WO2023022192A1 - 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置 - Google Patents

回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置 Download PDF

Info

Publication number
WO2023022192A1
WO2023022192A1 PCT/JP2022/031190 JP2022031190W WO2023022192A1 WO 2023022192 A1 WO2023022192 A1 WO 2023022192A1 JP 2022031190 W JP2022031190 W JP 2022031190W WO 2023022192 A1 WO2023022192 A1 WO 2023022192A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
shaft unit
rotation
central shaft
rigid
Prior art date
Application number
PCT/JP2022/031190
Other languages
English (en)
French (fr)
Inventor
勝 中山
郊二 梶谷
Original Assignee
株式会社オータマ
株式会社戸田レーシング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オータマ, 株式会社戸田レーシング filed Critical 株式会社オータマ
Priority to CN202280056718.5A priority Critical patent/CN117980612A/zh
Priority to KR1020247008610A priority patent/KR20240046763A/ko
Priority to US18/684,328 priority patent/US20240271655A1/en
Publication of WO2023022192A1 publication Critical patent/WO2023022192A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • F16C3/035Shafts; Axles telescopic with built-in bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/02Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing for conveying rotary movements
    • F16C1/06Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing for conveying rotary movements with guiding sheathing, tube or box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0821Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning rooms and test sites therefor, e.g. anechoic chambers, open field sites or TEM cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/02Plastics; Synthetic resins, e.g. rubbers comprising fillers, fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/26Speed, e.g. rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus

Definitions

  • the present invention relates to a rotation transmission shaft unit that can effectively transmit rotation at high rotational speed and high torque, and that is easy to install.
  • the present invention also provides a transmission device for a motor test bench using the above shaft unit, and a mechanical rotating device such as a motor or a generator existing inside and outside an anechoic chamber using the same shaft. It also relates to a transmission device and a test device for transmitting high torque and high rotation, but blocking electromagnetic noise.
  • a rotation transmission device with high installation accuracy that can transmit high-speed rotation and high torque between the motor and the load can be obtained.
  • PHEV/PHV Plug-in Hybrid Vehicle
  • FCV Fluel Cell Vehicle
  • Rotation transmission means in which a rotating shaft is accommodated in a rigid tube, the rigid tube bears the thrust force and the torque reaction force, and the rotating shaft transmits only the rotational force, is used as a torque tube in the power transmission field of automobiles. It was well known.
  • the bearing that rotatably supports the shaft is located near the center in the longitudinal direction of the rigid tube as in Patent Document 1, for example.
  • the shaft of the rotating device to which the rotating shaft is connected rather than the metal rigid tube supports the rotating shaft, and the shaft unit alone does not have versatility. , For example, it was not intended to transmit high-speed rotation such as 20,000 rpm.
  • EMC tests for automobile drive motors have been performed by setting the device under test (motor) to the operating state (standby/normal operation, etc.).
  • the motor was in an idling state rather than a loaded state when the automobile was running.
  • the difference between the device under test (electric motor) and the anechoic chamber is specified to be 1000 mm or more in the aforementioned international standards. Therefore, the distance between the electric motor and the load motor is assumed to be 1500 mm or more, considering the mechanical mechanism parts such as the radio wave absorber and the coupling to be connected.
  • the evaluation test of the electric motor includes uncertain factors other than the electric motor, such as the efficiency of the reduction gear. .
  • the propeller shaft 44 on the rear side is a hollow pipe made of carbon fiber reinforced resin (CFRP) aiming at weight reduction and high rigidity because there is room for space as described later
  • CFRP carbon fiber reinforced resin
  • Patent Document 4 "a pipe-shaped CFRP member in which a shaft for a power transmission shaft is formed of CFRP (carbon fiber reinforced plastic), which is a lightweight and high-strength material" (paragraph number 0018), is described as a highly rigid and lightweight material. Although it is disclosed as a rotation transmission shaft, it is not intended for test bench or EMC testing, nor is it a configuration in which a rotating shaft is housed in a rigid cylinder, it is simply a shaft. Moreover, the utilization in Patent Documents 3 and 4 does not intend the high speed rotation of 15000 rpm or more from the low speed rotation achieved by the present invention.
  • JP 2009-280053 A Japanese Patent Application Laid-Open No. 2006-143130 JP 2016-055658 A JP 2011-017413 A
  • the invention of the present application aims at facilitating the centering operation in the device for transmitting rotation between the drive side and the driven side, and also provides a mechanism for connecting the rotational force input side and the output side of the rotating shaft.
  • Another challenge is to enable high-speed rotation even if the span is long, and in addition to these, in the case of those that block radio waves between the driving side and the driven side, in addition to these, high-speed rotation, high torque transmission, and excellent radio wave blocking are performed. The issue is to make it possible to
  • the driving source rotating device and the driven rotating device are connected by a rotating shaft
  • the driving source and the driven rotating device are both fixed to the floor, and the centering of the rotating shaft between the driving source device and the driven device is highly accurate.
  • the rotating shaft connecting them, the driving source, and the driven rotating device must all be accurately aligned.
  • the bearings that support near both ends of the rotating shaft must be fixed to the surface plate that fixes the driving source and the driven rotating body while accurately supporting the rotating shaft. .
  • the distance between the support bearings has a long span of, for example, 700 mm, and high-speed rotation of 20,000 rpm is unrealizable because the phenomenon of jumping rope occurs. It was possible.
  • installing the reducer reduces the rotation speed of the output shaft of the reducer, but increases the torque.
  • the number of revolutions of the connected load motor can be reduced to a fraction of that, but the torque is required several times.
  • by installing a speed reducer it is possible to operate the electric motor at high speed, but the torque is small, so it is not sufficient for testing electric motors.
  • the present invention provides a rotation transmission shaft unit, a rotation transmission mechanism, and an anechoic chamber that can solve these problems. Since the present invention solves these problems, it is possible to provide simple and highly accurate test equipment for rotating electrical equipment such as motors under various conditions such as low speed rotation high torque and high speed rotation low torque. can be provided.
  • a shaft that includes a central shaft and a rigid cylinder through which the central shaft passes and having bearings at both ends of the rigid cylinder that rotatably support the central shaft at both ends of the rigid cylinder.
  • a shaft unit for transmitting rotation, wherein the central shaft is made of fiber-reinforced resin.
  • the shaft unit according to [1], wherein the distance between the bearings at both ends is 700 mm or more.
  • the shaft unit of [2], wherein the central shaft has a bending stiffness to mass ratio capable of rotating at 20,000 revolutions per minute or more.
  • the ratio of the bending stiffness to the mass density of the rotating shaft (herein referred to as the bending stiffness to mass ratio)
  • the inventors of the present invention have realized that it is possible if the size is large and yet the weight is light. Then, the inventors came up with the idea that a shaft made of carbon fiber reinforced resin should be used for this purpose. Since the shaft made of carbon fiber reinforced resin contains carbon, we also came up with the idea that the electric charge of the rotating shaft that is conducted can be immediately released to the ground potential via the metal bearing. Furthermore, the shaft and a conductive rigid cylinder covering it, such as a metal rigid cylinder cover, are passed through the wall of the anechoic chamber. I came up with the idea of being able to shield the
  • the jump rope phenomenon cannot be prevented for bearing spans exceeding 700 mm when using metal shafts.
  • the torque capacity of the load motor is maximized without using a speed reducer. Since no speed reducer is used, the distance between the electric motor, which is the device under test, and the load motor outside the anechoic chamber is long. No problems with rotation.
  • conductive rigid cylinder refers to the conductivity of metals such as aluminum, iron, copper, brass, etc., that is, a material having a volume resistance value of 2 ⁇ 10-8 ⁇ m to 100 ⁇ 10-8 ⁇ m at room temperature.
  • rigid body also means having a degree of rigidity that these metals have.
  • test bench is used to connect a rotational force driving source fixed to the floor and a driven rotating device fixed to the same floor, and to perform some kind of test such as an output test of the rotational driving source and a radio wave test in a rotating state. means equipment for testing.
  • shaft length refers to the distance between the bearings at both ends of the rigid tube.
  • the conductive rigid cylinder is most preferably a cylinder, but since it is a rigid body, it is sufficient if the position of the conductive rigid cylinder does not change. is fixed, and the rotation axis position of the rotation shaft is sufficiently stabilized for centering the rotation shaft. If each end of the conductive rigid tube is fixed to the installation floor at a position close to each end, the positioning of the bearing with respect to the installation site floor will be much stronger than the positioning that depends on the rigidity of the rigid tube, and the bearing positioning of the rotating shaft will be the most accurate. Become.
  • the floor may be a platen so that the relative positions of the ends of the rotating shaft are fixed and immovable.
  • the conductive rigid cylinder which is the housing of the rotary shaft, is a rigid body, the positional fluctuation of the joint with the wall when the wall is penetrated is extremely small during operation.
  • the shaft rotating at high speed is shielded by a shield box, which is a conductive rigid cylinder, and metal bearings are used at both ends of the shield box to support the rotating shaft, aiming at the effect of grounding. Further, conductive resin brushes are brought into contact with the periphery of the shaft at both ends of the shield box to close the space, thereby improving the shield effect.
  • the shield box is conductive and electrically connected to the electromagnetic shielding wall to maintain electromagnetic shielding.
  • the rigid cylinder rotatably supports the rotating shaft by bearings at both ends of the cylinder, the rotation axis positioning of the rotating shaft is ensured by the composite cylinder, and the rotating equipment to which the rotating shaft is connected is secured.
  • the rigid cylinder and the rotating shaft supported by the bearings at both ends are made of fiber-reinforced resin, the phenomenon of jumping rope occurs even if the rigid cylinder is unusually long. is prevented, and there is an effect that high-speed rotation of 20,000 rpm or more becomes possible. Therefore, even if the distance between two rotating devices that transmit rotation by the shaft is long, it is possible to transmit high-speed rotation.
  • the rigid cylinder of the unit guarantees the axial position accuracy of the rotating shaft. Since the positioning accuracy in the unit is secured by the rigid cylinder, positioning that enables high-speed rotation can be easily executed. That is, if the positioning of the rigid cylinder of the unit is performed, the spatial positioning of the rotation support bearing of the rotating shaft at the installation position is performed, so the centering of the rotating shaft is easy,
  • the conductive rigid tube is a rigid body, the bearing positioning of the rotating shaft is accurate, and there is an effect of preventing jumping rope.
  • the conductive rigid cylinder which is the housing of the rotary shaft, is a rigid body, the positional fluctuation of the joint with the wall when the wall is penetrated is extremely small during operation.
  • the rotating shaft is made of fiber-reinforced resin and has sufficiently high flexural rigidity relative to its mass. Therefore, even if the distance between the bearings at both ends of the rigid cylinder is 700 mm or more, there is an effect that the jump rope phenomenon does not occur during high-speed rotation. .
  • Carbon fiber reinforced resin or aramid fiber reinforced resin is most suitable as the fiber reinforced resin. And if carbon fiber is used, it is most suitable for EMC test equipment using an anechoic chamber, which will be described later.
  • FIG. 1 is a diagram of an anechoic chamber having a rotation transmission device using the shaft unit of the present invention
  • FIG. 1 is an example of the shaft unit of the present invention.
  • a central shaft 1 that transmits rotation is made of fiber-reinforced resin.
  • This central shaft 1 passes through a rigid cylinder 2 in the axial direction. rotatably supported.
  • the rigid cylinder 2 may have a bearing-to-bearing distance of 700 mm or more, and the bearing-to-bearing distance may be 1400 mm.
  • the shaft 1 is preferably a hollow shaft made of carbon fiber reinforced resin.
  • the rigid tube 2 is preferably cylindrical and made of metal, and has a thickness that does not cause resonance or deformation even at high speed rotation of, for example, 20,000 rpm.
  • the shaft unit of the present invention in which the central shaft 1 and the rigid tube 2 are combined via the bearing 3, is capable of supporting the rotating shaft as long as the rigid tube 2 of the shaft unit is firmly installed. 3 positioning is performed, there is no need to secure the positioning accuracy of the rotation axis of the central shaft between the drive side and the driven side of rotation transmission, and the shaft unit can be used for various purposes.
  • FIG. 2 shows an example of a motor test bench with the shaft unit of the invention.
  • a motor 4 as a drive-side rotating machine applies a rotational force to the central shaft 1 via some kind of rotation transmission joint, and the rotational force is applied by the central shaft 1 to the load via the central shaft 1 and some kind of rotation transmission joint. It is transmitted to the dynamo 6 as a side rotating machine.
  • the motor 4 and dynamo 6 are fixed to rigid mounting bases 7, 8, while the rotatable support of the central shaft 1 is provided by bearings 3 provided at both ends of the rigid tube 2, which is It is installed and fixed to the installation base 5 .
  • the center shaft and the rigid tube 2 can serve as a support base for the motor 4 and the dynamo 6, they can be isolated from vibrations caused by the motor 4 and the dynamo 6.
  • FIG. 3 shows a shield room wall partial cross-sectional view at the shaft penetration position of an electromagnetic shield room, which is equipped with the shaft unit of the present invention and can be used for EMC tests and the like.
  • Electromagnetic shielding brushes 9 are provided just outside the bearings of the rigid tube 2 for electromagnetic shielding.
  • the shield wall 10 is in electrical communication with the rigid tube 2 by direct contact, contact through a conductive flexible material such as a metal mesh, or by connecting a flexible metal bellows to the shield wall and the conductive rigid tube 2.
  • Electromagnetic shielding is provided by, for example.
  • the conductive rigid tube 2 is joined to the shield wall 3 and may be fixed to the floor on which the device is installed, for example, near both ends via the installation base 5, but not necessarily at both ends. good too.
  • the center shaft 1 is made of carbon fiber reinforced resin, and the center shaft and the conductive rigid cylinder 2 are electrically connected to each other by bearings 3 and conductive brushes 9 .
  • the conductive brush closes the gap between the conductive rigid cylinder 2 and the entire circumference of the central shaft with a density sufficient to sufficiently shield the electromagnetic wave of the desired frequency. Leakage of current or electromagnetic waves from one side of the wall to the other is avoided because the current escapes from the housing 2 to the wall via the means of conduction between the rotating shaft and the housing 2 rather than entering through the conducting shaft. , is prevented.
  • the shield wall and conductive housing need not be completely enclosed if electromagnetic wave leakage is sufficiently small.
  • This anechoic chamber is an anechoic chamber suitable for use in, for example, EMC testing of electric motors for electric vehicles.
  • the conductive brush 9 may be a metal brush.
  • the anechoic chamber using the rotation transmission mechanism according to the present invention makes it possible to perform tests by transmitting rotational motion that rotates at high speed with high torque, as described above, while maintaining electromagnetic shielding properties. It is. Therefore, an anechoic chamber for EMC testing using this makes it possible to perform testing at high-speed rotation, which has never been possible before.
  • the anechoic chamber according to the present invention can effectively block radio waves of 9 kHz to several GHz, which are necessary for EMC tests.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

高回転数高トルクで有効に回転を伝達できる、設置が容易な、回転伝達シャフトユニットを提供すること。また、このシャフトユニットを用いた、高トルク高回転を長スパンで伝達する、伝達装置および試験装置を提供する。 剛性の筒の両端にベアリングを設け、それらのベアリングで、繊維強化樹脂製の中心シャフトを回転可能に支持することによって、設置・心出しが容易で、高トルク高速回転が可能な回転伝達シャフトユニットを実現する。シャフトユニットの剛性筒を支持するだけで中心シャフトの軸位置の安定性が得られ、ユニットとなっているため設置位置への付外しも容易であり回転機の軸との心出しも容易であり、長いスパンでの回転伝達が可能なので、モーターテストベンチやEMC試験装置の高速化が可能になる。

Description

回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびEMC試験設備装置
 本発明は、高回転数高トルクで有効に回転を伝達できる、設置が容易な、回転伝達シャフトユニットに関する。
本発明は、また、上記シャフトユニットを用いた、モーターテストベンチ用伝達装置、および、同シャフトを用いた、電波暗室の室内と室外とに存在するモーターや発電機等の機械的回転装置の間の、高トルク高回転を伝達するが、電磁的ノイズは遮断する、伝達装置および試験装置にも関する。
モーター試験用モーターテストベンチに用いるものでは、モーターと負荷との間の高速回転高トルクが伝達できる、設置精度の高い回転伝達装置が得られ、また、EV(Electric Vehicle)、HV(Hybrid Vehicle)、PHEV・PHV(Plug-in Hybrid Vehicle)、FCV(Fuel Cell Vehicle)等で使用される自動車の動力用電気モーターとインバーターシステムを電波暗室内において実車の走行状態を模擬しながら部品としてのEMC評価試験を実施するための装置においては、従来に無い長スパン、高速回転での使用に好適な回転伝達機構が得られる。
 回転するシャフトを剛体のチューブ内に収容し、剛体チューブがスラスト力およびトルク反力を負担し、回転シャフトは回転力のみを伝達するという形式の回転伝達手段は、トルクチューブとして自動車の動力伝達分野では周知であった。
 そのような、自動車のトルクチューブにおける外側剛性筒は、懸架装置の揺動状態でもスラスト力を剛体チューブが負担するので、シャフトの回転力伝達機構が揺動への対処をする必要がない、また単に回転シャフトを有効に保護するという利点を有するため、自動車の揺動を伴う箇所における回転力伝達等に使用されてきた。
 しかしながら、従来のトルクチューブは、金属シャフトを金属剛体チューブに入れはするものの、シャフトを回転可能に支持する軸受けは、例えば特許文献1のように剛体チューブの長手方向でみて中央に近いところに位置するもの、または、例えば特許文献2のように金属剛体チューブではなく回転シャフトが連結されている回転装置の軸が回転シャフトを支持するものであって、シャフトユニット単体としての汎用性はなく、また、たとえば毎分2万回転といった高速回転を伝達することも想定していないものであった。
前記特許文献2のような従来の回転シャフトの支持は、連結される駆動側および/または被駆動側の回転軸が回転シャフトを支持するため、トルクチューブ単体では回転シャフトの心出しが保証されず、駆動装置および被駆動装置の軸に依存するものであり、長スパン回転伝達が必要な、モーターテストベンチのような装置では、回転伝達シャフトの心出しが非常に困難であった。
 また、回転シャフトは金属製であったため、回転シャフトを支持するベアリング間距離が大きくなると、縄跳び現象が発生してしまうため、毎分2万回転といった高速回転をおこなわせることは不可能であった。
 高速回転伝達装置を用いる分野として、従来、自動車駆動用のモーターのEMC試験は、供試機器(モーター)を動作状態(スタンバイ/通常動作等)に設定して実施していた。しかしながら、モーターは本来の自動車走行時の負荷状態ではなく空転状態であった。
 また、モーター制御のためのインバーターのEMC試験は、負荷としてモーターを接続してはいたが、前述と同じく自動車走行状態を模擬した負荷状態ではなかった。
 従来のこのようなEMC評価方法に対して、国際規格であるCISPR 25 Edition 4:2016(エミッション測定)及びISO 11452-2:2019(イミュニティ試験)が策定され、試験セットアップに関する条件が規定された。これらによると、電波暗室内にセットされた供試品である電気モーターは、電波暗室外の負荷モーターに機械的に接続されなければならない。
 しかしながら、電波暗室の壁に穴をあけ、電気モーターと負荷モーターを機械的に接続した高速に回転するシャフトを電波暗室の内側と外側に貫通させる場合、供試機器(電気モーター)と電波暗室の内側の壁に取り付けられた電波吸収体の先端までの距離は、前述の国際規格において1000mm以上であることと規定されている。そのため、電気モーターと負荷モーターの距離は、電波吸収体や接続されるカップリングなどの機械的な機構部分を考慮すると、1500mm以上となることが想定される。
 国際規格の試験セットアップ図にみられるような1000mm以上のシャフトを用いて高速に回転させると、シャフトの自重とたわみにより縄跳び現象が発生し設備が破損する危険があるが、国際規格には格別の対処を規定していない。
 従来、高速回転状態で試験をする電気モーターの近い位置に減速機を設置することで高速回転するシャフト部分を極力短くし、負荷モーターに接続されるシャフト側の回転数を数分の1から数十分の1に減速させることで、縄跳び現象の発生を抑えていた。
 しかしながら、電気モーターと負荷モーターの間に減速機を取り付けることで、その冷却システム及び温度管理、機械部分のメンテナンス、また、それらの静電気や電磁波対策等が必要となる。さらに、減速機をシャフトの途中に入れることで、電気モーターの評価試験において減速機の効率など電気モーター以外の不確かな要因も包含されるため、それらを考慮した上で評価を実施しなければならない。
 回転力伝達装置の軽量化の技術の従来例として、特許文献3のようなものが存在した。
 同文献には、「後側のプロペラシャフト44は、後述するようにスペースに余裕がある為、軽量化と高剛性化を狙い、炭素繊維強化樹脂(CFRP)製の中空パイプとしている」(段落番号0044)とあるように、自動車のプロペラシャフトにおいて軽量化と高剛性化のためにはCFRP製の回転力伝達手段を用いることが開示されている。しかしながら、これは自動車のプロペラシャフトであって、電気モーターのEMC試験との関連性は無く、必要トルクおよび回転数においても、EMC試験の電波暗室における室内と室外の間で回転力を伝達することを示すものではない。
 特許文献4にも、同様に「動力伝達軸用シャフトを、軽量高強度素材であるCFRP(炭素繊維強化プラスチック)で形成したパイプ状のCFRP部材」(段落番号0018)を、高剛性で軽量な回転伝達シャフトとして開示するが、テストベンチやEMC試験のためのものではなく、また、回転シャフトを剛性筒に収納した構成でもない、単なるシャフトである。
 また、特許文献3及び4における利用は、今回の発明が達成した低速回転から15000rpm以上の高速回転を意図したものではない。
 電気自動車等に用いられるモーターのダイナモ試験やEMC試験に関する従来技術としては、上記の国際規格のような長いスパンで高速回転を行う要求に適合した発明の特許文献は見当たらない。
特開2009-280053号公報 特開2006-143130号公報 特開2016-055658号公報 特開2011-017413号公報
 モーターのテストベンチ等において使用できる、汎用性のある回転伝達シャフトを使用する際に、回転シャフトのダイナモ側とモーター側において軸を正確に合わせる芯出しの作業は非常に困難を伴うものである。本願の発明は、この、駆動側と被駆動側との間で回転伝達を行う装置において、芯出し作業を容易化することを課題とし、また、回転シャフトの回転力入力側と出力側とのスパンが長くても高速回転を可能とすることも課題とし、さらに、駆動側と被駆動側とを電波遮断するものにおいては、これらに加えて高速回転、高トルク伝達とともに優れた電波遮断をおこなうことができるようにすること等の事項を課題とする。
 駆動源回転装置と被駆動回転装置を回転シャフトで連結する場合、駆動源と被駆動回転装置葉は、ともに床に固定され、駆動源装置と被駆動装置との回転軸の芯出しは高精度でなければならない。そのため、両者を連結する回転シャフトと、駆動源、および、被駆動回転装置が、いずれも正確に芯がそろっていなければならない。この芯出し作業のためには、回転シャフトの両端近くを支持する軸受けが、回転シャフトを正確に支持した状態で、駆動源および被駆動回転体を固定する定盤に対して固定されなければならない。
 また、従来のシャフトを用いた回転伝達機構においては、支持ベアリング間距離が、例えば700mmという長スパンであるものにおいて、毎分2万回転という高速回転は、縄跳び現象が発生してしまうので実現不可能であった。
 さらに、電波暗室回転装置の試験においては、電波暗室の壁に穴をあけ、その穴に高速回転する回転シャフトを貫通させなければならないので、電波暗室の電磁波に対する遮蔽は、当然に穴が無い状態に比べれば劣るものとならざるを得ない。
 また、モーターのトルクと減速機の減速比は、反比例の関係があるため、減速機を取り付けることにより、減速機の出力軸での回転数は減少するが、トルクは増加する。すなわち、接続される負荷モーターの回転数を数分の1に抑えることができるが、トルクは数倍必要となる。言い換えると、減速機を取り付けることで、電気モーターを高回転で動作させることは可能となるが、トルクが小さくなるため電気モーターの試験としては不十分となる。
 そのため、減速機を取り付けずに回転及びトルクが1:1の伝達機構を利用することが望ましいが、従来技術においては、減速機なしの試験機を作成すると、供試機器である電気モーターと負荷モーターを接続するシャフトが長くなり、高速に回転すると縄跳び現象が発生し、機器・設備が破損することがある。
 よって、伝達ができるトルクが大きく、シャフトの長さは長く、それでいて、高速回転させても問題が起きず、電波暗室の壁を通過してしまう電磁ノイズは完全に遮断される、または、可能な限り小さく抑えられる、という性能を有する回転伝達機構を提供するという課題がある。
 本発明は、これらの課題を解決することができる回転伝達シャフトユニット、回転伝達機構、および電波暗室を提供する。本発明は、これらの課題を解決しているので低速回転高トルクや高速回転低トルクなど様々な条件でのモーター等の回転電気機器の試験設備を簡便、高精度に提供でき、また、EMC試験を可能にする装置を提供することができる。
  本願の発明は、以下の態様を含む。
[1]中心シャフトと、中心シャフトがその中を貫通している剛性筒であって中心シャフトを剛性筒の両端部で回転可能に支持するベアリングを両端部に有する前記剛性筒と、を含むシャフトユニットであって、前記中心シャフトは繊維強化樹脂製である、回転を伝達するシャフトユニット。
[2]前記両端部のベアリング間距離が、700mm以上である、[1]に記載のシャフトユニット。
[3]中心シャフトが、毎分2万回転以上で回転可能な曲げ剛性対質量比を有する[2]に記載のシャフトユニット。
[4]中心シャフトが炭素繊維強化樹脂製である、[1]~[3]のいずれか一つに記載のシャフトユニット。
[5]中心シャフトユニットおよび剛性筒が導電性であり、両端ベアリング位置において中心シャフトユニットと剛性筒とを電気的に導通する、[1]~[4]のいずれか一つに記載のシャフトユニット。
[6]中心シャフトと剛性筒とを電気的に導通する手段が、中心シャフトと導電性剛性筒との間の空間を塞ぐ導電体を含む、[5]に記載の装置。
[7][1]~[6]のいずれか一つに記載のシャフトユニット、駆動側架台および被駆動側架台を含み、前記シャフトユニットが、剛性筒両端位置において駆動側架台および被駆動側架台のそれぞれに固定された、回転機間回転伝達装置
[8][7]に記載の回転伝達装置を有する、電波暗室。 
 回転を伝達するシャフトを必要とするテストベンチにおいては、床に固定された軸受けに支持させた単純な回転シャフトでは、二つの軸受けの相互位置の調整が必要であって、芯出し作業に困難が生じるのであり、これに対して剛性筒の両端部で回転シャフトを支持した構造、所謂トルクチューブ形式のシャフトであれば、剛性筒を床に固定するだけで、回転シャフトの両端の芯出しがなされるので、剛性筒の位置決めを正確に設置するだけで、回転駆動源と被駆動回転装置の両者との芯出しが容易におこなえることに、本願の発明の発明者は想到した。
 また、縄跳び現象なしに高速回転を可能とするためには、回転シャフトの曲げ剛性と質量密度との比(本明細書中においては、曲げ剛性対質量比、ということにする)が、曲げ剛性は大きく、それでいて重量が軽い、というものであれば可能であるという点に本願発明の発明者は気が付いた。そして、そのためには、炭素繊維強化樹脂製のシャフトを用いればよいことに想到した。
 炭素繊維強化樹脂製のシャフトは、カーボンが含まれているため、伝導される回転シャフトの電荷を、金属ベアリングを経由して即座に接地電位に逃がすことができるという点にも想到した。
 更に、シャフトとそれを覆う導電性剛性筒例えば金属製剛性筒カバーを電波暗室の壁に貫通させるが、金属カバーに電気的に接続された導電性繊維がシャフト表面の円周を囲むことで高周波をシールドできることに想到した。
 縄跳び現象は、金属シャフトを使用した場合には、700mmを超えるようなベアリングスパンの場合、防止不可能である。
 本発明においては、減速機は使用せずに負荷モーターのトルク能力を最大限利用する。減速機を使用しないため、供試機器である電気モーターと電波暗室外の負荷モーターの距離が長くなるが、炭素繊維強化樹脂製のシャフトを使用するので、軽量高剛性になり、低速回転から高速回転でも問題が生じない。
 本明細書において、導電性剛性筒の語は、アルミニウム、鉄、銅、真鍮等の金属類の導電性、すなわち室温で2x10-8Ωm~100x10-8Ωmの体積抵抗値を有する材質を、導電性と称し、剛体、の語もこれら金属の有する程度の剛性を有することを意味する。
 また、テストベンチの語は、床に固定した回転力駆動源と、同じ床に固定した被駆動回転装置とを連結して、回転駆動源の出力試験や、回転状態における電波試験等の、何らかのテストを行う設備を意味する。
 さらに、「シャフト長」の語は、剛性筒の両端のベアリング間距離をいうものである。
 導電性剛性筒は、円筒が最も好ましいが、剛体であるので、導電性剛性筒の位置変動が起きないものであれば足り、したがって剛性筒が設備設置場所の床に固定されれば、回転シャフトの支持位置は固定され、回転シャフトの心出しに十分な回転シャフトの回転軸位置の安定化が得られることとなる。導電性剛性筒の両端に近い位置でそれぞれ設置場所床に固定すれば、ベアリングの設置場所床に対する位置決めは、剛性筒の剛性に依存する位置決めより一段と強固となり、回転シャフトの軸受位置決めが最も正確となる。
 この床は、回転シャフトの両端の相対的位置が確定し不動となるように、定盤であってよい。
 また、回転シャフトのハウジングとなる導電性剛性筒は、剛体であるので、壁を貫通させたような場合の壁との接合部の、運転時の位置変動も極めて小さいものである。
 高速回転するシャフトを導電性剛性筒であるシールドボックスで遮蔽し、シールドボックスの両はじにおいて金属ベアリングを利用して回転シャフトを支持し、グランディングの効果を狙うことができる。
 さらに、シールドボックスの両はじに導電性樹脂ブラシをシャフトの周囲に接触させ、空間を塞ぐことでシールド効果を向上させる。
 シールドボックスは導電性であり、電磁遮蔽壁と電気的にも接続され、電磁的遮蔽が保たれる。
 本発明のシャフトユニットは、剛性筒が筒両端のベアリングによって回転シャフトを回転可能に支持しているため、回転シャフトの回転軸位置決めは合成筒によって担保され、回転シャフトが連結している回転機器の回転軸によって芯出しを行う必要がなく、また、剛性筒とその両端のベアリングによって支えられる回転シャフトが繊維強化樹脂製であるため、剛性筒が従来に無く長いものであっても、縄跳び現象の発生は防止されており、毎分2万回転以上の高速回転が可能となるという効果がある。従って、シャフトによって回転伝達をおこなう、二つの回転機器の間の距離が長いものであっても、高速回転を伝達することが可能であるという効果がある。
 また、本発明のシャフトユニットでは、ユニットの剛性筒が回転シャフトの軸位置精度を保証するので、シャフトユニットが回転伝達を行う駆動源と負荷についての設置位置決めの要求精度を低くしても、シャフトユニットにおける位置決め精度は剛性筒が担保するため、高速回転可能な位置決めが、容易に実行可能となる。
 すなわち、ユニットの剛性筒の位置決めを実行すれば、設置位置における回転シャフトの回転支持ベアリングの空間的位置決め、が実行されるので、回転シャフトの芯出しが簡便であり、
 導電性剛性筒は、剛体であるので、回転シャフトの軸受位置決めが正確となり、縄跳び防止効果がある。
 また、回転シャフトのハウジングとなる導電性剛性筒は、剛体であるので、壁を貫通させたような場合の壁との接合部の、運転時の位置変動も極めて小さいものである。
 回転シャフトは、繊維強化樹脂製であり、曲げ剛性が質量に対して十分に高いので、剛性筒両端ベアリング間距離が700mm以上であっても、高速回転時の縄跳び現象は発生しないという効果がある。繊維強化樹脂としては、炭素繊維強化樹脂もしくはアラミド繊維強化樹脂が最適である。そして炭素繊維を用いれば、後述の電波暗室を用いたEMC試験装置にも最適である。
 本願発明のシャフトユニットを用いた電波暗室の場合、EMC試験に必要な低いトルクから高いトルクまでの広範囲のトルクと毎分数十回転の低速から毎分数万回転までの高速回転を実現し、国際規格で規定されたEMC試験が可能となる。
 シャフトを炭素繊維強化樹脂にすることで、縄跳び現象の発生を抑えることが可能となる。
 それ故に、従来よりも高トルクかつ高速回転を伝達することが可能となり、たとえば、毎分2万回転、伝達トルク350Nmを、シャフト長900mmでも、それを超えるものでも実現することができる。
本発明のシャフトユニットの一例を示す図である。 本発明のシャフトユニットを用いた回転機間回転伝達装置の例を示す図である。 本発明のシャフトユニットを用いた回転伝達装置を有する電波暗室の図である。
 図1は、本発明のシャフトユニットの一例である。回転を伝達する中心シャフト1は、繊維強化樹脂製であり、この中心シャフト1は、剛性を有する剛性筒2の軸方向に剛性筒2を貫いており、剛性筒2の両端において、ベアリング3により回転可能に支持されている。
剛性筒2は、ベアリング間距離が700mm以上のものも可能であり、ベアリング間距離は1400mmであってもよい。軽量で高速回転に耐える回転シャフトを実現するために、シャフト1は炭素繊維強化樹脂製の中空シャフトが好ましい。
 剛性筒2は、円筒形の金属製であることが好ましく、たとえば毎分2万回転といった高速回転時にも、共振、変形を起こさないだけの厚みを有する。
 また、中心シャフト1と剛性筒2とがベアリング3を介して組み合わされている本発明のシャフトユニットは、シャフトユニットの剛性筒2を強固に設置しさえすれば、回転シャフトの支持点であるベアリング3の位置決めがなされるため、回転伝達の駆動側と被駆動側が中心シャフトの回転軸の位置決め精度を担保しなくてもよく、シャフトユニットとしていろいろな用途に使用できる。
 図2は、本発明のシャフトユニットを備えた、モーターテストベンチの例を示す。
 駆動側回転機としての例えばモーター4が回転力を中心シャフト1に、何らかの回転伝達ジョイントを介して印加し、回転力は中心シャフト1によって、やはり中心シャフト1となんらかの回転伝達ジョイントを経由して負荷側回転機としてのダイナモ6に伝達される。
 モーター4およびダイナモ6は、強固な設置基盤7、8に固定されているが、中心シャフト1の回転可能な支持は、剛性筒2の両端に設けたベアリング3により行われ、剛性筒2が、設置基盤5に設置固定されている。
 中心シャフトの回転軸心出し精度は、ベアリング3と剛性筒2によりなされるので、モーター4およびダイナモ6の側では、回転伝達ジョイントの自由度がより多く得られる。
 また、中心シャフトおよび剛性筒2は、モーター4およびダイナモ6の支持基盤とはできるため、モーター4およびダイナモ6による振動から遮断することが可能となる。
 図3は、本発明のシャフトユニットを備えた、EMC試験等に使用できる、電磁シールドルームの、シャフト貫通位置におけるシールドルーム壁部分断面図を示す。
 電磁シールドのために、剛性筒2のベアリングのすぐ外側に、電磁シールドブラシ9が設けられている。図3においても、図2と同様に、図の左側に駆動回転機が位置し、右側に負荷回転機が位置し、シールドルームの室内が図3の左側であるとすると、シールド壁10の右側がシールドルーム室外である。
 シールド壁10は剛性筒2と電気的に導通するように、直接接触、導電性の柔軟な物質たとえば金属メッシュを介した接触、柔軟な金属蛇腹をシールド壁および導電性剛性筒2に接続すること等によって、電磁シールドがなされている。
 導電性の剛性筒2は、シールド壁3に接合されているとともに、装置が設置される床に例えば両端近くで設置基盤5を介して固定されてもよいが、必ずしも両端位置における固定でなくてもよい。
 中心シャフト1は、炭素繊維強化樹脂製であり、中心シャフトと導電性である剛性筒2とは、ベアリング3および導電性ブラシ9によって互いに電気的に導通している。
 導電性ブラシは、中心シャフトの周囲全体の、導電性の剛性筒2との間の隙間を、所望の周波数の電磁波が十分シールドされるに足りる密度で、塞いでいる。
壁の一方の側から他方の側への電流または電磁波の漏洩は、電流が導電シャフトを通じて侵入せずに、回転シャフトとハウジング2との導通手段を経由して、ハウジング2から壁へと逃げるので、防止される。シールド壁と導電性ハウジングとは、電磁波漏洩が十分に小さければ、完全に密閉されている必要はない。
 この電波暗室は、例えば電気自動車用の電動機のEMC試験に使用するのに好適な電波暗室である。
 導電性ブラシ9は、金属ブラシであってもよい。
 本発明による、回転伝達機構を用いた電波暗室は、電磁シールド性を保ったまま、前述したような、従来に無い高トルクで高速回転する回転運動を伝達して試験をおこなうことを可能とするものである。したがって、これを用いたEMC試験用電波暗室は、従来に無い高速な回転での試験を可能とするものである。
 本発明による電波暗室は、EMC試験において必要な、9kHZ~数GHzの電波を有効に遮断することができる。
1   中心シャフト
2   剛性筒
3   ベアリング
4   駆動回転機
5   シャフトユニット支持基盤
6   負荷回転機
7   駆動側基盤
8   負荷側基盤
9   電磁シールドブラシ
10  シールド壁

Claims (8)

  1. 中心シャフトと、中心シャフトがその中を貫通している剛性筒であって中心シャフトを剛性筒の両端部で回転可能に支持するベアリングを両端部に有する前記剛性筒と、を含むシャフトユニットであって、前記中心シャフトは繊維強化樹脂製である、回転を伝達するシャフトユニット。
  2. 前記両端部のベアリング間距離が、700mm以上である、請求項1に記載のシャフトユニット。
  3. 中心シャフトが、毎分2万回転以上で回転可能な曲げ剛性対質量比を有する、請求項2に記載のシャフトユニット。
  4. 中心シャフトが炭素繊維強化樹脂製またはアラミド繊維強化樹脂製である、請求項1~3のいずれか一項に記載のシャフトユニット。
  5. 中心シャフトユニットおよび剛性筒が導電性であり、両端ベアリング位置において中心シャフトユニットと剛性筒とを電気的に導通する、請求項1~4のいずれか一項に記載のシャフトユニット。
  6. 中心シャフトと剛性筒とを電気的に導通する手段が、中心シャフトと導電性剛性筒との間の空間を塞ぐ導電体を含む、請求項5に記載のシャフトユニット。
  7. 請求項1~6のいずれか一項に記載のシャフトユニットを有し、シャフトユニットが、剛性筒両端位置において駆動側架台と被駆動側架台とにそれぞれ固定された、回転機間回転伝達装置。
  8. 請求項1~6のいずれか一項に記載のシャフトユニットを有する電波暗室
PCT/JP2022/031190 2021-08-19 2022-08-18 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置 WO2023022192A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280056718.5A CN117980612A (zh) 2021-08-19 2022-08-18 旋转传动转轴单元、以及使用其的发动机和变频器试验台和emc试验设备装置
KR1020247008610A KR20240046763A (ko) 2021-08-19 2022-08-18 회전 전달 샤프트 유닛 및 이를 이용한 모터 및 인버터 테스트 벤치 및 emc 테스트 장비
US18/684,328 US20240271655A1 (en) 2021-08-19 2022-08-18 Rotation transmission shaft unit, and motor, inverter test bench, and emc test equipment device using said shaft unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-133948 2021-08-19
JP2021133948A JP2023028317A (ja) 2021-08-19 2021-08-19 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置

Publications (1)

Publication Number Publication Date
WO2023022192A1 true WO2023022192A1 (ja) 2023-02-23

Family

ID=85240801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031190 WO2023022192A1 (ja) 2021-08-19 2022-08-18 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置

Country Status (5)

Country Link
US (1) US20240271655A1 (ja)
JP (1) JP2023028317A (ja)
KR (1) KR20240046763A (ja)
CN (1) CN117980612A (ja)
WO (1) WO2023022192A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198200A (ja) * 1989-01-27 1990-08-06 Taisei Corp 電磁シールド材
JP2015187234A (ja) * 2014-03-27 2015-10-29 東レ株式会社 加飾フィルム、加飾複合体およびその製造方法
WO2018179280A1 (ja) * 2017-03-30 2018-10-04 株式会社牧野フライス製作所 主軸装置
JP2018168967A (ja) * 2017-03-30 2018-11-01 Ntn株式会社 転がり軸受
JP2021141165A (ja) * 2020-03-04 2021-09-16 株式会社オータマ テストベンチ用シールド性回転伝達機構及びそれを用いたモーター/インバーターテストベンチおよびemc試験設備装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572667B2 (ja) 2004-11-24 2010-11-04 トヨタ自動車株式会社 トルクチューブ装置
JP4993457B2 (ja) * 2006-11-30 2012-08-08 Ntn株式会社 主軸装置
JP4990000B2 (ja) * 2007-03-29 2012-08-01 コマツNtc株式会社 主軸ヘッド
JP2009280053A (ja) 2008-05-21 2009-12-03 Toyota Motor Corp 車両用動力伝達装置
JP2011017413A (ja) 2009-07-10 2011-01-27 Ntn Corp 動力伝達軸用シャフト
JP6115531B2 (ja) 2014-09-05 2017-04-19 マツダ株式会社 自動車のパワープラントフレーム構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198200A (ja) * 1989-01-27 1990-08-06 Taisei Corp 電磁シールド材
JP2015187234A (ja) * 2014-03-27 2015-10-29 東レ株式会社 加飾フィルム、加飾複合体およびその製造方法
WO2018179280A1 (ja) * 2017-03-30 2018-10-04 株式会社牧野フライス製作所 主軸装置
JP2018168967A (ja) * 2017-03-30 2018-11-01 Ntn株式会社 転がり軸受
JP2021141165A (ja) * 2020-03-04 2021-09-16 株式会社オータマ テストベンチ用シールド性回転伝達機構及びそれを用いたモーター/インバーターテストベンチおよびemc試験設備装置

Also Published As

Publication number Publication date
KR20240046763A (ko) 2024-04-09
CN117980612A (zh) 2024-05-03
JP2023028317A (ja) 2023-03-03
US20240271655A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
BR112012030189B1 (pt) dispositivo de transmissão de potência para veículo elétrico
WO2021177408A1 (ja) シールド性回転伝達機構及びそれを用いたモーター/インバーターテストベンチおよびemc試験設備装置
JP2012080200A (ja) アンテナ装置
WO2023022192A1 (ja) 回転伝達シャフトユニット、およびそれを用いたモーターおよびインバーターテストベンチおよびemc試験設備装置
KR20110086088A (ko) 동력 전달 장치
KR102077862B1 (ko) 회전 기계의 전자파 측정 장치
CN219788393U (zh) 机器人关节及机器人
CN105897514B (zh) 一种风力发电机组通讯滑环动态加载平台
CN220929984U (zh) 轴装置以及测试系统
CN114337082B (zh) 用于电机的刹车锁定装置、电机以及风力发电机组
CN112436675A (zh) 一种航空发动机的双发电机结构
CN113103279A (zh) 一种机器人关节及机器人
US20230268786A1 (en) Electric machine arrangement
CN219999159U (zh) 一种便于动平衡校准的电机
CN218470049U (zh) 一种高速测功机系统台架
US20230353019A1 (en) Electric machine arrangement
CN111077449A (zh) 电动机风冷散热评价装置与电动机风冷散热评价方法
KR20030051382A (ko) 회전전기
CN217805217U (zh) 动力装置、推进器及水上设备
CN217747764U (zh) 涂布辊驱动机构
CN220910396U (zh) 电驱总成及车辆
CN114649897B (zh) 用于电动车辆的电机附接结构
CN217406289U (zh) 电机转子轴固定轴承前置结构
CN213547063U (zh) 一种便于排线维修的盾构机用电气保护装置
CN117526625A (zh) 用于电动或混合动力车辆的推进系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280056718.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247008610

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22858510

Country of ref document: EP

Kind code of ref document: A1