WO2023022092A1 - 抵抗体ペースト、チップ抵抗器及びガラス粒子 - Google Patents

抵抗体ペースト、チップ抵抗器及びガラス粒子 Download PDF

Info

Publication number
WO2023022092A1
WO2023022092A1 PCT/JP2022/030572 JP2022030572W WO2023022092A1 WO 2023022092 A1 WO2023022092 A1 WO 2023022092A1 JP 2022030572 W JP2022030572 W JP 2022030572W WO 2023022092 A1 WO2023022092 A1 WO 2023022092A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
silicide
oxide
nickel
particles
Prior art date
Application number
PCT/JP2022/030572
Other languages
English (en)
French (fr)
Inventor
祐樹 青池
浩克 伊藤
賢一 松島
祥吾 中山
知宏 藤田
孝志 大林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022054533A external-priority patent/JP2023029199A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280045496.7A priority Critical patent/CN117561583A/zh
Publication of WO2023022092A1 publication Critical patent/WO2023022092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material

Definitions

  • TECHNICAL FIELD This disclosure relates generally to resistor pastes, chip resistors and glass particles, and more particularly to resistor pastes including metal particles, chip resistors comprising resistors made from resistor pastes, and resistor pastes. Concerning the glass particles involved.
  • Patent Document 1 discloses a conductive portion formed of metal particles, an inorganic binder component formed of low-melting glass particles, a resistance adjusting component formed of non-conductive inorganic particles (insulating particles), and an organic vehicle. and a resistor paste is described.
  • Metal particles include copper and nickel.
  • Non-conductive inorganic particles include, for example, alumina.
  • TCR temperature coefficient of resistance
  • An object of the present disclosure is to provide a resistor paste, a chip resistor, and glass particles that can achieve both high resistivity and low TCR.
  • a resistor paste according to one aspect of the present disclosure includes metal particles, insulating particles, glass particles, and metal silicide.
  • the metal particles contain copper and nickel.
  • the insulating particles include at least one of alumina, zirconia, zinc oxide and boron nitride.
  • a resistor paste according to another aspect of the present disclosure includes metal particles, insulating particles, metal silicide, and glass particles.
  • the metal particles contain copper and nickel.
  • the insulating particles include at least one of alumina, zirconia, zinc oxide and boron nitride.
  • the glass particles contain at least boron oxide and aluminum oxide.
  • Nickel compounds, including nickel silicides, are produced when forming the resistor body of a chip resistor.
  • a chip resistor includes a resistor and a substrate.
  • the resistor is formed on the substrate using the resistor paste as a material.
  • the glass particles according to one aspect of the present disclosure are used in the resistor paste.
  • FIG. 1 is a cross-sectional view of a chip resistor provided with a resistor made of resistor paste according to Embodiments 1 and 2.
  • FIG. FIG. 2 is a graph showing the relationship between the TCR and the ratio of glass particles B to the sum of glass particles A and B contained in the resistor paste according to the second embodiment.
  • FIG. 1 referred to in the following Embodiments 1 and 2 is a schematic diagram, and the ratio of the size and thickness of each component in the diagram does not necessarily reflect the actual dimensional ratio. do not have.
  • the resistor paste according to the first embodiment is a material for the resistor 13 (see FIG. 1) of the chip resistor 1 described later, and is used to form the resistor 13.
  • the resistor paste according to Embodiment 1 contains metal particles, insulating particles, glass particles, an organic vehicle, and metal silicide.
  • the metal particles contain copper (Cu) and nickel (Ni). More specifically, the metal particles are a combination of copper particles and nickel particles.
  • the metal particles are not limited to a combination of copper particles and nickel particles, and may be alloy particles of copper and nickel. Furthermore, the metal particles may be a combination of copper particles and alloy particles, a combination of nickel particles and alloy particles, or a combination of copper particles, nickel particles and alloy particles. good too.
  • the metal particles form conductive paths in the fired resistor 13 (see FIG. 1).
  • the metal particles should just contain copper and nickel, and may further contain other metals.
  • the insulating particles include at least one of alumina ( Al2O3 ), zirconia ( ZrO2 ), zinc oxide (ZnO) and boron nitride (BN).
  • the insulating particles contain alumina.
  • the insulating particles reduce the content of the metal particles in the fired resistor 13 (see FIG. 1) to increase the resistance value, while suppressing melt flow of the glass particles, which will be described later, to suppress disconnection of the conductive path.
  • Glass particles include, for example, silicon oxide (eg, SiO 2 ).
  • the glass particles may contain other oxides in addition to silicon oxide.
  • Another oxide is, for example, boron oxide (B 2 O 3 ).
  • the glass particles form a tough resistor 13 by melting and solidifying over the entire resistor 13 while increasing wettability to the substrate 11 (see FIG. 1) described later to improve adhesion. Further, since the glass particles are insulators, they also have a function of adjusting the resistance value.
  • the organic vehicle contains, for example, at least one of an organic binder and an organic solvent.
  • the organic vehicle contains both an organic binder and an organic solvent.
  • Organic binders are, for example, cellulose resins, acrylic resins, and the like.
  • organic solvents include terpineol, butyl carbitol acetate, and the like.
  • the mass ratio of the organic vehicle is preferably, for example, 5 to 200, more preferably 10 to 150, still more preferably 20 to 100, when the metal particles are 100. .
  • the resistor paste contains, as metal silicides, titanium silicide ( TiSi2 ), zirconium silicide ( ZrSi2 ), hafnium silicide ( HfSi2 ), niobium silicide ( NbSi2 ), tantalum silicide ( TaSi2 ), chromium silicide ( CrSi2 ), tungsten silicide ( WSi2 ), molybdenum silicide (MoSi2), iron silicide ( FeSi2 ), magnesium silicide ( Mg2Si ), sodium silicide ( Na2Si ) and including at least one of platinum silicide (PtSi).
  • the resistor paste according to Embodiment 1 contains titanium silicide as the metal silicide.
  • the metal silicide reacts with the metal particles (copper and nickel) by firing, and this reaction changes the composition of copper and nickel in the metal particles, and nickel silicide (Ni 31 Si 12 ) is produced.
  • the TCR of the resistor 13 see FIG. 1 formed by firing. That is, it is possible to suppress the decrease in TCR that accompanies an increase in the amount of insulating particles added.
  • the chip resistor 1 according to the first embodiment includes a substrate 11, a plurality of (two in the illustrated example) upper surface electrodes 12, a resistor 13, a protective film 14, and a plurality of (in the illustrated example (two in the example shown) and a plurality of (two in the illustrated example) end-face electrodes 16 .
  • the chip resistor 1 according to the first embodiment includes a plurality of (two in the illustrated example) first plating layers 17, a plurality of (two in the illustrated example) second plating layers 18, and a plurality of (two in the illustrated example) 2) third plating layers 19; That is, the chip resistor 1 according to Embodiment 1 includes a substrate 11 and a resistor 13 .
  • the substrate 11 is, for example, a ceramic substrate.
  • the material of the ceramic substrate is, for example, an alumina sintered body having an alumina content of 96% or more.
  • the substrate 11 is formed in a rectangular shape in plan view from the first direction D1.
  • the substrate 11 has a first main surface (upper surface) 111, a second main surface (lower surface) 112, and an outer peripheral surface 113, as shown in FIG.
  • the first main surface 111 and the second main surface 112 face each other in the first direction D1.
  • Each of the first main surface 111 and the second main surface 112 is a plane along the second direction D2 orthogonal to the first direction D1.
  • the outer peripheral surface 113 includes four side surfaces along the first direction D1.
  • the first direction D1 is a direction parallel to the thickness direction of the substrate 11 (vertical direction in FIG. 1).
  • the second direction D2 is a direction (horizontal direction in FIG. 1) parallel to the longitudinal direction or width direction (transverse direction) of the substrate 11 .
  • Upper surface electrodes A plurality of upper surface electrodes 12 are formed on the first major surface 111 of the substrate 11 .
  • the plurality of upper surface electrodes 12 are formed on both ends of the first main surface 111 of the substrate 11 in the second direction D2.
  • the material of the plurality of upper surface electrodes 12 is, for example, a Cu (copper) alloy.
  • the plurality of upper surface electrodes 12 are formed by, for example, baking a thick film material after printing.
  • Resistor Resistor 13 is formed on first main surface 111 of substrate 11 .
  • the resistor 13 is formed on the central portion of the first main surface 111 of the substrate 11 .
  • the material of the resistor 13 is, for example, the resistor paste described above.
  • the resistor 13 is in contact with the plurality of upper surface electrodes 12 at both end portions in the second direction D2 and is electrically connected to the plurality of upper surface electrodes 12 .
  • the resistor 13 has, for example, a rectangular shape in a plan view from the first direction D ⁇ b>1 , but may have any shape according to the resistance value of the resistor 13 .
  • the protective film 14 is a film for protecting the resistor 13 .
  • Protective film 14 covers at least part of resistor 13 .
  • the protective film 14 covers the entire area (entire) of the resistor 13 .
  • the material of the protective film 14 is, for example, epoxy resin.
  • the protective film 14 is formed in a rectangular shape when viewed from the first direction D ⁇ b>1 , but may have any shape according to the shape of the resistor 13 .
  • the material of the protective film 14 is not limited to epoxy resin, and may be, for example, polyimide resin.
  • a plurality of bottom electrodes (back electrodes) 15 are formed on the second main surface 112 of the substrate 11 .
  • the plurality of lower surface electrodes 15 are formed on both ends of the second main surface 112 of the substrate 11 in the second direction D2.
  • the plurality of lower surface electrodes 15 correspond to the plurality of upper surface electrodes 12 on a one-to-one basis.
  • the material of the plurality of bottom electrodes 15 is, for example, a Cu-based alloy.
  • the plurality of bottom electrodes 15 are formed, for example, by printing a thick film material and then baking it.
  • the plurality of edge electrodes 16 are formed so as to cover the outer peripheral surface 113 of the substrate 11 .
  • the plurality of edge electrodes 16 are formed so as to cover both side surfaces in the second direction D2 among the four side surfaces included in the outer peripheral surface 113 of the substrate 11 .
  • the plurality of edge electrodes 16 correspond one-to-one with the plurality of upper surface electrodes 12 and the plurality of lower surface electrodes 15 .
  • the material of the end face electrodes 16 is, for example, a mixture of carbon powder, silver (Ag), and epoxy resin.
  • Each of the plurality of end surface electrodes 16 is in contact with the corresponding upper surface electrode 12 among the plurality of upper surface electrodes 12 at a first end (upper end) in the first direction D1, and is in contact with a plurality of upper surface electrodes 12 at a second end (lower end). It is in contact with the corresponding lower surface electrode 15 among the lower surface electrodes 15 . Thereby, the plurality of upper surface electrodes 12 and the plurality of lower surface electrodes 15 are electrically connected via the plurality of end surface electrodes 16 .
  • the plurality of first plating layers 17 are made of copper (Cu) plating, for example.
  • the plurality of first plated layers 17 cover the plurality of upper surface electrodes 12, the plurality of lower surface electrodes 15, and the plurality of end surface electrodes 16 at both ends of the substrate 11 in the second direction D2.
  • the plurality of first plating layers 17 are in contact with the surface of the protective film 14 .
  • the resistance value of the chip resistor 1 can be adjusted by providing the first plating layer 17 . Note that the first plating layer 17 may be omitted.
  • the plurality of second plating layers 18 are made of nickel (Ni) plating, for example.
  • the multiple second plating layers 18 cover the multiple first plating layers 17 at both ends of the substrate 11 in the second direction D2. Also, the plurality of second plating layers 18 are in contact with the surface of the protective film 14 .
  • the plurality of third plated layers 19 are made of tin (Sn) plating, for example.
  • the multiple third plating layers 19 cover the multiple second plating layers 18 at both ends of the substrate 11 in the second direction D2. Also, the plurality of third plating layers 19 are in contact with the surface of the protective film 14 .
  • the manufacturing method of the chip resistor 1 according to Embodiment 1 has first to ninth steps.
  • the substrate 11 is prepared. More specifically, in the first step, a substrate body, which is the base of each substrate 11 of the plurality of chip resistors 1, is prepared.
  • the substrate body is, for example, a ceramic substrate.
  • the material of the ceramic substrate as the substrate body is, for example, an alumina sintered body having an alumina content of 96% or more.
  • a plurality of lower surface electrodes 15 for each of the plurality of chip resistors 1 are formed on the second main surface of the substrate body. More specifically, in the second step, for example, a thick film material is printed and then baked to form a Cu-based alloy film on the second main surface of the substrate body, thereby forming each of the plurality of chip resistors 1. a plurality of bottom electrodes 15 are formed.
  • the second main surface of the substrate main body is a surface that becomes the second main surface 112 of the substrate 11 of each of the plurality of chip resistors 1 .
  • a plurality of upper surface electrodes 12 are formed on the first main surface of the substrate body.
  • the first main surface of the substrate main body is a surface that becomes the first main surface 111 of the substrate 11 of each of the plurality of chip resistors 1 .
  • a thick film material is printed and then baked to form a Cu-based alloy film on the first main surface of the substrate body, thereby forming each of the plurality of chip resistors 1. to form a plurality of top electrodes 12.
  • resistors 13 of each of the plurality of chip resistors 1 are formed. More specifically, in the fourth step, after printing a resistor paste on the first main surface of the substrate body, the resistor 13 is formed by firing. At this time, in the resistor 13, the metal silicide (titanium silicide) reacts with the metal particles (copper and nickel) to produce a metal silicide (nickel silicide) different from the metal silicide (titanium silicide). ) is generated. That is, in the chip resistor 1 according to Embodiment 1, the resistor 13 contains nickel silicide.
  • a protective film 14 is formed for each of the plurality of chip resistors 1 . More specifically, in the fifth step, an epoxy resin is applied so as to cover the entire resistor 13 and then the epoxy resin is thermally cured to form the protective film 14 .
  • the protective film 14 also covers contact portions between the plurality of upper electrodes 12 and the resistors 13, as shown in FIG.
  • the plurality of chip resistors excluding the end face electrodes 16, the first plating layer 17, the second plating layer 18 and the third plating layer 19 integrally formed in the first to fifth steps are The end surface electrodes 16, the first plating layer 17, the second plating layer 18, and the third plating layer 19 are removed to divide into a plurality of strip-shaped chip resistors. More specifically, in the sixth step, for example, a plurality of strip-shaped chip resistors are formed by applying stress from rollers (not shown) provided above and below the plurality of integrally formed chip resistors. split into
  • a plurality of end face electrodes 16 are formed on the chip resistor divided into a plurality of strip shapes. More specifically, in the seventh step, for example, an edge electrode paste (not shown) made of the mixture is formed on a stainless steel roller (not shown), and then the roller is rotated to obtain a plurality of electrodes. A plurality of edge electrodes 16 are formed on each of the strip-shaped chip resistors. Thereby, in each of the plurality of strip-shaped chip resistors, the plurality of upper surface electrodes 12 and the plurality of lower surface electrodes 15 are electrically connected via the plurality of end surface electrodes 16 .
  • the plurality of strip-shaped chip resistors are divided into individual pieces of chip resistors by rotating the rollers.
  • the first to third plating layers 17 to 19 are formed in each of the plurality of chip resistors. More specifically, in the ninth step, three plating layers are formed in order of first plating layer 17, second plating layer 18, and third plating layer 19 for each of the plurality of chip resistors.
  • the chip resistor 1 according to the first embodiment can be manufactured.
  • the volume resistivity of the chip resistor 1 is preferably, for example, 200 ⁇ cm or more.
  • the TCR of the chip resistor 1 is, for example, preferably -50 ppm/°C or more and +50 ppm/°C or less.
  • the resistor paste contains metal particles, glass particles, an organic vehicle, and insulating particles.
  • Metal particles include copper and nickel.
  • the ratio of copper and nickel in the metal particles is 6:4.
  • the insulating particles contain alumina.
  • the ratio of the insulating particles (alumina) in the resistor paste increases, the resistance value of the resistor made of this resistor paste increases, but the TCR of the resistor becomes too low.
  • the resistor paste contains metal particles, glass particles, an organic vehicle, and a metal silicide.
  • Metal particles include copper and nickel.
  • the ratio of copper and nickel in the metal particles is 55:45.
  • the metal silicide is titanium silicide.
  • the resistor paste contains metal particles, glass particles, insulating particles, an organic vehicle, and a metal silicide.
  • Metal particles include copper and nickel. The ratio of copper and nickel in the metal particles is 55:45.
  • the insulating particles include alumina and the metal silicide includes titanium silicide.
  • the ratio of metal particles is 70 wt%
  • the ratio of glass particles is 7 wt%
  • the ratio of insulating particles (alumina) is 20 wt%
  • the ratio of metal silicide (titanium silicide) is 3 wt%.
  • the resistance value of the resistor 13 made of this resistor paste is 364 m ⁇
  • the TCR of the resistor 13 is ⁇ 19 ppm.
  • the volume of the resistor 13 is 5.44 ⁇ 10 ⁇ 2 mm 3 (length 1.6 mm ⁇ width 1.7 mm ⁇ thickness 20 ⁇ m)
  • the resistor paste according to Embodiment 1 is used as a material.
  • the volume resistivity of the resistor 13 satisfies the above criteria.
  • the resistor 13 made of the resistor paste according to the first embodiment has a TCR of ⁇ 19 ppm when the temperature changes from 25° C. to 125° C., and thus satisfies the above-mentioned standard of TCR.
  • TCR ⁇ 19 ppm when the temperature changes from 25° C. to 125° C.
  • the resistor paste according to the first embodiment contains insulating particles. Therefore, when the resistor paste of the first embodiment is used to form the resistor 13 of the chip resistor 1, the specific resistance of the resistor 13 can be increased. Moreover, the resistor paste according to the first embodiment further contains a metal silicide (eg, titanium silicide) as described above. Therefore, when the resistor 13 of the chip resistor 1 is formed from the resistor paste according to the first embodiment, it is possible to prevent the TCR of the resistor 13 from becoming too low due to an increase in the amount of the insulating particles added. It becomes possible. That is, according to the resistor paste according to the first embodiment, it is possible to achieve both high resistivity and low TCR of the resistor 13 .
  • a metal silicide eg, titanium silicide
  • Embodiment 1 is merely one of various embodiments of the present disclosure. Embodiment 1 can be modified in various ways according to design and the like, as long as the object of the present disclosure can be achieved. Modifications of the first embodiment are listed below. Modifications described below can be applied in combination as appropriate.
  • the resistor paste contains titanium silicide as the metal silicide, but the resistor paste may contain metal silicide other than titanium silicide.
  • Resistor pastes contain metal silicides such as zirconium silicide, hafnium silicide, niobium silicide, tantalum silicide, chromium silicide, tungsten silicide, molybdenum silicide, iron silicide, magnesium silicide, silicide It may contain sodium or platinum silicide.
  • the resistor paste may also contain two or more of the above materials as metal silicides.
  • the resistor paste contains, as metal silicides, titanium silicide, zirconium silicide, hafnium silicide, niobium silicide, tantalum silicide, chromium silicide, tungsten silicide, molybdenum silicide, iron silicide, At least one of magnesium, sodium silicide and platinum silicide may be included.
  • the resistor paste contains alumina as insulating particles, but the resistor paste may contain insulating particles other than alumina.
  • the resistor paste may contain zirconia, zinc oxide or boron nitride as insulating particles.
  • the resistor paste may contain two or more of the above materials as insulating particles. In short, the resistor paste should contain at least one of alumina, zirconia, zinc oxide and boron nitride as insulating particles.
  • each end face electrode 16 has a U-shape when viewed from a direction perpendicular to both the first direction D1 and the second direction D2 (direction perpendicular to the paper surface of FIG. 1).
  • the shape of the electrode 16 is not limited to the U shape, and may be, for example, an I shape along the first direction D1.
  • the first end (upper end) of the end surface electrode 16 in the first direction D1 is in contact with the side surface of the upper surface electrode 12
  • the second end (lower end) of the end surface electrode 16 in the first direction D1 is in contact with the lower surface electrode. It is sufficient if it is in contact with the side surface of 15.
  • the plurality of upper surface electrodes 12 and the plurality of lower surface electrodes 15 can be electrically connected via the plurality of end surface electrodes 16 .
  • Embodiment 2 A resistor paste, a chip resistor 1 and glass particles according to Embodiment 2 will be described. Concerning the chip resistor 1 according to the second embodiment, the same components as those of the chip resistor 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the resistor paste according to Embodiment 2 differs from the resistor paste according to Embodiment 1 in that the composition of the glass particles is different.
  • the resistor paste according to the second embodiment includes metal particles (metal conductor), insulating particles (insulator), metal silicide, and glass particles (glass). That is, glass particles are used in the resistor paste. Moreover, the resistor paste according to the second embodiment further includes an organic vehicle.
  • the metal particles contain copper and nickel.
  • the metal particles include, for example, a copper-nickel alloy.
  • the metal particles form conductive paths in the fired resistor 13 (see FIG. 1).
  • the metal particles may further contain other metals as long as they contain copper and nickel.
  • the insulating particles contain at least one of alumina, zirconia, zinc oxide and boron nitride.
  • the insulating particles include, for example, alumina.
  • the insulating particles reduce the content of the metal particles in the fired resistor 13 (see FIG. 1) to increase the resistance value, while suppressing melt flow of glass particles, which will be described later, to suppress disconnection of the conductive path.
  • Metal silicides include, for example, titanium silicide.
  • the glass particles contain boron oxide (B 2 O 3 ) as a main component, and contain silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and tantalum oxide (Ta 2 O 5 ) as subcomponents. At least one of magnesium (MgO), calcium oxide (CaO) and barium oxide (BaO) is included. In embodiment 2, the glass particles include all of magnesium oxide, calcium oxide and barium oxide.
  • the glass particles react with copper, nickel and metal silicide (titanium silicide) in the firing process of the resistor paste to form nickel silicide (Ni 31 Si 12 ) and nickel aluminum boride (Ni 20 Al 3 B 6 ). These nickel silicide and nickel aluminum boride have the function of adjusting the temperature coefficient of resistance (TCR) of the resistor 13, which will be described later.
  • TCR temperature coefficient of resistance
  • later-described glass particles B correspond to the above-described glass particles.
  • the resistor paste is used to melt and solidify the entire resistor 13 to form a tough resistor 13 while improving the adhesion between the substrate 11 and the resistor 13, which will be described later.
  • glass particles containing lead oxide (PbO) as a main component may be further included.
  • the ratio of lead oxide contained in the single glass particles (glass particles A) is set to 80 wt% or less, and the lead oxide contained in the glass particles A and The total ratio of lead oxide contained in the glass particles B is preferably 45 wt % or less.
  • the glass particles A contain lead oxide as a main component, and contain boron oxide, silicon oxide and zinc oxide as subcomponents. Further, since the glass particles are insulators, they also have a function of adjusting the resistance value.
  • the glass particles (glass particles B) contain at least boron oxide and aluminum oxide. Further, in the resistor paste according to Embodiment 2, the glass particles (glass particles B) further contain silicon oxide, tantalum oxide, magnesium oxide, calcium oxide and barium oxide.
  • the organic vehicle contains, for example, at least one of an organic binder and an organic solvent.
  • the organic vehicle contains both an organic binder and an organic solvent.
  • Organic binders are, for example, cellulose resins, acrylic resins, and the like.
  • organic solvents include terpineol, butyl carbitol acetate, and the like.
  • the mass ratio of the organic vehicle is preferably, for example, 5 to 200, more preferably 10 to 150, still more preferably 20 to 100, when the metal particles are 100. .
  • the chip resistor 1 according to the second embodiment as shown in FIG. (two in the example shown) and a plurality of (two in the illustrated example) end-face electrodes 16 .
  • the chip resistor 1 according to the second embodiment includes a plurality of (two in the illustrated example) first plating layers 17, a plurality of (two in the illustrated example) second plating layers 18, and a plurality of (two in the illustrated example) 2) third plating layers 18;
  • the chip resistor 1 according to the second embodiment includes a substrate 11 and a resistor 13 formed on the substrate 11 using the resistor paste described above.
  • Resistor 13 contains a nickel compound.
  • Nickel compounds include, for example, nickel silicides.
  • a nickel silicide is, for example, nickel silicide (Ni 31 Si 12 ).
  • Nickel compounds further include nickel aluminum boride.
  • Nickel aluminum boride is, for example, nickel aluminum boride (Ni 20 Al 3 B 6 ).
  • the manufacturing method of the chip resistor 1 according to Embodiment 2 has first to eighth steps.
  • the substrate 11 is prepared. More specifically, in the first step, a substrate body, which is the base of each substrate 11 of the plurality of chip resistors 1, is prepared.
  • the substrate body is, for example, a ceramic substrate.
  • the material of the ceramic substrate as the substrate body is, for example, an alumina sintered body having an alumina content of 96% or more.
  • a plurality of upper surface electrodes 12 are formed on the first main surface of the substrate body.
  • the first main surface of the substrate main body is a surface that becomes the first main surface 111 of the substrate 11 of each of the plurality of chip resistors 1 .
  • a thick film material is printed and then baked to form a Cu-based alloy film on the first main surface of the substrate body, thereby forming each of the plurality of chip resistors 1. to form a plurality of top electrodes 12.
  • each resistor 13 of the plurality of chip resistors 1 is formed. More specifically, in the third step, after printing a resistor paste on the first main surface of the substrate body, the resistor 13 is formed by firing. At this time, in the resistor 13, the metal silicide (titanium silicide) reacts with the metal particles (copper and nickel) through the glass particles, thereby forming a metal silicide different from the metal silicide (titanium silicide). oxides, specifically nickel silicide (Ni 31 Si 12 ) are produced.
  • the titanium of the titanium silicide contained in the resistor paste is incorporated into the glass particles, and the silicon of the titanium silicide reacts with the metal particles (copper and nickel), so that the titanium silicide contained in the resistor paste almost disappears.
  • metal particles (copper and nickel) also produce metal borides, specifically nickel aluminum boride (Ni 20 Al 3 B 6 ), by direct reaction with glass particles.
  • the resistor 13 contains at least nickel silicide (nickel silicide).
  • a protective film 14 is formed for each of the plurality of chip resistors 1 . More specifically, in the fourth step, an epoxy resin is applied so as to cover the entire resistor 13, and then the epoxy resin is thermally cured to form the protective film 14. As shown in FIG. The protective film 14 also covers contact portions between the plurality of upper electrodes 12 and the resistors 13, as shown in FIG.
  • a plurality of lower surface electrodes 15 for each of the plurality of chip resistors 1 are formed on the second main surface of the substrate body. More specifically, in the second step, for example, a thick film material is printed and then baked to form a Cu-based alloy film on the second main surface of the substrate body, thereby forming each of the plurality of chip resistors 1. a plurality of bottom electrodes 15 are formed.
  • the second main surface of the substrate main body is a surface that becomes the second main surface 112 of the substrate 11 of each of the plurality of chip resistors 1 .
  • the plurality of chip resistors 1 integrally formed in the first to fifth steps are cut into individual chip resistors 1 . More specifically, in the sixth step, for example, a laser or dicing is used to cut the integrally formed chip resistors 1 into individual chip resistors 1 .
  • a plurality of facet electrodes 16 are formed on the individually cut chip resistors 1 . More specifically, in the seventh step, for example, an edge electrode paste (not shown) made of the mixture is formed on a stainless steel roller (not shown), and then the roller is rotated to obtain a plurality of electrodes. A plurality of facet electrodes 16 are formed on each chip resistor 1 . Thereby, in each of the plurality of chip resistors 1 , the plurality of upper surface electrodes 12 and the plurality of lower surface electrodes 15 are electrically connected via the plurality of end surface electrodes 16 .
  • the first to third plating layers 17 to 19 are formed in each of the plurality of chip resistors. More specifically, in the eighth step, three plating layers are formed in order of first plating layer 17, second plating layer 18, and third plating layer 19 for each of the plurality of chip resistors 1. FIG.
  • the chip resistor 1 according to the second embodiment can be manufactured.
  • the fifth step may be performed, for example, before the second step.
  • FIG. 2 indicates the ratio of the glass particles B to the sum of the glass particles A and B, and the vertical axis of FIG. 2 indicates the TCR of the resistor 13 .
  • Table 1 shows the composition ratio of the glass particles A.
  • Table 2 shows the composition ratio of the glass particles B.
  • Table 3 shows the relationship between the composition of the resistor paste, the electrical characteristics of the chip resistor using the resistor paste, and the reference intensity ratio (RIR) of the resistor.
  • RIR reference intensity ratio
  • Glass particles A contain lead oxide (PbO), boron oxide (B 2 O 3 ), zinc oxide (ZnO), and silicon oxide (SiO 2 ).
  • the lead oxide ratio is 60 wt% or more and 80 wt% or less
  • the boron oxide ratio is 15 wt% or more and 20 wt% or less
  • the zinc oxide ratio is 1 wt% or more and 5 wt% or less
  • the ratio of silicon oxide is 5 wt % or more and 15 wt % or less.
  • the lead oxide ratio is 71 wt % or less
  • the boron oxide ratio is 16 wt %
  • the zinc oxide ratio is 5 wt %
  • the silicon oxide ratio is 8 wt %.
  • glass particles B consist of silicon oxide, aluminum oxide, boron oxide, calcium oxide (CaO), magnesium oxide (MgO), barium oxide (BaO), and tantalum oxide (Ta 2 O 5 ) and
  • the ratio of silicon oxide is 2 wt % or more and 7 wt % or less
  • the proportion of aluminum oxide is 4 wt % or more and 9 wt % or less
  • the proportion of boron oxide is 41 wt % or more and 50 wt % or less.
  • the ratio of calcium oxide is 1 wt% or more and 5 wt% or less
  • the ratio of magnesium oxide is 1 wt% or more and 5 wt% or less
  • the ratio of barium oxide is 30 wt% or more and 35 wt% or less
  • the ratio of tantalum oxide is 3 wt % or more and 10 wt % or less.
  • the ratio of silicon oxide is 4 wt%
  • the ratio of aluminum oxide is 6 wt%
  • the ratio of boron oxide is 46 wt%
  • the ratio of calcium oxide is 3 wt%
  • the proportion of magnesium oxide is 3 wt %
  • the proportion of barium oxide is 33 wt %
  • the proportion of tantalum oxide is 5 wt %.
  • the resistor paste contains a copper-nickel alloy (CuNi), titanium silicide (TiSi 2 ), aluminum oxide, and glass particles A, as shown in Table 3.
  • nickel silicide Ni 31 Si 12
  • the resistor 13 also includes a copper-nickel alloy, titanium silicide, and aluminum oxide in addition to nickel silicide. That is, in Comparative Example 1, as shown in Table 3, the resistor 13 contains nickel silicide, copper-nickel alloy, titanium silicide, and aluminum oxide.
  • nickel silicide results in a TCR of -126.8 ppm, which is less than -50 ppm (see point P1 in Figure 2).
  • the average resistance value of the chip resistor is 300 m ⁇ . That is, in Comparative Example 1, the TCR is smaller than ⁇ 50 ppm and is not included in the range of ⁇ 50 ppm or more and +50 ppm or less (hereinafter referred to as “predetermined range”).
  • the resistor paste contained a copper-nickel alloy (metal particles), titanium silicide (metal silicide), aluminum oxide (insulating particles), glass particles A, and glass Particles B (glass particles) are included. That is, in Example 1, the resistor paste further contains glass particles B. As shown in FIG. In Comparative Example 1, the ratio of the glass particles A in the resistor paste was 7.76 wt%, whereas in Example 1, the ratio of the glass particles A in the resistor paste was 3.88 wt%. The ratio of the glass particles B in is 3.88 wt%.
  • Example 1 since the resistor paste contains the glass particles B whose main component is highly reactive boron oxide, the reaction of titanium silicide is accelerated to produce nickel silicide (Ni 31 Si 12 ). increase in quantity. As a result, in Example 1, the TCR of the resistor 13 is -38.0 ppm, which falls within the predetermined range (see point P2 in FIG. 2). In addition, in Example 1, the average resistance value of the chip resistor 1 is 350 m ⁇ as shown in Table 3. Also, in Example 1, as shown in Table 3, the resistor 13 contains a copper-nickel alloy, aluminum oxide, and nickel silicide.
  • Example 2 the resistor paste consisted of, as shown in Table 3, copper-nickel alloy (metal particles), titanium silicide (metal silicide), aluminum oxide (insulating particles), glass particles A, and glass Particles B (glass particles) are included.
  • the ratio of glass particles A and B in the resistor paste is changed from Example 1.
  • FIG. Specifically, in Example 2, the ratio of the glass particles A in the resistor paste is 2.16 wt %, and the ratio of the glass particles B in the resistor paste is 5.60 wt %.
  • the TCR of the resistor 13 is -15.1 ppm, which falls within the predetermined range (see point P3 in FIG. 2).
  • the average resistance value of the chip resistor 1 is 414 m ⁇ as shown in Table 3.
  • the resistor 13 contains a copper-nickel alloy, aluminum oxide, and nickel silicide.
  • Example 3 As shown in Table 3, a copper-nickel alloy (metal particles), titanium silicide (metal silicide), aluminum oxide (insulating particles), and glass particles B (glass particles) are included. . That is, in Example 3, all of the glass particles A are replaced with the glass particles B. In Example 3, the ratio of glass particles B in the resistor paste is 7.76 wt %. In Example 3, by replacing all the glass particles A with the glass particles B, the reaction between the copper-nickel alloy and the glass particles B is also activated. Nickel aluminum (Ni 20 Al 3 B 6 ) is produced. As a result, in Example 3, the TCR of the resistor 13 is -0.5 ppm, which falls within the predetermined range (see point P4 in FIG. 2).
  • Example 3 the average resistance value of the chip resistor 1 is 363 m ⁇ . Further, in Example 3, as shown in Table 3, the resistor 13 contains a copper-nickel alloy, aluminum oxide, nickel silicide, and nickel-aluminum boride.
  • the approximation formula for the points P2 to P4 corresponding to the first to third embodiments described above is formula (1) (see broken line a1 in FIG. 2).
  • x in the formula (1) is the ratio of the glass particles B to the sum of the glass particles A and B
  • nickel silicide nickel silicide
  • nickel aluminum boride Nickel aluminum boride
  • the resistor paste according to the first aspect contains metal particles, insulating particles, glass particles, and metal silicide.
  • Metal particles include copper and nickel.
  • the insulating particles include at least one of alumina, zirconia, zinc oxide and boron nitride.
  • the resistor paste according to the second aspect includes titanium silicide, zirconium silicide, hafnium silicide, niobium silicide, tantalum silicide, chromium silicide, tungsten silicide, At least one of molybdenum silicide, iron silicide, magnesium silicide, sodium silicide and platinum silicide.
  • the resistor paste according to the third aspect contains metal particles, insulating particles, metal silicide, and glass particles.
  • Metal particles include copper and nickel.
  • the insulating particles include at least one of alumina, zirconia, zinc oxide and boron nitride.
  • the glass particles contain at least boron oxide and aluminum oxide.
  • a nickel compound containing nickel silicide is produced when the resistor (13) of the chip resistor (1) is formed.
  • the nickel compound further contains nickel aluminum boride.
  • the nickel silicide is Ni 31 Si 12 and the nickel aluminum boride is Ni 20 Al 3 B 6 .
  • the glass particles further contain silicon oxide, tantalum oxide, magnesium oxide, calcium oxide and barium oxide.
  • the glass has a boron oxide ratio of 41 wt% or more and 50 wt% or less, and an aluminum oxide ratio of 4 wt% or more and 9 wt% or less.
  • the ratio of silicon oxide is 2 wt% or more and 7 wt% or less
  • the ratio of tantalum oxide is 3 wt% or more and 10 wt% or less
  • the ratio of magnesium oxide is 1 wt% or more and 5 wt% or less
  • the proportion of calcium oxide is 1 wt % or more and 5 wt % or less
  • the proportion of barium oxide is 30 wt % or more and 35 wt % or less.
  • the metal silicide contains titanium silicide.
  • the resistor paste according to the ninth aspect further contains an organic vehicle in any one of the first to eighth aspects.
  • each material can be uniformly mixed and dispersed.
  • a chip resistor (1) according to the tenth aspect comprises a resistor (13) and a substrate (11).
  • the resistor (13) is formed on the substrate (11) using the resistor paste according to any one of the first to ninth aspects.
  • the resistor (13) contains nickel silicide.
  • the glass particles according to the twelfth aspect are used for the resistor paste according to any one of the third to ninth aspects.
  • the configurations according to the second, fourth to ninth aspects are not essential to the resistor paste, and can be omitted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

本開示の課題は、抵抗体の高比抵抗と低TCRとを両立することである。本開示に係る抵抗体ペーストは、金属粒子と、絶縁粒子と、ガラス粒子と、金属ケイ化物と、を含む。金属粒子は、銅及びニッケルを含む。絶縁粒子は、アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含む。本開示に係るチップ抵抗器(1)は、抵抗体(13)と、基板(11)と、を備える。抵抗体(13)は、上述の抵抗体ペーストを材料とし、基板(11)上に形成されている。

Description

抵抗体ペースト、チップ抵抗器及びガラス粒子
 本開示は、一般に抵抗体ペースト、チップ抵抗器及びガラス粒子に関し、より詳細には、金属粒子を含む抵抗体ペースト、抵抗体ペーストを材料とする抵抗体を備えるチップ抵抗器、及び抵抗体ペーストに含まれるガラス粒子に関する。
 特許文献1には、金属粒子で形成された導電部分と、低融点ガラス粒子で形成された無機バインダー成分と、非導電性無機粒子(絶縁粒子)で形成された抵抗値調整成分と、有機ビヒクルとを含む抵抗体ペーストが記載されている。金属粒子は、銅及びニッケルを含む。非導電性無機粒子は、例えば、アルミナを含む。
 特許文献1に記載の抵抗体ペーストでは、抵抗値調整成分を添加することで、抵抗体ペーストを材料とする抵抗体の比抵抗を高めることができるが、比抵抗を更に高めようとして抵抗値調整成分の添加量を多くすることで、抵抗体の抵抗温度係数(以下、「TCR」という)が低くなりすぎる場合がある。
特開2015-46567号公報
 本開示の目的は、抵抗体の高比抵抗と低TCRとを両立することが可能な抵抗体ペースト、チップ抵抗器及びガラス粒子を提供することにある。
 本開示の一態様に係る抵抗体ペーストは、金属粒子と、絶縁粒子と、ガラス粒子と、金属ケイ化物と、を含む。前記金属粒子は、銅及びニッケルを含む。前記絶縁粒子は、アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含む。
 本開示の別の態様に係る抵抗体ペーストは、金属粒子と、絶縁粒子と、金属ケイ化物と、ガラス粒子と、を含む。前記金属粒子は、銅及びニッケルを含む。前記絶縁粒子は、アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含む。前記ガラス粒子は、少なくとも酸化ホウ素及び酸化アルミニウムを含む。チップ抵抗器の抵抗体を形成した場合に、ニッケルケイ化物を含むニッケル化合物が生成される。
 本開示の一態様に係るチップ抵抗器は、抵抗体と、基板と、を備える。前記抵抗体は、前記抵抗体ペーストを材料とし、前記基板上に形成されている。
 本開示の一態様に係るガラス粒子は、前記抵抗体ペーストに用いられる。
図1は、実施形態1,2に係る抵抗体ペーストを材料とする抵抗体を備えるチップ抵抗器の断面図である。 図2は、実施形態2に係る抵抗体ペーストに含まれるガラス粒子A,Bの総和に対するガラス粒子Bの割合とTCRとの関係を示すグラフである。
 以下、実施形態1,2に係る抵抗体ペースト、チップ抵抗器及びガラス粒子について、図面を参照して説明する。以下の実施形態1,2において参照する図1は、模式的な図であり、図中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態1)
 (1)抵抗体ペーストの構成
 まず、実施形態1に係る抵抗体ペーストの構成について説明する。
 実施形態1に係る抵抗体ペーストは、後述のチップ抵抗器1の抵抗体13(図1参照)の材料であり、抵抗体13を形成するために用いられる。
 実施形態1に係る抵抗体ペーストは、金属粒子と、絶縁粒子と、ガラス粒子と、有機ビヒクルと、金属ケイ化物と、を含む。
 金属粒子は、銅(Cu)及びニッケル(Ni)を含む。より詳細には、金属粒子は、銅粒子とニッケル粒子との組み合わせである。なお、金属粒子は、銅粒子とニッケル粒子との組み合わせに限らず、銅及びニッケルの合金粒子であってもよい。さらに、金属粒子は、銅粒子と合金粒子との組み合わせであってもよいし、ニッケル粒子と合金粒子との組み合わせであってもよいし、銅粒子とニッケル粒子と合金粒子との組み合わせであってもよい。金属粒子は、焼成後の抵抗体13(図1参照)において導電経路を形成する。金属粒子は、銅及びニッケルを含んでいればよく、他の金属を更に含んでいてもよい。
 絶縁粒子は、アルミナ(Al)、ジルコニア(ZrO)、酸化亜鉛(ZnO)及び窒化ホウ素(BN)の少なくとも1つを含む。実施形態1に係る抵抗体ペーストでは、絶縁粒子は、アルミナを含む。絶縁粒子は、焼成した抵抗体13(図1参照)中の金属粒子の含有量を低減させて抵抗値を高くしつつ、後述のガラス粒子の溶融流動を抑えて導電経路の断線を抑制する。
 ガラス粒子は、例えば、酸化ケイ素(例えばSiO)を含む。ガラス粒子は、酸化ケイ素に加えて、他の酸化物を含んでいてもよい。他の酸化物は、例えば、酸化ホウ素(B)である。ガラス粒子は、後述の基板11(図1参照)に対する濡れ性を高めて密着性を向上させつつ、抵抗体13の全体にわたって溶融固化することで強靭な抵抗体13を形成する。また、ガラス粒子は、絶縁体であるため、抵抗値を調整する機能も有する。
 有機ビヒクルは、例えば、有機バインダーと有機溶剤との少なくとも一方を含む。実施形態1に係る抵抗体ペーストでは、有機ビヒクルは、有機バインダーと有機溶剤との両方を含む。有機バインダーは、例えば、セルロース系樹脂、アクリル系樹脂等である。有機溶剤は、例えば、テルピネオール、ブチルカルビトールアセテート等である。有機ビヒクルの質量割合は、金属粒子を100とした場合に、例えば、5~200であるのが好ましく、より好ましくは10~150であるのがよく、更に好ましくは20~100であるのがよい。
 抵抗体ペーストは、金属ケイ化物として、ケイ化チタン(TiSi)、ケイ化ジルコニウム(ZrSi)、ケイ化ハフニウム(HfSi)、ケイ化ニオブ(NbSi)、ケイ化タンタル(TaSi)、ケイ化クロム(CrSi)、ケイ化タングステン(WSi)、ケイ化モリブデン(MoSi)、ケイ化鉄(FeSi)、ケイ化マグネシウム(MgSi)、ケイ化ナトリウム(NaSi)及びケイ化白金(PtSi)の少なくとも1つを含む。実施形態1に係る抵抗体ペーストは、金属ケイ化物として、ケイ化チタンを含む。
 実施形態1に係る抵抗体ペーストでは、焼成により金属ケイ化物と金属粒子(銅及びニッケル)とが反応し、この反応により金属粒子における銅及びニッケルの組成が変化するとともに、ケイ化ニッケル(Ni31Si12)が生成される。その結果、焼成により形成された抵抗体13(図1参照)のTCRを上昇させることが可能となる。すなわち、絶縁粒子の添加量の増加に伴うTCRの低下を抑制することが可能となる。
 (2)チップ抵抗器の構成
 次に、実施形態1に係るチップ抵抗器1の構成について、図1を参照して説明する。
 実施形態1に係るチップ抵抗器1は、図1に示すように、基板11と、複数(図示例では2つ)の上面電極12と、抵抗体13と、保護膜14と、複数(図示例では2つ)の下面電極15と、複数(図示例では2つ)の端面電極16と、を備える。また、実施形態1に係るチップ抵抗器1は、複数(図示例では2つ)の第1めっき層17と、複数(図示例では2つ)の第2めっき層18と、複数(図示例では2つ)の第3めっき層19と、を更に備える。すなわち、実施形態1に係るチップ抵抗器1は、基板11と、抵抗体13と、を備える。
 (2.1)基板
 基板11は、例えば、セラミック基板である。セラミック基板の材料は、例えば、アルミナ含有率が96%以上のアルミナ焼結体である。基板11は、第1方向D1からの平面視において、矩形状に形成されている。基板11は、図1に示すように、第1主面(上面)111と、第2主面(下面)112と、外周面113と、を有する。第1主面111と第2主面112とは、第1方向D1において互いに対向している。第1主面111及び第2主面112の各々は、第1方向D1に直交する第2方向D2に沿った平面である。また、外周面113は、第1方向D1に沿った4つの側面を含む。第1方向D1は、基板11の厚さ方向に平行な方向(図1の上下方向)である。第2方向D2は、基板11の長手方向又は幅方向(短手方向)に平行な方向(図1の左右方向)である。
 (2.2)上面電極
 複数の上面電極12は、基板11の第1主面111上に形成されている。図1の例では、複数の上面電極12は、基板11の第1主面111上において第2方向D2の両端部に形成されている。複数の上面電極12の材料は、例えば、Cu(銅)系合金である。複数の上面電極12は、例えば、厚膜材料を印刷した後に焼成することにより形成される。
 (2.3)抵抗体
 抵抗体13は、基板11の第1主面111上に形成されている。図1の例では、抵抗体13は、基板11の第1主面111上の中央部に形成されている。抵抗体13の材料は、例えば、上述の抵抗体ペーストである。抵抗体13は、第2方向D2における両端部において複数の上面電極12に接触しており、複数の上面電極12と電気的に接続されている。抵抗体13は、第1方向D1からの平面視において、例えば矩形状であるが、抵抗体13の抵抗値に合わせて任意の形状が可能である。
 (2.4)保護膜
 保護膜14は、抵抗体13を保護するための膜である。保護膜14は、抵抗体13の少なくとも一部を覆う。図1の例では、保護膜14は、抵抗体13の全域(全体)を覆っている。保護膜14の材料は、例えば、エポキシ樹脂である。保護膜14は、例えば、第1方向D1からの平面視において矩形状に形成されているが、抵抗体13の形状に合わせて任意の形状が可能である。保護膜14の材料は、エポキシ樹脂に限らず、例えば、ポリイミド樹脂であってもよい。
 (2.5)下面電極
 複数の下面電極(裏面電極)15は、基板11の第2主面112上に形成されている。図1の例では、複数の下面電極15は、基板11の第2主面112上において第2方向D2の両端部に形成されている。複数の下面電極15は、複数の上面電極12と一対一に対応している。複数の下面電極15の材料は、例えば、Cu系合金である。複数の下面電極15は、例えば、厚膜材料を印刷した後に焼成することにより形成される。
 (2.6)端面電極
 複数の端面電極16は、基板11の外周面113を覆うように形成されている。図1の例では、複数の端面電極16は、基板11の外周面113に含まれる4つの側面のうち第2方向D2における両側面を覆うように形成されている。複数の端面電極16は、複数の上面電極12及び複数の下面電極15と一対一に対応している。複数の端面電極16の材料は、例えば、カーボン粉末と銀(Ag)とエポキシ樹脂との混合物である。複数の端面電極16の各々は、第1方向D1における第1端部(上端部)において複数の上面電極12のうち対応する上面電極12に接触し、第2端部(下端部)において複数の下面電極15のうち対応する下面電極15に接触している。これにより、複数の上面電極12と複数の下面電極15とが、複数の端面電極16を介して電気的に接続される。
 (2.7)第1めっき層
 複数の第1めっき層17は、例えば、銅(Cu)めっきからなる。図1の例では、複数の第1めっき層17は、第2方向D2における基板11の両端部において、複数の上面電極12、複数の下面電極15及び複数の端面電極16を覆っている。また、複数の第1めっき層17は、保護膜14の表面に接触している。実施形態1に係るチップ抵抗器1では、第1めっき層17を設けることで、チップ抵抗器1の抵抗値を調整することが可能となる。なお、第1めっき層17は省略されてもよい。
 (2.8)第2めっき層
 複数の第2めっき層18は、例えば、ニッケル(Ni)めっきからなる。図1の例では、複数の第2めっき層18は、第2方向D2における基板11の両端部において、複数の第1めっき層17を覆っている。また、複数の第2めっき層18は、保護膜14の表面に接触している。
 (2.9)第3めっき層
 複数の第3めっき層19は、例えば、錫(Sn)めっきからなる。図1の例では、複数の第3めっき層19は、第2方向D2における基板11の両端部において、複数の第2めっき層18を覆っている。また、複数の第3めっき層19は、保護膜14の表面に接触している。
 (3)チップ抵抗器の製造方法
 次に、実施形態1に係るチップ抵抗器1の製造方法について説明する。
 実施形態1に係るチップ抵抗器1の製造方法は、第1工程~第9工程を有する。
 第1工程では、基板11を準備する。より詳細には、第1工程では、複数のチップ抵抗器1の各々の基板11の元となる基板本体を準備する。基板本体は、例えば、セラミック基板である。基板本体となるセラミック基板の材料は、例えば、アルミナ含有率が96%以上のアルミナ焼結体である。
 第2工程では、複数のチップ抵抗器1の各々における複数の下面電極15を基板本体の第2主面上に形成する。より詳細には、第2工程では、例えば、厚膜材料を印刷した後に焼成することで基板本体の第2主面上にCu系合金膜を形成することにより、複数のチップ抵抗器1の各々における複数の下面電極15を形成する。基板本体の第2主面は、複数のチップ抵抗器1の各々の基板11の第2主面112となる面である。
 第3工程では、基板本体の第1主面上に複数の上面電極12を形成する。基板本体の第1主面は、複数のチップ抵抗器1の各々の基板11の第1主面111となる面である。より詳細には、第3工程では、例えば、厚膜材料を印刷した後に焼成することで基板本体の第1主面上にCu系合金膜を形成することにより、複数のチップ抵抗器1の各々における複数の上面電極12を形成する。
 第4工程では、複数のチップ抵抗器1の各々の抵抗体13を形成する。より詳細には、第4工程では、基板本体の第1主面上に抵抗体ペーストを印刷した後、焼成により抵抗体13を形成する。このとき、抵抗体13では、金属ケイ化物(ケイ化チタン)と金属粒子(銅及びニッケル)とが反応することにより、上記金属ケイ化物(ケイ化チタン)とは異なる金属ケイ化物(ケイ化ニッケル)が生成される。すなわち、実施形態1に係るチップ抵抗器1では、抵抗体13は、ケイ化ニッケルを含む。
 第5工程では、複数のチップ抵抗器1の各々における保護膜14を形成する。より詳細には、第5工程では、抵抗体13の全体を覆うようにエポキシ樹脂を塗布した後、エポキシ樹脂を熱硬化させることにより保護膜14を形成する。保護膜14は、図1に示すように、複数の上面電極12と抵抗体13との接触部分も覆っている。
 第6工程では、第1工程~第5工程によって一体に形成された、端面電極16、第1めっき層17、第2めっき層18及び第3めっき層19を除いた複数のチップ抵抗器を、端面電極16、第1めっき層17、第2めっき層18及び第3めっき層19を除いた複数の短冊形状のチップ抵抗器に分割する。より詳細には、第6工程では、例えば、一体に形成された複数のチップ抵抗器を、上下に設けられたローラ(図示せず)から応力を加えることにより、複数の短冊形状のチップ抵抗器に分割する。
 第7工程では、複数の短冊形状に分割されたチップ抵抗器に対して、複数の端面電極16を形成する。より詳細には、第7工程では、例えば、上記混合物からなる端面電極ペースト(図示せず)をステンレス製のローラ(図示せず)上に形成した後、上記ローラを回転させることによって、複数の短冊形状のチップ抵抗器の各々において複数の端面電極16が形成される。これにより、複数の短冊形状のチップ抵抗器の各々において、複数の上面電極12と複数の下面電極15とが、複数の端面電極16を介して電気的に接続される。
 第8工程では、ローラを回転させることによって、複数の短冊形状のチップ抵抗器を個片のチップ抵抗器に分割する。
 第9工程では、複数のチップ抵抗器の各々において第1めっき層17~第3めっき層19を形成する。より詳細には、第9工程では、複数のチップ抵抗器の各々に対して、第1めっき層17、第2めっき層18、第3めっき層19の順に3つのめっき層を形成する。
 以上説明した第1工程~第9工程によって、実施形態1に係るチップ抵抗器1を製造することが可能となる。
 (4)チップ抵抗器の特性
 次に、実施形態1に係る抵抗体ペーストを用いたチップ抵抗器1の特性について、比較例を参照しながら説明する。チップ抵抗器1の体積抵抗率は、例えば、200μΩ・cm以上であることが好ましい。また、チップ抵抗器1のTCRは、例えば、-50ppm/℃以上で、かつ、+50ppm/℃以下であることが好ましい。
 まず、比較例1では、抵抗体ペーストは、金属粒子と、ガラス粒子と、有機ビヒクルと、絶縁粒子と、を含む。金属粒子は、銅及びニッケルを含む。金属粒子における銅及びニッケルの比率は、6:4である。また、絶縁粒子は、アルミナを含む。比較例1では、抵抗体ペーストにおける絶縁粒子(アルミナ)の比率が大きくなるにつれて、この抵抗体ペーストを材料とする抵抗体の抵抗値は高くなるが、抵抗体のTCRは低くなりすぎてしまう。
 また、比較例2では、抵抗体ペーストは、金属粒子と、ガラス粒子と、有機ビヒクルと、金属ケイ化物と、を含む。金属粒子は、銅及びニッケルを含む。金属粒子における銅及びニッケルの比率は、55:45である。また、金属ケイ化物は、ケイ化チタンである。比較例2では、抵抗体ペーストにおける金属ケイ化物(ケイ化チタン)の比率が大きくなるにつれて、この抵抗体ペーストを材料とする抵抗体の抵抗値が高くなるとともに、抵抗体のTCRも高くなる。
 一方、実施形態1では、抵抗体ペーストは、金属粒子と、ガラス粒子と、絶縁粒子と、有機ビヒクルと、金属ケイ化物と、を含む。金属粒子は、銅及びニッケルを含む。金属粒子における銅及びニッケルの比率は、55:45である。また、絶縁粒子はアルミナを含み、金属ケイ化物はケイ化チタンを含む。
 一例として、抵抗体ペーストにおいて、金属粒子の比率が70wt%、ガラス粒子の比率が7wt%、絶縁粒子(アルミナ)の比率が20wt%、金属ケイ化物(ケイ化チタン)の比率が3wt%である場合、この抵抗体ペーストを材料とする抵抗体13の抵抗値は364mΩとなり、抵抗体13のTCRは-19ppmとなる。ここで、抵抗体13の体積は5.44×10-2mm(長さ1.6mm×幅1.7mm×厚さ20μm)であるため、実施形態1に係る抵抗体ペーストを材料とする抵抗体13の体積抵抗率は上記基準を満たしている。また、実施形態1に係る抵抗体ペーストを材料とする抵抗体13では、25℃から125℃に変化する際のTCRが-19ppmであるため、TCRの上記基準を満たしている。要するに、実施形態1に係る抵抗体ペーストにより抵抗体13を形成した場合、抵抗体13の抵抗値を高くしながらも抵抗体13のTCRを低くすることが可能となる。すなわち、実施形態1に係る抵抗体ペーストによれば、抵抗体13の高比抵抗と低TCRとを両立することが可能となる。
 (5)効果
 実施形態1に係る抵抗体ペーストは、上述したように、絶縁粒子を含んでいる。このため、実施形態1に係る抵抗体ペーストによりチップ抵抗器1の抵抗体13を形成した場合には、抵抗体13の比抵抗を高めることが可能となる。また、実施形態1に係る抵抗体ペーストは、上述したように、金属ケイ化物(例えば、ケイ化チタン)を更に含んでいる。このため、実施形態1に係る抵抗体ペーストによりチップ抵抗器1の抵抗体13を形成した場合には、絶縁粒子の添加量の増加によって抵抗体13のTCRが低くなりすぎることを抑制することが可能となる。すなわち、実施形態1に係る抵抗体ペーストによれば、抵抗体13の高比抵抗と低TCRとを両立することが可能となる。
 (6)変形例
 実施形態1は、本開示の様々な実施形態の一つにすぎない。実施形態1は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、実施形態1の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 実施形態1では、抵抗体ペーストは、金属ケイ化物として、ケイ化チタンを含んでいるが、抵抗体ペーストは、ケイ化チタン以外の金属ケイ化物を含んでいてもよい。抵抗体ペーストは、金属ケイ化物として、例えば、ケイ化ジルコニウム、ケイ化ハフニウム、ケイ化ニオブ、ケイ化タンタル、ケイ化クロム、ケイ化タングステン、ケイ化モリブデン、ケイ化鉄、ケイ化マグネシウム、ケイ化ナトリウム又はケイ化白金を含んでいてもよい。また、抵抗体ペーストは、金属ケイ化物として、上述の2以上の材料を含んでいてもよい。要するに、抵抗体ペーストは、金属ケイ化物として、ケイ化チタン、ケイ化ジルコニウム、ケイ化ハフニウム、ケイ化ニオブ、ケイ化タンタル、ケイ化クロム、ケイ化タングステン、ケイ化モリブデン、ケイ化鉄、ケイ化マグネシウム、ケイ化ナトリウム及びケイ化白金の少なくとも1つを含んでいればよい。
 実施形態1では、抵抗体ペーストは、絶縁粒子として、アルミナを含んでいるが、抵抗体ペーストは、アルミナ以外の絶縁粒子を含んでいてもよい。抵抗体ペーストは、絶縁粒子として、ジルコニア、酸化亜鉛又は窒化ホウ素を含んでいてもよい。また、抵抗体ペーストは、絶縁粒子として、上述の2以上の材料を含んでいてもよい。要するに、抵抗体ペーストは、絶縁粒子として、アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含んでいればよい。
 実施形態1では、第1方向D1及び第2方向D2の両方と直交する方向(図1の紙面に垂直な方向)から見て、各端面電極16の形状がU字状であるが、各端面電極16の形状はU字状に限らず、例えば、第1方向D1に沿ったI字状であってもよい。この場合、第1方向D1における端面電極16の第1端部(上端部)で上面電極12の側面に接触し、第1方向D1における端面電極16の第2端部(下端部)で下面電極15の側面に接触していればよい。これにより、複数の上面電極12と複数の下面電極15とを、複数の端面電極16を介して電気的に接続することが可能となる。
 (実施形態2)
 実施形態2に係る抵抗体ペースト、チップ抵抗器1及びガラス粒子について説明する。実施形態2に係るチップ抵抗器1に関し、実施形態1に係るチップ抵抗器1と同様の構成要素については、同一の符号を付して説明を省略する。
 実施形態2に係る抵抗体ペーストは、ガラス粒子の組成が異なっている点で、実施形態1に係る抵抗体ペーストと相違する。
 (1)抵抗体ペーストの構成
 実施形態2に係る抵抗体ペーストは、金属粒子(金属導電体)と、絶縁粒子(絶縁体)と、金属ケイ化物と、ガラス粒子(ガラス)と、を含む。すなわち、ガラス粒子は、抵抗体ペーストに用いられる。また、実施形態2に係る抵抗体ペーストは、有機ビヒクルを更に含む。
 金属粒子は、銅及びニッケルを含む。実施形態2では、金属粒子は、例えば、銅ニッケル合金を含む。金属粒子は、焼成後の抵抗体13(図1参照)において導電経路を形成する。金属粒子は、銅及びニッケルを含んでいれば他の金属を更に含んでいてもよい。
 絶縁粒子は、アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含む。実施形態2では、絶縁粒子は、例えば、アルミナを含む。絶縁粒子は、焼成した抵抗体13(図1参照)中の金属粒子の含有量を低減させて抵抗値を高くしつつ、後述のガラス粒子の溶融流動を抑えて導電経路の断線を抑制する。
 金属ケイ化物は、例えば、ケイ化チタンを含む。
 ガラス粒子は、酸化ホウ素(B)を主成分とし、副成分として、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化タンタル(Ta)を含むと共に、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)の少なくとも1つを含む。実施形態2では、ガラス粒子は、酸化マグネシウム、酸化カルシウム及び酸化バリウムのすべてを含む。
 ガラス粒子は、抵抗体ペーストの焼成工程において、銅、ニッケル及び金属ケイ化物(ケイ化チタン)と反応して、後述のニッケルケイ化物(Ni31Si12)及びニッケルアルミホウ化物(Ni20Al)を生成する。これらのニッケルケイ化物及びニッケルアルミホウ化物は、後述の抵抗体13の抵抗温度係数(Temperature Coefficient of Resistance:TCR)を調整する働きを有する。実施形態2では、後述のガラス粒子Bが上述のガラス粒子に相当する。
 また、抵抗体ペーストは、後述の基板11と抵抗体13との密着性を向上させつつ、抵抗体13の全体を溶融固化させて強靭な抵抗体13とするために、後述のガラス粒子Aのように、酸化鉛(PbO)を主成分とするガラス粒子を更に含んでいてもよい。ただし、ニッケルケイ化物及びニッケルアルミホウ化物の生成を抑制しないように、ガラス粒子(ガラス粒子A)単体に含まれる酸化鉛の比率は80wt%以下とし、かつ、ガラス粒子Aに含まれる酸化鉛とガラス粒子Bに含まれる酸化鉛との総和の比率は45wt%以下とすることが好ましい。ガラス粒子Aは、一例として、酸化鉛を主成分とし、副成分として、酸化ホウ素、酸化ケイ素及び酸化亜鉛を含む。また、ガラス粒子は、絶縁体であるため、抵抗値を調整する機能も有する。
 実施形態2に係る抵抗体ペーストでは、上述したように、ガラス粒子(ガラス粒子B)は、少なくとも酸化ホウ素及び酸化アルミニウムを含む。また、実施形態2に係る抵抗体ペーストでは、ガラス粒子(ガラス粒子B)は、酸化ケイ素、酸化タンタル、酸化マグネシウム、酸化カルシウム及び酸化バリウムを更に含む。
 有機ビヒクルは、例えば、有機バインダーと有機溶剤との少なくとも一方を含む。実施形態2に係る抵抗体ペーストでは、有機ビヒクルは、有機バインダーと有機溶剤との両方を含む。有機バインダーは、例えば、セルロース系樹脂、アクリル系樹脂等である。有機溶剤は、例えば、テルピネオール、ブチルカルビトールアセテート等である。有機ビヒクルの質量割合は、金属粒子を100とした場合に、例えば、5~200であるのが好ましく、より好ましくは10~150であるのがよく、更に好ましくは20~100であるのがよい。
 (2)チップ抵抗器の構成
 次に、実施形態2に係るチップ抵抗器1の構成について、図1を参照して説明する。
 実施形態2に係るチップ抵抗器1は、図1に示すように、基板11と、複数(図示例では2つ)の上面電極12と、抵抗体13と、保護膜14と、複数(図示例では2つ)の下面電極15と、複数(図示例では2つ)の端面電極16と、を備える。また、実施形態2に係るチップ抵抗器1は、複数(図示例では2つ)の第1めっき層17と、複数(図示例では2つ)の第2めっき層18と、複数(図示例では2つ)の第3めっき層18と、を更に備える。要するに、実施形態2に係るチップ抵抗器1は、基板11と、上述の抵抗体ペーストを材料とし、基板11上に形成されている抵抗体13と、を備える。
 抵抗体13は、ニッケル化合物を含む。ニッケル化合物は、例えば、ニッケルケイ化物を含む。ニッケルケイ化物は、例えば、ケイ化ニッケル(Ni31Si12)である。ニッケル化合物は、ニッケルアルミホウ化物を更に含む。ニッケルアルミホウ化物は、例えば、ホウ化ニッケルアルミ(Ni20Al)である。言い換えると、上述の抵抗体ペーストによりチップ抵抗器1の抵抗体13を形成した場合に、ニッケルケイ化物を含むニッケル化合物が生成される。
 (3)チップ抵抗器の製造方法
 次に、実施形態2に係るチップ抵抗器1の製造方法について説明する。
 実施形態2に係るチップ抵抗器1の製造方法は、第1工程~第8工程を有する。
 第1工程では、基板11を準備する。より詳細には、第1工程では、複数のチップ抵抗器1の各々の基板11の元となる基板本体を準備する。基板本体は、例えば、セラミック基板である。基板本体となるセラミック基板の材料は、例えば、アルミナ含有率が96%以上のアルミナ焼結体である。
 第2工程では、基板本体の第1主面上に複数の上面電極12を形成する。基板本体の第1主面は、複数のチップ抵抗器1の各々の基板11の第1主面111となる面である。より詳細には、第2工程では、例えば、厚膜材料を印刷した後に焼成することで基板本体の第1主面上にCu系合金膜を形成することにより、複数のチップ抵抗器1の各々における複数の上面電極12を形成する。
 第3工程では、複数のチップ抵抗器1の各々の抵抗体13を形成する。より詳細には、第3工程では、基板本体の第1主面上に抵抗体ペーストを印刷した後、焼成により抵抗体13を形成する。このとき、抵抗体13では、ガラス粒子を介して金属ケイ化物(ケイ化チタン)と金属粒子(銅及びニッケル)とが反応することにより、上記金属ケイ化物(ケイ化チタン)とは異なる金属ケイ化物、具体的にはケイ化ニッケル(Ni31Si12)が生成される。またこのとき、抵抗体ペーストに含まれるケイ化チタンのチタンがガラス粒子に取り込まれ、ケイ化チタンのケイ素が金属粒子(銅及びニッケル)と反応することで、抵抗体ペーストに含まれるケイ化チタンはほぼ消失する。さらに、金属粒子(銅及びニッケル)は、ガラス粒子と直接反応することにより、金属ホウ化物、具体的にはホウ化ニッケルアルミ(Ni20Al)も生成される。このように、実施形態2に係るチップ抵抗器1では、抵抗体13は、少なくともニッケルケイ化物(ケイ化ニッケル)を含む。
 第4工程では、複数のチップ抵抗器1の各々における保護膜14を形成する。より詳細には、第4工程では、抵抗体13の全体を覆うようにエポキシ樹脂を塗布した後、エポキシ樹脂を熱硬化させることにより保護膜14を形成する。保護膜14は、図1に示すように、複数の上面電極12と抵抗体13との接触部分も覆っている。
 第5工程では、複数のチップ抵抗器1の各々における複数の下面電極15を基板本体の第2主面上に形成する。より詳細には、第2工程では、例えば、厚膜材料を印刷した後に焼成することで基板本体の第2主面上にCu系合金膜を形成することにより、複数のチップ抵抗器1の各々における複数の下面電極15を形成する。基板本体の第2主面は、複数のチップ抵抗器1の各々の基板11の第2主面112となる面である。
 第6工程では、第1工程~第5工程によって一体に形成された複数のチップ抵抗器1を個々のチップ抵抗器1に切断する。より詳細には、第6工程では、例えば、レーザ又はダイシングを用いて、一体に形成された複数のチップ抵抗器1を個々のチップ抵抗器1に切断する。
 第7工程では、個々に切断されたチップ抵抗器1に対して、複数の端面電極16を形成する。より詳細には、第7工程では、例えば、上記混合物からなる端面電極ペースト(図示せず)をステンレス製のローラ(図示せず)上に形成した後、上記ローラを回転させることによって、複数のチップ抵抗器1の各々において複数の端面電極16が形成される。これにより、複数のチップ抵抗器1の各々において、複数の上面電極12と複数の下面電極15とが、複数の端面電極16を介して電気的に接続される。
 第8工程では、複数のチップ抵抗器の各々において第1めっき層17~第3めっき層19を形成する。より詳細には、第8工程では、複数のチップ抵抗器1の各々に対して、第1めっき層17、第2めっき層18、第3めっき層19の順に3つのめっき層を形成する。
 以上説明した第1工程~第8工程によって、実施形態2に係るチップ抵抗器1を製造することが可能となる。
 なお、上述のチップ抵抗器1の製造方法において、第5工程は、例えば、第2工程の前に実行されてもよい。
 (4)チップ抵抗器の特性
 次に、上述の抵抗体ペーストを用いたチップ抵抗器1の特性について、図2及び表1~表3を参照して説明する。図2の横軸は、ガラス粒子A,Bの総和に対するガラス粒子Bの割合を示し、図2の縦軸は、抵抗体13のTCRを示す。表1は、ガラス粒子Aの組成比を示す。表2は、ガラス粒子Bの組成比を示す。表3は、抵抗体ペーストの配合組成と、抵抗体ペーストを用いたチップ抵抗器の電気特性及び抵抗体の参照強度比(Reference Intensity Ratio:RIR)との関係を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
                          (単位:wt%)
 ガラス粒子Aは、表1に示すように、酸化鉛(PbO)と、酸化ホウ素(B)と、酸化亜鉛(ZnO)と、酸化ケイ素(SiO)と、を含む。ガラス粒子Aでは、酸化鉛の比率は60wt%以上、80wt%以下であり、酸化ホウ素の比率は15wt%以上、20wt%以下であり、酸化亜鉛の比率は1wt%以上、5wt%以下であり、酸化ケイ素の比率は5wt%以上、15wt%以下である。実施形態2では一例として、酸化鉛の比率は71wt%以下であり、酸化ホウ素の比率は16wt%であり、酸化亜鉛の比率は5wt%であり、酸化ケイ素の比率は8wt%である。
 ガラス粒子Bは、表2に示すように、酸化ケイ素と、酸化アルミニウムと、酸化ホウ素と、酸化カルシウム(CaO)と、酸化マグネシウム(MgO)と、酸化バリウム(BaO)と、酸化タンタル(Ta)と、を含む。ガラス粒子Bでは、酸化ケイ素の比率は2wt%以上、7wt%以下であり、酸化アルミニウムの比率は4wt%以上、9wt%以下であり、酸化ホウ素の比率は41wt%以上、50wt%以下である。また、ガラス粒子Bでは、酸化カルシウムの比率は1wt%以上、5wt%以下であり、酸化マグネシウムの比率は1wt%以上、5wt%以下であり、酸化バリウムの比率は30wt%以上、35wt%以下であり、酸化タンタルの比率は3wt%以上、10wt%以下である。実施形態2では一例として、酸化ケイ素の比率は4wt%であり、酸化アルミニウムの比率は6wt%であり、酸化ホウ素の比率は46wt%であり、酸化カルシウムの比率は3wt%である。また、酸化マグネシウムの比率は3wt%であり、酸化バリウムの比率は33wt%であり、酸化タンタルの比率は5wt%である。
 比較例1では、抵抗体ペーストは、表3に示すように、銅ニッケル合金(CuNi)と、ケイ化チタン(TiSi)と、酸化アルミニウムと、ガラス粒子Aと、を含む。比較例1では、ガラス粒子Aを介して銅ニッケル合金とケイ化チタンとが反応することにより、ケイ化ニッケル(Ni31Si12)が生成される。また、比較例1では、ケイ化ニッケルに加えて、銅ニッケル合金、ケイ化チタン、及び酸化アルミニウムも抵抗体13に含まれる。すなわち、比較例1では、表3に示すように、ケイ化ニッケル、銅ニッケル合金、ケイ化チタン及び酸化アルミニウムが抵抗体13に含まれる。比較例1では、ケイ化ニッケルによりTCRが-126.8ppmとなるが、-50ppmよりも小さい(図2の点P1参照)。また、比較例1では、チップ抵抗器の平均抵抗値は300mΩとなる。すなわち、比較例1では、TCRが-50ppmよりも小さく、-50ppm以上、+50ppm以下の範囲(以下、「所定範囲」という)に含まれない。
 実施例1では、抵抗体ペーストは、表3に示すように、銅ニッケル合金(金属粒子)と、ケイ化チタン(金属ケイ化物)と、酸化アルミニウム(絶縁粒子)と、ガラス粒子Aと、ガラス粒子B(ガラス粒子)と、を含む。すなわち、実施例1では、抵抗体ペーストは、ガラス粒子Bを更に含む。比較例1では、抵抗体ペーストにおけるガラス粒子Aの比率が7.76wt%であるのに対し、実施例1では、抵抗体ペーストにおけるガラス粒子Aの比率が3.88wt%であり、抵抗体ペーストにおけるガラス粒子Bの比率が3.88wt%である。実施例1では、反応性の高い酸化ホウ素を主成分とするガラス粒子Bが抵抗体ペーストに含まれているため、ケイ化チタンの反応が促進されてケイ化ニッケル(Ni31Si12)の生成量が増加する。これにより、実施例1では、抵抗体13のTCRが-38.0ppmとなり、上記所定範囲内に含まれる(図2の点P2参照)。なお、実施例1では、チップ抵抗器1の平均抵抗値は、表3に示すように、350mΩとなる。また、実施例1では、表3に示すように、銅ニッケル合金、酸化アルミニウム及びケイ化ニッケルが抵抗体13に含まれる。
 実施例2では、抵抗体ペーストは、表3に示すように、銅ニッケル合金(金属粒子)と、ケイ化チタン(金属ケイ化物)と、酸化アルミニウム(絶縁粒子)と、ガラス粒子Aと、ガラス粒子B(ガラス粒子)と、を含む。実施例2では、実施例1に対し、抵抗体ペーストにおけるガラス粒子A,Bの比率を変更している。具体的には、実施例2では、抵抗体ペーストにおけるガラス粒子Aの比率が2.16wt%で、抵抗体ペーストにおけるガラス粒子Bの比率が5.60wt%である。これにより、実施例2では、抵抗体13のTCRが-15.1ppmとなり、上記所定範囲内に含まれる(図2の点P3参照)。なお、実施例2では、チップ抵抗器1の平均抵抗値は、表3に示すように、414mΩとなる。また、実施例2では、表3に示すように、銅ニッケル合金、酸化アルミニウム及びケイ化ニッケルが抵抗体13に含まれる。
 実施例3では、表3に示すように、銅ニッケル合金(金属粒子)と、ケイ化チタン(金属ケイ化物)と、酸化アルミニウム(絶縁粒子)と、ガラス粒子B(ガラス粒子)と、を含む。すなわち、実施例3では、ガラス粒子Aのすべてをガラス粒子Bに置き換えている。実施例3では、抵抗体ペーストにおけるガラス粒子Bの比率が7.76wt%である。実施例3では、ガラス粒子Aのすべてがガラス粒子Bに置き換わることで、銅ニッケル合金とガラス粒子Bとの反応も活性化するため、ケイ化ニッケル(Ni31Si12)に加えて、ホウ化ニッケルアルミ(Ni20Al)が生成される。これにより、実施例3では、抵抗体13のTCRが-0.5ppmとなり、上記所定範囲内に含まれる(図2の点P4参照)。なお、実施例3では、チップ抵抗器1の平均抵抗値は363mΩとなる。また、実施例3では、表3に示すように、銅ニッケル合金、酸化アルミニウム、ケイ化ニッケル及びホウ化ニッケルアルミが抵抗体13に含まれる。
 ここで、上述の実施例1~3に対応する点P2~P4の近似式は、(1)式となる(図2の破線a1参照)。なお、(1)式における「x」はガラス粒子A,Bの総和に対するガラス粒子Bの割合であり、(1)式における「y」はTCRである。
[数1]
 y=-102.52x+228.81x-126.8  ・・・(1)
 上述の実施例1,2のように、ガラス粒子A,Bの両方が抵抗体ペーストに含まれている場合、チップ抵抗器1の抵抗体13を形成すると、ケイ化ニッケル(ニッケルケイ化物)が生成される。また、上述の実施例3のように、ガラス粒子Bのみが抵抗体ペーストに含まれている場合、チップ抵抗器1の抵抗体13を形成すると、ケイ化ニッケルに加えて、ホウ化ニッケルアルミ(ニッケルアルミホウ化物)が生成される。
 (態様)
 本明細書には、以下の態様が開示されている。
 第1の態様に係る抵抗体ペーストは、金属粒子と、絶縁粒子と、ガラス粒子と、金属ケイ化物と、を含む。金属粒子は、銅及びニッケルを含む。絶縁粒子は、アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含む。
 この態様によれば、抵抗体(13)の高比抵抗と低TCRとを両立することが可能となる。
 第2の態様に係る抵抗体ペーストは、第1の態様において、金属ケイ化物として、ケイ化チタン、ケイ化ジルコニウム、ケイ化ハフニウム、ケイ化ニオブ、ケイ化タンタル、ケイ化クロム、ケイ化タングステン、ケイ化モリブデン、ケイ化鉄、ケイ化マグネシウム、ケイ化ナトリウム及びケイ化白金の少なくとも1つを含む。
 この態様によれば、抵抗体(13)のTCRの低下を抑制することが可能となる。
 第3の態様に係る抵抗体ペーストは、金属粒子と、絶縁粒子と、金属ケイ化物と、ガラス粒子と、を含む。金属粒子は、銅及びニッケルを含む。絶縁粒子は、アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含む。ガラス粒子は、少なくとも酸化ホウ素及び酸化アルミニウムを含む。抵抗体ペーストでは、チップ抵抗器(1)の抵抗体(13)を形成した場合に、ニッケルケイ化物を含むニッケル化合物が生成される。
 この態様によれば、抵抗体(13)の高比抵抗と低TCRとを両立することが可能となる。
 第4の態様に係る抵抗体ペーストでは、第3の態様において、ニッケル化合物は、ニッケルアルミホウ化物を更に含む。
 この態様によれば、抵抗体(13)のTCRを更に低下させることが可能となる。
 第5の態様に係る抵抗体ペーストでは、第4の態様において、ニッケルケイ化物は、Ni31Si12であり、ニッケルアルミホウ化物は、Ni20Alである。
 この態様によれば、抵抗体(13)のTCRを更に低下させることが可能となる。
 第6の態様に係る抵抗体ペーストでは、第3~第5の態様のいずれか1つにおいて、ガラス粒子は、酸化ケイ素、酸化タンタル、酸化マグネシウム、酸化カルシウム及び酸化バリウムを更に含む。
 この態様によれば、金属粒子及び金属ケイ化物との反応性を向上させることが可能となる。
 第7の態様に係る抵抗体ペーストでは、第6の態様において、ガラスでは、酸化ホウ素の比率は、41wt%以上、50wt%以下であり、酸化アルミニウムの比率は、4wt%以上、9wt%以下であり、酸化ケイ素の比率は、2wt%以上、7wt%以下であり、酸化タンタルの比率は、3wt%以上、10wt%以下であり、酸化マグネシウムの比率は、1wt%以上、5wt%以下であり、酸化カルシウムの比率は、1wt%以上、5wt%以下であり、酸化バリウムの比率は、30wt%以上、35wt%以下である。
 この態様によれば、ニッケルケイ化物を生成することが可能となる。
 第8の態様に係る抵抗体ペーストでは、第3~第7の態様のいずれか1つにおいて、金属ケイ化物は、ケイ化チタンを含む。
 この態様によれば、ニッケルケイ化物を生成することが可能となる。
 第9の態様に係る抵抗体ペーストは、第1~第8の態様のいずれか1つにおいて、有機ビヒクルを更に含む。
 この態様によれば、各材料を均一に混合し、かつ分散させることが可能となる。
 第10の態様に係るチップ抵抗器(1)は、抵抗体(13)と、基板(11)と、を備える。抵抗体(13)は、第1~第9の態様のいずれか1つに係る抵抗体ペーストを材料とし、基板(11)上に形成されている。
 この態様によれば、抵抗体(13)の高比抵抗と低TCRとを両立することが可能となる。
 第11の態様に係るチップ抵抗器(1)では、第10の態様において、抵抗体(13)は、ケイ化ニッケルを含む。
 この態様によれば、抵抗体(13)のTCRの低下を抑制することが可能となる。
 第12の態様に係るガラス粒子は、第3~第9のいずれか1つに係る抵抗体ペーストに用いられる。
 この態様によれば、抵抗体(13)の高比抵抗と低TCRとを両立することが可能となる。
 第2、第4~第9の態様に係る構成については、抵抗体ペーストに必須の構成ではなく、適宜省略可能である。
1 チップ抵抗器
11 基板
13 抵抗体

Claims (12)

  1.  銅及びニッケルを含む金属粒子と、
     アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含む絶縁粒子と、
     ガラス粒子と、
     金属ケイ化物と、を含む、
     抵抗体ペースト。
  2.  前記金属ケイ化物として、ケイ化チタン、ケイ化ジルコニウム、ケイ化ハフニウム、ケイ化ニオブ、ケイ化タンタル、ケイ化クロム、ケイ化タングステン、ケイ化モリブデン、ケイ化鉄、ケイ化マグネシウム、ケイ化ナトリウム及びケイ化白金の少なくとも1つを含む、
     請求項1に記載の抵抗体ペースト。
  3.  銅及びニッケルを含む金属粒子と、
     アルミナ、ジルコニア、酸化亜鉛及び窒化ホウ素の少なくとも1つを含む絶縁粒子と、
     金属ケイ化物と、
     ガラス粒子と、を含み、
     前記ガラス粒子は、少なくとも酸化ホウ素及び酸化アルミニウムを含み、
     チップ抵抗器の抵抗体を形成した場合に、ニッケルケイ化物を含むニッケル化合物が生成される、
     抵抗体ペースト。
  4.  前記ニッケル化合物は、ニッケルアルミホウ化物を更に含む、
     請求項3に記載の抵抗体ペースト。
  5.  前記ニッケルケイ化物は、Ni31Si12であり、
     前記ニッケルアルミホウ化物は、Ni20Alである、
     請求項4に記載の抵抗体ペースト。
  6.  前記ガラス粒子は、酸化ケイ素、酸化タンタル、酸化マグネシウム、酸化カルシウム及び酸化バリウムを更に含む、
     請求項3~5のいずれか1項に記載の抵抗体ペースト。
  7.  前記ガラス粒子において、
     前記酸化ホウ素の比率は、41wt%以上、50wt%以下であり、
     前記酸化アルミニウムの比率は、4wt%以上、9wt%以下であり、
     前記酸化ケイ素の比率は、2wt%以上、7wt%以下であり、
     前記酸化タンタルの比率は、3wt%以上、10wt%以下であり、
     前記酸化マグネシウムの比率は、1wt%以上、5wt%以下であり、
     前記酸化カルシウムの比率は、1wt%以上、5wt%以下であり、
     前記酸化バリウムの比率は、30wt%以上、35wt%以下である、
     請求項6に記載の抵抗体ペースト。
  8.  前記金属ケイ化物は、ケイ化チタンを含む、
     請求項3~7のいずれか1項に記載の抵抗体ペースト。
  9.  有機ビヒクルを更に含む、
     請求項1~8のいずれか1項に記載の抵抗体ペースト。
  10.  請求項1~9のいずれか1項に記載の抵抗体ペーストを材料とし、基板上に形成されている抵抗体と、
     前記基板と、を備える、
     チップ抵抗器。
  11.  前記抵抗体は、ケイ化ニッケルを含む、
     請求項10に記載のチップ抵抗器。
  12.  請求項3~9のいずれか1項に記載の抵抗体ペーストに用いられる、
     ガラス粒子。
PCT/JP2022/030572 2021-08-18 2022-08-10 抵抗体ペースト、チップ抵抗器及びガラス粒子 WO2023022092A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280045496.7A CN117561583A (zh) 2021-08-18 2022-08-10 电阻糊料、片式电阻器和玻璃粒子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-133636 2021-08-18
JP2021133636 2021-08-18
JP2022-054533 2022-03-29
JP2022054533A JP2023029199A (ja) 2021-08-18 2022-03-29 抵抗体ペースト、チップ抵抗器及びガラス粒子

Publications (1)

Publication Number Publication Date
WO2023022092A1 true WO2023022092A1 (ja) 2023-02-23

Family

ID=85240759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030572 WO2023022092A1 (ja) 2021-08-18 2022-08-10 抵抗体ペースト、チップ抵抗器及びガラス粒子

Country Status (1)

Country Link
WO (1) WO2023022092A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209801A (ja) * 1986-03-10 1987-09-16 松下電器産業株式会社 グレ−ズ抵抗体ペ−スト
JPS6454705A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Glazed resistance material
JPH0496201A (ja) * 1990-08-05 1992-03-27 Yamamura Glass Co Ltd 発熱体
JPH04298001A (ja) * 1991-03-26 1992-10-21 Kyocera Corp 高抵抗体組成物
JP2015046567A (ja) * 2013-07-31 2015-03-12 三ツ星ベルト株式会社 抵抗体ペースト及びその製造方法並びに抵抗体及びその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209801A (ja) * 1986-03-10 1987-09-16 松下電器産業株式会社 グレ−ズ抵抗体ペ−スト
JPS6454705A (en) * 1987-08-26 1989-03-02 Matsushita Electric Ind Co Ltd Glazed resistance material
JPH0496201A (ja) * 1990-08-05 1992-03-27 Yamamura Glass Co Ltd 発熱体
JPH04298001A (ja) * 1991-03-26 1992-10-21 Kyocera Corp 高抵抗体組成物
JP2015046567A (ja) * 2013-07-31 2015-03-12 三ツ星ベルト株式会社 抵抗体ペースト及びその製造方法並びに抵抗体及びその用途

Similar Documents

Publication Publication Date Title
WO2014199752A1 (ja) セラミック電子部品およびその製造方法
EP2274249A1 (en) Lead-free resistive compositions having ruthenium oxide
KR20160134703A (ko) 후막 저항체 및 그 제조방법
US11136257B2 (en) Thick-film resistive element paste and use of thick-film resistive element paste in resistor
JP2014036135A (ja) 静電気保護素子とその製造方法
WO2023022092A1 (ja) 抵抗体ペースト、チップ抵抗器及びガラス粒子
WO2021221173A1 (ja) 厚膜抵抗ペースト、厚膜抵抗体、及び電子部品
JP2023029199A (ja) 抵抗体ペースト、チップ抵抗器及びガラス粒子
CN117561583A (zh) 电阻糊料、片式电阻器和玻璃粒子
EP1632958A1 (en) A glass composition, a thick-film resistor paste comprising the glass composition, a thick-film resistor comprising the thick-film resistor paste and an electronic device comprising the thick-film resistor
JP2001196201A (ja) 厚膜抵抗体
JP4397279B2 (ja) 抵抗組成物およびそれを用いた抵抗器
JP2022140207A (ja) 抵抗体ペーストおよびその用途ならびに抵抗体の製造方法
JP2986539B2 (ja) 厚膜抵抗組成物
KR101148259B1 (ko) 칩 저항기 및 그 제조방법
US6190790B1 (en) Resistor material, resistive paste and resistor using the resistor material, and multi-layered ceramic substrate
JPH11135303A (ja) 厚膜サーミスタ組成物
JP2019175664A (ja) 導電性ペースト及び焼成体
WO2023112667A1 (ja) 電子部品
JP7425958B2 (ja) 厚膜抵抗体用組成物、厚膜抵抗体用ペーストならびに厚膜抵抗体
WO2021221174A1 (ja) 厚膜抵抗ペースト、厚膜抵抗体、及び電子部品
US5828123A (en) Chip resistor and method for producing same
JPH113802A (ja) 低温焼成用抵抗ペースト
JP3939634B2 (ja) オーミック電極形成用導体ペースト
JP2007059273A (ja) チップ型ヒューズ素子及びその製造方法、並びにチップ型ヒューズ素子の製造方法に用いる可溶体ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280045496.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE