WO2023022230A1 - 被覆工具 - Google Patents
被覆工具 Download PDFInfo
- Publication number
- WO2023022230A1 WO2023022230A1 PCT/JP2022/031386 JP2022031386W WO2023022230A1 WO 2023022230 A1 WO2023022230 A1 WO 2023022230A1 JP 2022031386 W JP2022031386 W JP 2022031386W WO 2023022230 A1 WO2023022230 A1 WO 2023022230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hard coating
- atomic
- less
- tool
- plane
- Prior art date
Links
- 238000000576 coating method Methods 0.000 claims abstract description 93
- 239000011248 coating agent Substances 0.000 claims abstract description 92
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 229910052786 argon Inorganic materials 0.000 claims abstract description 24
- 150000004767 nitrides Chemical class 0.000 claims abstract description 19
- 238000009826 distribution Methods 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 10
- 238000002441 X-ray diffraction Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 229910052755 nonmetal Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 17
- 238000010586 diagram Methods 0.000 abstract description 2
- 238000004544 sputter deposition Methods 0.000 description 29
- 239000007789 gas Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 9
- 238000007733 ion plating Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 241001290610 Abildgaardia Species 0.000 description 1
- 229910000822 Cold-work tool steel Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/16—Milling-cutters characterised by physical features other than shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
Definitions
- the present invention relates to coated tools applied to tools such as molds and cutting tools.
- This application claims priority based on Japanese Patent Application No. 2021-134034 filed in Japan on August 19, 2021, the content of which is incorporated herein.
- AlCr nitride is a type of film with excellent wear resistance and heat resistance, and is widely used as coated molds and coated cutting tools.
- coated tools coated with an Al-rich AlCr nitride containing more than 70 atomic % of Al by an arc ion plating method have begun to be proposed (Patent Documents 1 to 3).
- the impact of droplets on tool performance tends to increase.
- the inventors of the present invention have confirmed that the Al-rich AlCr nitride coated by the arc ion plating method tends to have a large number of droplets and that there is room for improvement in tool durability.
- Droplets can be reduced by using a sputtering method for forming the hard coating.
- the wear resistance may be inferior to that of the hard coating formed by using the arc ion plating method.
- the present invention provides an Al-rich AlCr nitride or carbonitride that achieves durability equal to or greater than that obtained by using an arc ion plating method while reducing droplets by applying a sputtering method. It is an object to provide a coated tool provided.
- a coated tool of one aspect of the present invention is a coated tool having a base material and a hard coating on the base material,
- the hard coating contains 65 atomic % or more and 90 atomic % or less of Al and 10 atomic % or more and 35 atomic % or less of Cr with respect to the total amount of metal (including semimetal) elements.
- a nitride or carbonitride containing argon (Ar) in an amount of 0.50 atomic % or less with respect to the total amount of metal elements (including semi-metals) and non-metal elements, and having a face-centered cubic lattice structure have
- the hard coating exhibits the maximum intensity Ia in the ⁇ -angle range of 80° to 90°, and the ⁇ -angle is 0° to 70°.
- a coated tool whose strength in the range of ° is 35% or less of the above Ia.
- the strength in the ⁇ angle range of 0° to 70° is 30% or less of Ia.
- the hard coating preferably exhibits the maximum intensity in the (111) plane of the face-centered cubic lattice structure.
- a highly durable coated tool provided with an Al-rich AlCr nitride or carbonitride sputter coating can be obtained.
- FIG. 4 is an example of the X-ray intensity distribution of the ⁇ -axis of the positive pole figure for the (111) plane in the AlCr nitride of Example 1.
- FIG. 4 is an example of the X-ray intensity distribution of the ⁇ -axis of the positive pole figure for the (200) plane in the AlCr nitride of Example 1.
- FIG. 3 is an example of the X-ray intensity distribution of the ⁇ -axis of the positive pole figure for the (111) plane in the AlCr nitride of Comparative Example 1.
- FIG. 3 is an example of the X-ray intensity distribution of the ⁇ -axis of the positive pole figure for the (200) plane in the AlCr nitride of Comparative Example 1.
- FIG. 1 is an example of XRD measurement results of Example 1.
- FIG. 1 is an example of XRD measurement results of Example 1.
- the coated tool of the present embodiment is a coated tool having an Al-rich nitride or carbonitride mainly composed of Al and Cr on the surface of the base material.
- the coated tool of this embodiment can be applied to molds and cutting tools. In particular, it is preferable to apply it to a small-diameter end mill having a tool diameter of 5 mm or less, more preferably 3 mm or less.
- the base material is not particularly limited. Cold work tool steel, hot work tool steel, high speed steel, cemented carbide, etc. may be appropriately applied depending on the application.
- the substrate may be subjected to nitriding treatment, bombardment treatment, or the like in advance.
- the hard coating according to the present embodiment is a nitride or carbonitride, and contains 65 atomic % or more and 90 atomic % or less of Al with respect to the total amount of metal (including semi-metals; the same shall apply hereinafter) elements. and contains 10 atomic % or more and 35 atomic % or less of Cr.
- Nitrides or carbonitrides mainly composed of Al and Cr are film types that have an excellent balance between wear resistance and heat resistance, and have excellent adhesion to the substrate. The heat resistance of the film is further improved. It is preferable that the hard coating according to the present embodiment is a nitride having excellent heat resistance.
- an oxidation protective film is easily formed on the tool surface, and the film texture becomes finer, so that wear of the hard film due to adhesion is easily suppressed.
- the hard coating according to the present embodiment has an Al content ratio of 65 atomic % or more when the total metal elements are 100 atomic %.
- the content of Al is preferably 70 atomic % or more.
- it is preferable that the content ratio of Al is 75 atomic % or more.
- the content ratio of Al is set to 90 atomic % or less when the total metal elements are 100 atomic %.
- the content of Al is preferably 85 atomic % or less.
- the content of Al is preferably 78 atomic % or less.
- the hard coating according to the present embodiment has a Cr content ratio of 10 atomic % or more when the total metal elements are 100 atomic %. As a result, a uniform and dense protective oxide film is easily formed on the surface of the tool during processing, and damage to the tool is easily suppressed. Furthermore, it is preferable to set the content ratio of Cr to 15 atomic % or more. On the other hand, if the content ratio of Cr contained in the hard coating is too large, it is difficult to obtain the above-described effect of increasing the content ratio of Al. Therefore, the hard coating according to the present embodiment has a Cr content ratio of 35 atomic % or less when the total metal elements are 100 atomic %. Furthermore, the content ratio of Cr is preferably 30 atomic % or less. Furthermore, the content ratio of Cr is preferably 25 atomic % or less. Furthermore, the content ratio of Cr is preferably 20 atomic % or more.
- the total content ratio of Al and Cr is 90 atomic % or more when the total metal elements are 100 atomic %.
- the hard coating according to this embodiment may be a nitride or carbonitride of Al and Cr.
- the content ratio of the metal elements in the hard coating according to the present embodiment can be measured using an electron probe microanalyzer (EPMA) for the mirror-finished hard coating. In this case, for example, after the surface of the hard coating has been mirror-finished, it can be determined from the average of 5-point analysis of an analysis range with a diameter of about 1 ⁇ m.
- EPMA electron probe microanalyzer
- the hard coating according to this embodiment may contain metal elements other than Al and Cr.
- the hard coating according to the present embodiment is selected from elements of groups 4a, 5a, and 6a of the periodic table, Si, B, Y, Yb, and Cu for the purpose of improving wear resistance, heat resistance, etc. It can also contain one or more elements. These elements are generally contained in order to improve the coating properties of the coated tool, and can be added within a range that does not significantly reduce the durability of the coated tool. However, if the content ratio of metal elements other than Al and Cr becomes too large, the durability of the coated tool may deteriorate. Therefore, when the hard coating according to the present embodiment contains metal elements other than Al and Cr, the total content ratio is 10 atomic % or less when the total metal elements are 100 atomic %. preferable. Furthermore, it is preferably 5 atomic % or less.
- the hard coating according to this embodiment contains 0.50 atomic % or less of argon (Ar) with respect to the total amount of metallic elements and non-metallic elements.
- the hard coating according to this embodiment is a sputtered film and is a sputtered hard coating.
- the occurrence frequency of droplets, which are defects in the hard coating, can be reduced by applying the sputtering method.
- argon ions are used to sputter the target components, so the hard coating coated by the sputtering method contains not a little argon. In particular, argon tends to concentrate at grain boundaries, and the argon content tends to increase as the grain size becomes finer.
- the hard coating according to the present embodiment contains 0.50 atomic % or less of argon with respect to the total amount of metallic elements and non-metallic elements. Furthermore, it is preferable to set the argon content to 0.40 atomic percent or less.
- the hard coating according to the present embodiment can contain rare gases other than argon by sputtering using a mixed gas containing other rare gases than argon.
- the lower limit of the argon content ratio is not particularly limited, but argon is added in order to stabilize the sputtering method and ensure the basic coating properties as a hard coating applied to coated tools.
- argon content ratio 0.05 atomic percent or more.
- argon 0.10 atomic % or more it is preferable to make argon 0.10 atomic % or more.
- the content ratio of nitrogen and argon in the hard coating according to the present embodiment is measured using an electron probe microanalyzer (EPMA) for the mirror-finished hard coating in the same manner as the measurement of the content ratio of the metal elements described above. can be done. As in the measurement of the content ratio of the metal element described above, it can be obtained from the average of 5-point analysis of the analysis range with a diameter of about 1 ⁇ m after mirror finishing.
- the hard coating according to the present embodiment may contain trace amounts of argon, oxygen, and carbon in addition to nitrogen as nonmetallic elements.
- the hard coating according to the present embodiment has a face-centered cubic lattice structure, and in the X-ray intensity distribution of the ⁇ -axis of the positive pole figure for the (111) plane of the face-centered cubic lattice structure, the ⁇ angle is in the range of 80° to 90°. shows the maximum intensity Ia, and the intensity in the ⁇ angle range of 0° to 70° is 35% or less of the maximum intensity Ia.
- the strength in the range of the ⁇ angle of 0° to 70° is relatively low with respect to the maximum strength of the ⁇ angle of 80° to 90°, and the ⁇ angle of 80° in the direction substantially perpendicular to the plane direction of the base material.
- the (111) planes are present at ⁇ 90°. It is thought that the orientation of the (111) planes in a direction substantially perpendicular to the planar direction of the base material makes the entire hard coating more dense and improves the durability. It is preferable to exhibit the maximum intensity Ia in the range of ⁇ angles of 85° to 90°.
- the intensity of the (111) plane with an ⁇ angle in the range of 0° to 70° is preferably 30% or less, more preferably 25% or less of the maximum intensity Ia.
- the (111) plane of the face-centered cubic lattice structure preferably exhibits the maximum intensity in the intensity profile of the X-ray diffraction or electron diffraction pattern.
- the (111) planes of the face-centered cubic lattice structure exhibiting the maximum strength are oriented in substantially the same direction, thereby increasing the wear resistance of the hard coating and improving the durability of the coated tool.
- the peak intensity of the (111) plane is preferably four times or more the peak intensity of the (200) plane. According to these configurations, the wear resistance of the hard coating is further improved, and the durability of the coated tool is further improved.
- the upper limit of the peak intensity ratio of the (111) plane and the peak intensity of the (200) plane is preferably 8 or less.
- the coated tool of the present embodiment may optionally be provided with an intermediate coating between the base material of the tool and the hard coating.
- a layer of metal, nitride, carbonitride or carbide may be provided between the base material of the tool and the hard coating.
- a hard coating having a different component ratio or composition from the hard coating according to this embodiment may be separately formed.
- the hard coating according to this embodiment and a separate hard coating having a different composition ratio or composition from the hard coating according to this embodiment may be mutually laminated.
- the number of droplets having an equivalent circle diameter of 1 ⁇ m or more is 5 or less per 100 ⁇ m 2 in cross-sectional observation.
- the term "droplets” used herein means deposits on the hard coating caused by molten particles of about 1 to several tens of ⁇ m ejected from the cathode.
- “Droplets” in this specification are deposits on the hard coating caused by metal particles of about 1 to several tens of ⁇ m that are suddenly scattered from the target in the sputtering method.
- Droplets can be a major physical defect in hard coatings applied by physical vapor deposition.
- coarse droplets having an equivalent circle diameter of 1 ⁇ m or more can become fracture starting points inside the hard coating, reducing the frequency of occurrence can increase the toughness of the hard coating.
- the number of droplets having an equivalent circle diameter of 1 ⁇ m or more is 5 or less per 100 ⁇ m 2 in observation of the cross section of the hard coating. More preferably, it is 3 or less per 100 ⁇ m 2 . More preferably, it is 1 or less per 100 ⁇ m 2 .
- the number of droplets having an equivalent circle diameter of 1 ⁇ m or more is 5 or less per 100 ⁇ m 2 . More preferably, the number of droplets on the surface of the hard coating is 3 or less per 100 ⁇ m 2 . More preferably, the number of droplets on the surface of the hard coating is 1 or less per 100 ⁇ m 2 .
- the hard coating is mirror-finished, then processed by the focused ion beam method, and the mirror-finished surface is examined using a transmission electron microscope at 5,000 to 10,000. Observe multiple fields of view at magnification.
- the number of droplets on the surface of the hard coating can be obtained by observing the surface of the hard coating using a scanning electron microscope (SEM) or the like.
- ⁇ Manufacturing method> In the coating of the hard coating according to the present embodiment, three or more AlCr-based alloy targets are used, power is sequentially applied to the targets, and when the target to which power is applied is switched, the target to which the power application ends It is preferable to apply a sputtering method in which power is simultaneously applied to both the target and the target to which power application is started. In such a sputtering method, a high ionization rate of the target is maintained during the coating, and a micro-level dense hard coating can be obtained. Then, the furnace temperature of the sputtering apparatus is 350° C.
- the bias voltage of the negative pressure applied to the substrate is ⁇ 200 V to ⁇ 70 V
- the furnace pressure is 0.1 Pa to 0.1 Pa by introducing Ar gas and N 2 gas. 0.4 Pa is preferable.
- carbonitride When carbonitride is to be coated, a small amount of carbon may be added to the target, or part of the reaction gas may be replaced with methane gas.
- the maximum power density of the power pulse is preferably 0.1 kW/cm 2 or more. Furthermore, it is preferable to set it to 0.3 kW/cm 2 or more. In addition, in this composition system, if the energy of film-forming ions becomes too high, the hcp structure is likely to be formed. Therefore, the maximum power density of the power pulse is preferably 0.7 kW/cm 2 or less. Furthermore, it is preferable to set it to 0.6 kW/cm 2 or less.
- the duration of the power pulse applied to each target is preferably 30 milliseconds or less. Moreover, the time during which electric power is simultaneously applied to both the alloy target to which the application of electric power is terminated and the alloy target to which application of electric power is started is preferably 20 microseconds or more and 100 microseconds or less.
- the base material has a composition of WC (bal.)-Co (8.0% by mass)-VC (0.3% by mass)-Cr 3 C 2 (0.5% by mass) and a hardness of 94.0 HRA (Rockwell hardness A two-flute ball end mill made of cemented carbide was prepared.
- Example 1 and Comparative Example 3 a sputtering apparatus capable of mounting six sputtering evaporation sources was used.
- these vapor deposition sources six Al75Cr25 alloy targets (numerical values are atomic ratios, the same shall apply hereinafter) were placed in the apparatus as vapor deposition sources for coating the hard film.
- Comparative Example 2 used a sputtering apparatus capable of mounting six sputtering evaporation sources.
- six Al80Cr20 alloy targets were installed in the apparatus as vapor deposition sources for coating the hard film.
- a tool as a substrate was fixed to a sample holder in a sputtering apparatus, and a bias power supply was connected to the tool.
- the bias power supply has a structure that applies a negative bias voltage to the tool independently of the target.
- the tool rotates at two revolutions per minute and revolves through the fixture and sample holder.
- the distance between the tool and target surface was 100 mm.
- Ar and N 2 were used as the introduction gas, and were introduced from a gas supply port provided in the sputtering apparatus.
- ⁇ Bombard treatment> First, before coating the tool with the hard coating, the tool was bombarded by the following procedure. Heating was performed for 30 minutes while the temperature in the furnace reached 400° C. by the heater in the sputtering apparatus. After that, the inside of the furnace of the sputtering apparatus was evacuated, and the pressure inside the furnace was set to 5.0 ⁇ 10 ⁇ 3 Pa or less. Then, Ar gas was introduced into the furnace of the sputtering apparatus, and the pressure inside the furnace was adjusted to 0.8 Pa. Then, a DC bias voltage of -170 V was applied to the tool, and the tool was cleaned (bombarded) with Ar ions for 20 minutes or longer.
- Example 1 ⁇ Covering of hard film>
- the furnace temperature was set to 400° C.
- Ar gas (0.2 Pa) and N 2 gas (0.1 Pa) were introduced into the furnace of the sputtering apparatus, and the furnace pressure was reduced to 0.3 Pa. made it A DC bias voltage was applied to the substrate, and the power applied to the targets overlapped for 50 microseconds, and the discharge time per cycle of the power applied to each target was 1 millisecond.
- electric power was continuously applied to the six Al75Cr25 alloy targets, and about 3 A hard coating of .0 ⁇ m was applied.
- the furnace temperature was set to 400 ° C.
- Ar gas (0.2 Pa) and N gas (0.1 Pa) were introduced into the furnace of the sputtering apparatus, and the furnace pressure was set to 0.3 Pa. bottom.
- a DC bias voltage was applied to the substrate, and the power applied to the targets overlapped for 50 microseconds, and the discharge time per cycle of the power applied to each target was 1 millisecond.
- electric power was continuously applied to the six Al80Cr20 alloy targets, and about 3 A hard coating of .0 ⁇ m was applied.
- the furnace temperature was set to 400 ° C.
- Ar gas (0.2 Pa) and N gas (0.1 Pa) were introduced into the furnace of the sputtering apparatus, and the furnace pressure was set to 0.3 Pa. bottom.
- a DC bias voltage was applied to the substrate, and the power applied to the targets overlapped for 50 microseconds, and the discharge time per cycle of the power applied to each target was 1 millisecond.
- a negative bias voltage of ⁇ 120 V and a maximum power of 0.8 kW/cm 2 applied to the substrate power was continuously applied to the six Al75Cr25 alloy targets, and about 3 A hard coating of .0 ⁇ m was applied.
- Comparative Example 1 used an arc ion plating apparatus.
- An Al60Cr40 alloy target was placed in the apparatus as a vapor deposition source.
- the tool was cleaned (bombarded) with Ar ions.
- the furnace pressure of the arc ion plating apparatus is evacuated to 5.0 ⁇ 10 -3 Pa or less, the furnace temperature is 500 ° C., and N gas is introduced so that the furnace pressure is 3.2 Pa. bottom.
- a DC bias voltage of -100 V was applied to the tool, and a current of 150 A was supplied to the Al60Cr40 alloy target to form a hard coating of about 3.0 ⁇ m on the surface of the tool.
- Comparative Example 1 is a composition generally used in the market.
- the film composition of the hard film was measured by a wavelength dispersive electron probe microanalyzer (WDS-EPMA) attached to an electron probe microanalyzer (manufactured by JEOL Ltd. JXA-8500F).
- WDS-EPMA wavelength dispersive electron probe microanalyzer
- JXA-8500F electron probe microanalyzer
- a ball end mill for physical property evaluation is mirror-finished, and the acceleration voltage is 10 kV, the irradiation current is 5 ⁇ 10 -8 A, and the acquisition time is 10 seconds. and the content ratio of Ar in the sum of the metal component and the non-metal component.
- the film hardness and elastic modulus of the hard film were analyzed using a nanoindentation tester (ENT-2100 manufactured by Elionix Co., Ltd.). The analysis was performed by mirror-polishing the cross-section of the film with the test piece tilted 5 degrees with respect to the outermost surface of the film, and then selecting a region where the maximum indentation depth was less than approximately 1/10 of the film thickness in the polished surface of the film. Measurement was performed at 15 points under the condition of an indentation load of 9.807 mN, and the average value of the 5 points excluding the 5 points on the large value side and the 5 points on the small value side was obtained. Table 1 shows the coating composition and physical property evaluation results.
- Example 1 and Comparative Example 1 had a face-centered cubic lattice structure (fcc structure), while Comparative Examples 2 and 3 had a close-packed hexagonal lattice structure (hcp structure).
- Example 1 For Example 1 and Comparative Example 1, which had the fcc structure, the X-ray intensity distribution was evaluated by a positive pole figure.
- the measurement conditions of the X-ray intensity distribution by positive pole figure were as follows. When the normal to the sample surface is on the plane determined by the incident beam and diffraction beam, the ⁇ angle is 90°. When the ⁇ angle is 90°, it becomes the central point on the positive pole diagram.
- Sedge ball CuK ⁇ ray output: 45 kV, 200 mA Beam: Parallel method
- Optics In-plane Detector: D/teX Ultra250
- Solar slit opening angle 0.5deg Incident slit width: 1.0 mm
- Light receiving slit width 1.0 mm
- Scanning method Concentric circle ⁇ Scanning range: 0° to 360°/3.0° step 2 ⁇ Fixed angle: The diffraction intensity of the (111) plane is highest between 36.0° and 39.0° angle.
- the diffraction angle of the (200) plane is the angle at which the diffraction intensity is the highest between 42.0° and 45.0°.
- the crystal plane was specified from CrN.
- ⁇ scanning range 0 to 90°/3.0° steps
- FIG. 1 shows an example of the X-ray intensity distribution of the ⁇ -axis of the pole figure for the (111) plane of the first embodiment.
- FIG. 2 shows an example of the X-ray intensity distribution of the ⁇ -axis of the pole figure for the (200) plane of Example 1.
- FIG. 3 shows an example of the X-ray intensity distribution of the ⁇ -axis of the pole figure for the (111) plane of Comparative Example 1.
- FIG. 4 shows an example of the X-ray intensity distribution of the ⁇ -axis of the pole figure for the (200) plane of Comparative Example 1.
- the (111) plane of Example 1 has the maximum peak intensity at the ⁇ angle of 90°, the peak intensity is low in the range of the ⁇ angle of 0° to 70°, and the narrow range of the ⁇ angle of 80° to 90°. It can be seen that it is strongly oriented to Table 2 shows the peak intensity values read from the figure.
- the (111) plane of Example 1 has an intensity in the range of ⁇ angles of 0° to 70° that is 22% of the maximum intensity Ia, and the (111) plane is strongly oriented at an ⁇ angle of 80° to 90°. was confirmed. That is, the (111) plane of Example 1 had a strength of 35% or less and 30% or less of the maximum strength Ia in the ⁇ angle range of 0° to 70°.
- FIG. 5 shows an example of XRD measurement results for AlCrN of Example 1. It was confirmed that the peak intensity of (111) of the face-centered cubic lattice structure of AlCrN of Example 1 exhibited the maximum intensity. In the case of AlCrN of Example 1, no peak intensity of hcp-structured AlN was confirmed by XRD.
- three peaks indicated by crystal planes (111), (200), and (220) are diffraction peaks due to AlCrN having a face-centered cubic structure. The other four peaks whose crystal planes are not shown are all diffraction peaks due to WC of the base material.
- the hard coating has a face-centered cubic lattice structure in which the (111) plane is strongly oriented at an ⁇ angle of 80° to 90°. It was confirmed that the film hardness and the elastic modulus were higher than those of Comparative Example 1 despite the Al-rich composition. Furthermore, according to the coated tool of Example 1, droplets are reduced by applying the sputtering method.
- Dry processing Tool 2-flute carbide ball end mill Model number: EPDBE2010-6, ball radius 0.5 mm
- Cutting method Bottom cutting Work material: STAVAX (52HRC) (Bohler-Uddeholm Co., Ltd.) Notch: axial direction, 0.03 mm, radial direction, 0.03 mm
- Cutting speed 67.8m/min
- Feed per blade 0.0135mm/blade
- Cutting distance 15m Evaluation method: After cutting, observe with a scanning electron microscope at a magnification of 1000 times, measure the width of the tool and the work material rubbed on the tool flank, and the part with the largest scratch width is the flank. Maximum wear width.
- Example 1 has a smaller maximum flank wear width and is more durable than AlCrN used in the conventional arc ion plating method.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本願は、2021年08月19日に、日本に出願された特願2021-134034号に基づき優先権を主張し、その内容をここに援用する。
ドロップレットは、硬質皮膜の成膜にスパッタリング法を用いることで低減できる。しかし、単にスパッタリング法を用いて硬質皮膜を成膜した場合、アークイオンプレーティング法を用いて形成された硬質皮膜よりも耐摩耗性に劣る場合があった。
本発明は上記の事情に鑑み、スパッタリング法の適用によりドロップレットを低減しつつ、アークイオンプレーティング法を用いた場合と同等以上の耐久性を実現したAlリッチなAlCr窒化物または炭窒化物を設けた被覆工具を提供することを目的とする。
前記硬質皮膜は、金属(半金属を含む)元素の総量に対して、Alを65原子%以上90原子%以下で含有しており、Crを10原子%以上35原子%以下で含有しており、金属元素(半金属を含む)と非金属元素の総量に対して、アルゴン(Ar)を0.50原子%以下で含有している窒化物または炭窒化物であって面心立方格子構造を有し、
前記硬質皮膜は面心立方格子構造の(111)面に関する正極点図のα軸のX線強度分布において、α角80°~90°の範囲に最大強度Iaを示し、α角0°~70°の範囲の強度は前記Iaの35%以下である被覆工具である。
前記硬質皮膜は、X線回折または透過電子顕微鏡の制限視野回折パターンの強度プロファイルにおいて、面心立方格子構造の(111)面が最大強度を示すことが好ましい。
本実施形態の被覆工具は、基材の表面にAlリッチのAlとCrを主体とする窒化物または炭窒化物を有する被覆工具である。本実施形態の被覆工具は、金型や切削工具に適用することができる。特に、工具径が5mm以下、更には3mm以下の小径エンドミルに適用することが好ましい。
本実施形態に係る硬質皮膜の金属元素の含有比率は、鏡面加工した硬質皮膜について、電子プローブマイクロアナライザー装置(EPMA)を用いて測定することができる。この場合、例えば、硬質皮膜表面の鏡面加工後、直径が約1μmの分析範囲を5点分析した平均から求めることができる。
なお、本実施形態に係る硬質皮膜は、アルゴン以外に他の希ガスを含有した混合ガスを用いてスパッタリングすれば、アルゴン以外の希ガスも含有しうる。
本実施形態に係る硬質皮膜は、非金属元素としては窒素以外に微量のアルゴン、酸素、炭素が含まれうる。
本実施形態に係る硬質皮膜は面心立方格子構造を有しおり、面心立方格子構造の(111)面に関する正極点図のα軸のX線強度分布において、α角80°~90°の範囲に最大強度Iaを示し、α角0°~70°の範囲の強度は最大強度Iaの35%以下である。これにより、α角80°~90°の最大強度に対してα角0°~70°の範囲の強度が相対的に低くなり、基材平面方向に対してほぼ垂直な方向のα角80°~90°に(111)面の多くが存在していることになる。(111)面が基材平面方向に対してほぼ垂直な方向に配向することで硬質皮膜の全体がより緻密となって耐久性が向上すると考えられる。α角85°~90°の範囲に最大強度Iaを示すことが好ましい。(111)面のα角0°~70°の範囲の強度は最大強度Iaの30%以下、更には25%以下であることが好ましい。
本実施形態に係る硬質皮膜は、X線回折または電子線回折パターンの強度プロファイルにおいて、面心立方格子構造の(111)面が最大強度を示すことが好ましい。最大強度を示す面心立方格子構造の(111)面がほぼ同じ方向に配向することで、硬質皮膜の耐摩耗性が高まり、被覆工具の耐久性が向上すると考えられる。
X線回折において(111)面のピーク強度は(200)面のピーク強度の4倍以上であることが好ましい。これらの構成によれば、硬質皮膜の耐摩耗性がさらに向上し、被覆工具の耐久性がより向上する。(111)面のピーク強度と(200)面のピーク強度比の上限は8以下が好ましい。
本実施形態の被覆工具は、硬質皮膜の密着性をより向上させるため、必要に応じて、工具の基材と硬質皮膜との間に別途中間皮膜を設けてもよい。例えば、金属、窒化物、炭窒化物、炭化物のいずれかからなる層を工具の基材と硬質皮膜との間に設けてもよい。
また、本実施形態に係る硬質皮膜の上に、本実施形態に係る硬質皮膜と異なる成分比や異なる組成を有する硬質皮膜を別途形成させてもよい。さらには、本実施形態に係る硬質皮膜と、別途本実施形態に係る硬質皮膜と異なる組成比や異なる組成を有する硬質皮膜とを相互積層させてもよい。
本実施形態に係る硬質皮膜は、断面観察において円相当径が1μm以上のドロップレットが100μm2当たり5個以下であることが好ましい。本明細書における「ドロップレット」は、アークイオンプレーティング法では、カソードから飛び出す1~数十μm程度の溶融粒子に起因する硬質皮膜上の付着物である。本明細書における「ドロップレット」は、スパッタリング法では、ターゲットから突発的に飛散する1~数十μm程度の金属粒子に起因する硬質皮膜上の付着物である。
また、硬質皮膜の表面についても、円相当径が1μm以上のドロップレットが、100μm2当たり5個以下であることが好ましい。より好ましくは、硬質皮膜の表面のドロップレットは100μm2当たり3個以下である。更に好ましくは、硬質皮膜の表面のドロップレットは100μm2当たり1個以下である。
本実施形態に係る硬質皮膜の被覆では、3個以上のAlCr系合金ターゲットを用いて、ターゲットに順次電力を印加して、電力が印加されるターゲットが切り替わる際に、電力の印加が終了するターゲットと電力の印加を開始するターゲットの両方のターゲットに同時に電力が印加されている時間を設けるスパッタリング法を適用することが好ましい。このようなスパッタリング法はターゲットのイオン化率が高い状態が被覆中に維持されて、ミクロレベルで緻密な硬質皮膜が得られるとともに、不可避的に含有されるアルゴンや酸素が少ない傾向にある。そして、スパッタリング装置の炉内温度を350℃~500℃、基材に印加する負圧のバイアス電圧を-200V~-70V、ArガスおよびN2ガスを導入して炉内圧力を0.1Pa~0.4Paとすることが好ましい。なお、炭窒化物を被覆する場合には、ターゲットに微量の炭素を添加するか、反応ガスの一部をメタンガスに置換すればよい。
基材として、組成がWC(bal.)-Co(8.0質量%)-VC(0.3質量%)-Cr3C2(0.5質量%)、硬度94.0HRA(ロックウェル硬さ、JIS G 0202に準じて測定した値)からなる超硬合金製の2枚刃ボールエンドミルを準備した。
比較例2は、スパッタ蒸発源を6機搭載できるスパッタリング装置を使用した。これらの蒸着源のうち、硬質皮膜を被覆するためにAl80Cr20合金ターゲット6個を蒸着源として装置内に設置した。
基材である工具をスパッタリング装置内のサンプルホルダーに固定し、工具にバイアス電源を接続した。なお、バイアス電源は、ターゲットとは独立して工具に負のバイアス電圧を印加する構造となっている。工具は、毎分2回転で自転しかつ、固定治具とサンプルホルダーを介して公転する。工具とターゲット表面との間の距離は100mmとした。
導入ガスは、Ar、およびN2を用い、スパッタリング装置に設けられたガス供給ポートから導入した。
まず工具に硬質皮膜を被覆する前に、以下の手順で工具にボンバード処理を行った。スパッタリング装置内のヒーターにより炉内温度が400℃になった状態で30分間の加熱を行った。その後、スパッタリング装置の炉内を真空排気し、炉内圧力を5.0×10-3Pa以下とした。そして、Arガスをスパッタリング装置の炉内に導入し、炉内圧力を0.8Paに調整した。そして、工具に-170Vの直流バイアス電圧を印加して、Arイオンによる工具のクリーニング(ボンバード処理)を20分以上実施した。
本実施例1の被覆では、炉内温度を400℃にして、スパッタリング装置の炉内にArガス(0.2Pa)およびN2ガス(0.1Pa)を導入して炉内圧力を0.3Paにした。基材に直流バイアス電圧を印加して、ターゲットに印加する電力がオーバーラップする時間は50マイクロ秒とし、各ターゲットに印加される電力の1周期当りの放電時間を1ミリ秒とした。そして、基材に印加する負圧のバイアス電圧を-120V、最大電力を0.4kW/cm2として、6個のAl75Cr25合金ターゲットに連続的に電力を印加して、基材の表面に約3.0μmの硬質皮膜を被覆した。
比較例2の被覆では、炉内温度を400℃にして、スパッタリング装置の炉内にArガス(0.2Pa)およびN2ガス(0.1Pa)を導入して炉内圧力を0.3Paにした。基材に直流バイアス電圧を印加して、ターゲットに印加する電力がオーバーラップする時間は50マイクロ秒とし、各ターゲットに印加される電力の1周期当りの放電時間を1ミリ秒とした。そして、基材に印加する負圧のバイアス電圧を-120V、最大電力を0.8kW/cm2として、6個のAl80Cr20合金ターゲットに連続的に電力を印加して、基材の表面に約3.0μmの硬質皮膜を被覆した。
比較例3の被覆では、炉内温度を400℃にして、スパッタリング装置の炉内にArガス(0.2Pa)およびN2ガス(0.1Pa)を導入して炉内圧力を0.3Paにした。基材に直流バイアス電圧を印加して、ターゲットに印加する電力がオーバーラップする時間は50マイクロ秒とし、各ターゲットに印加される電力の1周期当りの放電時間を1ミリ秒とした。そして、基材に印加する負圧のバイアス電圧を-120V、最大電力を0.8kW/cm2として、6個のAl75Cr25合金ターゲットに連続的に電力を印加して、基材の表面に約3.0μmの硬質皮膜を被覆した。
皮膜組成および物性評価の結果を表1に示す。
菅球:CuKα線
出力:45kV、200mA
ビーム:平行法
光学系:インプレーン
検出器:D/teX Ultra250
ソーラースリット開き角度:0.5deg
入射スリット幅:1.0mm
受光スリット幅:1.0mm
走査方法:同心円
β走査範囲:0°~360°/3.0°ステップ
2θ固定角度:(111)面の回折角度は36.0°~39.0°までの間で回折強度が最も高くなる角度とする。(200)面の回折角度は42.0°~45.0°までの間で回折強度が最も高くなる角度とする。なお、結晶面はCrNから特定した。
α走査範囲:0~90°/3.0°ステップ
図3に比較例1の(111)面に関する正極点図のα軸のX線強度分布の一例を示す。図4に比較例1の(200)面に関する正極点図のα軸のX線強度分布の一例を示す。
図1から本実施例1の(111)面はα角90°に最大ピーク強度を有し、α角0°~70°の範囲はピーク強度が低く、α角80°~90°の狭い範囲に強く配向していることが分かる。表2に図から読み取ったピーク強度値を示す。本実施例1の(111)面は、α角90°で最大強度Ia(=1276)を示し、α角0°~70°の範囲の最大強度は287であった。本実施例1の(111)面は、α角0°~70°の範囲の強度は最大強度Iaの22%であり、(111)面がα角80°~90°に強く配向していることが確認された。すなわち、本実施例1の(111)面は、α角0°~70°の範囲の強度が、最大強度Iaの35%以下、かつ30%以下であった。
工具:2枚刃超硬ボールエンドミル
型番:EPDBE2010-6、ボール半径0.5mm
切削方法:底面切削
被削材:STAVAX(52HRC)(ボーラー・ウッデホルム株式会社製)
切り込み:軸方向、0.03mm、径方向、0.03mm
切削速度:67.8m/min
一刃送り量:0.0135mm/刃
切削距離:15m
評価方法:切削加工後、走査型電子顕微鏡を用いて倍率1000倍で観察し、工具逃げ面において工具と被削材が擦過した幅を測定し、そのうちの擦過幅が最も大きかった部分を逃げ面最大摩耗幅とした。
Claims (3)
- 基材と、前記基材の上に硬質皮膜を有する被覆工具であって、
前記硬質皮膜は、金属(半金属を含む)元素の総量に対して、Alを65原子%以上90原子%以下で含有しており、Crを10原子%以上35原子%以下で含有しており、金属元素(半金属を含む)と非金属元素の総量に対して、アルゴン(Ar)を0.50原子%以下で含有している窒化物または炭窒化物であって面心立方格子構造を有し、
前記硬質皮膜は面心立方格子構造の(111)面に関する正極点図のα軸のX線強度分布において、α角80°~90°の範囲に最大強度Iaを示し、α角0°~70°の範囲の強度は前記最大強度Iaの35%以下であることを特徴とする被覆工具。 - 前記α角0°~70°の範囲の強度は、前記最大強度Iaの30%以下であることを特徴とする請求項1に記載の被覆工具。
- 前記硬質皮膜は、X線回折または透過電子顕微鏡の制限視野回折パターンの強度プロファイルにおいて、面心立方格子構造の(111)面が最大強度を示すことを特徴とする請求項1または2に記載の被覆工具。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280056623.3A CN117836078A (zh) | 2021-08-19 | 2022-08-19 | 包覆工具 |
EP22857086.7A EP4389329A1 (en) | 2021-08-19 | 2022-08-19 | Coated tool |
KR1020247004988A KR20240028537A (ko) | 2021-08-19 | 2022-08-19 | 피복 공구 |
JP2023542461A JPWO2023022230A1 (ja) | 2021-08-19 | 2022-08-19 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021134034 | 2021-08-19 | ||
JP2021-134034 | 2021-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023022230A1 true WO2023022230A1 (ja) | 2023-02-23 |
Family
ID=85239869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/031386 WO2023022230A1 (ja) | 2021-08-19 | 2022-08-19 | 被覆工具 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4389329A1 (ja) |
JP (1) | JPWO2023022230A1 (ja) |
KR (1) | KR20240028537A (ja) |
CN (1) | CN117836078A (ja) |
WO (1) | WO2023022230A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009061514A (ja) * | 2007-09-04 | 2009-03-26 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具 |
JP2009203485A (ja) * | 2008-02-26 | 2009-09-10 | Tungaloy Corp | 被覆部材 |
JP2010094764A (ja) * | 2008-10-15 | 2010-04-30 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐欠損性、耐摩耗性を発揮する表面被覆切削工具 |
JP2010094761A (ja) * | 2008-10-15 | 2010-04-30 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具 |
JP2016032861A (ja) | 2014-07-29 | 2016-03-10 | 日立金属株式会社 | 被覆工具 |
JP2016107397A (ja) * | 2014-11-28 | 2016-06-20 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP2018059146A (ja) | 2016-10-04 | 2018-04-12 | 株式会社神戸製鋼所 | 硬質皮膜、硬質皮膜被覆部材及び硬質皮膜の製造方法 |
JP2020040175A (ja) | 2018-09-11 | 2020-03-19 | 株式会社タンガロイ | 被覆切削工具 |
JP2021134034A (ja) | 2020-02-26 | 2021-09-13 | 株式会社三井E&Sマシナリー | 誘導加熱装置およびその制御方法 |
-
2022
- 2022-08-19 CN CN202280056623.3A patent/CN117836078A/zh active Pending
- 2022-08-19 WO PCT/JP2022/031386 patent/WO2023022230A1/ja active Application Filing
- 2022-08-19 EP EP22857086.7A patent/EP4389329A1/en active Pending
- 2022-08-19 KR KR1020247004988A patent/KR20240028537A/ko unknown
- 2022-08-19 JP JP2023542461A patent/JPWO2023022230A1/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009061514A (ja) * | 2007-09-04 | 2009-03-26 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具 |
JP2009203485A (ja) * | 2008-02-26 | 2009-09-10 | Tungaloy Corp | 被覆部材 |
JP2010094764A (ja) * | 2008-10-15 | 2010-04-30 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐欠損性、耐摩耗性を発揮する表面被覆切削工具 |
JP2010094761A (ja) * | 2008-10-15 | 2010-04-30 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具 |
JP2016032861A (ja) | 2014-07-29 | 2016-03-10 | 日立金属株式会社 | 被覆工具 |
JP2016107397A (ja) * | 2014-11-28 | 2016-06-20 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP2018059146A (ja) | 2016-10-04 | 2018-04-12 | 株式会社神戸製鋼所 | 硬質皮膜、硬質皮膜被覆部材及び硬質皮膜の製造方法 |
JP2020040175A (ja) | 2018-09-11 | 2020-03-19 | 株式会社タンガロイ | 被覆切削工具 |
JP2021134034A (ja) | 2020-02-26 | 2021-09-13 | 株式会社三井E&Sマシナリー | 誘導加熱装置およびその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240028537A (ko) | 2024-03-05 |
CN117836078A (zh) | 2024-04-05 |
EP4389329A1 (en) | 2024-06-26 |
JPWO2023022230A1 (ja) | 2023-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3437774B1 (en) | Coated cutting tool | |
WO2022172954A1 (ja) | 被覆工具 | |
US10974323B2 (en) | Coated cutting tool | |
JP6555796B2 (ja) | 被覆切削工具 | |
JP2023179643A (ja) | 被覆工具 | |
JP2012228735A (ja) | 耐摩耗性に優れる被覆工具およびその製造方法 | |
WO2022202729A1 (ja) | 被覆切削工具 | |
WO2023022230A1 (ja) | 被覆工具 | |
WO2019035219A1 (ja) | 被覆切削工具 | |
WO2020194899A1 (ja) | 被覆切削工具 | |
WO2024048304A1 (ja) | 被覆工具 | |
US20240352572A1 (en) | Coated tool | |
WO2024004873A1 (ja) | 被覆切削工具 | |
WO2023181927A1 (ja) | 被覆部材 | |
JP2024027836A (ja) | 被覆工具 | |
JP2024075109A (ja) | 被覆切削工具 | |
JP2024047170A (ja) | 被覆切削工具 | |
JP2024132010A (ja) | 被覆切削工具 | |
WO2020039735A1 (ja) | 切削工具 | |
JP2021112805A (ja) | 被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22857086 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18682945 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20247004988 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247004988 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023542461 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280056623.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022857086 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022857086 Country of ref document: EP Effective date: 20240319 |