):(24-30):(0.2-0.4):(60-80)。可以理解的是,本领域技术人员可在上述优选的配比范围内选择合适的反应配比,如30:24:0.2:60或40:30:0.4:80或35:25:0.3:70等。
得到聚2-乙基丙烯酸钾溶液后,本申请实施例将所述聚2-乙基丙烯酸钾溶液、硝酸铜溶液和水混合,进行反应,得到抗菌剂。在本申请一些实施例中,所述反应的温度优选为60-80℃,时间优选为8-10h。在本申请一些实施例中,所述聚2-乙基丙烯酸钾溶液、硝酸铜溶液和水的质量比优选为(50-60):(40-50):(60-70)。可以理解的是,本领域技术人员可在上述优选的配比范围内选择合适的反应配比,如50:40:60、60:50:70或55:45:65等。
本申请实施例先将2-乙基丙烯酸、氢氧化钾在引发剂过氧化月桂酰的作用下生成聚2-乙基丙烯酸钾聚合物,再以聚2-乙基丙烯酸钾为稳定剂,通过原位合成法负载Cu 2+,得到抗菌性能优异的抗菌剂(铜-聚2-乙基丙烯酸钾)。本申请实施例制备得到的抗菌剂中铜元素呈离子态,且离子态的Cu 2+与聚合物链上的羧酸根相连,通过羧酸根的作用稳定了Cu 2+的状态,从而可以达到高效抑菌。
本申请实施例的抗菌机理如下:铜-聚2-乙基丙烯酸钾中的有效抗菌成分Cu 2+通过静电相互作用与细菌接触,渗透和损伤细菌细胞膜后,胞内金属离子平衡紊乱,导致细胞膜的选择透过性受损,细菌内容物流出,最终致使细菌的死亡。
本申请实施例还提供了一种抗菌PSU复合材料,按重量份计,包括如下组分:
PSU 80-100份、抗菌剂12-16份和抗氧剂0.1-0.5份;所述抗菌剂为上述任意一项方案所述的抗菌剂。
本申请实施例提供的抗菌PSU复合材料包括PSU,按重量份计,包括80-100份。可以理解的是PSU的含量可以是80、81、85、90、95、100份或上述范围内的任意点值。本申请实施例对所述PSU的来源没有特殊限定,采用本领域常规市售产品即可。
本申请实施例提供的抗菌PSU复合材料包括抗菌剂,按重量份计,包括12-16份。可以理解的是抗菌剂的含量可以是12、13、14、15、16份或上述范围内的任意点值。
本申请实施例提供的抗菌PSU复合材料包括抗氧剂,按重量份计,包括0.1-0.5份,优选为0.2-0.4份。可以理解的是抗氧剂的含量可以是0.1、0.2、0.3、0.4、0.5或上述范围内的任意点值。在本申请一些实施例中,所述抗氧剂优选为亚磷酸酯化合物、受阻酚类化合物和受阻胺类化合物中的一种或几种。
本申请一些实施例提供的抗菌PSU复合材料还包括10-14重量份的改性碳纤维。可以理解的是,改性碳纤维的含量可以是10、11、12、13、14份或上述范围内的任一点值。可以理解的是,如果添加量超过本申请的保护范 围,改性碳纤维添加量过多,会导致纤维过多外漏,还会存在分散不均匀现象,而过少则不能有效地提升PSU的力学性能。在本申请一些实施例中,所述改性碳纤维是由碳纤维、Ce(NO 3) 3溶液与浓硫酸混合,进行反应制备得到。在本申请一些实施例中,所述反应的温度优选为60-80℃,时间优选为2-4h。在本申请一些实施例中,所述Ce(NO 3) 3溶液优选由Ce(NO 3) 3﹒6H2O和丙酮配制得到,所述Ce(NO 3) 3﹒6H2O和丙酮的质量比优选为(30-40):(100-120)。可以理解的是,本领域技术人员可在上述优选的配比范围内选择合适的反应配比,如40:100、30:120或35:10等。在本申请一些实施例中,所述碳纤维、Ce(NO 3) 3溶液与浓硫酸的质量比优选为(18-24):(120-160):(30-40)。可以理解的是,本领域技术人员可在上述优选的配比范围内选择合适的反应配比,如18:120:30、24:160:40或20:120:35等。
在本申请实施例中,所述改性碳纤维可以提升PSU复合材料的力学性能。本申请实施例所述改性碳纤维提升PSU复合材料的物理性能的原理如下:碳纤维经Ce(NO 3) 3溶液处理时,Ce元素可与溶液中有机活性基团中的N、O发生配位化学反应,最终把一些富含氧元素和氮元素的有机活性基团引入到碳纤维表面,改善PSU复合材料和碳纤维的界面结合力,提升PSU复合材料的力学性能。
本申请实施例还提供了一种上述所述的抗菌PSU复合材料的制备方法,包括如下步骤:
将物料混合,将得到的混合物料进行挤压造粒,得到抗菌PSU复合材料;
所述挤压造粒在双螺杆挤出机中进行,所述双螺杆挤出机在进行挤压造粒时采用顺次排布的六个温度区,依次分别为:一区温度290~330℃,二区温度310~350℃,三区温度310~350℃,四区温度310~350℃,五区温度 310~350℃,六区温度310~350℃,机头温度310~350℃,螺杆转速为200~280r/min。
为了进一步说明本申请,下面结合实施例对本申请提供的技术方案进行详细地描述,但不能将它们理解为对本申请保护范围的限定。
以下实施例中所用的原料如下:
PSU(型号P-1710),美国索尔维;2-乙基丙烯酸,济南铭宇化工有限公司;过氧化月桂酰,苏州森菲达化工有限公司;硝酸铜溶液,济南元素化工有限公司;去离子水,北京百奥莱博科技有限公司;氢氧化钾,济南铭德化工有限公司;抗氧剂168、1098、9228、9960,巴斯夫、美国都福化学;Ce(NO 3) 3﹒6H2O,北京中金研新材料有限公司;丙酮,山东昌耀新材料有限公司;碳纤维,西格里特种石墨(上海)有限公司。
实施例1
(1)称取80份PSU、10份改性碳纤维N1、12份抗菌剂M1、0.2份抗氧剂9228混合并搅拌均匀,得到混合料;
(2)将步骤(1)中得到的混合料从挤出机中挤出造粒,即得到PSU复合材料P1。
其中双螺杆挤出机包括顺次排布的六个温度区,一区温度295℃,二区温度325℃,三区温度325℃,四区温度325℃,五区温度325℃,六区温度325℃,机头温度325℃,螺杆转速200r/min。
其中抗菌剂M1采用如下步骤制备得到:
(1)称取300g 2-乙基丙烯酸、240g氢氧化钾、2g引发剂过氧化月桂酰、600g去离子水,将它们加入至反应器皿中,70℃下搅拌反应8h,得聚2-乙基丙烯酸钾溶液。
(2)称取500g聚2-乙基丙烯酸钾溶液、400g硝酸铜溶液、600g去离子水,将它们加入至反应器皿中,60℃下搅拌反应8h,得到抗菌剂M1。
其中改性碳纤维N1采用如下步骤制备得到:
(1)将300g Ce(NO 3) 3﹒6H2O和1.0kg丙酮混合均匀,获得Ce(NO 3) 3溶液;
(2)将180g碳纤维、1.2kg Ce(NO 3) 3溶液与300g浓硫酸混合,于60℃水浴反应2h后,洗涤、干燥,获得改性碳纤维N1。
实施例2
(1)称取90份的PSU、12份改性碳纤维N2、14份抗菌剂M2、0.2份抗氧剂1098、0.2份抗氧剂9228、0.2份抗氧剂168混合并搅拌均匀,得到混合料;
(2)将步骤(1)中得到的混合料从挤出机中挤出造粒,即得到PSU复合材料P2。
其中双螺杆挤出机包括顺次排布的六个温度区,一区温度310℃,二区温度330℃,三区温度330℃,四区温度330℃,五区温度330℃,六区温度330℃,机头温度330℃,螺杆转速240r/min。
其中抗菌剂M2采用如下步骤制备得到:
(1)称取350g2-乙基丙烯酸、270g氢氧化钾、3g引发剂过氧化月桂酰、700g去离子水,将它们加入至反应器皿中,80℃下搅拌反应10h,得聚2-乙基丙烯酸钾溶液。
(2)称取550g聚2-乙基丙烯酸钾溶液、450g硝酸铜溶液、650g去离子水,将它们加入至反应器皿中,70℃下搅拌反应9h,得到抗菌剂M2。
其中改性碳纤维N2采用如下步骤制备得到:
(1)将350g Ce(NO 3) 3﹒6H2O和1.1kg丙酮混合均匀,获得Ce(NO 3) 3溶液;
(2)将210g碳纤维、1.4kg Ce(NO 3) 3溶液与350g浓硫酸混合,于70℃水浴反应3h后,洗涤、干燥,获得改性碳纤维N2。
实施例3
(1)称取100份的PSU、14份改性碳纤维N3、16份抗菌剂M3、0.2份抗氧剂9960、0.2份抗氧剂1098混合并搅拌均匀,得到混合料;
(2)将步骤(1)中得到的混合料从挤出机中挤出造粒,即得到PSU复合材料P3。
其中双螺杆挤出机包括顺次排布的六个温度区,一区温度310℃,二区温度330℃,三区温度330℃,四区温度330℃,五区温度330℃,六区温度330℃,机头温度330℃,螺杆转速280r/min。
其中抗菌剂M3采用如下步骤制备得到:
(1)称取400g2-乙基丙烯酸、300g氢氧化钾、4g引发剂过氧化月桂酰、800g去离子水,将它们加入至反应器皿中,90℃下搅拌反应12h,得聚2-乙基丙烯酸钾溶液。
(2)称取600g聚2-乙基丙烯酸钾溶液、500g硝酸铜溶液、700g去离子水,将它们加入至反应器皿中,80℃下搅拌反应10h,得到抗菌剂M3。
其中改性碳纤维N3采用如下步骤制备得到:
(1)将400g Ce(NO 3) 3﹒6H2O和1.2kg丙酮混合均匀,获得Ce(NO 3) 3溶液;
(2)将240g碳纤维、1.6kg Ce(NO 3) 3溶液与400g浓硫酸混合,于80℃水浴反应4h后,洗涤、干燥,获得改性碳纤维N3。
实施例4
(1)称取85份PSU、13份改性碳纤维N4、13份抗菌剂M4、0.2份抗氧剂1098,0.2份抗氧剂168混合并搅拌均匀,得到混合料;
(2)将步骤(1)中得到的混合料从挤出机中挤出造粒,即得到PSU复合材料P4。
其中双螺杆挤出机包括顺次排布的六个温度区,一区温度295℃,二区温度325℃,三区温度325℃,四区温度325℃,五区温度325℃,六区温度325℃,机头温度325℃,螺杆转速245r/min。
其中抗菌剂M4采用如下步骤制备得到:
(1)称取380g2-乙基丙烯酸、295g氢氧化钾、3.5g引发剂过氧化月桂酰、750g去离子水,将它们加入至反应器皿中,75℃下搅拌反应11h,得聚2-乙基丙烯酸钾溶液。
(2)称取580g聚2-乙基丙烯酸钾溶液、460g硝酸铜溶液、625g去离子水,将它们加入至反应器皿中,65℃下搅拌反应9h,得到抗菌剂M4。
其中改性碳纤维N4采用如下步骤制备得到:
(1)将380g Ce(NO 3) 3﹒6H2O和1.15kg丙酮混合均匀,获得Ce(NO 3) 3溶液;
(2)将215g碳纤维、1.45kg Ce(NO 3) 3溶液与浓硫酸混合,于75℃水浴反应3h后,洗涤、干燥,获得改性碳纤维N4。
实施例5
(1)称取85份PSU、11份改性碳纤维N5、14份抗菌剂M5、0.2份抗氧剂1098,0.2份抗氧剂9660混合并搅拌均匀,得到混合料;
(2)将步骤(1)中得到的混合料从挤出机中挤出造粒,即得到PSU复 合材料P5。
其中双螺杆挤出机包括顺次排布的六个温度区,一区温度315℃,二区温度335℃,三区温度335℃,四区温度335℃,五区温度335℃,六区温度335℃,机头温度335℃,螺杆转速265r/min。
其中抗菌剂M5采用如下步骤制备得到:
(1)称取345g2-乙基丙烯酸、285g氢氧化钾、3.5g引发剂过氧化月桂酰、670g去离子水,将它们加入至反应器皿中,85℃下搅拌反应11h,得聚2-乙基丙烯酸钾溶液。
(2)称取525g聚2-乙基丙烯酸钾溶液、475g硝酸铜溶液、615g去离子水,将它们加入至反应器皿中,65℃下搅拌反应9h,得到抗菌剂M5。
其中改性碳纤维N5采用如下步骤制备得到:
(1)将335g Ce(NO 3) 3﹒6H2O和1.05kg丙酮混合均匀,获得Ce(NO 3) 3溶液;
(2)将225g碳纤维、1.45kg Ce(NO 3) 3溶液与395g浓硫酸混合,于65℃水浴反应2h后,洗涤、干燥,获得改性碳纤维N5。
实施例6
与实施例1的区别在于,未添加改性碳纤维,具体方案如下:
(1)称取80份PSU、12份抗菌剂M1、0.2份抗氧剂9228混合并搅拌均匀,得到混合料;
(2)将步骤(1)中得到的混合料从挤出机中挤出造粒,即得到PSU复合材料P6。
其中双螺杆挤出机包括顺次排布的六个温度区,一区温度295℃,二区温度325℃,三区温度325℃,四区温度325℃,五区温度325℃,六区温度 325℃,机头温度325℃,螺杆转速200r/min。
对比例1
与实施例5的区别在于,未添加改性碳纤维和抗菌剂,具体配方如下:
85份PSU、0.2份抗氧剂1098,0.2份抗氧剂9660。
对比例2
与实施例5的区别在于,采用普通碳纤维替换改性碳纤维,具体配方如下:
85份PSU、11份碳纤维、14份抗菌剂M5、0.2份抗氧剂1098,0.2份抗氧剂9660。
对比例3
与实施例5的区别在于,未添加抗菌剂,具体配方如下:
85份PSU、11份改性碳纤维、0.2份抗氧剂1098,0.2份抗氧剂9660。
对比例4
与实施例5的区别在于,抗菌剂为上海朗亿功能材料有限公司生产的AntibacMax铜离子抗菌剂,具体配方如下:
85份PSU、11份改性碳纤维、14份抗菌剂、0.2份抗氧剂1098,0.2份抗氧剂9660。
性能测试
对实施例和对比例制备得到的PUS复合材料的性能进行测试,具体结果如表1所示。
表1 PUS复合材料性能
Figure PCTCN2022098801-appb-000001
由表1可以看出,本申请实施例制备得到的抗菌剂添加到PSU材料中抗菌性能好,且将改性碳纤维添加到PSU材料中,能够有效提升PSU的力学性能。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种抗菌剂,其特征在于,采用如下步骤制备得到:
    1)将2-乙基丙烯酸、氢氧化钾、过氧化月桂酰和水混合,进行反应,得到聚2-乙基丙烯酸钾溶液;
    2)将聚2-乙基丙烯酸钾溶液、硝酸铜溶液和水混合,进行反应,得到抗菌剂。
  2. 根据权利要求1所述的抗菌剂,其特征在于,所述步骤1)中,反应的温度为70-90℃,时间为8-12h;
    所述步骤2)中,反应的温度为60-80℃,时间为8-10h。
  3. 根据权利要求1所述的抗菌剂,其特征在于,所述步骤1)中2-乙基丙烯酸、氢氧化钾、过氧化月桂酰和水的质量比为(30-40):(24-30):(0.2-0.4):(60-80);
    所述步骤2)中聚2-乙基丙烯酸钾溶液、硝酸铜溶液和水的质量比为(50-60):(40-50):(60-70)。
  4. 一种抗菌聚砜复合材料,其特征在于,按重量份计,包括如下组分:
    聚砜80-100份、抗菌剂12-16份和抗氧剂0.1-0.5份;所述抗菌剂为权利要求1~3任意一项所述的抗菌剂。
  5. 根据权利要求4所述的抗菌聚砜复合材料,其特征在于,还包括10-14重量份的改性碳纤维;所述改性碳纤维是由碳纤维、Ce(NO 3) 3溶液与浓硫酸混合,进行反应制备得到。
  6. 根据权利要求5所述的抗菌聚砜复合材料,其特征在于,所述反应的温度为60-80℃,时间为2-4h。
  7. 根据权利要求5所述的抗菌聚砜复合材料,其特征在于,所述 Ce(NO 3) 3溶液由Ce(NO 3) 3﹒6H2O和丙酮配制得到,所述Ce(NO 3) 3﹒6H2O和丙酮的质量比为(30-40):(100-120)。
  8. 根据权利要求7所述的抗菌聚砜复合材料,其特征在于,所述碳纤维、Ce(NO 3) 3溶液与浓硫酸的质量比为(18-24):(120-160):(30-40)。
  9. 根据权利要求4所述的抗菌聚砜复合材料,其特征在于,所述抗氧剂为亚磷酸酯化合物、受阻酚类化合物和受阻胺类化合物中的一种或几种。
  10. 权利要求4~9任意一项所述的抗菌聚砜复合材料的制备方法,其特征在于,包括如下步骤:
    将物料混合,将得到的混合物料进行挤压造粒,得到抗菌聚砜复合材料;
    所述挤压造粒在双螺杆挤出机中进行,所述双螺杆挤出机在进行挤压造粒时采用顺次排布的六个温度区,依次分别为:一区温度290~330℃,二区温度310~350℃,三区温度310~350℃,四区温度310~350℃,五区温度310~350℃,六区温度310~350℃,机头温度310~350℃,螺杆转速为200~280r/min。
PCT/CN2022/098801 2022-04-20 2022-06-15 抗菌剂、抗菌聚砜复合材料及其制备方法 WO2023024661A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210413466.9 2022-04-20
CN202210413466.9A CN114507409B (zh) 2022-04-20 2022-04-20 一种抗菌剂、抗菌psu复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023024661A1 true WO2023024661A1 (zh) 2023-03-02

Family

ID=81555557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098801 WO2023024661A1 (zh) 2022-04-20 2022-06-15 抗菌剂、抗菌聚砜复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114507409B (zh)
WO (1) WO2023024661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284995A (zh) * 2023-04-03 2023-06-23 山东亿科化学有限责任公司 一种仿外观抗菌填料、abs复合材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507409B (zh) * 2022-04-20 2022-06-21 山东海科创新研究院有限公司 一种抗菌剂、抗菌psu复合材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172684A (ja) * 1992-12-08 1994-06-21 Tokyo Keikaku:Kk 抗菌性架橋粒子含有塗料
JP2004176073A (ja) * 2003-12-19 2004-06-24 Japan Exlan Co Ltd 抗菌・抗黴ポリマー粒子の製造方法
US20160106093A1 (en) * 2013-06-12 2016-04-21 Nanyang Technological University Antibacterial cryogel and porous hydrogel, their preparation method, and their use for disinfecting water
JP2016084396A (ja) * 2014-10-24 2016-05-19 東レ株式会社 繊維強化樹脂組成物、およびその製造方法
CN105860152A (zh) * 2016-04-28 2016-08-17 东华大学 一种水溶性负载金属纳米颗粒的杂化材料及其制备方法
CN107501462A (zh) * 2017-08-08 2017-12-22 浙江卫星新材料科技有限公司 一种抑菌除臭高吸水性树脂及含该高吸水性树脂的吸收制品
CN109169706A (zh) * 2018-07-19 2019-01-11 大美泰康(天津)生态科技有限公司 复合抗菌剂及制得的抗菌抑菌型多功能无机生态涂料
CN114507409A (zh) * 2022-04-20 2022-05-17 山东海科创新研究院有限公司 一种抗菌剂、抗菌psu复合材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101703892B (zh) * 2009-09-27 2012-08-01 上海安昆水处理设备有限公司 一种抗菌抑菌型聚砜中空纤维超滤膜及其制备方法
CN105462044A (zh) * 2016-01-12 2016-04-06 奥美凯聚合物(苏州)有限公司 一种抗菌功能母粒及其制备方法和应用
CN113802382A (zh) * 2021-09-23 2021-12-17 同曦集团有限公司 一种抗菌剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172684A (ja) * 1992-12-08 1994-06-21 Tokyo Keikaku:Kk 抗菌性架橋粒子含有塗料
JP2004176073A (ja) * 2003-12-19 2004-06-24 Japan Exlan Co Ltd 抗菌・抗黴ポリマー粒子の製造方法
US20160106093A1 (en) * 2013-06-12 2016-04-21 Nanyang Technological University Antibacterial cryogel and porous hydrogel, their preparation method, and their use for disinfecting water
JP2016084396A (ja) * 2014-10-24 2016-05-19 東レ株式会社 繊維強化樹脂組成物、およびその製造方法
CN105860152A (zh) * 2016-04-28 2016-08-17 东华大学 一种水溶性负载金属纳米颗粒的杂化材料及其制备方法
CN107501462A (zh) * 2017-08-08 2017-12-22 浙江卫星新材料科技有限公司 一种抑菌除臭高吸水性树脂及含该高吸水性树脂的吸收制品
CN109169706A (zh) * 2018-07-19 2019-01-11 大美泰康(天津)生态科技有限公司 复合抗菌剂及制得的抗菌抑菌型多功能无机生态涂料
CN114507409A (zh) * 2022-04-20 2022-05-17 山东海科创新研究院有限公司 一种抗菌剂、抗菌psu复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284995A (zh) * 2023-04-03 2023-06-23 山东亿科化学有限责任公司 一种仿外观抗菌填料、abs复合材料及其制备方法
CN116284995B (zh) * 2023-04-03 2023-12-26 山东亿科化学有限责任公司 一种仿外观抗菌填料、abs复合材料及其制备方法

Also Published As

Publication number Publication date
CN114507409A (zh) 2022-05-17
CN114507409B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2023024661A1 (zh) 抗菌剂、抗菌聚砜复合材料及其制备方法
CN101875779A (zh) 聚酰胺/纳米膨胀石墨/碳纤维高强导电复合材料及其制备方法
CN103589101A (zh) 环保阻燃耐低温风能电缆用氯化聚乙烯橡胶及制备方法
CN103146058B (zh) 一种增韧的聚丙烯复合材料及其制备方法
WO2021109368A1 (zh) 复合抗静电剂及制备方法、抗静电聚甲醛及其制备方法
CN103013028A (zh) 一种高cti值、高gwit值阻燃玻纤增强abs材料
CN108912559A (zh) 一种光缆护套用双85耐黄变低气味型阻燃透明材料
CN108864522A (zh) 一种耐腐蚀电缆料及其制备方法
CN102408598A (zh) 一种提高环氧化天然橡胶老化性能的方法
CN104559048A (zh) 一种硅藻土/聚醚醚酮复合材料及其制备方法
CN113603986A (zh) 一种高强度耐候pvc电缆料的制备方法
CN106700269A (zh) 一种受阻酚季铵盐改性蒙脱土改性pp‑r管材
CN111333979B (zh) 一种仿古竹节树脂瓦及其制备方法
CN116606502A (zh) 一种pp抗菌材料及其制备方法
CN107163397A (zh) 导电性聚丙烯/尼龙复合材料及其制备方法
CN104774443A (zh) 一种蓄电池隔板
CN106543523A (zh) 一种载银碳纳米管协同五氯苯酚月桂酸酯抗菌防霉增强的电缆料
CN113185185B (zh) 一种建筑材料用多功能助剂及其制备方法
CN108410152A (zh) 一种阻燃防火板材及其制备方法
CN106905635A (zh) 一种改性塑料
CN115073861A (zh) 一种抗拉伸的聚氯乙烯通信管及其制备方法
CN104672388A (zh) 一种用于聚乙烯(pe)的核壳粒子增韧增强母粒
CN101709145A (zh) 无卤玻纤增强尼龙66材料及其制作工艺
CN115246963A (zh) 一种抗菌复合材料
CN106496870A (zh) 一种氟化自洁型塑料板材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860008

Country of ref document: EP

Kind code of ref document: A1