WO2023024447A1 - X射线ct检测装置及检测方法 - Google Patents

X射线ct检测装置及检测方法 Download PDF

Info

Publication number
WO2023024447A1
WO2023024447A1 PCT/CN2022/075926 CN2022075926W WO2023024447A1 WO 2023024447 A1 WO2023024447 A1 WO 2023024447A1 CN 2022075926 W CN2022075926 W CN 2022075926W WO 2023024447 A1 WO2023024447 A1 WO 2023024447A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
ray source
ray sensor
sensor
angle
Prior art date
Application number
PCT/CN2022/075926
Other languages
English (en)
French (fr)
Inventor
唐志宏
郑剑杰
马刚
Original Assignee
上海超群检测科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海超群检测科技股份有限公司 filed Critical 上海超群检测科技股份有限公司
Publication of WO2023024447A1 publication Critical patent/WO2023024447A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the invention relates to the field of non-destructive testing equipment in the electronic industry, in particular to an X-ray CT detection device and an X-ray CT detection method.
  • an existing X-ray-based automatic detection device for LED chip defects on the market has an X-ray detection body and a shielding case; wherein, the X-ray detection body has: an X-ray source, and the X-ray radiation generated by it is placed The chip to be inspected on the stage; the detector, which detects the X-rays passing through the chip to be inspected; the chip holder, which is positioned on the stage in a detachable form, and the chip holder is provided with several chip slots; the motion platform , which is configured to realize the movement of the stage in the three directions of X, Y, and Z; and a control system, which is configured to obtain the position coordinates of the motion platform in real time, and drive the motion platform according to a certain path.
  • the chip is detected by X-rays, and the movement of the stage in the X, Y and Z directions is realized through the motion platform, the multi-angle and multi-directional resolution cannot be adjusted during the detection process.
  • the present invention provides a fast and efficient X-ray detection device and detection method.
  • the device and method can greatly speed up the response speed of target area selection, magnification adjustment and scanning detection of the detected object.
  • the detection and image reconstruction are carried out separately.
  • the data is uploaded to the server for processing, and the detection device can immediately scan and detect the next detected object, which greatly improves the detection and use efficiency of the device. And it can be easily docked with the production line, which greatly improves the production efficiency.
  • the present invention provides the following technical solutions:
  • the X-ray CT detection device includes a motion system of the object table, an X-ray sensor motion system located above the object table motion system, an X-ray source motion system below, and a transmission system for driving the X-ray sensor and the X-ray source to move synchronously ;
  • the image reconstruction and display unit is used to perform algorithm reconstruction on the collected image and display the reconstruction result.
  • the X-ray source movement system includes an X-ray source, the voltage and current of the X-ray source are adjustable;
  • the X-ray sensor movement system includes an X-ray sensor, and the X-ray sensor has different Acquisition frame rate and resolution;
  • the transmission system is used to adjust and correct different positions and angles of the X-ray sensor, X-ray source, and object to be inspected.
  • the orbital plane where the X-ray sensor and the X-ray source are located is guaranteed to be parallel and rotate coaxially; and the X-ray sensor and the X-ray source pass a preset Parameters realize 360°circular motion;
  • the X-ray sensor and the X-ray source can move along the radial direction of the circular orbit;
  • the angle between the X-ray sensor and the X-ray source and the horizontal direction is adjustable.
  • the circular trajectory movement of the X-ray sensor and the X-ray source is realized by means of different track combination schemes and the like.
  • the movement mode of the X-ray sensor and the X-ray source includes: 1) One-shaped (or cross-shaped, rice-shaped, etc.) orbit circular orbit movement , a radial track (or cross-shaped, rice-shaped, etc.) is installed on the circular track, and the X-ray sensor and the X-ray source can move radially on the track to realize circular motions with different radii.
  • each of the circular tracks has two cross movement tracks in the X and Y directions, and through the coordinated movement of the two directions, different Radius circular track movement; 3) or preset coordinate point movement: each of the circular orbits has preset coordinate points, coordinate marks in X and Y directions and circular coordinate marks, and the X-ray sensor and X-ray source directly reach the preset Coordinate points, realize circular trajectory movement with different radii and movement in X and Y directions; 4) or radial orbit (one-shaped, cross, rice-shaped, etc.)
  • the X-ray sensor and the X-ray source can move radially on the track to achieve circular motion with different radii by driving the motors to perform circular motion respectively.
  • the counterweight moves correspondingly according to the positions of the X-ray sensor and the X-ray source.
  • the X-ray sensor and the orbital plane where the X-ray source are located are parallelized and aligned with a laser, and the optical signal is received through the sensor;
  • the angle between the X-ray sensor and the horizontal plane is ⁇
  • the X-ray source The included angle with the horizontal plane is ⁇ , where the X-ray sensor angle is adjusted to 0° ⁇ 90°, the X-ray source angle is adjusted to 0° ⁇ 90°, and when the ⁇ and ⁇ angles are adjusted, the X-ray sensor
  • the coordinates of the center of the surface and the focal point of the X-ray source remain unchanged;
  • the tilt adjustment angle of the storage table in the motion system of the storage table is ⁇ ° in the horizontal direction, and the X-ray sensor and the X-ray source are used to detect different angles.
  • the ⁇ angle Set according to actual needs, and the object table can move in the Z-axis direction to realize the enlargement and reduction of the object to be inspected, where the ⁇ angle is the
  • the present invention also provides an X-ray CT detection method, comprising the following steps:
  • Step S1 Provide a storage table, X-ray sensor, X-ray source, image reconstruction and display unit, and adjust the storage table, X-ray sensor, and X-ray source to the position to be detected through the motion system;
  • Step S2 The line connecting the center of the X-ray sensor surface and the focal point of the X-ray source passes through the object to be inspected, and the X-ray central beam is perpendicular to the plane of the X-ray sensor;
  • Step S3 After the X-ray sensor and the X-ray source enter the preset detection position, they move relative to each other and rotate one circle to collect a corresponding number of images.
  • the line connecting the center of the X-ray sensor surface and the focal point of the X-ray source passes through the object to be inspected.
  • the relative movement of the two After the X-ray sensor and the X-ray source enter the preset detection position, the relative movement of the two rotates one circle at a certain angle. A corresponding number of images is collected, during which the line connecting the center of the X-ray sensor surface and the focal point always passes through the object to be inspected.
  • the inclination angle ⁇ , inclination angle ⁇ , and inclination angle ⁇ satisfy the requirements of ⁇ , ⁇ and ⁇ .
  • is the distance between the X-ray sensor and the horizontal plane.
  • is the angle between the X-ray source and the horizontal plane, and ⁇ is the angle between the line connecting the center of the X-ray sensor surface and the focus of the X-ray source and the Z axis.
  • the image acquisition angle interval can be set according to different CT reconstruction image resolution requirements.
  • the invention includes an X-ray sensor, an X-ray source, a motion system unit, an image reconstruction and a display unit.
  • the voltage and current of the X-ray source are adjustable;
  • the X-ray sensor can be set to different acquisition frame rates and resolutions;
  • the motion system unit can adjust and correct the X-ray sensor, X-ray source, and objects in different positions and angles.
  • Image reconstruction and display unit carry out algorithmic reconstruction on the collected images and display the reconstruction results.
  • the X-ray sensor and X-ray source movement system, the track plane where the X-ray sensor and X-ray source are located must be parallel and rotate coaxially, and the necessary calibration must be performed during installation.
  • the X-ray sensor and X-ray source realize 360°circular motion through preset parameters.
  • the X-ray sensor and the X-ray source can move along the radial direction of the circular orbit.
  • Fig. 1a and Fig. 1b are schematic diagrams of modules and structures of the X-ray CT detection device of the present invention, respectively.
  • Fig. 2 and Fig. 3 are reference schematic diagrams of the relative position and motion state of the X-ray sensor, the X-ray source motion system, and the object table motion system of the present invention.
  • Fig. 4, Fig. 5, Fig. 6 and Fig. 7 are four implementations of the circular motion track of the X-ray sensor and the X-ray source in the present invention.
  • Fig. 8 is a schematic diagram of the counterweight state when the X-ray sensor and the X-ray source are moving in the present invention.
  • Fig. 9 and Fig. 10 are schematic diagrams of coaxial and parallel alignment of the track planes in the present invention.
  • Fig. 11 and Fig. 12 are schematic diagrams of the position adjustment movement of the X-ray sensor and the X-ray source in the present invention.
  • Fig. 13a and Fig. 13b are respectively schematic diagrams showing that the coordinates of the X-ray sensor surface center and the X-ray source focal point remain unchanged when the angle between the X-ray sensor and the X-ray source is adjusted in the present invention.
  • Fig. 14 is a schematic diagram of the movement system of the object table in the present invention to realize the movement of the X and Y axes along the horizontal direction.
  • Fig. 15 is one embodiment of the X-ray sensor, the X-ray source motion system and the storage table in the present invention.
  • an X-ray CT detection device includes: an X-ray sensor 1, an X-ray source 2, a motion system unit 3, and an image reconstruction and display unit.
  • the voltage and current of the X-ray source 2 are adjustable; the X-ray sensor 1 can be set to different acquisition frame rates.
  • the motion system unit 3 can adjust the different positions and angles of the X-ray sensor 1, the X-ray source 2, and the inspected object.
  • the image reconstruction and display unit reconstructs the collected images and displays the reconstruction results; all movements in the present invention are independent of each other and can be controlled separately or linked.
  • the X-ray sensor 1 and the X-ray source 2 are parallel and coaxial to the circular motion track plane, and the two are driven by the transmission rod driven by the motor on the right side for synchronous linkage, so as to ensure the consistency of motion
  • the middle part is a storage platform, which can realize X/Y/Z three-axis movement independently of each other.
  • the X-ray CT detection method includes that after the initial zero position and the detection position are set, as shown in FIG. 3 , the line connecting the center of the X-ray sensor surface and the focal point of the X-ray source passes through the object to be inspected.
  • the above connection line is perpendicular to the plane of the X-ray sensor.
  • the line connecting the center of the surface and the focal point always passes through the object to be inspected.
  • the X-ray sensor and the X-ray source enter the preset detection position, they move relative to each other and rotate one circle to collect a certain number of images.
  • the reconstruction image resolution is determined by several factors: FOD distance, inclination angle (device inclination angle ⁇ , X-ray sensor inclination angle ⁇ and X-ray source inclination angle ⁇ ), image acquisition angle interval, X-ray sensor pixel size , X-ray source focus size, etc.
  • the CT reconstruction image resolution can be adjusted according to different resolution requirements, the inclination angle ⁇ of the device, the inclination angle ⁇ of the X-ray sensor and the inclination angle ⁇ of the X-ray source can be adjusted.
  • the CT reconstruction image resolution can adjust the magnification and select different target areas according to different resolution requirements.
  • the image acquisition angle interval is set according to different CT reconstruction image resolution requirements. The smaller the angle interval is, the higher the CT reconstruction image resolution is.
  • the image acquisition control process is: after the object to be inspected is placed on the storage table, the X-ray sensor and the X-ray source enter the set initial position, and the line connecting the center of the sensor surface and the focal point of the X-ray source must pass through the object to be inspected.
  • the X-ray source and the X-ray sensor start to rotate in a synchronous circular orbit, and the X-ray sensor and the X-ray source rotate at a certain angle to collect images and collect several images.
  • the rotation speed of the X-ray source and the X-ray sensor is matched with the image acquisition frame rate of the X-ray sensor, which is determined by preset parameters.
  • the image data enters the processing system and undergoes background reconstruction. After the image reconstruction is completed, it can be displayed locally or remotely. At the same time, the device can continue to collect images of the next object without taking up detection time.
  • an arbitrary detection area can be set for the object to be inspected, and the inspection area can be quickly adjusted and selected for multi-angle and different magnification detection.
  • the X-ray source and X-ray sensor can rotate synchronously for fast image acquisition, and can reconstruct high-precision images by reducing the angle interval of image acquisition and increasing the magnification.
  • the image always maintains a near-saturation display.
  • the X-ray CT detection method of the present invention through the motion system, can carry out image acquisition and background reconstruction of the object under inspection at different orientations and angles, reduce the time for equipment detection and improve the efficiency of equipment use.
  • the detection area can be changed through motion control without moving the object under inspection, and image acquisition and reconstruction display can be performed when the object under inspection is difficult to move.
  • the present invention specifically includes:
  • the X-ray sensor motion system can realize the radial movement of the X-ray sensor and the up-and-down Z direction movement while realizing 360° rotation.
  • the motion system of the storage table can realize horizontal X, Y direction movement, up and down Z direction movement, and horizontal tilt ⁇ °, and the ⁇ angle can be set according to actual needs.
  • the X-ray source movement system can realize the radial movement of the X-ray source and the movement in the Z direction up and down while realizing 360° rotation.
  • the moving system of the storage table in the above system can realize docking with the assembly line through horizontal movement. The corresponding speed of the above three motion systems is fast. For example, after the motion command is issued, the position adjustment is completed within 2 seconds on average.
  • CT scan imaging of a target area can be completed in a very short time (for example, within 6 seconds).
  • M FD/FO
  • the distance between FD and FO can be changed by the X-ray source, X-ray sensor, up and down movement and horizontal movement of the object table.
  • ⁇ angle the angle between the X-ray source focus and the center of the X-ray sensor surface and the central axis.
  • the X-ray sensor and the X-ray source can move along the radial direction of the circular orbit. The relative position of the two determines the ⁇ angle.
  • ⁇ angle the angle between the X-ray sensor and the horizontal direction.
  • ⁇ angle the angle between the X-ray source and the horizontal direction.
  • the relative change of the three determines the Z-direction resolution of the reconstructed image of the object under inspection.
  • the X-ray sensor and the X-ray source are at the initial position and other detection positions, when there is no object to be inspected, the X-ray sensor should reach near saturation, which is generally 90% of the maximum pixel value of the X-ray sensor.
  • the saturation can be kept relatively stable by adjusting the voltage and current of the X-ray source.
  • R1 is the radial displacement of the X-ray sensor
  • R2 is the radial displacement of the X-ray source.
  • h1 is the distance between the track plane of the X-ray sensor motion system and the plane of the storage table.
  • h2 is the distance between the track plane of the X-ray source motion system and the plane of the object table.
  • h1, h2, ⁇ , R1, R2 angles, etc. should be adjusted accordingly at any time.
  • the motion system of the X-ray sensor and the X-ray source, the track planes where the X-ray sensor and the X-ray source are located must be parallel and coaxial, and must be calibrated during installation.
  • the X-ray sensor and X-ray source realize 360°circular motion through preset parameters.
  • the X-ray sensor and the X-ray source can move along the radial direction of the circular orbit.
  • the angle between X-ray sensor, X-ray source and horizontal direction can be adjusted, and its movement precision is guaranteed by angle sensor.
  • the two included angles mentioned above are 0° ⁇ 90°, 0° ⁇ 90°.
  • the circular motion track has the following four implementations:
  • a word (or cross, rice font etc.) radial rail is installed on the circular rails, to realize the circular movement of different radii.
  • a word (or cross, rice font etc.) radial rail is installed on the circular rails, to realize the circular movement of different radii.
  • the X-ray sensor and the X-ray source move, there is a corresponding counterweight device.
  • the X-ray sensor and the X-ray source directly reach the preset coordinate points to realize circular trajectory movement and X , Y direction movement.
  • the counterweight moves correspondingly according to the positions of the X-ray sensor and the X-ray source to ensure balance.
  • the X-ray sensor motion system also has the same counterweight, which will not be repeated here.
  • the way of coaxial and parallel calibration of the track plane is: open four collimation tunnels on the track, and use lasers for calibration, wherein there may be several collimation tunnels, which is further preferred,
  • h is the height of the collimation tunnel
  • w is the width of the collimation tunnel
  • h/w
  • is the parameter of the beam spread angle. The larger the value of ⁇ , the higher the calibration accuracy.
  • the light source is not limited to laser light, but also includes visible light, X-rays, and the like.
  • the X-ray sensor and the X-ray source tilt angle are as follows: ⁇ and ⁇ angles are respectively the angles between the X-ray sensor and the X-ray source and the horizontal direction , ⁇ and ⁇ angles can be adjusted separately or synchronously, and during the adjustment process, the rotation centers of ⁇ and ⁇ angles are the central axis of the X-ray sensor surface and the focus of the X-ray source, so that the coordinate position remains constant. Change, and after adjusting to the detection position, ensure the stability of the detection position.
  • the X-ray sensor angle is adjusted as follows: 0° ⁇ 90°.
  • the X-ray source angle is adjusted as follows: 0° ⁇ 90°;
  • both the X-ray sensor and the X-ray source in Fig. 12 can move radially and up and down.
  • the plane of the object table in the motion system of the object table, can move along the X and Y axes along the horizontal direction, and can realize the detection of different parts of the object to be inspected.
  • the storage table can be tilted ⁇ ° along the horizontal direction, and cooperate with the X-ray sensor and X-ray source to perform detection at different angles, and the ⁇ angle can be set according to actual needs. And it can move in the Z-axis direction, and can realize the zoom-in and zoom-out of the inspected object.
  • the X-ray CT detection device includes: an X-ray sensor, an X-ray source, a motion system unit, an image reconstruction, and a display unit.
  • the X-ray sensor and the X-ray source move to different preset positions to receive the X-rays passing through the object for imaging, and analyze the object through image reconstruction.
  • X-ray source adjustable voltage and current.
  • X-ray sensor different acquisition frame rates and resolutions can be set.
  • Motion system unit It can adjust and correct the different positions and angles of the X-ray sensor, X-ray source and object under inspection.
  • Image reconstruction and display unit carry out algorithmic reconstruction on the collected images, and display the reconstruction results.
  • the movement system unit includes: a movement system of the X-ray sensor and the X-ray source, a movement system of the object table, and a transmission system for driving the synchronous movement of the X-ray sensor and the X-ray source.
  • all movements are independent of each other, and can be controlled separately or linked.
  • the motion system of the X-ray sensor and the X-ray source, and the track plane where the X-ray sensor and the X-ray source are located must be parallel and rotate coaxially, and necessary calibration must be performed during installation.
  • the X-ray sensor and X-ray source realize 360°circular motion through preset parameters.
  • the X-ray sensor and the X-ray source can move along the radial direction of the circular orbit.
  • the angle between the X-ray sensor and the X-ray source and the horizontal direction is adjustable, and its motion accuracy is guaranteed by the angle sensor.
  • the two included angles mentioned above are 0° ⁇ 90°, 0° ⁇ 90°.
  • the ⁇ angle is the inclination angle of the device during image acquisition, and is the angle between the line connecting the center of the X-ray sensor surface at the focal point of the X-ray source and the central axis, and 0° ⁇ 90°.
  • the overall central axis of the device coincides with the central axis of the radial displacement of the X-ray sensor and the X-ray source.
  • the X-ray sensor and the X-ray source can move up and down independently.
  • the X-ray sensor movement system can realize the radial movement of the X-ray sensor and the movement in the Z direction up and down while realizing 360° rotation.
  • the motion system of the storage table can realize horizontal X, Y direction movement, up and down Z direction movement, and horizontal tilt ⁇ °, and the ⁇ angle can be set according to actual needs.
  • the X-ray source movement system can realize the radial movement of the X-ray source and the movement in the Z direction up and down while realizing 360° rotation.
  • the moving system of the storage table in the above system can realize docking with the assembly line through horizontal movement.
  • the corresponding speed of the above three motion systems is fast. For example, after the motion command is issued, the position adjustment is completed within 2 seconds on average.
  • a target area CT scan imaging is completed in a very short time (eg, within 6 seconds).
  • M FD/FO.
  • the distance between FD and FO can be changed by the X-ray source, X-ray sensor, up and down movement and horizontal movement of the object table.
  • the relative changes of the ⁇ angle, ⁇ angle, and ⁇ angle determine the Z-direction resolution of the reconstructed image of the object under inspection.
  • the X-ray sensor and the X-ray source are at the initial position and other detection positions, when there is no object to be inspected, the X-ray sensor should reach near saturation, which is generally 90% of the maximum pixel value of the X-ray sensor. At the same time, as the distance between FD and FO changes, the saturation can be kept relatively stable by adjusting the voltage and current of the X-ray source.
  • the near saturation value is: 65536 ⁇ 80% ⁇ 58982.
  • the change of the X-ray sensor, the X-ray source and the ⁇ angle is not limited to the above changes.
  • the corresponding moving distance can be calculated.
  • the circular motion track is realized in the following way:
  • the counterweight mentioned in this embodiment when both the X-ray sensor and the X-ray source move radially in the horizontal direction, the counterweight moves correspondingly according to the positions of the X-ray sensor and the X-ray source to ensure balance.
  • the X-ray sensor motion system also has the same counterweight, which will not be repeated here.
  • the coaxial and parallel calibration method of the track plane is:
  • collimation tunnels are opened on the track, and the four collimation tunnels are evenly distributed on the track, and there are sensors on the top of the tunnel to receive the optical signal, and the laser is used for calibration.
  • the collimation tunnels can also be increased according to the actual situation.
  • the inclination angle ⁇ of the X-ray sensor and the inclination angle ⁇ of the X-ray source can be adjusted separately or synchronously.
  • the central axis and the focal point of the X-ray source are the centers of rotation respectively, so that the coordinate positions of the surface center and the focal point remain unchanged, and after adjustment to the detection position, the stability of the detection position is ensured.
  • the X-ray sensor angle is adjusted as follows: 0° ⁇ 90°.
  • the angle of the X-ray source is adjusted as follows: 0° ⁇ 90°, wherein the overall central axis of the device coincides with the central axis of the radial displacement of the X-ray sensor and the X-ray source.
  • both the X-ray sensor and the X-ray source can move radially and up and down.
  • the table motion system the plane of the table can realize X and Y axis movement along the horizontal direction, which can realize the detection of different parts of the object to be inspected.
  • the storage table can be tilted ⁇ ° along the horizontal direction, and the X-ray sensor and X-ray source can be used to detect different angles, and the ⁇ angle can be set according to actual needs.
  • the storage table can move in the Z-axis direction, which can realize the zoom-in and zoom-out of the inspected object.
  • the synchronous movement of the X-ray sensor and the X-ray source is realized by a synchronous transmission device, and its movement precision is guaranteed by an encoder.
  • the image reconstruction and display unit transmits the image collected by the X-ray CT detection method into this unit, completes the image reconstruction, and displays it.
  • This unit contains an independent processor. After obtaining the image data, it can complete image analysis and reconstruction by itself without affecting the subsequent detection content of the device.
  • the line connecting the center of the X-ray sensor surface and the focal point of the X-ray source passes through the object to be inspected, and the X-ray central beam is perpendicular to the X-ray sensor plane.
  • the line connecting the center of the X-ray sensor surface and the focal point of the X-ray source always passes through the object to be inspected.
  • the X-ray sensor and the X-ray source After the X-ray sensor and the X-ray source enter the preset detection position, they move relative to each other and rotate one circle to collect a certain number of images.
  • the resolution of CT reconstruction image is determined by several factors: FOD distance, inclination angle (device inclination angle ⁇ , X-ray sensor inclination angle ⁇ and X-ray source inclination angle ⁇ ), image acquisition angle interval, X-ray sensor pixel size, X-ray source focus size, etc. .
  • the CT reconstruction image resolution can be adjusted according to different resolution requirements, the inclination angle ⁇ of the device, the inclination angle ⁇ of the X-ray sensor and the inclination angle ⁇ of the X-ray source can be adjusted.
  • the CT reconstruction image resolution can adjust the magnification and select different target areas according to different resolution requirements.
  • magnification adjustment can have the following two adjustment modes.
  • the inclination angle ( ⁇ and ⁇ ) between the X-ray sensor and the X-ray source remains unchanged, and the relative position of the two does not change.
  • the orbital plane of the X-ray sensor and the X-ray source are adjusted up and down, or the plane of the storage table is adjusted up and down at the same time to achieve magnification. Adjustment.
  • the X-ray sensor and the X-ray source tilt angle ( ⁇ and ⁇ ) change, and the relative position of the two can be changed.
  • the X-ray sensor orbital plane, X-ray source orbital plane, and stage plane can be adjusted up and down respectively to realize the magnification adjustment.
  • the plane of the storage table is adjusted in the horizontal direction according to the vertical movement distance of each track plane, so that the center position of the target center plane of the object to be inspected remains unchanged.
  • the specific magnification adjustment is not limited to the above two adjustment modes.
  • CT reconstruction image resolution according to different reconstruction image resolution requirements, set the image acquisition angle interval, such as: image acquisition every 1°, 2°, etc.
  • image acquisition angle interval such as: image acquisition every 1°, 2°, etc. The smaller the angular interval, the higher the resolution of the CT reconstruction image.
  • the rotation speed of the X-ray source and the X-ray sensor is matched with the image acquisition frame rate of the X-ray sensor, which is determined by preset parameters.
  • the image data enters the processing system and undergoes background reconstruction. After the image reconstruction is completed, it can be displayed locally or remotely. At the same time, the device can continue to collect images of the next object without taking up detection time.
  • an arbitrary detection area can be set for the object to be inspected, and the inspection area can be quickly adjusted and selected for multi-angle and different magnification detection.
  • the X-ray source and the X-ray sensor can rotate synchronously for fast image acquisition, and can reconstruct high-precision images by reducing the angle interval of image acquisition and increasing the magnification.
  • the image always maintains a near-saturation display.
  • the X-ray CT detection method of the present invention through the motion system, can carry out image acquisition and background reconstruction of the object under inspection at different orientations and angles, reduce the time for equipment detection and improve the efficiency of equipment use.
  • the detection area can be changed through motion control without moving the object under inspection, and image acquisition and reconstruction display can be performed when the object under inspection is difficult to move.

Abstract

一种X射线CT检测装置及X射线CT检测方法。X射线CT检测装置包括X射线传感器(1)、X射线源(2)、运动系统单元(3)、图像重建及显示单元。通过图像重建及显示单元对采集到的图像进行算法重建并显示重建结果,可以实现对被检物目标区域选择、放大率调整及扫描检测响应速度加快。CT检测方法主要为:X射线传感器(1)面中心与X射线源(2)焦点的连线穿过被检物体且保持此状态,X射线传感器(1)与X射线源(2)按预定圆周轨迹旋转时,间隔一定角度,采集一定数量的图像。

Description

X射线CT检测装置及检测方法 技术领域:
本发明涉及电子工业无损检测设备领域,具体为一种X射线CT检测装置和X射线CT检测方法。
背景技术:
随着电子工业的快速发展,集成电路的应用已经深入到生产生活的各个领域,并随着加工技术的发展,精细微细加工大量应用,传统的集成电路更是实现了质的飞跃,达到了高度集成。但也随之产生了一个问题,即只从外观上看不到集成电路内部各层的特征,传统的检测方法已无法实现集成电路内部检测。与此同时,利用CT装置来扫描检测被检物获取物体内部特征信息的方法已经有几十年的时间了,在医学检测、工业检测领域应用广泛。因此通过X射线照射集成电路获得图像并进行图像重建成为进行集成电路内部检测的重要途径。
目前针对集成电路检测的X射线检测设备中,主要以2D检测为主,且主要单机应用较多,检测效率较低,且X射线CT成像技术主要以附加选配形式出现。
同时,目前市面上现有设备图像采集和图像断层重建所需时间都较长,大大影响了检测效率,逐渐跟不上大量检测的需要。
例如市场上现有的一种基于X射线的LED芯片缺陷自动检测设备,其具有X射线检测主体及屏蔽壳体;其中,X射线检测主体具有:X射线源,其产生的X射线照射置于载物台上的待检芯片;探测器,其探测穿过待检芯片的X射线;芯片夹具,其以可脱离的形式定位于载物台上,芯片夹具设有若干个芯片槽;运动平台,其被配置为实现载物台在X、Y和Z三方向上的运动;以及控制系统,其被配置为实时获取运动平台的位置坐标,并按一定路径驱动运动平台。 虽然公开了通过X射线来检测芯片,通过运动平台实现载物台在X、Y和Z三方向上的运动方式,但在检测过程中不能实现对多角度、多方向的分辨率进行调节。
发明内容:
针对现有技术存在的不足,本发明提供了一种快速高效的X射线检测装置和检测方法,此装置和方法对被检物目标区域选择、放大率调整及扫描检测响应速度大大加快。与此同时,检测和图像重建分离进行,第一个被检物扫描检测完成后,数据上传服务器进行处理,检测装置可马上进行下一个被检物扫描检测,大大提高了装置的检测使用效率,并且可以方便地与生产线进行对接,极大地提高了生产效率。
为实现上述目的,本发明提供如下技术方案:
X射线CT检测装置,包括置物台运动系统,位于置物台运动系统上方的X射线传感器运动系统,下方的X射线源运动系统,以及用于提供驱动X射线传感器与X射线源同步运动的传动系统;通过图像重建及显示单元对采集到的图像进行算法重建并显示重建结果。
作为本发明进一步的方案,所述X射线源运动系统包括X射线源,所述X射线源的电压、电流可调;所述X射线传感器运动系统包括X射线传感器,所述X射线传感器具有不同采集帧率及分辨率;所述传动系统用于对X射线传感器、X射线源、被检物进行不同位置、角度调节及校正。
作为本发明进一步的方案,所述X射线传感器运动系统与X射线源运动系统中,X射线传感器与X射线源所在轨道平面保证平行且旋转同轴;以及X射线传感器与X射线源通过预设参数实现360°圆周运动;
X射线传感器与X射线源可沿圆形轨道半径方向运动;
X射线传感器与X射线源与水平方向夹角可调。
作为本发明进一步的方案,通过不同的轨道组合方案等方法实现X射线传感器与X射线源圆周轨迹运动等运动形式。同时,X射线传感器与X射线源运动时,有相应配重装置;具体为:X射线传感器与X射线源运动方式包括:1)一字(或十字型、米字型等)轨道圆轨运动,所述圆形轨道上安装一字(或十字型、米字型等)径向轨道,X射线传感器与X射线源可在轨道上径向运动,以实现不同半径的圆周运动,同时,X射线传感器与X射线源运动时,有相应配重装置;2)或十字交叉轨道运动:所述圆形轨道上各有两个X、Y方向交叉运动轨道,通过两个方向配合运动,实现不同半径圆周轨迹运动;3)或预设坐标点运动:所述圆形轨道上各有预设坐标点,有X、Y方向坐标标记及圆周坐标标记,X射线传感器与X射线源直接到达预设坐标点,实现不同半径圆周轨迹运动及X、Y方向运动;4)或径向轨道(一字、十字、米字型等均可)圆周运动,上下各有两个径向轨道,两个轨道分别通过电机驱动做圆周运动,X射线传感器与X射线源可在轨道上径向运动,以实现不同半径的圆周运动。
作为本发明进一步的方案,所述配重装置在X射线传感器与X射线源运动都在水平方向沿径向移动时,配重根据X射线传感器与X射线源的位置进行相应的移动。
作为本发明进一步的方案,所述X射线传感器与X射线源所在轨道平面利用激光进行平行及对准校准,通过传感器接收光信号;所述X射线传感器与水平面的夹角为α,X射线源与水平面的夹角为β,其中X射线传感器角度调整为0°≤α≤90°,X射线源角度调整为0°≤β≤90°,且在进行α与β角度调整时,X射线传感器面中心与X射线源焦点坐标位置始终保持不变;所述置物台运动系统 中的置物台沿水平方向倾斜调整角度为±γ°,配合X射线传感器与X射线源进行不同角度检测,γ角度根据实际需要设定,并且置物台可实现Z轴方向运动,实现被检物的放大、缩小,其中γ角度为置物台与水平面之间的夹角。
本发明还提供了一种X射线CT检测方法,包括以下步骤:
步骤S1:提供一置物台、X射线传感器、X射线源、图像重建及显示单元,并将置物台、X射线传感器、X射线源通过运动系统调节到待检测位置;
步骤S2:X射线传感器面中心与X射线源焦点的连线,穿过被检物体,且X射线中心束垂直于X射线传感器平面;
步骤S3:X射线传感器与X射线源进入预设检测位置后,二者相对运动旋转一圈,采集相应数量的图像。CT检测方法,X射线传感器面中心与X射线源焦点的连线,穿过被检物体,X射线传感器与X射线源进入预设检测位置后,二者相对运动旋转一圈,间隔一定角度,采集相应数量的图像,在此过程中X射线传感器面中心与焦点连线始终穿过被检物体。
作为本发明进一步的方案,根据不同分辨率要求,调节放大倍率,选择不同目标区域,满足M=FD/FO,放大率M值越大,CT重建图像分辨率越高,其中F为焦点(Focus)、O为被检物(Object)、D为X射线源传感器(Detector),FD为X射线传感器面中心到X射线源焦点的连线的距离,FO为X射线源到被检物中心的距离。在放大率调节过程中,被检物目标中心面中心位置始终不变。
作为本发明进一步的方案,根据不同分辨率要求,倾角θ、倾角α、倾角β满足θ、α与β值越大,CT重建图像分辨率越高,其中α为所述X射线传感器与水平面的夹角,β为X射线源与水平面的夹角,θ为X射线传感器面中心与X射线源焦点的连线与Z轴之间的夹角。
作为本发明进一步的方案,可根据不同的CT重建图像分辨率要求,设置图 像采集角度间隔。
本发明具有以下有益效果:
本发明包括X射线传感器,X射线源,运动系统单元,图像重建、显示单元。其中X射线源的电压、电流可调;X射线传感器可设定不同采集帧率及分辨率;运动系统单元可对X射线传感器、X射线源、被检物进行不同位置、角度调节及校正。图像重建、显示单元:对采集到的图像进行算法重建,显示重建结果。
2、本发明中X射线传感器与X射线源运动系统,置物台运动系统,驱动X射线传感器与X射线源同步运动的传动系统;所有运动彼此独立,可通过控制分别进行运动或进行联动;其中X射线传感器与X射线源运动系统,X射线传感器与X射线源所在轨道平面必须保证平行且旋转同轴,安装时进行必要的校准。X射线传感器与X射线源通过预设参数实现360°圆周运动。X射线传感器与X射线源可沿圆形轨道半径方向运动。
为更清楚地阐述本发明的结构特征和功效,下面结合附图与具体实施例来对本发明进行详细说明。
附图说明:
图1a、图1b分别是本发明X射线CT检测装置的模块和结构示意图。
图2、图3是本发明X射线传感器与X射线源运动系统,置物台运动系统相对位置运动状态参考示意图。
图4、图5、图6、图7是本发明X射线传感器与X射线源圆周运动轨道的四种实现方式。
图8是本发明中X射线传感器与X射线源运动时配重状态示意图。
图9、图10是本发明中轨道平面同轴、平行校准示意图。
图11、图12是本发明中X射线传感器与X射线源的位置调整运动示意图。
图13a和图13b分别为本发明中X射线传感器与X射线源角度调整时,X射线传感器面中心与X射线源焦点坐标保持不变示意图。
图14是本发明中置物台运动系统沿水平方向实现X、Y轴运动示意图。
图15是本发明中X射线传感器、X射线源运动系统和置物台其中一种实施方式。
具体实施方式:
下面将结合附图和有关知识对本发明作出进一步的说明,进行清楚、完整地描述,显然,所描述的应用仅仅是本发明的一部分实施例,而不是全部的实施例。
参见图1a-图1b所示,一种X射线CT检测装置,包括:X射线传感器1、X射线源2、运动系统单元3、图像重建及显示单元。其中X射线源2的电压、电流可调;X射线传感器1可设定不同采集帧率。运动系统单元3可对X射线传感器1、X射线源2、被检物进行不同位置、角度调节。图像重建及显示单元对采集到的图像进行重建,显示重建结果;本发明中所有运动彼此独立,可通过控制分别进行运动或进行联动。
参照图2、图3所示,X射线传感器1与X射线源2的圆形运动轨道平面平行且同轴,二者通过右侧由电机驱动的传动杆带动进行同步联动,从而保证运动的一致性,使X射线传感器面中心与X射线源焦点连线始终通过被检物目标区域中心点。中部为置物平台,可彼此独立实现X/Y/Z三轴运动。使用人员把被检物放置上去后,可通过软件,把目标区域移动到预设位置,使目标区域中心面的中心点位于传感器面中心与焦点连线上。
在本发明中,X射线CT检测方法包括,初始零位与检测位置设定后,如图3所示,X射线传感器面中心与X射线源焦点的连线,穿过被检物体。优选,上述连线垂直于X射线传感器平面。
X射线传感器与X射线源按预定圆周轨迹旋转时,面中心与焦点连线始终穿过被检物体。X射线传感器与X射线源进入预设检测位置后,二者相对运动旋转一圈,采集一定数量图像。
CT重建图像分辨率的优劣:即CT重建图像对被检物细节的显示效果,重建图像分辨率越高,显示效果就越精细和细腻。
其中,参照图3所示,重建图像分辨率由多个因素决定:FOD距离、倾角(装置倾角θ,X射线传感器倾角α与X射线源倾角β)、图像采集角度间隔、X射线传感器像素大小、X射线源焦点大小等。CT重建图像分辨率,可根据不同分辨率要求,调节装置倾角θ、X射线传感器倾角α与X射线源倾角β。
CT重建图像分辨率,可根据不同分辨率要求,调节放大倍率,选择不同目标区域。放大率为:M=FD/FO,M值越大,CT重建图像分辨率越高。
被检物进入预定检测位置后,根据不同的CT重建图像分辨率要求,设置图像采集角度间隔,角度间隔越小,CT重建图像分辨率越高。
调整X射线传感器与X射线源相关参数(如电压、电流、倾角等)之后,开始图像采集、重建、显示等。
进一步优选,图像采集控制过程为:被检物放置到置物台后,X射线传感器与X射线源进入设定初始位置,传感器面中心与X射线源焦点连线必须经过被检物。通过上述描述的运动系统,X射线源与X射线传感器开始同步圆形轨道转动,X射线传感器与X射线源每转一定角度,进行图像采集,采集若干幅图像。X射线源与X射线传感器转动速率与X射线传感器图像采集帧率相匹配,由预设参数决定。完成图像采集后,图像数据进入处理系统并进行后台重建。图像重建完成后,可本地显示,也可远程显示。同时,装置可继续进行下一个物体的图像采集,不占用检测时间。
综上所述,根据本发明的X射线CT检测装置,能够对被检物设定任意的检测区域,并可快速调整选择被检区域,进行多角度、不同放大倍率检测。同时X射线源与X射线传感器可同步旋转进行快速图像采集,并可以通过减小图 像采集角度间隔、增大放大率等方式,重建高精度图像。同时在检测过程中,随着距离改变,图像始终保持近饱和度显示。
本发明的X射线CT检测方法,通过运动系统,能在不同方位、角度对被检物进行图像采集并进行后台重建,减少设备检测使用时间,提高设备使用效率。同时能够在不移动被检物的情况下,通过运动控制改变检测区域,可以在被检物难以移动的情况下进行图像采集并重建显示。
本发明具体包括:
参照图3所示,在本发明中X射线传感器运动系统在实现360°旋转同时,可实现X射线传感器径向运动及上下Z方向运动。
具体为:置物台运动系统可实现水平X、Y方向运动、上下Z方向运动,及水平方向倾斜±γ°,γ角度可根据实际需要设定。X射线源运动系统在实现360°旋转同时,可实现X射线源径向运动及上下Z方向运动。以上系统中的置物台运动系统可通过水平方向运动实现与流水线进行对接。以上三个运动系统相应速度快,如:运动指令下达后,平均2s之内完成位置调整。
其中进行CT检测时,可在极短时间内(如6s以内)完成一个目标区域CT扫描成像。
检测装置机械放大率:M=FD/FO,FD/FO比值越大,放大率越大,反之越小。
FD与FO的距离变化可通过X射线源、X射线传感器、置物台的上下运动及水平运动进行改变。
θ角:为X射线源焦点与X射线传感器面中心连线与中心轴夹角,X射线传感器与X射线源可沿圆形轨道半径方向运动,二者相对位置决定θ角大小。
α角:X射线传感器与水平方向夹角。
β角:X射线源与水平方向夹角。
三者的相对变化,决定了被检物重建图像Z向分辨率。
X射线传感器与X射线源在初始位置与其它检测位置时,没有被检物时,X射线传感器要达到近饱和度,一般为X射线传感器最大像素值的90%。
同时,随着FD与FO的距离变化,通过调节X射线源电压及电流,使饱和度保持相对稳定。
R1为X射线传感器径向位移
R2为X射线源径向位移。
h1为X射线传感器运动系统轨道平面距置物台平面距离。
h2为X射线源运动系统轨道平面距置物台平面距离。
为保持在检测过程中被检物不动且中心不改变,h1、h2,θ、R1、R2角等要随时进行相应调整。
进一步优选,X射线传感器与X射线源运动系统,X射线传感器与X射线源所在轨道平面必须保证平行且同轴,安装时要进行校准。其中驱动X射线传感器与X射线源同步运动的传动系统,通过同步传送装置,实现X射线传感器与X射线源同步运动,其运动精度通过编码器(或机械)保证。
X射线传感器与X射线源通过预设参数实现360°圆周运动。
X射线传感器与X射线源可沿圆形轨道半径方向运动。
X射线传感器、X射线源与水平方向夹角可调,其运动精度通过角度传感器保证。上述所述两个夹角0°≤α≤90°,0°≤β≤90°。
进一步优选,圆周运动轨道有如下四种实现方式:
参照图4所示,上下各两个固定圆形轨道,在圆形轨道上安装一字(或十字型、米字型等)径向轨道,以实现不同半径的圆周运动。同时,X射线传感器与 X射线源运动时,有相应配重装置。
参照图5所示,上下各有两个X、Y方向交叉运动轨道,通过两个方向配合运动,实现圆周轨迹运动。
参照图6所示,上下各有预设坐标点,如十字标记,有X、Y方向坐标标记及圆周坐标标记,X射线传感器与X射线源直接到达预设坐标点,实现圆周轨迹运动及X、Y方向运动。
参照图7所示,上下各有两个径向轨道(一字、十字、米字型等均可),两个轨道分别通过电机(步进电机等)驱动做圆周运动。同时,X射线传感器与X射线源运动时,有相应配重装置。
在本发明中,参照图8所示,在X射线传感器与X射线源运动都在水平方向沿径向移动时,配重根据X射线传感器与X射线源的位置进行相应的移动,保证平衡,同理,X射线传感器运动系统也有一样配重,此处不再赘述。
在本发明中,参照图9-图10所示,轨道平面同轴、平行校准方式为:在轨道上开四个准直隧道,利用激光器进行校准,其中准直隧道可以有若干,进一步优选,在图10中,h为准直隧道高度,w为准直隧道宽度,δ=h/w,δ为光束扩散角度量参数,δ数值越大,校准精准度越高。
光源并不局限于激光,也包括可见光、X射线等。
在本发明中,参照图11、图12、图13a、图13b所示,X射线传感器和X射线源倾角运动方式如下:α和β角分别为X射线传感器与X射线源与水平方向夹角,α和β角可分别进行调整,也可同步进行调整,并且在调整过程中,α和β角旋转中心即分别为X射线传感器面中心轴与X射线源焦点,从而保持坐标位置始终保持不变,以及调整到检测位之后,保证检测位的稳定。
X射线传感器角度调整如下:0°≤α≤90°。
X射线源角度调整如下:0°≤β≤90°;
进一步优选,图12中X射线传感器与X射线源均可沿径向运动与上下运动。
在本发明中,置物台运动系统中,置物台平面可沿水平方向实现X、Y轴运动,可实现被检物不同部位检测。同时,置物台可以沿水平方向倾斜±γ°,配合X射线传感器与X射线源进行不同角度的检测,γ角度可根据实际需要设定。并且可实现Z轴方向运动,可实现被检物的放大、缩小。
以下提供本发明一具体的实施例
实施例1
X射线CT检测装置包括:X射线传感器、X射线源、运动系统单元、图像重建、显示单元。通过X射线传感器与X射线源运动到不同预设位置,来接收穿过被检物的X射线进行成像,通过图像重建,对被检物进行分析。
X射线源:电压、电流可调。
X射线传感器:可设定不同采集帧率及分辨率。
运动系统单元:可对X射线传感器、X射线源、被检物进行不同位置、角度调节及校正。
图像重建及显示单元:对采集到的图像进行算法重建,显示重建结果。
在本实施例中,运动系统单元,包括:X射线传感器与X射线源运动系统,置物台运动系统,驱动X射线传感器与X射线源同步运动的传动系统。以上系统,所有运动彼此独立,可通过控制分别进行运动或进行联动。
在本实施例中,X射线传感器与X射线源运动系统,X射线传感器与X射线源所在轨道平面必须保证平行且旋转同轴,安装时进行必要的校准。
X射线传感器与X射线源通过预设参数实现360°圆周运动。
X射线传感器与X射线源可沿圆形轨道半径方向运动。
X射线传感器与X射线源与水平方向夹角可调,其运动精度通过角度传感器保证。上述所述两个夹角0°≤α≤90°,0°≤β≤90°。
θ角是图像采集时装置倾角,为X射线源焦点X射线传感器面中心连线与中心轴夹角,0°≤θ<90°。
其中:
装置整体中心轴和X射线传感器、X射线源的径向位移的中心轴一致重合。
X射线传感器、X射线源可分别进行径向移动,以便使X射线源中心束对正X射线传感器,此时α=β,为正向。
X射线传感器、X射线源可分别独立进行上下运动。
X射线传感器运动系统在实现360°旋转同时,可实现X射线传感器径向运动及上下Z方向运动。
置物台运动系统可实现水平X、Y方向运动、上下Z方向运动,及水平方向倾斜±γ°,γ角度可根据实际需要设定。
X射线源运动系统在实现360°旋转同时,可实现X射线源径向运动及上下Z方向运动。以上系统中的置物台运动系统可通过水平方向运动实现与流水线进行对接。以上三个运动系统相应速度快,如:运动指令下达后,平均2s之内完成位置调整。
其中进行CT检测时,在极短时间内(如6s以内)完成一个目标区域CT扫描成像。
检测装置机械放大率:M=FD/FO。FD/FO比值越大,放大率越大,反之越小。FD与FO的距离变化可通过X射线源、X射线传感器、置物台的上下运动及水平运动进行改变。
θ角、α角、β角三者的相对变化,决定了被检物重建图像Z向分辨率。
最佳实例:θ=α=β=50°(不局限于三个角相等,且不局限为50°),此时X射线源焦点与X射线传感器面中心连线垂直于X射线传感器平面。
X射线传感器与X射线源在初始位置与其它检测位置时,没有被检物时,X射线传感器要达到近饱和度,一般为X射线传感器最大像素值的90%。同时,随着FD与FO的距离变化,通过调节X射线源电压及电流,使饱和度保持相对稳定。
如16位X射线传感器,近饱和度值为:65536×80%≈58982。
当h1与h2不改变,θ角变化△θ时,为保持被检物不动且目标平面中心不改变,X射线传感器径向移动距离:△r=|R1-h1*tan(θ+△θ)|,同时,X射线传感器角度也相应调整△θ。同样,X射线源移动距离、调整角度可以相同计算推出。
当R1与R2不改变,h1角变化△h1时,为保持被检物不动且目标平面中心不改变,X射线传感器角度调整:△α=|arctan(R1/h1)-arctan(R1/h1+△h1)|,同样,X射线源移动距离、调整角度可以相同计算推出。
以上仅为示例,X射线传感器、X射线源及θ角变化不局限于以上变化。不同运动,可计算得出相应移动距离。
在本实施例中,圆周运动轨迹通过如下方式实现:
上下各有两个一字径向轨道,两个轨道分别通过电机(步进电机等)驱动做圆周运动,并且上下两个轨道可同步运动,也可分别运动。同时,X射线传感器与X射线源运动时,有相应配重装置。
在本实施例中提到的配重,在X射线传感器与X射线源运动都在水平方向沿径向移动时,配重根据X射线传感器与X射线源的位置进行相应的移动,保证平衡。X射线传感器运动系统也有一样配重,此处不再赘述。
在本实施例中,轨道平面同轴、平行校准方式为:
在轨道上开四个准直隧道,四个准直隧道在轨道上平均分布,且隧道顶部有传感器接收光信号,利用激光进行校准,准直隧道也可根据实际情况增加。
在本实施例中,X射线传感器倾角α和X射线源倾角β可分别进行调整,也可同步进行调整,参照图13a、图13b所示,在进行α与β角度调整时,X射线传感器面中心轴与X射线源焦点即分别为旋转中心,从而保持面中心与焦点 坐标位置始终不变,以及调整到检测位之后,保证检测位的稳定。
X射线传感器角度调整如下:0°≤α≤90°。
X射线源角度调整如下:0°≤β≤90°,其中装置整体中心轴和X射线传感器、X射线源的径向位移的中心轴一致重合。
在本实施例中,X射线传感器与X射线源均可沿径向运动与上下运动。置物台运动系统,置物台平面可沿水平方向实现X、Y轴运动,可实现被检物不同部位检测。同时,置物台可以沿水平方向倾斜±γ°,配合X射线传感器与X射线源进行不同角度检测,γ角度可根据实际需要设定。并且置物台可实现Z轴方向运动,可实现被检物的放大、缩小。
在本实施例中,X射线传感器与X射线源同步运动通过同步传送装置实现,其运动精度通过编码器保证。
在本实施例中,图像重建及显示单元,把通过X射线CT检测方法采集到的图像传输进入此单元,完成的图像重建,并进行显示。此单元包含独立的处理器,得到图像数据后,自行完成图像分析、重建,不影响装置后续检测内容。
在本实施例中,在检测过程中,初始零位与检测位置设定后,X射线传感器面中心与X射线源焦点的连线,穿过被检物体,且X射线中心束垂直于X射线传感器平面。且在X射线传感器与X射线源按预定圆周轨迹运动扫描过程中,X射线传感器面中心与X射线源焦点连线始终穿过被检物。
X射线传感器与X射线源进入预设检测位置后,二者相对运动旋转一圈,采集一定数量图像。
以及CT重建图像分辨率的优劣:即CT重建图像对被检物细节的显示效果,CT重建图像分辨率越高,显示效果就越精细和细腻。
CT重建图像分辨率由多个因素决定:FOD距离、倾角(装置倾角θ,X射 线传感器倾角α与X射线源倾角β)、图像采集角度间隔、X射线传感器像素大小、X射线源焦点大小等。
CT重建图像分辨率,可根据不同分辨率要求,调节装置倾角θ、X射线传感器倾角α与X射线源倾角β。
θ、α与β值越大,CT重建图像分辨率越高。典型值θ=α=β=50°。
且θ、α与β值并不局限于θ=α=β,可根据实际需要调节。
另外,CT重建图像分辨率,可根据不同分辨率要求,调节放大倍率,选择不同目标区域。
放大率为:M=FD/FO,M值越大,CT重建图像分辨率越高。
其中,放大率调节,可以有如下两种调节模式。
X射线传感器与X射线源倾角(α与β)不变,二者相对位置也不改变,同时上下调节X射线传感器轨道平面与X射线源轨道平面,或者同时上下调节置物台平面,实现放大率调整。
X射线传感器与X射线源倾角(α与β)改变,二者相对位置可进行改变,可分别上下调节X射线传感器轨道平面、X射线源轨道平面、置物台平面,实现放大率调整。
以上两种模式下,置物台平面根据各轨道平面上下移动距离在水平方向进行位置调整,使被检物目标中心面中心位置始终不变。具体放大率调整不局限于以上两种调节模式。
CT重建图像分辨率,根据不同的重建图像分辨率要求,设置图像采集角度间隔,如:每隔1°、2°等进行图像采集。角度间隔越小,CT重建图像分辨率越高。
调整X射线传感器与X射线源相关参数(如电压、电流、倾角等)之后,开 始图像采集、重建、显示等。
X射线源与X射线传感器转动速率与X射线传感器图像采集帧率相匹配,由预设参数决定。
完成图像采集后,图像数据进入处理系统并进行后台重建。图像重建完成后,可本地显示,也可远程显示。同时,装置可继续进行下一个物体的图像采集,不占用检测时间。
综上所述,根据本发明的X射线CT检测装置,能够对被检物设定任意的检测区域,并可快速调整选择被检区域,进行多角度、不同放大倍率检测。同时X射线源与X射线传感器可同步旋转进行快速图像采集,并可以通过减小图像采集角度间隔、增大放大率等方式,重建高精度图像。同时在检测过程中,随着距离改变,图像始终保持近饱和度显示。本发明的X射线CT检测方法,通过运动系统,能在不同方位、角度对被检物进行图像采集并进行后台重建,减少设备检测使用时间,提高设备使用效率。同时能够在不移动被检物的情况下,通过运动控制改变检测区域,可以在被检物难以移动的情况下进行图像采集并重建显示。
以上结合具体实施例描述了本发明的技术原理,仅是本发明的优选实施方式。本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (14)

  1. X射线CT检测装置,其特征在于,包括置物台运动系统,位于置物台运动系统上方的X射线传感器运动系统,下方的X射线源运动系统,以及用于提供驱动X射线传感器与X射线源同步运动的传动系统;通过图像重建及显示单元对采集到的图像进行算法重建并显示重建结果。
  2. 如权利要求1的X射线CT检测装置,其特征在于,所述X射线源运动系统包括X射线源,所述X射线传感器运动系统包括X射线传感器,所述X射线传感器具有不同采集帧率及分辨率;所述传动系统用于对X射线传感器、X射线源、被检物进行不同位置、角度调节及校正。
  3. 如权利要求1的X射线CT检测装置,其特征在于,所述X射线传感器运动系统与X射线源运动系统中,X射线传感器与X射线源所在轨道平面平行且旋转同轴;以及X射线传感器与X射线源通过预设参数实现360°圆周运动;
    X射线传感器与X射线源沿圆形轨道半径方向运动;
    X射线传感器与X射线源与水平方向夹角可调。
  4. 如权利要求3的X射线CT检测装置,其特征在于:所述X射线传感器与X射线源运动方式包括:1)一字轨道圆轨运动,所述圆形轨道上安装一字径向轨道,X射线传感器与X射线源可在轨道上径向运动,以实现不同半径的圆周运动,同时,X射线传感器与X射线源运动时,有相应配重装置;2)或十字交叉轨道运动:所述圆形轨道上各有两个X、Y方向交叉运动轨道,通过两个方向配合运动,实现不同半径圆周轨迹运动;3)或预设坐标点运动:所述圆形轨道上各有预设坐标点,有X、Y方向坐标标记及圆周坐标标记,X射线传感器与X射线源直接到达预设坐标点,实现不同半径圆周轨迹运动及X、Y方向运动;4)或径向轨道圆周运动,上下各有两个径向轨道,两个轨道分别通过电机驱动做圆周运动,X射线传感器与X射线源可在轨道上径向运动,以实现不同半径的 圆周运动,同时,X射线传感器与X射线源运动时,有相应配重装置。
  5. 如权利要求4的X射线CT检测装置,其特征在于,所述四种X射线传感器与X射线源运动的实现方式,其共同特征都是:1)利用线性滑轨旋转或其它方式达成圆周运动,以实现X射线传感器与X射线源各自圆周轨迹同步扫描运动;2)在运动过程中,X射线传感器与X射线源始终同步运动并一直处于相对的位置;3)X射线传感器与X射线源圆周轨迹运动半径可以调节;4)X射线传感器与X射线源相对角度根据不同圆周轨迹运动半径、不同相对距离调节;5)一字轨道或径向轨道扩展为十字轨道、米字型轨道,根据实际需要增加。
  6. 如权利要求4的X射线CT检测装置,其特征在于,上下两个轨道平面同轴、平行,其校准方式为:在轨道上开若干准直隧道,利用激光器进行校准。
  7. 如权利要求4的X射线CT检测装置,其特征在于,所述配重装置在X射线传感器与X射线源运动都在水平方向沿径向移动时,配重根据X射线传感器与X射线源的位置进行相应的移动。
  8. 如权利要求5的X射线CT检测装置,其特征在于,所述X射线传感器与X射线源所在轨道平面通过传感器接收光信号,利用激光进行校准;所述X射线传感器与水平面的夹角为α,X射线源与水平面的夹角为β,其中X射线传感器角度调整为0°≤α≤90°,X射线源角度调整为0°≤β≤90°,且在进行α与β角度调整时,X射线传感器面中心与X射线源焦点坐标位置始终保持不变;所述置物台运动系统中的置物台沿水平方向倾斜调整角度为±γ°,配合X射线传感器与X射线源进行不同角度i检测,γ角度根据实际需要设定,并且置物台可实现Z轴方向运动,实现被检物的放大、缩小,其中γ角度为置物台与水平面之间的夹角。
  9. X射线CT检测方法,其特征在于,包括以下步骤:
    步骤S1:提供一置物台、X射线传感器、X射线源、图像重建及显示单元,并将置物台、X射线传感器、X射线源通过运动系统调节到待检测位置;
    步骤S2:X射线传感器面中心与X射线源焦点的连线,穿过被检物体,且X射线中心束垂直于X射线传感器平面;
    步骤S3:X射线传感器与X射线源进入预设检测位置后,二者相对运动旋转一圈,采集相应数量的图像。
  10. 如权利要求9的X射线CT检测方法,其特征在于,在X射线传感器与X射线源按预定圆周轨迹运动扫描过程中,X射线传感器面中心与X射线源焦点连线始终穿过被检物。
  11. 如权利要求9的X射线CT检测方法,其特征在于,根据不同分辨率要求,倾角θ、倾角α、倾角β满足θ、α与β值越大,CT重建图像分辨率越高,其中α为所述X射线传感器与水平面的夹角,β为X射线源与水平面的夹角,θ为X射线传感器面中心与X射线源焦点的连线与Z轴之间的夹角。
  12. 如权利要求9的X射线CT检测方法,其特征在于,根据不同分辨率要求,调节放大倍率,选择不同目标区域,满足M=FD/FO,放大率M值越大,CT重建图像分辨率越高,其中FD为X射线传感器面中心与X射线源焦点的连线的距离,FO为X射线源与置物台中心的距离。
  13. 如权利要求8的X射线CT检测方法,其特征在于,根据不同的重建图像分辨率要求,设置图像采集角度间隔,角度间隔越小,CT重建图像分辨率越高。
  14. 如权利要求9的X射线CT检测方法,其特征在于,所述放大率调节模式包括:X射线传感器与X射线源倾角不变,二者相对位置也不改变,同时上下调节X射线传感器轨道平面与X射线源轨道平面,或者同时上下调节置物 台平面,实现放大率调整;或者X射线传感器与X射线源倾角改变,二者相对位置可进行改变,可分别上下调节X射线传感器轨道平面、X射线源轨道平面、置物台平面,实现放大率调整;以上两种模式下,置物台平面根据各轨道平面上下移动距离在水平方向进行位置调整,使被检物目标中心面中心位置始终不变。
PCT/CN2022/075926 2021-08-24 2022-02-10 X射线ct检测装置及检测方法 WO2023024447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110977657.3 2021-08-24
CN202110977657.3A CN114295650A (zh) 2021-08-24 2021-08-24 X射线ct检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2023024447A1 true WO2023024447A1 (zh) 2023-03-02

Family

ID=80963966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075926 WO2023024447A1 (zh) 2021-08-24 2022-02-10 X射线ct检测装置及检测方法

Country Status (2)

Country Link
CN (1) CN114295650A (zh)
WO (1) WO2023024447A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590484A (zh) * 2024-01-12 2024-02-23 中国民用航空总局第二研究所 一种机场跑道异物定位方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117169257A (zh) * 2023-11-01 2023-12-05 上海超群检测科技股份有限公司 X射线成像装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309949A (zh) * 2000-01-14 2001-08-29 西门子公司 Ct机的运行方法和ct机
CN101303225A (zh) * 2008-07-09 2008-11-12 北京航空航天大学 一种适用于2d-ct扫描系统的投影旋转中心测量方法
JP2010504126A (ja) * 2006-09-25 2010-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 回転x線撮像における完全軌道に対する対象物の移動
US20100202583A1 (en) * 2009-02-03 2010-08-12 Ge Wang Systems and Methods for Exact or Approximate Cardiac Computed Tomography
CN102004111A (zh) * 2010-09-28 2011-04-06 北京航空航天大学 一种倾斜多锥束直线轨迹ct成像方法
CN107764846A (zh) * 2017-10-20 2018-03-06 重庆大学 一种正交直线扫描的cl成像系统及分析方法
CN107796834A (zh) * 2017-10-20 2018-03-13 重庆大学 一种正交电子直线扫描cl成像系统及方法
CN111657979A (zh) * 2019-03-08 2020-09-15 江苏一影医疗设备有限公司 Ct成像系统及其成像方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621811A (en) * 1987-10-30 1997-04-15 Hewlett-Packard Co. Learning method and apparatus for detecting and controlling solder defects
JP3318827B2 (ja) * 1997-02-28 2002-08-26 株式会社テクノエナミ 透視像撮像装置及び物体検査装置
JP2004212200A (ja) * 2002-12-27 2004-07-29 Akira Teraoka X線検査装置、及び該x線検査装置の使用方法
JP2008224448A (ja) * 2007-03-13 2008-09-25 Omron Corp X線検査方法およびx線検査装置
JP7224598B2 (ja) * 2019-02-07 2023-02-20 リョーエイ株式会社 傾斜x線検査方法、傾斜x線検査装置及びその精度評価方法
CN111896564A (zh) * 2020-07-01 2020-11-06 瑞茂光学(深圳)有限公司 一种基于x-ray的360度平面3d检测系统及检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309949A (zh) * 2000-01-14 2001-08-29 西门子公司 Ct机的运行方法和ct机
JP2010504126A (ja) * 2006-09-25 2010-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 回転x線撮像における完全軌道に対する対象物の移動
CN101303225A (zh) * 2008-07-09 2008-11-12 北京航空航天大学 一种适用于2d-ct扫描系统的投影旋转中心测量方法
US20100202583A1 (en) * 2009-02-03 2010-08-12 Ge Wang Systems and Methods for Exact or Approximate Cardiac Computed Tomography
CN102004111A (zh) * 2010-09-28 2011-04-06 北京航空航天大学 一种倾斜多锥束直线轨迹ct成像方法
CN107764846A (zh) * 2017-10-20 2018-03-06 重庆大学 一种正交直线扫描的cl成像系统及分析方法
CN107796834A (zh) * 2017-10-20 2018-03-13 重庆大学 一种正交电子直线扫描cl成像系统及方法
CN111657979A (zh) * 2019-03-08 2020-09-15 江苏一影医疗设备有限公司 Ct成像系统及其成像方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590484A (zh) * 2024-01-12 2024-02-23 中国民用航空总局第二研究所 一种机场跑道异物定位方法及系统
CN117590484B (zh) * 2024-01-12 2024-03-19 中国民用航空总局第二研究所 一种机场跑道异物定位方法及系统

Also Published As

Publication number Publication date
CN114295650A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2023024447A1 (zh) X射线ct检测装置及检测方法
US9129427B2 (en) Method and apparatus for generating a three-dimensional model of a region of interest using an imaging system
WO2020233273A1 (zh) 一种高精度自动焊接机器人及其焊接方法
KR100597066B1 (ko) 엑스레이 형광투시 장치
US8267388B2 (en) Alignment assembly
US20020080913A1 (en) Z-axis elimination in an X-ray laminography system using image magnification for Z plane adjustment
US20050254619A1 (en) X-ray CT apparatus
JPH06100451B2 (ja) エレクトロニクスの検査のための自動ラミノグラフシステム
CN107684435A (zh) 锥束ct系统几何校准方法及其校准装置
KR20050021936A (ko) X선 검사 장치 및 x선 검사 방법
CN104597062A (zh) 一种柱形束大视场x射线ct成像系统
JP2007309687A (ja) 断層撮影装置
US9606072B2 (en) Radiation inspecting apparatus
US20120194651A1 (en) Shape measuring apparatus
CN109444183A (zh) 多功能x射线成像装置
CN111141767A (zh) 测量用x射线ct装置和使用该装置的ct重建方法
CN209311365U (zh) 多功能x射线成像装置
CN108426901A (zh) 一种x射线分层扫描成像系统
KR101041840B1 (ko) 불량검사장치 및 그 제어방법
CN112556611A (zh) X射线测量装置的校正方法
KR101116456B1 (ko) Ct 장치
JP2003202303A (ja) X線ct装置、x線ct装置の調整方法及びx線ct装置の調整用冶具
JP5569061B2 (ja) X線検査方法、x線検査装置およびx線検査プログラム
JP2001281168A (ja) X線透視検査装置
JP5125297B2 (ja) X線検査装置およびx線検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE