WO2023022192A1 - 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置 - Google Patents
回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置 Download PDFInfo
- Publication number
- WO2023022192A1 WO2023022192A1 PCT/JP2022/031190 JP2022031190W WO2023022192A1 WO 2023022192 A1 WO2023022192 A1 WO 2023022192A1 JP 2022031190 W JP2022031190 W JP 2022031190W WO 2023022192 A1 WO2023022192 A1 WO 2023022192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shaft
- shaft unit
- rotation
- central shaft
- rigid
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 38
- 238000012360 testing method Methods 0.000 title abstract description 46
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000011347 resin Substances 0.000 claims abstract description 19
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 10
- 239000004917 carbon fiber Substances 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 238000005452 bending Methods 0.000 claims description 4
- 229920006231 aramid fiber Polymers 0.000 claims description 2
- 238000004891 communication Methods 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 238000009434 installation Methods 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000003638 chemical reducing agent Substances 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 230000009191 jumping Effects 0.000 description 6
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C3/00—Shafts; Axles; Cranks; Eccentrics
- F16C3/02—Shafts; Axles
- F16C3/03—Shafts; Axles telescopic
- F16C3/035—Shafts; Axles telescopic with built-in bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C3/00—Shafts; Axles; Cranks; Eccentrics
- F16C3/02—Shafts; Axles
- F16C3/026—Shafts made of fibre reinforced resin
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C1/00—Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
- F16C1/02—Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing for conveying rotary movements
- F16C1/06—Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing for conveying rotary movements with guiding sheathing, tube or box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C3/00—Shafts; Axles; Cranks; Eccentrics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0807—Measuring electromagnetic field characteristics characterised by the application
- G01R29/0814—Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
- G01R29/0821—Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning rooms and test sites therefor, e.g. anechoic chambers, open field sites or TEM cells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2208/00—Plastics; Synthetic resins, e.g. rubbers
- F16C2208/02—Plastics; Synthetic resins, e.g. rubbers comprising fillers, fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/26—Speed, e.g. rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
Definitions
- the present invention relates to a rotation transmission shaft unit that can effectively transmit rotation at high rotational speed and high torque, and that is easy to install.
- the present invention also provides a transmission device for a motor test bench using the above shaft unit, and a mechanical rotating device such as a motor or a generator existing inside and outside an anechoic chamber using the same shaft. It also relates to a transmission device and a test device for transmitting high torque and high rotation, but blocking electromagnetic noise.
- a rotation transmission device with high installation accuracy that can transmit high-speed rotation and high torque between the motor and the load can be obtained.
- PHEV/PHV Plug-in Hybrid Vehicle
- FCV Fluel Cell Vehicle
- Rotation transmission means in which a rotating shaft is accommodated in a rigid tube, the rigid tube bears the thrust force and the torque reaction force, and the rotating shaft transmits only the rotational force, is used as a torque tube in the power transmission field of automobiles. It was well known.
- the bearing that rotatably supports the shaft is located near the center in the longitudinal direction of the rigid tube as in Patent Document 1, for example.
- the shaft of the rotating device to which the rotating shaft is connected rather than the metal rigid tube supports the rotating shaft, and the shaft unit alone does not have versatility. , For example, it was not intended to transmit high-speed rotation such as 20,000 rpm.
- EMC tests for automobile drive motors have been performed by setting the device under test (motor) to the operating state (standby/normal operation, etc.).
- the motor was in an idling state rather than a loaded state when the automobile was running.
- the difference between the device under test (electric motor) and the anechoic chamber is specified to be 1000 mm or more in the aforementioned international standards. Therefore, the distance between the electric motor and the load motor is assumed to be 1500 mm or more, considering the mechanical mechanism parts such as the radio wave absorber and the coupling to be connected.
- the evaluation test of the electric motor includes uncertain factors other than the electric motor, such as the efficiency of the reduction gear. .
- the propeller shaft 44 on the rear side is a hollow pipe made of carbon fiber reinforced resin (CFRP) aiming at weight reduction and high rigidity because there is room for space as described later
- CFRP carbon fiber reinforced resin
- Patent Document 4 "a pipe-shaped CFRP member in which a shaft for a power transmission shaft is formed of CFRP (carbon fiber reinforced plastic), which is a lightweight and high-strength material" (paragraph number 0018), is described as a highly rigid and lightweight material. Although it is disclosed as a rotation transmission shaft, it is not intended for test bench or EMC testing, nor is it a configuration in which a rotating shaft is housed in a rigid cylinder, it is simply a shaft. Moreover, the utilization in Patent Documents 3 and 4 does not intend the high speed rotation of 15000 rpm or more from the low speed rotation achieved by the present invention.
- JP 2009-280053 A Japanese Patent Application Laid-Open No. 2006-143130 JP 2016-055658 A JP 2011-017413 A
- the invention of the present application aims at facilitating the centering operation in the device for transmitting rotation between the drive side and the driven side, and also provides a mechanism for connecting the rotational force input side and the output side of the rotating shaft.
- Another challenge is to enable high-speed rotation even if the span is long, and in addition to these, in the case of those that block radio waves between the driving side and the driven side, in addition to these, high-speed rotation, high torque transmission, and excellent radio wave blocking are performed. The issue is to make it possible to
- the driving source rotating device and the driven rotating device are connected by a rotating shaft
- the driving source and the driven rotating device are both fixed to the floor, and the centering of the rotating shaft between the driving source device and the driven device is highly accurate.
- the rotating shaft connecting them, the driving source, and the driven rotating device must all be accurately aligned.
- the bearings that support near both ends of the rotating shaft must be fixed to the surface plate that fixes the driving source and the driven rotating body while accurately supporting the rotating shaft. .
- the distance between the support bearings has a long span of, for example, 700 mm, and high-speed rotation of 20,000 rpm is unrealizable because the phenomenon of jumping rope occurs. It was possible.
- installing the reducer reduces the rotation speed of the output shaft of the reducer, but increases the torque.
- the number of revolutions of the connected load motor can be reduced to a fraction of that, but the torque is required several times.
- by installing a speed reducer it is possible to operate the electric motor at high speed, but the torque is small, so it is not sufficient for testing electric motors.
- the present invention provides a rotation transmission shaft unit, a rotation transmission mechanism, and an anechoic chamber that can solve these problems. Since the present invention solves these problems, it is possible to provide simple and highly accurate test equipment for rotating electrical equipment such as motors under various conditions such as low speed rotation high torque and high speed rotation low torque. can be provided.
- a shaft that includes a central shaft and a rigid cylinder through which the central shaft passes and having bearings at both ends of the rigid cylinder that rotatably support the central shaft at both ends of the rigid cylinder.
- a shaft unit for transmitting rotation, wherein the central shaft is made of fiber-reinforced resin.
- the shaft unit according to [1], wherein the distance between the bearings at both ends is 700 mm or more.
- the shaft unit of [2], wherein the central shaft has a bending stiffness to mass ratio capable of rotating at 20,000 revolutions per minute or more.
- the ratio of the bending stiffness to the mass density of the rotating shaft (herein referred to as the bending stiffness to mass ratio)
- the inventors of the present invention have realized that it is possible if the size is large and yet the weight is light. Then, the inventors came up with the idea that a shaft made of carbon fiber reinforced resin should be used for this purpose. Since the shaft made of carbon fiber reinforced resin contains carbon, we also came up with the idea that the electric charge of the rotating shaft that is conducted can be immediately released to the ground potential via the metal bearing. Furthermore, the shaft and a conductive rigid cylinder covering it, such as a metal rigid cylinder cover, are passed through the wall of the anechoic chamber. I came up with the idea of being able to shield the
- the jump rope phenomenon cannot be prevented for bearing spans exceeding 700 mm when using metal shafts.
- the torque capacity of the load motor is maximized without using a speed reducer. Since no speed reducer is used, the distance between the electric motor, which is the device under test, and the load motor outside the anechoic chamber is long. No problems with rotation.
- conductive rigid cylinder refers to the conductivity of metals such as aluminum, iron, copper, brass, etc., that is, a material having a volume resistance value of 2 ⁇ 10-8 ⁇ m to 100 ⁇ 10-8 ⁇ m at room temperature.
- rigid body also means having a degree of rigidity that these metals have.
- test bench is used to connect a rotational force driving source fixed to the floor and a driven rotating device fixed to the same floor, and to perform some kind of test such as an output test of the rotational driving source and a radio wave test in a rotating state. means equipment for testing.
- shaft length refers to the distance between the bearings at both ends of the rigid tube.
- the conductive rigid cylinder is most preferably a cylinder, but since it is a rigid body, it is sufficient if the position of the conductive rigid cylinder does not change. is fixed, and the rotation axis position of the rotation shaft is sufficiently stabilized for centering the rotation shaft. If each end of the conductive rigid tube is fixed to the installation floor at a position close to each end, the positioning of the bearing with respect to the installation site floor will be much stronger than the positioning that depends on the rigidity of the rigid tube, and the bearing positioning of the rotating shaft will be the most accurate. Become.
- the floor may be a platen so that the relative positions of the ends of the rotating shaft are fixed and immovable.
- the conductive rigid cylinder which is the housing of the rotary shaft, is a rigid body, the positional fluctuation of the joint with the wall when the wall is penetrated is extremely small during operation.
- the shaft rotating at high speed is shielded by a shield box, which is a conductive rigid cylinder, and metal bearings are used at both ends of the shield box to support the rotating shaft, aiming at the effect of grounding. Further, conductive resin brushes are brought into contact with the periphery of the shaft at both ends of the shield box to close the space, thereby improving the shield effect.
- the shield box is conductive and electrically connected to the electromagnetic shielding wall to maintain electromagnetic shielding.
- the rigid cylinder rotatably supports the rotating shaft by bearings at both ends of the cylinder, the rotation axis positioning of the rotating shaft is ensured by the composite cylinder, and the rotating equipment to which the rotating shaft is connected is secured.
- the rigid cylinder and the rotating shaft supported by the bearings at both ends are made of fiber-reinforced resin, the phenomenon of jumping rope occurs even if the rigid cylinder is unusually long. is prevented, and there is an effect that high-speed rotation of 20,000 rpm or more becomes possible. Therefore, even if the distance between two rotating devices that transmit rotation by the shaft is long, it is possible to transmit high-speed rotation.
- the rigid cylinder of the unit guarantees the axial position accuracy of the rotating shaft. Since the positioning accuracy in the unit is secured by the rigid cylinder, positioning that enables high-speed rotation can be easily executed. That is, if the positioning of the rigid cylinder of the unit is performed, the spatial positioning of the rotation support bearing of the rotating shaft at the installation position is performed, so the centering of the rotating shaft is easy,
- the conductive rigid tube is a rigid body, the bearing positioning of the rotating shaft is accurate, and there is an effect of preventing jumping rope.
- the conductive rigid cylinder which is the housing of the rotary shaft, is a rigid body, the positional fluctuation of the joint with the wall when the wall is penetrated is extremely small during operation.
- the rotating shaft is made of fiber-reinforced resin and has sufficiently high flexural rigidity relative to its mass. Therefore, even if the distance between the bearings at both ends of the rigid cylinder is 700 mm or more, there is an effect that the jump rope phenomenon does not occur during high-speed rotation. .
- Carbon fiber reinforced resin or aramid fiber reinforced resin is most suitable as the fiber reinforced resin. And if carbon fiber is used, it is most suitable for EMC test equipment using an anechoic chamber, which will be described later.
- FIG. 1 is a diagram of an anechoic chamber having a rotation transmission device using the shaft unit of the present invention
- FIG. 1 is an example of the shaft unit of the present invention.
- a central shaft 1 that transmits rotation is made of fiber-reinforced resin.
- This central shaft 1 passes through a rigid cylinder 2 in the axial direction. rotatably supported.
- the rigid cylinder 2 may have a bearing-to-bearing distance of 700 mm or more, and the bearing-to-bearing distance may be 1400 mm.
- the shaft 1 is preferably a hollow shaft made of carbon fiber reinforced resin.
- the rigid tube 2 is preferably cylindrical and made of metal, and has a thickness that does not cause resonance or deformation even at high speed rotation of, for example, 20,000 rpm.
- the shaft unit of the present invention in which the central shaft 1 and the rigid tube 2 are combined via the bearing 3, is capable of supporting the rotating shaft as long as the rigid tube 2 of the shaft unit is firmly installed. 3 positioning is performed, there is no need to secure the positioning accuracy of the rotation axis of the central shaft between the drive side and the driven side of rotation transmission, and the shaft unit can be used for various purposes.
- FIG. 2 shows an example of a motor test bench with the shaft unit of the invention.
- a motor 4 as a drive-side rotating machine applies a rotational force to the central shaft 1 via some kind of rotation transmission joint, and the rotational force is applied by the central shaft 1 to the load via the central shaft 1 and some kind of rotation transmission joint. It is transmitted to the dynamo 6 as a side rotating machine.
- the motor 4 and dynamo 6 are fixed to rigid mounting bases 7, 8, while the rotatable support of the central shaft 1 is provided by bearings 3 provided at both ends of the rigid tube 2, which is It is installed and fixed to the installation base 5 .
- the center shaft and the rigid tube 2 can serve as a support base for the motor 4 and the dynamo 6, they can be isolated from vibrations caused by the motor 4 and the dynamo 6.
- FIG. 3 shows a shield room wall partial cross-sectional view at the shaft penetration position of an electromagnetic shield room, which is equipped with the shaft unit of the present invention and can be used for EMC tests and the like.
- Electromagnetic shielding brushes 9 are provided just outside the bearings of the rigid tube 2 for electromagnetic shielding.
- the shield wall 10 is in electrical communication with the rigid tube 2 by direct contact, contact through a conductive flexible material such as a metal mesh, or by connecting a flexible metal bellows to the shield wall and the conductive rigid tube 2.
- Electromagnetic shielding is provided by, for example.
- the conductive rigid tube 2 is joined to the shield wall 3 and may be fixed to the floor on which the device is installed, for example, near both ends via the installation base 5, but not necessarily at both ends. good too.
- the center shaft 1 is made of carbon fiber reinforced resin, and the center shaft and the conductive rigid cylinder 2 are electrically connected to each other by bearings 3 and conductive brushes 9 .
- the conductive brush closes the gap between the conductive rigid cylinder 2 and the entire circumference of the central shaft with a density sufficient to sufficiently shield the electromagnetic wave of the desired frequency. Leakage of current or electromagnetic waves from one side of the wall to the other is avoided because the current escapes from the housing 2 to the wall via the means of conduction between the rotating shaft and the housing 2 rather than entering through the conducting shaft. , is prevented.
- the shield wall and conductive housing need not be completely enclosed if electromagnetic wave leakage is sufficiently small.
- This anechoic chamber is an anechoic chamber suitable for use in, for example, EMC testing of electric motors for electric vehicles.
- the conductive brush 9 may be a metal brush.
- the anechoic chamber using the rotation transmission mechanism according to the present invention makes it possible to perform tests by transmitting rotational motion that rotates at high speed with high torque, as described above, while maintaining electromagnetic shielding properties. It is. Therefore, an anechoic chamber for EMC testing using this makes it possible to perform testing at high-speed rotation, which has never been possible before.
- the anechoic chamber according to the present invention can effectively block radio waves of 9 kHz to several GHz, which are necessary for EMC tests.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
本発明は、また、上記シャフトユニットを用いた、モーターテストベンチ用伝達装置、および、同シャフトを用いた、電波暗室の室内と室外とに存在するモーターや発電機等の機械的回転装置の間の、高トルク高回転を伝達するが、電磁的ノイズは遮断する、伝達装置および試験装置にも関する。
モーター試験用モーターテストベンチに用いるものでは、モーターと負荷との間の高速回転高トルクが伝達できる、設置精度の高い回転伝達装置が得られ、また、EV(Electric Vehicle)、HV(Hybrid Vehicle)、PHEV・PHV(Plug-in Hybrid Vehicle)、FCV(Fuel Cell Vehicle)等で使用される自動車の動力用電気モーターとインバーターシステムを電波暗室内において実車の走行状態を模擬しながら部品としてのEMC評価試験を実施するための装置においては、従来に無い長スパン、高速回転での使用に好適な回転伝達機構が得られる。
同文献には、「後側のプロペラシャフト44は、後述するようにスペースに余裕がある為、軽量化と高剛性化を狙い、炭素繊維強化樹脂(CFRP)製の中空パイプとしている」(段落番号0044)とあるように、自動車のプロペラシャフトにおいて軽量化と高剛性化のためにはCFRP製の回転力伝達手段を用いることが開示されている。しかしながら、これは自動車のプロペラシャフトであって、電気モーターのEMC試験との関連性は無く、必要トルクおよび回転数においても、EMC試験の電波暗室における室内と室外の間で回転力を伝達することを示すものではない。
また、特許文献3及び4における利用は、今回の発明が達成した低速回転から15000rpm以上の高速回転を意図したものではない。
よって、伝達ができるトルクが大きく、シャフトの長さは長く、それでいて、高速回転させても問題が起きず、電波暗室の壁を通過してしまう電磁ノイズは完全に遮断される、または、可能な限り小さく抑えられる、という性能を有する回転伝達機構を提供するという課題がある。
本発明は、これらの課題を解決することができる回転伝達シャフトユニット、回転伝達機構、および電波暗室を提供する。本発明は、これらの課題を解決しているので低速回転高トルクや高速回転低トルクなど様々な条件でのモーター等の回転電気機器の試験設備を簡便、高精度に提供でき、また、EMC試験を可能にする装置を提供することができる。
[1]中心シャフトと、中心シャフトがその中を貫通している剛性筒であって中心シャフトを剛性筒の両端部で回転可能に支持するベアリングを両端部に有する前記剛性筒と、を含むシャフトユニットであって、前記中心シャフトは繊維強化樹脂製である、回転を伝達するシャフトユニット。
[2]前記両端部のベアリング間距離が、700mm以上である、[1]に記載のシャフトユニット。
[3]中心シャフトが、毎分2万回転以上で回転可能な曲げ剛性対質量比を有する[2]に記載のシャフトユニット。
[4]中心シャフトが炭素繊維強化樹脂製である、[1]~[3]のいずれか一つに記載のシャフトユニット。
[5]中心シャフトユニットおよび剛性筒が導電性であり、両端ベアリング位置において中心シャフトユニットと剛性筒とを電気的に導通する、[1]~[4]のいずれか一つに記載のシャフトユニット。
[6]中心シャフトと剛性筒とを電気的に導通する手段が、中心シャフトと導電性剛性筒との間の空間を塞ぐ導電体を含む、[5]に記載の装置。
[7][1]~[6]のいずれか一つに記載のシャフトユニット、駆動側架台および被駆動側架台を含み、前記シャフトユニットが、剛性筒両端位置において駆動側架台および被駆動側架台のそれぞれに固定された、回転機間回転伝達装置
[8][7]に記載の回転伝達装置を有する、電波暗室。
炭素繊維強化樹脂製のシャフトは、カーボンが含まれているため、伝導される回転シャフトの電荷を、金属ベアリングを経由して即座に接地電位に逃がすことができるという点にも想到した。
更に、シャフトとそれを覆う導電性剛性筒例えば金属製剛性筒カバーを電波暗室の壁に貫通させるが、金属カバーに電気的に接続された導電性繊維がシャフト表面の円周を囲むことで高周波をシールドできることに想到した。
また、テストベンチの語は、床に固定した回転力駆動源と、同じ床に固定した被駆動回転装置とを連結して、回転駆動源の出力試験や、回転状態における電波試験等の、何らかのテストを行う設備を意味する。
さらに、「シャフト長」の語は、剛性筒の両端のベアリング間距離をいうものである。
この床は、回転シャフトの両端の相対的位置が確定し不動となるように、定盤であってよい。
また、回転シャフトのハウジングとなる導電性剛性筒は、剛体であるので、壁を貫通させたような場合の壁との接合部の、運転時の位置変動も極めて小さいものである。
さらに、シールドボックスの両はじに導電性樹脂ブラシをシャフトの周囲に接触させ、空間を塞ぐことでシールド効果を向上させる。
シールドボックスは導電性であり、電磁遮蔽壁と電気的にも接続され、電磁的遮蔽が保たれる。
すなわち、ユニットの剛性筒の位置決めを実行すれば、設置位置における回転シャフトの回転支持ベアリングの空間的位置決め、が実行されるので、回転シャフトの芯出しが簡便であり、
また、回転シャフトのハウジングとなる導電性剛性筒は、剛体であるので、壁を貫通させたような場合の壁との接合部の、運転時の位置変動も極めて小さいものである。
シャフトを炭素繊維強化樹脂にすることで、縄跳び現象の発生を抑えることが可能となる。
それ故に、従来よりも高トルクかつ高速回転を伝達することが可能となり、たとえば、毎分2万回転、伝達トルク350Nmを、シャフト長900mmでも、それを超えるものでも実現することができる。
剛性筒2は、ベアリング間距離が700mm以上のものも可能であり、ベアリング間距離は1400mmであってもよい。軽量で高速回転に耐える回転シャフトを実現するために、シャフト1は炭素繊維強化樹脂製の中空シャフトが好ましい。
また、中心シャフト1と剛性筒2とがベアリング3を介して組み合わされている本発明のシャフトユニットは、シャフトユニットの剛性筒2を強固に設置しさえすれば、回転シャフトの支持点であるベアリング3の位置決めがなされるため、回転伝達の駆動側と被駆動側が中心シャフトの回転軸の位置決め精度を担保しなくてもよく、シャフトユニットとしていろいろな用途に使用できる。
駆動側回転機としての例えばモーター4が回転力を中心シャフト1に、何らかの回転伝達ジョイントを介して印加し、回転力は中心シャフト1によって、やはり中心シャフト1となんらかの回転伝達ジョイントを経由して負荷側回転機としてのダイナモ6に伝達される。
モーター4およびダイナモ6は、強固な設置基盤7、8に固定されているが、中心シャフト1の回転可能な支持は、剛性筒2の両端に設けたベアリング3により行われ、剛性筒2が、設置基盤5に設置固定されている。
中心シャフトの回転軸心出し精度は、ベアリング3と剛性筒2によりなされるので、モーター4およびダイナモ6の側では、回転伝達ジョイントの自由度がより多く得られる。
また、中心シャフトおよび剛性筒2は、モーター4およびダイナモ6の支持基盤とはできるため、モーター4およびダイナモ6による振動から遮断することが可能となる。
電磁シールドのために、剛性筒2のベアリングのすぐ外側に、電磁シールドブラシ9が設けられている。図3においても、図2と同様に、図の左側に駆動回転機が位置し、右側に負荷回転機が位置し、シールドルームの室内が図3の左側であるとすると、シールド壁10の右側がシールドルーム室外である。
シールド壁10は剛性筒2と電気的に導通するように、直接接触、導電性の柔軟な物質たとえば金属メッシュを介した接触、柔軟な金属蛇腹をシールド壁および導電性剛性筒2に接続すること等によって、電磁シールドがなされている。
導電性ブラシは、中心シャフトの周囲全体の、導電性の剛性筒2との間の隙間を、所望の周波数の電磁波が十分シールドされるに足りる密度で、塞いでいる。
壁の一方の側から他方の側への電流または電磁波の漏洩は、電流が導電シャフトを通じて侵入せずに、回転シャフトとハウジング2との導通手段を経由して、ハウジング2から壁へと逃げるので、防止される。シールド壁と導電性ハウジングとは、電磁波漏洩が十分に小さければ、完全に密閉されている必要はない。
この電波暗室は、例えば電気自動車用の電動機のEMC試験に使用するのに好適な電波暗室である。
2 剛性筒
3 ベアリング
4 駆動回転機
5 シャフトユニット支持基盤
6 負荷回転機
7 駆動側基盤
8 負荷側基盤
9 電磁シールドブラシ
10 シールド壁
Claims (8)
- 中心シャフトと、中心シャフトがその中を貫通している剛性筒であって中心シャフトを剛性筒の両端部で回転可能に支持するベアリングを両端部に有する前記剛性筒と、を含むシャフトユニットであって、前記中心シャフトは繊維強化樹脂製である、回転を伝達するシャフトユニット。
- 前記両端部のベアリング間距離が、700mm以上である、請求項1に記載のシャフトユニット。
- 中心シャフトが、毎分2万回転以上で回転可能な曲げ剛性対質量比を有する、請求項2に記載のシャフトユニット。
- 中心シャフトが炭素繊維強化樹脂製またはアラミド繊維強化樹脂製である、請求項1~3のいずれか一項に記載のシャフトユニット。
- 中心シャフトユニットおよび剛性筒が導電性であり、両端ベアリング位置において中心シャフトユニットと剛性筒とを電気的に導通する、請求項1~4のいずれか一項に記載のシャフトユニット。
- 中心シャフトと剛性筒とを電気的に導通する手段が、中心シャフトと導電性剛性筒との間の空間を塞ぐ導電体を含む、請求項5に記載のシャフトユニット。
- 請求項1~6のいずれか一項に記載のシャフトユニットを有し、シャフトユニットが、剛性筒両端位置において駆動側架台と被駆動側架台とにそれぞれ固定された、回転機間回転伝達装置。
- 請求項1~6のいずれか一項に記載のシャフトユニットを有する電波暗室
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280056718.5A CN117980612A (zh) | 2021-08-19 | 2022-08-18 | 旋转传动转轴单元、以及使用其的发动机和变频器试验台和emc试验设备装置 |
KR1020247008610A KR20240046763A (ko) | 2021-08-19 | 2022-08-18 | 회전 전달 샤프트 유닛 및 이를 이용한 모터 및 인버터 테스트 벤치 및 emc 테스트 장비 |
US18/684,328 US20240271655A1 (en) | 2021-08-19 | 2022-08-18 | Rotation transmission shaft unit, and motor, inverter test bench, and emc test equipment device using said shaft unit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-133948 | 2021-08-19 | ||
JP2021133948A JP2023028317A (ja) | 2021-08-19 | 2021-08-19 | 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023022192A1 true WO2023022192A1 (ja) | 2023-02-23 |
Family
ID=85240801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/031190 WO2023022192A1 (ja) | 2021-08-19 | 2022-08-18 | 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240271655A1 (ja) |
JP (1) | JP2023028317A (ja) |
KR (1) | KR20240046763A (ja) |
CN (1) | CN117980612A (ja) |
WO (1) | WO2023022192A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02198200A (ja) * | 1989-01-27 | 1990-08-06 | Taisei Corp | 電磁シールド材 |
JP2015187234A (ja) * | 2014-03-27 | 2015-10-29 | 東レ株式会社 | 加飾フィルム、加飾複合体およびその製造方法 |
WO2018179280A1 (ja) * | 2017-03-30 | 2018-10-04 | 株式会社牧野フライス製作所 | 主軸装置 |
JP2018168967A (ja) * | 2017-03-30 | 2018-11-01 | Ntn株式会社 | 転がり軸受 |
JP2021141165A (ja) * | 2020-03-04 | 2021-09-16 | 株式会社オータマ | テストベンチ用シールド性回転伝達機構及びそれを用いたモーター/インバーターテストベンチおよびemc試験設備装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4572667B2 (ja) | 2004-11-24 | 2010-11-04 | トヨタ自動車株式会社 | トルクチューブ装置 |
JP4993457B2 (ja) * | 2006-11-30 | 2012-08-08 | Ntn株式会社 | 主軸装置 |
JP4990000B2 (ja) * | 2007-03-29 | 2012-08-01 | コマツNtc株式会社 | 主軸ヘッド |
JP2009280053A (ja) | 2008-05-21 | 2009-12-03 | Toyota Motor Corp | 車両用動力伝達装置 |
JP2011017413A (ja) | 2009-07-10 | 2011-01-27 | Ntn Corp | 動力伝達軸用シャフト |
JP6115531B2 (ja) | 2014-09-05 | 2017-04-19 | マツダ株式会社 | 自動車のパワープラントフレーム構造 |
-
2021
- 2021-08-19 JP JP2021133948A patent/JP2023028317A/ja active Pending
-
2022
- 2022-08-18 KR KR1020247008610A patent/KR20240046763A/ko unknown
- 2022-08-18 WO PCT/JP2022/031190 patent/WO2023022192A1/ja active Application Filing
- 2022-08-18 US US18/684,328 patent/US20240271655A1/en active Pending
- 2022-08-18 CN CN202280056718.5A patent/CN117980612A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02198200A (ja) * | 1989-01-27 | 1990-08-06 | Taisei Corp | 電磁シールド材 |
JP2015187234A (ja) * | 2014-03-27 | 2015-10-29 | 東レ株式会社 | 加飾フィルム、加飾複合体およびその製造方法 |
WO2018179280A1 (ja) * | 2017-03-30 | 2018-10-04 | 株式会社牧野フライス製作所 | 主軸装置 |
JP2018168967A (ja) * | 2017-03-30 | 2018-11-01 | Ntn株式会社 | 転がり軸受 |
JP2021141165A (ja) * | 2020-03-04 | 2021-09-16 | 株式会社オータマ | テストベンチ用シールド性回転伝達機構及びそれを用いたモーター/インバーターテストベンチおよびemc試験設備装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20240046763A (ko) | 2024-04-09 |
CN117980612A (zh) | 2024-05-03 |
JP2023028317A (ja) | 2023-03-03 |
US20240271655A1 (en) | 2024-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR112012030189B1 (pt) | dispositivo de transmissão de potência para veículo elétrico | |
WO2021177408A1 (ja) | シールド性回転伝達機構及びそれを用いたモーター/インバーターテストベンチおよびemc試験設備装置 | |
JP2012080200A (ja) | アンテナ装置 | |
WO2023022192A1 (ja) | 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置 | |
KR20110086088A (ko) | 동력 전달 장치 | |
KR102077862B1 (ko) | 회전 기계의 전자파 측정 장치 | |
CN219788393U (zh) | 机器人关节及机器人 | |
CN105897514B (zh) | 一种风力发电机组通讯滑环动态加载平台 | |
CN220929984U (zh) | 轴装置以及测试系统 | |
CN114337082B (zh) | 用于电机的刹车锁定装置、电机以及风力发电机组 | |
CN112436675A (zh) | 一种航空发动机的双发电机结构 | |
CN113103279A (zh) | 一种机器人关节及机器人 | |
US20230268786A1 (en) | Electric machine arrangement | |
CN219999159U (zh) | 一种便于动平衡校准的电机 | |
CN218470049U (zh) | 一种高速测功机系统台架 | |
US20230353019A1 (en) | Electric machine arrangement | |
CN111077449A (zh) | 电动机风冷散热评价装置与电动机风冷散热评价方法 | |
KR20030051382A (ko) | 회전전기 | |
CN217805217U (zh) | 动力装置、推进器及水上设备 | |
CN217747764U (zh) | 涂布辊驱动机构 | |
CN220910396U (zh) | 电驱总成及车辆 | |
CN114649897B (zh) | 用于电动车辆的电机附接结构 | |
CN217406289U (zh) | 电机转子轴固定轴承前置结构 | |
CN213547063U (zh) | 一种便于排线维修的盾构机用电气保护装置 | |
CN117526625A (zh) | 用于电动或混合动力车辆的推进系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22858510 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280056718.5 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247008610 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22858510 Country of ref document: EP Kind code of ref document: A1 |