WO2023021777A1 - 駆動素子 - Google Patents

駆動素子 Download PDF

Info

Publication number
WO2023021777A1
WO2023021777A1 PCT/JP2022/014164 JP2022014164W WO2023021777A1 WO 2023021777 A1 WO2023021777 A1 WO 2023021777A1 JP 2022014164 W JP2022014164 W JP 2022014164W WO 2023021777 A1 WO2023021777 A1 WO 2023021777A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
layer
resonance frequency
temperature
coefficient
Prior art date
Application number
PCT/JP2022/014164
Other languages
English (en)
French (fr)
Inventor
庄司 岡本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280052960.5A priority Critical patent/CN117716272A/zh
Priority to JP2023542214A priority patent/JPWO2023021777A1/ja
Publication of WO2023021777A1 publication Critical patent/WO2023021777A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a drive element that rotates a movable part about a rotation shaft.
  • a drive element that rotates a movable part about a rotation axis is known.
  • a mirror is arranged on the movable part.
  • the beam incident on the mirror can be scanned as the mirror rotates. That is, in this configuration, the driving element and the mirror constitute an optical deflector.
  • Patent Document 1 describes a meandering vibrator that includes a plurality of diaphragms made of silicon substrates and piezoelectric transducers arranged on the diaphragms.
  • the diaphragm expands and contracts, and the resonance frequency of the diaphragm changes.
  • the resonance frequency of the drive element as a whole changes, making it difficult to rotate the movable portion at an appropriate deflection angle.
  • a driving element includes a fixed portion, a diaphragm connected to the fixed portion and having a movable portion that rotates about a rotation axis, and a driving element disposed on the diaphragm to drive the diaphragm.
  • a drive unit The diaphragm includes a first material having a positive coefficient of linear expansion and a second material having a negative coefficient of linear expansion.
  • the resonance frequency of the diaphragm made of the first material and the change in the resonance frequency of the diaphragm due to the second material act on the diaphragm in opposite directions. Therefore, this contradictory action suppresses fluctuations in the resonance frequency of the diaphragm as a whole. As a result, fluctuations in the resonance frequency of the drive element due to temperature changes can be suppressed.
  • FIG. 1 is a plan view schematically showing the configuration of a drive element according to Embodiment 1.
  • FIG. 2(a) is a diagram schematically showing a cross-section of a laminated structure including a diaphragm and a drive section or wiring section according to Embodiment 1.
  • FIG. 2(b) is a diagram schematically showing a cross section of a laminated structure including a fixing portion and a wiring portion according to the first embodiment.
  • FIGS. 3A to 3D are diagrams for explaining the procedure for forming the driving element according to the first embodiment.
  • FIGS. 4A to 4D are diagrams for explaining the procedure for forming driving elements according to the first embodiment.
  • FIG. 5(a) is a perspective view schematically showing the configuration of a structure composed of simply supported beams.
  • FIG. 5B is a graph showing the relationship between the drive voltage frequency and the deflection angle of the mirror when the diaphragm is composed only of silicon.
  • FIG. 6A is a perspective view schematically showing the structure of a diaphragm made up of a cantilever used in the simulation according to the first embodiment.
  • FIG. 6B is a graph showing simulation results according to the first embodiment.
  • FIG. 7A is a cross-sectional view schematically showing the structure of a diaphragm made up of a cantilever used in the simulation according to the first embodiment.
  • FIG. 7B is a graph showing simulation results according to the first embodiment.
  • FIG. 8A is a diagram showing the relationship between the temperature coefficient of the resonance frequency of the diaphragm, the temperature range of the diaphragm, and the width of change in the resonance frequency of the diaphragm according to the first embodiment.
  • FIG. 8(b) is a graph showing the relationship between the drive voltage frequency and the deflection angle of the mirror according to the first embodiment.
  • FIGS. 9A and 9B are diagrams schematically showing cross sections of a diaphragm and a fixing portion according to a comparative example and a first embodiment, respectively.
  • FIG. 10(a) is a diagram schematically showing a cross section of a laminated structure including a diaphragm and a drive section or wiring section according to Embodiment 2.
  • FIG. 10(b) is a diagram schematically showing a cross section of a laminated structure including a fixing portion and a wiring portion according to the second embodiment.
  • FIGS. 11A to 11D are diagrams for explaining the procedure for forming driving elements according to the second embodiment.
  • 12(a) to 12(c) are diagrams for explaining the procedure for forming the driving element according to the second embodiment.
  • 13 is a plan view schematically showing a configuration of a drive element according to Modification 2 of Embodiment 1.
  • FIG. 14 is a plan view schematically showing the configuration of a drive element according to Embodiment 2.
  • FIG. 15 is a plan view schematically showing the configuration of a drive element according to a modification of Embodiment 2.
  • FIG. 1 is a plan view schematically showing the configuration of the drive element 1.
  • FIG. 1 is a plan view schematically showing the configuration of the drive element 1.
  • the driving element 1 includes a pair of fixed portions 10, a diaphragm 20, four driving portions 31, four wiring portions 32, and a mirror 40.
  • the drive element 1 is configured to be symmetrical about the center 1a in the X-axis direction and the Y-axis direction.
  • a movable portion 24 is provided in the center of the drive element 1, and the movable portion 24 rotates about a rotation axis R10 extending in the X-axis direction through the center 1a.
  • the pair of fixing parts 10 are arranged in the direction of the rotation axis R10.
  • the Z-axis negative side surface of the fixed portion 10 (the Z-axis negative side surface of the fixed layer 103 in FIG. 2B) is installed on a package substrate or the like using an adhesive. be.
  • the diaphragm 20 includes four arm portions 21, two connection portions 22, two connection portions 23, and a movable portion 24.
  • Diaphragm 20 includes a tuning fork shape. That is, the two arm portions 21 on the X-axis positive side from the movable portion 24 have a tuning fork shape in plan view, and the two arm portions 21 on the X-axis negative side from the movable portion 24 have a tuning fork shape in plan view.
  • the shape of the diaphragm 20 is defined by these two tuning fork shapes facing each other in the X-axis direction.
  • the two arm parts 21 arranged in the Y-axis direction are configured symmetrically with respect to the rotation axis R10.
  • the arm portion 21 is L-shaped in plan view.
  • Two arm portions 21 aligned in the Y-axis direction are connected to the fixed portion 10 via a connecting portion 22 and connected to a movable portion 24 via a connecting portion 23 .
  • the connecting portions 22 and 23 extend along the rotation axis R10.
  • the mirror 40 is arranged on the surface of the movable part 24 on the Z-axis positive side.
  • the movable portion 24 and the mirror 40 have a circular shape around the center 1a in a plan view.
  • a rib (not shown) for suppressing bending of the movable portion 24 is formed on the surface of the movable portion 24 on the Z-axis negative side.
  • the four drive units 31 are arranged on the surfaces of the four arm units 21 on the Z-axis positive side.
  • the drive unit 31 is a so-called piezoelectric transducer. Piezoelectric transducers are sometimes referred to as piezoelectric actuators.
  • the four wiring portions 32 are arranged on the surfaces of the diaphragm 20 and the fixed portion 10 on the Z-axis positive side. The inner (center 1a side) end of the wiring portion 32 is connected to the driving portion 31 , and the outer end of the wiring portion 32 is connected to an external power source or the like in the fixing portion 10 .
  • the wiring section 32 supplies a driving voltage to the driving section 31 .
  • FIG. 2(a) is a diagram schematically showing a cross-section of a laminated structure composed of the diaphragm 20 and the drive section 31 or the wiring section 32.
  • FIG. 2(a) is a diagram schematically showing a cross-section of a laminated structure composed of the diaphragm 20 and the drive section 31 or the wiring section 32.
  • the diaphragm 20 includes a first layer 101 and a second layer 102 arranged on the surface of the first layer 101 on the Z-axis negative side.
  • the first layer 101 is made of silicon (Si)
  • the second layer 102 is made of scandium fluoride (ScF 3 ).
  • the drive section 31 and the wiring section 32 have the same laminated structure and are integrally formed.
  • the driving portion 31 and the wiring portion 32 are arranged on the surface of the diaphragm 20 on the Z-axis positive side.
  • a lower electrode 111, a piezoelectric layer 112, and an upper electrode 113 are formed in this order on the driving portion 31 and the wiring portion 32 in the positive direction of the Z-axis.
  • the lower electrode 111 is platinum (Pt)
  • the piezoelectric layer 112 is PZT (lead zirconate titanate: Pb(Zr, Ti)O 3 )
  • the upper electrode 113 is gold (Au).
  • the piezoelectric layer 112 is arranged between the lower electrode 111 and the upper electrode 113 , so that it also functions as a dielectric that insulates the lower electrode 111 and the upper electrode 113 .
  • FIG. 2(b) is a diagram schematically showing a cross section of a layered structure composed of the fixing portion 10 and the wiring portion 32. As shown in FIG.
  • the first layer 101 and the second layer 102 shown in FIG. 2(a) extend to the fixed part 10. That is, the first layer 101 and the second layer 102 are integrally formed with the fixed portion 10 and the diaphragm 20 as a whole.
  • the fixed part 10 further includes a fixed layer 103 arranged on the surface of the second layer 102 on the Z-axis negative side.
  • the wiring portion 32 shown in FIG. 2(a) extends to the fixing portion 10. That is, the wiring portion 32 on the fixed portion 10 and the wiring portion 32 on the diaphragm 20 are integrally formed.
  • the lower electrode 111 of the wiring part 32 is grounded, and the drive voltage is applied to the upper electrode 113 of the wiring part 32, whereby the piezoelectric body of the driving part 31 connected to the wiring part 32 is Layer 112 deforms. Thereby, the diaphragm 20 is driven, and the movable portion 24 and the mirror 40 (see FIG. 1) rotate about the rotation axis R10.
  • a lower electrode 111 (Pt), a piezoelectric layer 112 (PZT) and an upper electrode 113 (Au) are sequentially formed on the upper surface of the first layer 101 (Si substrate) by sputtering. be done.
  • the lower electrode 111, the piezoelectric layer 112, and the upper electrode 113 are etched so that the lower electrode 111, the piezoelectric layer 112, and the upper electrode 113 remain in the regions corresponding to the driving portion 31 and the wiring portion 32. Piezoelectric layer 112 and upper electrode 113 are removed.
  • a support substrate made of silicon (Si) is applied above the first layer 101, the lower electrode 111, the piezoelectric layer 112 and the upper electrode 113 with an adhesive 121 interposed therebetween. 122 is pasted.
  • the bottom surface of the first layer 101 is cut off so that the first layer 101 has a desired thickness.
  • the second layer 102 (scandium fluoride substrate) is attached to the lower surface of the first layer 101. Then, as shown in FIG. In bonding the second layer 102, the second layer 102 may be directly bonded and fixed to the bottom surface of the first layer 101, and an adhesive may be applied to the bottom surface of the first layer 101 to form the second layer. Two layers 102 may be laminated together.
  • the first layer 101 is cut into a desired shape by etching.
  • the shape of the first layer 101 is a shape combining the fixing portion 10 and the diaphragm 20 shown in FIG.
  • the second layer 102 is cut by etching into a shape similar to that of the first layer 101 in plan view.
  • the fixing layer 103 is attached to the lower surface of the second layer 102 corresponding to the fixing portion 10 . Further, ribs made of silicon (Si) are provided on the lower surface of the second layer 102 corresponding to the movable portion 24 to maintain the strength of the movable portion 24 , and the first layer 101 corresponding to the movable portion 24 is provided with ribs made of silicon (Si). A mirror 40 is arranged on the upper surface of the . Thus, the drive element 1 is completed.
  • the resonance frequency of the diaphragm 20 changes with the environmental temperature. change with it.
  • the resonance frequency of the drive element 1 as a whole changes, making it difficult to rotate the movable portion 24 at an appropriate deflection angle.
  • the diaphragm 20 includes the first layer 101 and the second layer 102, the first layer 101 is made of silicon (Si), and the first layer 101 is made of silicon (Si).
  • Layer 2 101 is composed of scandium fluoride (ScF 3 ).
  • the coefficient of linear expansion of silicon (Si) has a positive value
  • the coefficient of linear expansion of scandium fluoride (ScF 3 ) has a negative value. That is, the first layer 101 and the second layer 102 are made of materials having linear expansion coefficients of opposite signs.
  • FIG. 5(a) is a perspective view schematically showing the configuration of a structure ST1 made up of simply supported beams (prisms).
  • the left end and right end surfaces of the structure ST1 shown in FIG. 5(a) are fixed ends that are fixed to the installation surface.
  • the length of the structure ST1 in the horizontal direction is a
  • the width in the depth direction of the structure ST1 is b
  • the thickness of the structure ST1 is h.
  • the Young's modulus of the structure ST1 is E
  • the density of the structure ST1 is ⁇ .
  • the primary resonance frequency F1 of the structure ST1 is represented by the following formula (1).
  • the resonance frequency of the structure ST1 is obtained by multiplying the dimensional element defined by "h/(2a 2 )" and the physical property element defined by "E/(12 ⁇ )”. It is calculated by doing.
  • the length a2 and thickness h2 of the structure ST1 are expressed by the following formulas (2-1) and (2-2).
  • a2 a+a ⁇ linear expansion coefficient ⁇ T (2-1)
  • h2 h+h ⁇ linear expansion coefficient ⁇ T (2-2)
  • silicon (Si) mentioned above has a positive coefficient of linear expansion.
  • the linear expansion coefficient of silicon is 3 ppm/K.
  • the coefficient of linear expansion is a positive value, the volume of the substance increases with temperature rise. Therefore, when the structure ST1 of FIG. 5(a) is composed only of silicon, the length a and the thickness h of the above formula (1) defining the resonance frequency of the structure ST1 are expressed by the above formula (2-1) , (2-2), it increases as the temperature rises.
  • the density ⁇ in the above formula (1) which defines the resonance frequency of the structure ST1
  • the Young's modulus E of the structure ST1 also decreases with increasing temperature.
  • the temperature coefficient of density ⁇ in silicon is ⁇ 9 ppm/K and the temperature coefficient of Young’s modulus E in silicon is ⁇ 60 ppm/K.
  • the resonance frequency of the structure ST1 also changes with changes in temperature.
  • the resonance frequency of the structure ST1 decreases as the temperature of the structure ST1 rises according to the above formula (1).
  • the resonance frequency of the diaphragm 20 decreases as the temperature of the diaphragm 20 rises due to an increase in the environmental temperature. It rises when the temperature of diaphragm 20 drops due to the drop.
  • FIG. 5(b) is a graph showing the relationship between the drive voltage frequency and the deflection angle of the mirror 40 when the diaphragm 20 is composed only of silicon.
  • FIG. 5B the frequency at which the maximum deflection angle occurs at each temperature was calculated by the inventor.
  • the resonance frequency of the diaphragm 20 fluctuates with changes in temperature, as described with reference to formula (1) above. For example, assuming that the temperature of diaphragm 20 is 25° C., the resonance frequency of diaphragm 20 at this time is 20 kHz, as shown in FIG. 5(b).
  • the resonance frequency of diaphragm 20 rises to 20.024 kHz
  • the resonance frequency of diaphragm 20 rises to It drops to 19.976 kHz. Therefore, in a state where the temperature of the diaphragm 20 is changed from 25° C., if a driving voltage is applied to the driving section 31 at a resonance frequency of 20 kHz when the temperature of the diaphragm 20 is 25° C., the deflection of the mirror 40 is The angle becomes noticeably smaller.
  • the diaphragm 20 integrally includes the first layer 101 made of silicon and the second layer 102 made of scandium fluoride.
  • scandium fluoride forming the second layer 102 has a negative expansion coefficient.
  • the linear expansion coefficient of scandium fluoride is -15 ppm/K.
  • the coefficient of linear expansion is a negative value, the volume of the substance decreases as the temperature rises. Therefore, the density and Young's modulus of the second layer 102 both increase.
  • the temperature coefficient of density ⁇ in scandium fluoride is 45 ppm/K, and the temperature coefficient of Young's modulus E in scandium fluoride is 800 ppm/K. Therefore, the dimensional and physical properties of the second layer 102 in formula (1) conflict with the dimensional and physical properties of the first layer 101 made of silicon.
  • the change in resonance frequency due to the first layer 101 and the change in resonance frequency due to the second layer 102 act on the diaphragm 20 in opposite directions. More specifically, when the temperature of the diaphragm 20 rises, the first layer 101 acts on the diaphragm 20 to decrease the resonance frequency, and the second layer 102 acts on the diaphragm 20 to increase the resonance frequency. work to Due to these conflicting actions, fluctuations in the resonance frequency of diaphragm 20 due to temperature changes are suppressed.
  • the preferred thickness of the second layer 102 when the first layer 101 and the second layer 102 are applied to the cantilever structure ST2 shown in FIG. 6(a) was studied by simulation.
  • the structure ST2 is a structure in which the first layer 101 and the second layer 102 are laminated, and has a rectangular parallelepiped shape.
  • the left end surface of the structure ST2 is a fixed end that is fixed to the installation surface.
  • the first layer 101 is made of silicon and the second layer 102 is made of scandium fluoride.
  • the length a in the longitudinal direction of the structure ST2 was 7000 ⁇ m
  • the width b in the depth direction was 1000 ⁇ m
  • the thickness h was 500 ⁇ m.
  • the thickness of the first layer 101 was h11
  • the thickness of the second layer 102 was h12.
  • the temperature coefficient TCF of the resonance frequency of the structure ST2 was calculated by varying the thickness 12 of the second layer 102 .
  • FIG. 6(b) is a graph showing simulation results.
  • the horizontal axis is the thickness h12 ( ⁇ m) of the second layer 102, and the vertical axis is the temperature coefficient TCF (ppm/K) of the resonance frequency of the structure ST2.
  • the resonance frequency F1 of the structure ST2 is calculated by the following equation (3), where F0 is the resonance frequency at the reference temperature, ⁇ T is the temperature change from the reference temperature, and TCF is the temperature coefficient of the resonance frequency.
  • the temperature coefficient TCF of the resonance frequency is preferably close to 0 in order to suppress fluctuations in the resonance frequency F1 when the temperature changes.
  • the value of the temperature coefficient TCF of the resonance frequency was almost 0 when the thickness h12 of the second layer 102 was about 30 ⁇ m. Therefore, in the structure ST2 shown in FIG. 6A, it can be said that the thickness h12 of the second layer 102 is preferably set to about 30 ⁇ m. In this case, since the value of the temperature coefficient TCF of the resonance frequency can be set to approximately 0, the resonance frequency of the structure ST2 can be kept substantially constant even if the temperature of the structure ST2 changes.
  • the structure ST2 shown in FIG. 6(a) has a simple configuration made up of a cantilever beam, and is significantly different from the configuration of the diaphragm 20 shown in FIG. Therefore, it is assumed that the preferable range of the thickness of the second layer 102 (range around 30 ⁇ m) obtained from the simulation result of FIG. 6B cannot be directly applied to the diaphragm 20 of FIG. obtain.
  • the temperature coefficient TCF of the resonant frequency of the diaphragm 20 is It can be assumed to be affected by the cross-sectional area of the first layer 101 and the second layer 102 and the linear expansion coefficient and Young's modulus of the first layer 101 and the second layer 102 .
  • the value of the linear expansion coefficient is related to variations in the dimensions and density of the diaphragm 20 due to temperature changes in the above equation (1)
  • the value of the Young's modulus is related to the softness of the diaphragm due to temperature changes.
  • the coefficient of linear expansion and Young's modulus of first layer 101 and the coefficient of linear expansion and Young's modulus of second layer 102 can contribute to the temperature characteristics of the resonance frequency of diaphragm 20 .
  • the cross-sectional areas of the first layer 101 and the second layer 102 are related to the ratio of the above contribution by the first layer 101 and the second layer 102 to the diaphragm 20 . That is, the greater the cross-sectional area, the greater the contribution of each layer to the diaphragm 20 .
  • the above formula (4-1) shows the contribution C1 of the first layer 101 (silicon) to the temperature characteristic of the resonance frequency of the diaphragm 20, and the above formula (4-2) expresses the resonance frequency of the diaphragm 20.
  • Contribution C2 of the second layer 102 (scandium fluoride) to temperature characteristics is shown.
  • the coefficient of linear expansion, the temperature coefficient of Young's modulus, and the cross-sectional area of the first layer 101 are ⁇ 1, ⁇ 1, and A1, respectively.
  • the coefficient of linear expansion, the temperature coefficient of Young's modulus, and the cross-sectional area of the second layer 102 are ⁇ 2, ⁇ 2, and A2, respectively.
  • the coefficient of linear expansion ⁇ 1 and the temperature coefficient of Young’s modulus ⁇ 1 of the first layer 101 (silicon), the coefficient of linear expansion ⁇ 2 and the temperature coefficient of Young’s modulus ⁇ 2 of the second layer 102 have opposite signs, the contribution C1 of the first layer 101 and the contribution C2 of the second layer 102 to the temperature characteristic of the resonant frequency of the diaphragm 20 act in opposite directions. Therefore, as the ratio of the contribution C1 and the contribution C2 approaches 1, the contributions in the opposite directions are balanced, and the temperature coefficient TCF of the resonance frequency of the diaphragm 20 approaches 0. It is considered that the frequency becomes difficult to change.
  • the material ratio R is calculated by the following formula (5).
  • the contributions C1 and C2 include only cross-sectional areas A1 and A2 as dimensional elements of each layer. Therefore, the material ratio R in Equation (5) includes only the ratio of cross-sectional areas A1 and A2 as dimensional elements.
  • the thicknesses of first layer 101 and second layer 102 in diaphragm 20 are constant over the entire range of diaphragm 20 . Therefore, the ratio of the cross-sectional area of the first layer 101 to the cross-sectional area of the second layer 102 is constant over the entire range of diaphragm 20 in FIG. For this reason, for example, in the structure ST2 shown in FIG. It can be applied to diaphragm 20 as well.
  • the inventor verified the temperature coefficient TCF of the resonance frequency when changing the material ratio R by simulation.
  • FIG. 7(a) is a cross-sectional view schematically showing the configuration of the structure ST2 made up of cantilever beams according to this simulation.
  • FIG. 7(a) shows a cross section obtained by cutting the structure ST2 of FIG. 6(a) along a plane perpendicular to the direction of the length a.
  • the first layer 101 was made of silicon and the second layer 102 was made of scandium fluoride.
  • the linear expansion coefficient ⁇ 1 was 3 ppm/K and the temperature coefficient ⁇ 1 of Young's modulus was ⁇ 60 ppm/K.
  • the second layer 102 (scandium fluoride) had a coefficient of linear expansion ⁇ 2 of -15 ppm/K and a temperature coefficient of Young's modulus ⁇ 2 of 800 ppm/K.
  • FIG. 7(b) is a graph showing simulation results.
  • the horizontal axis is the material ratio R obtained by dividing the absolute value of the contribution C2 by the absolute value of the contribution C1
  • the vertical axis is the temperature coefficient TCF (ppm/K) of the resonance frequency.
  • FIG. 7(b) shows a straight line connecting the three measured values obtained by the simulation with a solid line.
  • the TCF when the material ratio R is around 1, the TCF is 0. Further, when the material ratio R is 0.7 or more and 1.5 or less, the TCF is ⁇ 10 ppm/K or more and 10 ppm/K or less. Therefore, the ratio between the cross-sectional area A1 (thickness) of the first layer 101 and the cross-sectional area A2 (thickness) of the second layer 102 is such that the material ratio R falls within the range of 0.7 or more and 1.5 or less.
  • the temperature coefficient TCF of the resonance frequency of the structure ST2 can be set near zero, and the change in the resonance frequency of the structure ST2 with respect to temperature change can be suppressed near zero. It is preferable to set the material ratio R to around 1 in order to more reliably set the change in the resonance frequency of the structure ST2 to around 0 with respect to the temperature change.
  • the TCF when the structure ST2 is composed only of the first layer 101 without disposing the second layer 102, that is, when the material ratio R is zero, is ⁇ 27 ppm/K, which roughly matches the normal TCF of silicon, ⁇ 30 ppm/K. Therefore, it can be assumed that the graph of FIG. 7(b) shows the relationship between the material ratio R and the TCF approximately properly. From this, it was confirmed that the material ratio R used on the horizontal axis is appropriate as a parameter for evaluating the temperature coefficient TCF of the resonance frequency of the structure ST2.
  • the preferable range of the material ratio R (0.7 or more and 1.5 or less) obtained in the simulation of FIG. 7(b) can be similarly applied to the diaphragm 20 of FIG. Therefore, in diaphragm 20 of drive element 1 shown in FIG.
  • the temperature coefficient TCF of the resonance frequency in the drive element 1 can be made close to zero.
  • a rib for suppressing bending of the movable portion 24 is provided on the surface of the movable portion 24 on the Z-axis negative side. Therefore, the cross-sectional area of the second layer 102 in the movable portion 24 is different from the above-described cross-sectional area A2.
  • the region corresponding to the ribs is sufficiently small with respect to the entire diaphragm 20, by applying the preferred range of the material ratio R to the entire diaphragm 20 in FIG.
  • the temperature coefficient of frequency TCF can approach zero.
  • the reason why the temperature coefficient TCF of the resonance frequency of the diaphragm 20 is preferably -10 ppm/K or more and 10 ppm/K or less will be described based on the simulation results of FIG. 7(b).
  • FIG. 8A shows the temperature coefficient TCF (ppm/K) of the resonance frequency of the diaphragm 20, the temperature range ⁇ Tw (° C.) of the diaphragm 20, and the change width ⁇ Fw (Hz) of the resonance frequency of the diaphragm 20. is a diagram showing the relationship of
  • the relationship in FIG. 8(a) is for the case where the resonance frequency at the reference temperature (25°C) is 20 kHz.
  • the temperature range ⁇ Tw is a positive and negative temperature range around the reference temperature (25° C.), and the change width ⁇ Fw is the change width of the resonance frequency around 20 kHz.
  • the temperature range ⁇ Tw has the same positive and negative width around the reference temperature (25° C.).
  • the temperature range ⁇ Tw of 100° C. is ⁇ 50° C. with respect to the reference temperature (25° C.).
  • the change width ⁇ Fw has the same positive and negative width around 20 kHz.
  • the range where the change width ⁇ Fw is 20 Hz is ⁇ 10 Hz with respect to 20 kHz.
  • the positive/negative width of the change width ⁇ Fw is calculated by the calculation formula (F0 ⁇ TCF ⁇ T) of the second term on the right side of the above formula (3).
  • the change width ⁇ Fw of the resonance frequency of the diaphragm 20 increases.
  • the change width ⁇ Fw of the resonance frequency is 20 Hz
  • the change width ⁇ Fw of the resonance frequency is 40 Hz
  • the change width ⁇ Fw of the resonance frequency is 60 Hz.
  • FIG. 8(b) is a graph showing the relationship between the drive voltage frequency and the deflection angle of the mirror 40.
  • the horizontal axis represents the frequency (Hz) of the driving voltage applied to the driving section 31 installed on the diaphragm 20.
  • FIG. The shake angle on the vertical axis is a value normalized based on the maximum shake angle.
  • the resonance frequency of diaphragm 20 and mirror 40 is the reference value of 20 kHz.
  • the deflection angle of the mirror 40 is maximized.
  • the deflection angle decreases from the maximum value even if a drive voltage of 20 kHz is applied to the drive section 31 .
  • the temperature coefficient TCF of the resonance frequency is 10 ppm/K
  • the frequency change width ⁇ Fw is 20 Hz as shown in FIG. It decreases to about 0.7 times.
  • it is necessary to increase the maximum value of the driving voltage applied to the driving section 31 by approximately 1/0.7 1.4 times.
  • the maximum value of the drive voltage applied to the drive unit 31 is less than half that of the non-resonance-type drive element. is within twice the maximum value, application of an excessive voltage to the drive section 31 can be avoided, and the reliability of the drive section 31 can be maintained.
  • the temperature coefficient TCF of the resonance frequency of the diaphragm 20 is 10 ppm/K or less, the maximum value of the driving voltage applied to the driving section 31 can be suppressed to about 1.4 times. Therefore, by setting the temperature coefficient TCF of the resonance frequency of the diaphragm 20 to 10 ppm/K or less, it is possible to avoid applying an excessive voltage to the driving section 31 .
  • the temperature coefficient TCF of the resonance frequency of the diaphragm 20 has a negative value
  • the temperature coefficient TCF is -10 ppm/K or more
  • the decrease in the deflection angle is maximized as in FIG. can be suppressed to about 0.7 times. Therefore, by setting the temperature coefficient TCF of the resonance frequency of the diaphragm 20 to 10 ppm/K or less, the maximum value of the driving voltage applied to the driving section 31 can be suppressed to about 1.4 times. Application of excessive voltage can be avoided.
  • the material ratio R is 0.7 or more and 1.5 or less. Therefore, the material of the first layer 101 and the material of the second layer 102 are selected so that the material ratio R is 0.7 or more and 1.5 or less, and the cross-sectional area A1 (thickness) and By setting the cross-sectional area A2 (thickness) of the second layer 102, fluctuations in the resonance frequency of the diaphragm 20 can be suppressed, and the deflection angle of the mirror 40 can be controlled without applying an excessive voltage to the drive unit 31. can be kept high.
  • the material having a positive linear expansion coefficient among the two materials constituting the two layers constituting the structure ST2 of FIG. 7A is silicon. and scandium fluoride was the material with a negative coefficient of linear expansion.
  • the structure The temperature coefficient TCF of the resonant frequency of ST2 can be made close to zero. Therefore, for the two layers that constitute the diaphragm 20 of the driving element 1, the material of each layer and the cross-sectional area ratio of these two layers are adjusted so that the material ratio of these two layers is within the above range. By setting, the temperature coefficient of the resonance frequency of the driving element 1 can be brought close to zero.
  • the first layer 101 may be made of silicon (Si), and the second layer 102 may be made of a material whose main component is scandium fluoride (ScF 3 ).
  • the second layer 102 may be made of zirconium tungstate, or may be made of a material containing zirconium tungstate as a main component.
  • 9(a) and (b) are diagrams schematically showing cross sections of the diaphragm 20 and the fixed part 10 in the comparative example and the first embodiment, respectively.
  • 9A and 9B show a state in which the bottom surface of the fixing portion 10 (the bottom surface of the fixing layer 103) is placed on the package substrate 124 with the adhesive 123 interposed therebetween.
  • diaphragm 20 and fixed portion 10 are made of silicon only.
  • the package substrate 124 and the first layer 101 expand due to thermal stress, as shown in FIG. 9(a). At this time, since the package substrate 124 changes more than the first layer 101, the first layer 101 is warped upwardly.
  • Embodiment 1 According to Embodiment 1, the following effects are achieved.
  • Diaphragm 20 includes a first material (eg, silicon) having a positive coefficient of linear expansion and a second material (eg, scandium fluoride) having a negative coefficient of linear expansion.
  • first material eg, silicon
  • second material eg, scandium fluoride
  • a change in the resonance frequency of the diaphragm 20 due to the two materials acts on the diaphragm 20 in opposite directions. Therefore, due to these conflicting effects, fluctuations in the resonance frequency of the diaphragm 20 as a whole are suppressed. As a result, fluctuations in the resonance frequency of the drive element 1 due to temperature changes can be suppressed.
  • the diaphragm 20 includes a first layer 101 made of a first material having a positive coefficient of linear expansion and a second layer 102 made of a second material having a negative coefficient of linear expansion. According to this configuration, it is possible to suppress fluctuations in the resonance frequency of the diaphragm 20 due to temperature changes by a simple configuration in which two layers each formed of materials having coefficients of linear expansion with different signs are arranged.
  • the contribution C1 of the first material (first layer 101) to the temperature coefficient TCF of the resonance frequency of diaphragm 20 is defined by the above formula (4-1), and is the first contribution to the temperature coefficient TCF of the resonance frequency of diaphragm 20.
  • the contribution C2 of the two materials (second layer 102) is defined by the above formula (4-2).
  • the material ratio R is calculated by the above formula (5). As described with reference to FIGS. 7(a) to 8(b), the material ratio R is set to 0.7 to 1.5.
  • the temperature coefficient TCF of the resonance frequency of diaphragm 20 is limited to the range of -10 ppm/K to +10 ppm/K. Therefore, it is possible to effectively suppress fluctuations in the resonance frequency of the diaphragm 20 due to temperature changes while avoiding application of an excessive voltage to the drive section 31, so that the movable section 24 and the mirror 40 can be properly driven.
  • the diaphragm 20 is formed by laminating the first layer 101 made of a material having a positive coefficient of linear expansion and the second layer 102 made of a material having a negative coefficient of linear expansion. Configured. However, the diaphragm 20 is not limited to this, and may be composed of a composite layer in which a material having a positive coefficient of linear expansion and a material having a negative coefficient of linear expansion are mixed.
  • FIG. 10(a) is a diagram schematically showing a cross section of a laminated structure composed of the diaphragm 20 and the drive section 31 or the wiring section 32 according to Modification 1 of Embodiment 1.
  • FIG. 10(a) is a diagram schematically showing a cross section of a laminated structure composed of the diaphragm 20 and the drive section 31 or the wiring section 32 according to Modification 1 of Embodiment 1.
  • the diaphragm 20 is composed of a composite layer 131 .
  • Composite layer 131 is formed by mixing scandium fluoride filler 131a having a negative coefficient of linear expansion with a resin having a positive coefficient of linear expansion (for example, epoxy resin or polyimide resin).
  • the material having a positive linear expansion coefficient included in the composite layer 131 may be silicon (Si).
  • the filler 131a may be made of a material having a negative coefficient of linear expansion.
  • the filler 131a may be made of a material containing scandium fluoride (ScF 3 ) as a main component.
  • ScF 3 scandium fluoride
  • Y yttria
  • Mg magnesium
  • barium Ba
  • Zn zinc
  • the filler 131a may be made of zirconium tungstate, or may be made of a material containing zirconium tungstate as a main component.
  • the drive section 31 and the wiring section 32 have the same laminated structure and are integrally formed.
  • the driving portion 31 and the wiring portion 32 are arranged on the surface of the diaphragm 20 on the Z-axis positive side.
  • a lower electrode 111, a piezoelectric layer 112, and upper electrodes 113 and 114 are formed in this order on the driving portion 31 and the wiring portion 32 in the Z-axis positive direction.
  • the lower electrode 111, the piezoelectric layer 112, and the upper electrode 113 are the same as in the first embodiment.
  • the upper electrode 114 is gold (Au).
  • FIG. 10(b) is a diagram schematically showing a cross-section of a layered structure composed of a fixing portion 10 and a wiring portion 32 according to Modification Example 1 of Embodiment 1. As shown in FIG.
  • the composite layer 131 shown in FIG. 10(a) extends to the fixed part 10. That is, the composite layer 131 is formed integrally with the fixed portion 10 and the diaphragm 20 as a whole.
  • the fixed part 10 further includes a fixed layer 103 arranged on the surface of the composite layer 131 on the Z-axis negative side.
  • Fixed layer 103 is made of, for example, silicon (Si).
  • the wiring portion 32 shown in FIG. 10(a) extends to the fixing portion 10. That is, the wiring portion 32 on the fixed portion 10 and the wiring portion 32 on the diaphragm 20 are integrally formed.
  • the lower electrode 111 of the wiring portion 32 is grounded, and the driving voltage is applied to the upper electrode 114 of the wiring portion 32, whereby the piezoelectric body of the driving portion 31 connected to the wiring portion 32 is Layer 112 deforms. Thereby, the diaphragm 20 is driven, and the movable portion 24 and the mirror 40 (see FIG. 1) rotate about the rotation axis R10.
  • a lower electrode 111 (Pt), a piezoelectric layer 112 (PZT) and an upper electrode 113 (Au) are sequentially formed on the upper surface of a support substrate 125 made of silicon (Si) by sputtering. be done.
  • the lower electrode 111, the piezoelectric layer 112, and the upper electrode 113 are etched so that the lower electrode 111, the piezoelectric layer 112, and the upper electrode 113 remain in the regions corresponding to the driving portion 31 and the wiring portion 32. Piezoelectric layer 112 and upper electrode 113 are removed.
  • a support substrate 122 made of silicon (Si) is placed on the upper surface of the upper electrode 113 via the upper electrode 114 (Au).
  • the support substrate 125 is removed.
  • a composite layer 131 is attached to the lower surface of the lower electrode 111.
  • the composite layer 131 is formed by irradiating light and developing a material obtained by mixing a filler 131a with a photosensitive resin (for example, epoxy resin, polyimide resin, etc.) in advance using a semiconductor photolithography process. Molded by With the composite layer 131 disposed on the lower surface of the lower electrode 111 , the composite layer 131 is placed on the lower surface of the lower electrode 111 by using, for example, a semiconductor photolithography process.
  • the composite layer 131 is removed into a desired shape by etching.
  • the shape of the composite layer 131 is a shape combining the fixed portion 10 and the diaphragm 20 shown in FIG. 1 .
  • the support substrate 122 is removed.
  • the fixing layer 103 is attached to the lower surface of the composite layer 131 corresponding to the fixing portion 10 .
  • ribs made of silicon (Si) are provided on the lower surface of the composite layer 131 corresponding to the movable portion 24 to maintain the strength of the movable portion 24, and the upper surface of the composite layer 131 corresponding to the movable portion 24 is provided with: A mirror 40 is arranged.
  • the drive element 1 is completed.
  • the diaphragm 20 includes a first material (for example, a resin such as epoxy resin or polyimide resin) having a positive coefficient of expansion and a second material having a negative coefficient of linear expansion. It includes a composite layer 131 composited with a material (eg, scandium fluoride). Therefore, as in the first embodiment, when the environmental temperature around the drive element 1 changes, the conflicting effects of the first material and the second material can suppress fluctuations in the resonance frequency of the diaphragm 20 . As a result, fluctuations in the resonance frequency of the drive element 1 due to temperature changes can be suppressed, and the movable portion 24 and the mirror 40 can be driven properly.
  • a first material for example, a resin such as epoxy resin or polyimide resin
  • a second material having a negative coefficient of linear expansion. It includes a composite layer 131 composited with a material (eg, scandium fluoride). Therefore, as in the first embodiment, when the environmental temperature around the drive element 1 changes, the conflicting effects of the first material and the second material
  • the above equations (4-1) and (4-2) hold. That is, the contribution C1 of the first material to the temperature coefficient TCF of the resonance frequency of the diaphragm 20 is defined by the above formula (4-1), and the contribution of the second material to the temperature coefficient TCF of the resonance frequency of the diaphragm 20 is C2 is defined by the above formula (4-2).
  • the cross-sectional area A1 is the average cross-sectional area of the first material of the composite layer 131 having a positive coefficient of linear expansion.
  • cross-sectional area A2 is the average cross-sectional area of the second material (filler 131a) having a negative linear expansion coefficient.
  • the material ratio R is calculated by the above formula (5). Also in this modified example, a simulation result similar to that of FIG. 7B is obtained.
  • the average cross-sectional area A1 of the first material and the average cross-sectional area A2 of the second material are adjusted so that the material ratio R falls within the range of 0.7 to 1.5.
  • the temperature coefficient TCF of the resonance frequency of the diaphragm 20 can be set to around 0, and the change in the resonance frequency of the diaphragm 20 with respect to the temperature change can be suppressed to around 0.
  • a detection unit may be installed on the arm unit 21 in addition to the driving unit 31 .
  • FIG. 13 is a plan view schematically showing the configuration of the driving element 1 according to Modification 2 of Embodiment 1.
  • FIG. 13 is a plan view schematically showing the configuration of the driving element 1 according to Modification 2 of Embodiment 1.
  • the driving element 1 further includes four detection units 51 and four wiring units 52 compared to the first embodiment.
  • the four detection units 51 detect the drive state of the diaphragm 20, and are arranged on the surfaces of the four arm units 21 extending in the Y-axis direction on the Z-axis positive side.
  • the four wiring portions 52 are arranged on the surfaces of the diaphragm 20 and the fixed portion 10 on the Z-axis positive side.
  • the inner (center 1a side) end of the wiring portion 52 is connected to the detection portion 51 , and the outer end of the wiring portion 52 is connected to an external circuit or the like in the fixing portion 10 .
  • the detection section 51 and the wiring section 52 are integrally formed and have a laminated structure similar to that of the driving section 31 and the wiring section 32 .
  • the diaphragm 20 has a configuration similar to that of the first embodiment or modification 1 of the first embodiment.
  • the detection unit 51 expands and contracts according to the driving state of the arm unit 21 , and current flows from the detection unit 51 to the external circuit via the wiring unit 52 due to the piezoelectric effect. Accordingly, the driving state of the arm portion 21 can be detected by referring to the current flowing through the external circuit.
  • Embodiment 2 In Embodiment 1, the diaphragm 20 has a tuning fork shape, but in Embodiment 2, the diaphragm has a meandering shape.
  • FIG. 14 is a plan view schematically showing the configuration of the driving element 1 according to Embodiment 2.
  • FIG. 14 is a plan view schematically showing the configuration of the driving element 1 according to Embodiment 2.
  • the driving element 1 includes a pair of fixing parts 210 , a diaphragm 220 , six driving parts 231 , six wiring parts 232 and a mirror 240 .
  • the drive element 1 is configured to be symmetrical about a straight line passing through the center of the mirror 240 and parallel to the Y-axis direction.
  • a movable portion 226 is provided in the center of the drive element 1, and the movable portion 226 rotates about a rotation axis R10 extending in the X-axis direction.
  • a pair of fixing parts 210 are arranged in the X-axis direction.
  • the fixed part 210 has a laminated structure similar to that of the first embodiment or the first modification of the first embodiment.
  • the Z-axis negative side surface of the fixed portion 210 (the Z-axis negative side surface of the fixed layer 103 in FIG. 2(b) or FIG. 10(b)) is glued using an adhesive. It is installed on a package substrate or the like.
  • the diaphragm 220 includes six arm portions 221, two connection portions 222, two connection portions 223, two connection portions 224, two connection portions 225, and a movable portion 226.
  • Diaphragm 220 includes a meandering shape. That is, the portion of diaphragm 220 on the X-axis positive side from movable portion 226 has a meandering shape in plan view, and the portion of diaphragm 220 on the X-axis negative side from movable portion 226 has a meandering shape in plan view.
  • the shape of diaphragm 220 is defined by these two meandering shapes facing each other in the X-axis direction. Further, the diaphragm 220 has the same configuration as that of the first embodiment or the first modification of the first embodiment.
  • the arm portion 221 has a rectangular shape elongated in the Y-axis direction in plan view.
  • the outermost arm portion 221 with respect to the movable portion 226 is connected to the fixed portion 210 by a connecting portion 222 .
  • the innermost arm portion 221 with respect to the movable portion 226 is connected to the movable portion 226 by a connecting portion 225 .
  • Adjacent arm portions 221 are connected to each other by connecting portions 223 and 224 .
  • the connecting portions 222 and 224 are connected to the Y-axis positive side end of the arm portion 221
  • the connecting portions 223 and 225 are connected to the Y-axis negative side end of the arm portion 221 .
  • the mirror 240 is arranged on the surface of the movable portion 226 on the Z-axis positive side.
  • a rib (not shown) for suppressing bending of the movable portion 226 is formed on the surface of the movable portion 226 on the Z-axis negative side.
  • the driving section 231 has a layered structure similar to that of the driving section 31 of the first embodiment or modification 1 of the first embodiment.
  • the wiring portion 232 has a laminated structure similar to that of the wiring portion 32 of the first embodiment or modification 1 of the first embodiment. Also in the second embodiment, the driving portion 231 and the wiring portion 232 are integrally formed.
  • the six drive units 231 are arranged on the surfaces of the six arm units 221 on the Z-axis positive side.
  • the drive unit 231 is a so-called piezoelectric transducer.
  • the six wiring portions 232 are arranged on the surfaces of the diaphragm 220 and the fixed portion 210 on the Z-axis positive side.
  • a wiring portion 232 connects the driving portion 231 arranged on the outermost arm portion 221 with respect to the movable portion 226 and the driving portion 231 arranged on the innermost arm portion 221 with respect to the movable portion 226 . ing.
  • a driving portion 231 that is the outermost portion with respect to the movable portion 226 and a driving portion 231 that is intermediate between the movable portion 226 and the fixed portion 10 are each connected to an external power source or the like in the fixed portion 10 by a wiring portion 232 .
  • the wiring section 232 supplies a driving voltage to the driving section 231 .
  • the outermost arm portion 221 and the innermost arm portion 221 (first arm portion) with respect to the movable portion 226 and the arm portion 221 (second arm portion) between these two arm portions 221 ) are applied in opposite phases to the drive portion 231 on the first arm portion and the drive portion 231 on the second arm portion so that the oscillates in opposite directions in the Z-axis direction.
  • the diaphragm 220 has a laminated structure similar to that of the first embodiment or the first modification of the first embodiment. That is, diaphragm 220 includes a first material (eg, silicon) having a positive coefficient of linear expansion and a second material (eg, scandium fluoride) having a negative coefficient of linear expansion.
  • first material eg, silicon
  • second material eg, scandium fluoride
  • the cross-sectional area A1 of the first material having a positive linear expansion coefficient and the negative linear expansion coefficient are included so that the material ratio R is within the range of 0.7 or more and 1.5 or less
  • the temperature coefficient TCF of the resonance frequency of the diaphragm 20 can be set to around 0, and the change in the resonance frequency of the diaphragm 20 with respect to temperature change can be suppressed to around 0. It is preferable to set the material ratio R to around 1 in order to more reliably set the change in the resonance frequency of the diaphragm 20 to around 0 with respect to the temperature change.
  • a detection unit may be installed on the arm unit 221 in addition to the driving unit 231 .
  • FIG. 15 is a plan view schematically showing the configuration of the drive element 1 according to the modified example of the second embodiment.
  • the drive element 1 further includes four detection units 251 and four wiring units 252 as compared with the second embodiment.
  • the four detection units 251 detect the drive state of the diaphragm 20 .
  • the four detection units 251 are arranged on the outermost arm portion 221 with respect to the movable portion 226 and the Z-axis positive side surface of the arm portion 221 between the movable portion 226 and the fixed portion 10 .
  • the four wiring portions 252 are arranged on the surfaces of the diaphragm 220 and the fixed portion 210 on the Z-axis positive side.
  • the inner end of the wiring portion 252 is connected to the detection portion 251
  • the outer end of the wiring portion 52 is connected to an external circuit or the like at the fixing portion 210 .
  • the detection section 251 and the wiring section 252 are integrally formed and have a layered structure similar to that of the driving section 231 and the wiring section 232 .
  • the diaphragm 220 has a configuration similar to that of the first embodiment or the first modification of the first embodiment.
  • the arm portion 221 is repeatedly driven in the Z-axis direction.
  • the detection unit 251 expands and contracts according to the driving state of the arm unit 221 , and current flows from the detection unit 251 to the external circuit via the wiring unit 252 due to the piezoelectric effect. This makes it possible to detect the driving state of the arm portion 221 by referring to the current flowing through the external circuit.
  • the first material included in diaphragm 20 is a material (for example, silicon) having a positive coefficient of linear expansion and a negative temperature coefficient of Young's modulus.
  • the second material included in diaphragm 20 was made of a material (for example, scandium fluoride) having a negative coefficient of linear expansion and a positive temperature coefficient of Young's modulus.
  • the signs of the linear expansion coefficient and the temperature coefficient of Young's modulus in the first material and the second material are not limited to the above combinations as long as they act on the diaphragm 20 in opposite directions.
  • the signs of the linear expansion coefficient and the temperature coefficient of Young's modulus in the first material and the second material are not limited to the above combinations. Also in these cases, it is preferable to set the coefficient of linear expansion, the temperature coefficient of Young's modulus, and the cross-sectional area of each material so that the material ratio R is 0.7 or more and 1.5 or less.
  • the fixing portions 10 and 210 have the fixing layer 103 on the lower surface side.
  • the fixed layer 103 does not necessarily have to be provided and may be omitted.
  • the lower surface of the second layer 102 or the composite layer 131 corresponding to the fixed parts 10, 210 is attached to a package substrate or the like using an adhesive.
  • the fixed layer 103 is made of silicon.
  • the fixed layer 103 is not limited to this, and may be made of a material other than silicon.
  • the anchoring layer 103 may be made of the same second material (scandium fluoride) as the second layer 102, and in Modification 1 of Embodiment 1, the anchoring layer 103 is a composite layer
  • the filler 131a contained in 131 may be made of the second material (scandium fluoride).
  • the fixed layer 103 may be made of a material other than silicon.
  • the drive section 31 and the wiring section 32 are provided with the upper electrode 114 on the upper surface side.
  • the upper electrode 113 may be provided on the upper surface side of the drive section 31 and the wiring section 32, and the upper electrode 114 is finally removed in the formation procedure of FIGS. 11A to 12C. good too.
  • the detection section 51 and the wiring section 52 are configured in the same manner as the drive section 31, and the driving state of the arm section 21 is detected by referring to the current generated by the piezoelectric effect.
  • the detection by the detection unit 51 can also use a strain resistance effect in which resistance changes according to deformation.
  • the detection unit 51 is configured by a metal strain resistor arranged on the diaphragm 20 .
  • the detecting section 51 may be formed as a strain resistor by altering the Z-axis positive side surface of the silicon constituting the diaphragm 20 to give strain resistance to this portion.
  • the wiring portion 52 connected to the detection portion 51 includes wiring for applying voltage to the detection portion 51 and wiring for detecting the resistance value of the detection portion 51 .
  • the detection unit 251 may be configured by a strain resistor whose resistance changes according to deformation.
  • Embodiment 1 and Modified Examples 1 and 2 of Embodiment 1 one fixing portion 10, two arm portions 21, and a pair of connecting portions 22 are provided on both sides of the movable portion 24 on the X-axis positive side and the X-axis negative side. , 23, two drive portions 31, and two wiring portions 32 are provided, but these configurations may be provided only on either the X-axis positive side or the X-axis negative side of the movable portion 24. .
  • one fixing portion 210, three arm portions 221, a set of connecting portions 222 to 225, three driving portions 231, and three wiring portions 232 are , may be provided only on either the X-axis positive side or the X-axis negative side of the movable portion 226 .
  • Embodiment 1 and Modifications 1 and 2 of Embodiment 1 ribs for suppressing bending of the movable portion 24 are provided on the surface of the movable portion 24 on the Z-axis negative side, but the ribs are not necessarily provided. It doesn't have to be. Further, in the second embodiment and the modifications of the embodiments, ribs for suppressing bending of the movable part 226 are provided on the surface of the movable part 226 on the Z-axis negative side, but the ribs are not necessarily provided. good too.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

駆動素子(1)は、固定部(10)と、振動板(20)と、駆動部(31)と、を備える。振動板(20)は、固定部(10)に接続されている。振動板(20)は、回動軸(R10)について回動する可動部(24)を有する。駆動部(31)は、振動板(20)に配置されている。駆動部(31)は、振動板(20)を駆動する。振動板(20)は、正の線膨張係数を有する第1材料と、負の線膨張係数を有する第2材料とを含む。

Description

駆動素子
 本発明は、回動軸について可動部を回動させる駆動素子に関する。
 回動軸について可動部を回動させる駆動素子が知られている。この種の駆動素子では、たとえば、可動部にミラーが配置される。これにより、ミラーに入射するビームを、ミラーの回動に伴い走査させることができる。すなわち、この構成では、駆動素子とミラーとによって光偏向器が構成される。
 以下の特許文献1には、シリコン基板からなる複数の振動板と、振動板上に配置された圧電トランスデューサとを備えたミアンダ形振動子が記載されている。
国際公開第2009/130902号
 上記のような駆動素子では、駆動素子周辺の環境温度が変化すると、振動板が伸縮し、振動板の共振周波数が変化する。これにより、駆動素子全体の共振周波数が変化し、可動部を適正な振れ角で回動させることが困難になる。
 かかる課題に鑑み、本発明は、温度変化による共振周波数の変動を抑制することが可能な駆動素子を提供することを目的とする。
 本発明の主たる態様に係る駆動素子は、固定部と、前記固定部に接続され、回動軸について回動する可動部を有する振動板と、前記振動板に配置され、前記振動板を駆動する駆動部と、を備える。前記振動板は、正の線膨張係数を有する第1材料と、負の線膨張係数を有する第2材料とを含む。
 本態様に係る駆動素子によれば、第1材料および第2材料の線膨張係数の符号が互いに反対であるため、駆動素子周辺の環境温度が変化した場合、第1材料による振動板の共振周波数の変化と、第2材料による振動板の共振周波数の変化とが、互いに逆方向に振動板に作用する。このため、この相反する作用によって、振動板全体の共振周波数の変動が抑制される。これにより、温度変化による駆動素子の共振周波数の変動を抑制することができる。
 以上のとおり、本発明によれば、温度変化による共振周波数の変動を抑制することが可能な駆動素子を提供できる。
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。
図1は、実施形態1に係る、駆動素子の構成を模式的に示す平面図である。 図2(a)は、実施形態1に係る、振動板と駆動部または配線部とからなる積層構造の断面を模式的に示す図である。図2(b)は、実施形態1に係る、固定部と配線部とからなる積層構造の断面を模式的に示す図である。 図3(a)~(d)は、それぞれ、実施形態1に係る、駆動素子の形成手順を説明するための図である。 図4(a)~(d)は、それぞれ、実施形態1に係る、駆動素子の形成手順を説明するための図である。 図5(a)は、単純支持梁からなる構造体の構成を模式的に示す斜視図である。図5(b)は、振動板をシリコンのみで構成した場合における、駆動電圧の周波数とミラーの振れ角との関係を示すグラフである。 図6(a)は、実施形態1に係る、シミュレーションで用いた片持ち梁からなる振動板の構成を模式的に示す斜視図である。図6(b)は、実施形態1に係る、シミュレーション結果を示すグラフである。 図7(a)は、実施形態1に係る、シミュレーションで用いた片持ち梁からなる振動板の構成を模式的に示す断面図である。図7(b)は、実施形態1に係る、シミュレーション結果を示すグラフである。 図8(a)は、実施形態1に係る、振動板の共振周波数の温度係数、振動板の温度範囲および振動板の共振周波数の変化幅の関係を示す図である。図8(b)は、実施形態1に係る、駆動電圧の周波数とミラーの振れ角との関係を示すグラフである。 図9(a)、(b)は、それぞれ、比較例および実施形態1に係る、振動板および固定部の断面を模式的に示す図である。 図10(a)は、実施形態2に係る、振動板と駆動部または配線部とからなる積層構造の断面を模式的に示す図である。図10(b)は、実施形態2に係る、固定部と配線部とからなる積層構造の断面を模式的に示す図である。 図11(a)~(d)は、それぞれ、実施形態2に係る、駆動素子の形成手順を説明するための図である。 図12(a)~(c)は、それぞれ、実施形態2に係る、駆動素子の形成手順を説明するための図である。 図13は、実施形態1の変更例2に係る、駆動素子の構成を模式的に示す平面図である。 図14は、実施形態2に係る、駆動素子の構成を模式的に示す平面図である。 図15は、実施形態2の変更例に係る、駆動素子の構成を模式的に示す平面図である。
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。
 以下、本発明の実施形態について、図を参照して説明する。便宜上、各図には互いに直交するX、Y、Z軸が付記されている。Z軸正方向は鉛直上方向である。
 <実施形態1>
 図1は、駆動素子1の構成を模式的に示す平面図である。
 駆動素子1は、一対の固定部10と、振動板20と、4つの駆動部31と、4つの配線部32と、ミラー40と、を備える。駆動素子1は、中心1aについて、X軸方向およびY軸方向に対称となるよう構成されている。駆動素子1の中央には、可動部24が設けられており、可動部24は、中心1aを通りX軸方向に延びる回動軸R10について回動する。
 一対の固定部10は、回動軸R10の方向に並んでいる。駆動素子1が設置される際、固定部10のZ軸負側の面(図2(b)の固定層103のZ軸負側の面)が、接着剤を用いてパッケージ基板等に設置される。
 振動板20は、4つのアーム部21と、2つの接続部22と、2つの接続部23と、可動部24と、を備える。振動板20は、音叉形状を含む。すなわち、可動部24からX軸正側の2つのアーム部21は、平面視において音叉形状であり、可動部24からX軸負側の2つのアーム部21は、平面視において音叉形状である。これら2つの音叉形状がX軸方向に向き合うことにより、振動板20の形状が規定されている。
 Y軸方向に並ぶ2つのアーム部21は、回動軸R10について互いに対称に構成されている。アーム部21は、平面視においてL字型の形状である。Y軸方向に並ぶ2つのアーム部21は、接続部22を介して固定部10に接続されており、接続部23を介して可動部24に接続されている。接続部22、23は、回動軸R10に沿って延びている。
 ミラー40は、可動部24のZ軸正側の面に配置されている。可動部24およびミラー40は、平面視において中心1aを中心とする円形状である。可動部24のZ軸負側の面には、可動部24の撓みを抑制するためのリブ(図示せず)が形成されている。
 4つの駆動部31は、それぞれ、4つのアーム部21のZ軸正側の面に配置されている。駆動部31は、いわゆる圧電トランスデューサである。圧電トランスデューサは、圧電アクチュエータと呼ばれることもある。駆動部31に駆動電圧が印加されることにより、当該駆動部31が配置されたアーム部21が駆動される。4つの配線部32は、振動板20および固定部10のZ軸正側の面に配置されている。配線部32の内側(中心1a側)の端部は、駆動部31に繋がっており、配線部32の外側の端部は、固定部10において外部の電源等に接続される。配線部32は、駆動部31に駆動電圧を供給する。
 振動板20の駆動時には、Y軸方向に並ぶ2つのアーム部21がZ軸方向において逆方向に振動するよう、これら2つのアーム部21上の駆動部31に対して逆位相の電圧が印加される。また、X軸方向に並ぶ2つのアーム部21がZ軸方向において同じ方向に振動するよう、これら2つのアーム部21上の駆動部31に対して同位相の電圧が印加される。このとき、4つの駆動部31には、基準温度における振動板20の共振周波数と同様の周波数で駆動電圧が印加される。これにより、可動部24およびミラー40は、回動軸R10を中心として回動し、ミラー40に入射する光の方向が、ミラー40の回動角度に応じて変化させられる。
 図2(a)は、振動板20と駆動部31または配線部32とからなる積層構造の断面を模式的に示す図である。
 振動板20は、第1の層101と、第1の層101のZ軸負側の面に配置された第2の層102と、を備える。第1の層101は、シリコン(Si)により構成され、第2の層102は、フッ化スカンジウム(ScF)により構成される。
 駆動部31および配線部32は、互いに同じ積層構造を備え、一体的に形成されている。駆動部31および配線部32は、振動板20のZ軸正側の面に配置されている。駆動部31および配線部32には、Z軸正方向に、下部電極111と、圧電体層112と、上部電極113とが、この順で形成されている。下部電極111は白金(Pt)であり、圧電体層112はPZT(チタン酸ジルコン酸鉛:Pb(Zr,Ti)O)であり、上部電極113は金(Au)である。
 図2(a)のように、圧電体層112が、下部電極111と上部電極113との間に配置されることにより、下部電極111と上部電極113とを絶縁する誘電体としても機能する。
 図2(b)は、固定部10と配線部32とからなる積層構造の断面を模式的に示す図である。
 図2(a)に示した第1の層101および第2の層102は、固定部10まで延びている。すなわち、第1の層101および第2の層102は、固定部10および振動板20の全体に対して一体的に形成されている。固定部10は、第2の層102のZ軸負側の面に配置された固定層103をさらに備える。
 また、図2(a)に示した配線部32は、固定部10まで延びている。すなわち、固定部10上の配線部32と、振動板20上の配線部32とは、一体的に形成されている。
 固定部10において、たとえば、配線部32の下部電極111がグランドに接続され、配線部32の上部電極113に駆動電圧が印加されることにより、配線部32に接続された駆動部31の圧電体層112が変形する。これにより、振動板20が駆動され、可動部24およびミラー40(図1参照)が、回動軸R10について回動する。
 次に、図3(a)~図4(d)の断面図を参照して、駆動素子1の形成手順について説明する。
 図3(a)に示すように、第1の層101(Si基板)の上面に、スパッタにより、下部電極111(Pt)、圧電体層112(PZT)および上部電極113(Au)が順に形成される。
 続いて、図3(b)に示すように、駆動部31および配線部32に対応する領域に、下部電極111、圧電体層112および上部電極113が残るように、エッチングにより、下部電極111、圧電体層112および上部電極113が除去される。
 続いて、図3(c)に示すように、第1の層101、下部電極111、圧電体層112および上部電極113の上方に、接着剤121を介して、シリコン(Si)からなるサポート基板122が貼り付けられる。
 続いて、図3(d)に示すように、第1の層101が所望の厚さとなるよう、第1の層101の下面が切除される。
 続いて、図4(a)に示すように、第1の層101の下面に、第2の層102(フッ化スカンジウム基板)が貼り合わせられる。第2の層102の貼り合わせにおいて、第1の層101の下面に第2の層102が直接貼り合わせられて固定されてもよく、第1の層101の下面に接着剤が塗布されて第2の層102が貼り合わせられてもよい。
 続いて、図4(b)に示すように、接着剤121およびサポート基板122が除去される。
 続いて、図4(c)に示すように、第1の層101が、エッチングにより所望の形状に切除される。これにより、平面視において、第1の層101の形状は、図1に示す固定部10および振動板20を合わせた形状とされる。
 続いて、図4(d)に示すように、第2の層102が、エッチングにより、平面視において第1の層101と同様の形状に切除される。
 その後、固定部10に対応する第2の層102の下面に、固定層103が貼り合わされる。また、可動部24に対応する第2の層102の下面に、可動部24の強度を維持するための、シリコン(Si)からなるリブが設置され、可動部24に対応する第1の層101の上面に、ミラー40が配置される。こうして、駆動素子1が完成する。
 ところで、図1の構成において、振動板20がシリコン(Si)からなる層のみによって構成されている場合、駆動素子1周辺の環境温度が変化すると、振動板20の共振周波数が環境温度の変化に伴い変化する。これにより、駆動素子1全体の共振周波数が変化し、可動部24を適正な振れ角で回動させることが困難になる。
 これに対し、本実施形態1では、上記のように、振動板20が第1の層101および第2の層102を含んでおり、第1の層101はシリコン(Si)により構成され、第2の層101はフッ化スカンジウム(ScF)により構成されている。ここで、シリコン(Si)の線膨張係数は正の値を持ち、フッ化スカンジウム(ScF)の線膨張係数は負の値を持つ。すなわち、第1の層101および第2の層102は、互いに逆符号の線膨張係数を有する材料からなっている。
 このような構成により、実施形態1では、環境温度が変化した際の振動板20の共振周波数の変動が抑制される。以下、この作用について説明する。
 まず、温度変化と共振周波数との関係について説明する。
 図5(a)は、単純支持梁(角柱)からなる構造体ST1の構成を模式的に示す斜視図である。
 図5(a)に示す構造体ST1の左端および右端の面は、設置面に固定される固定端である。構造体ST1の横方向の長さはaであり、構造体ST1の奥行き方向の幅はbであり、構造体ST1の厚みはhである。構造体ST1のヤング率はEであり、構造体ST1の密度はρである。
 この場合、構造体ST1の1次共振周波数F1は、以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)に示すように、構造体ST1の共振周波数は、「h/(2a)」により規定される寸法要素と、「E/(12ρ)」により規定される物性要素とを乗算するすることにより算出される。
 ここで、構造体ST1の温度がΔTだけ変化した場合、構造体ST1の長さa2および厚みh2は、以下の式(2-1)、(2-2)で表される。
 a2=a+a×線膨張係数×ΔT …(2-1)
 h2=h+h×線膨張係数×ΔT …(2-2)
 一方、上述のシリコン(Si)は、正の線膨張係数を有する。具体的には、シリコンの線膨張係数は、3ppm/Kである。線膨張係数が正の値である場合、温度上昇に伴い、物質の体積が増加する。したがって、図5(a)の構造体ST1がシリコンのみで構成される場合、構造体ST1の共振周波数を規定する上記式(1)の長さaおよび厚みhは、上記式(2-1)、(2-2)からも分かるように、温度上昇に伴い増加する。
 また、このようにシリコンの体積が増加すると、シリコンの単位格子(原子間距離)が広がる。このため、構造体ST1がシリコンのみで構成される場合、構造体ST1の共振周波数を規定する上記式(1)の密度ρは、温度上昇に伴い低下し、また、構造体ST1のヤング率Eも、温度上昇に伴い低下する。シリコンにおける密度ρの温度係数は、-9ppm/Kであり、シリコンにおけるヤング率Eの温度係数は、-60ppm/Kである。
 このように、上記式(1)に含まれる長さa、厚みh、密度ρおよびヤング率Eは、温度変化に伴い変化する。したがって、上記式(1)から分かるように、構造体ST1の共振周波数も、温度変化に伴い変化する。構造体ST1がシリコンのみから形成される場合、上記式(1)から、構造体ST1の共振周波数は、構造体ST1の温度上昇に伴い低下する。
 したがって、図1に示す駆動素子1において、振動板20がシリコンのみから形成される場合、振動板20の共振周波数は、環境温度の上昇により振動板20の温度が上昇すると低下し、環境温度の低下により振動板20の温度が低下すると上昇する。
 図5(b)は、振動板20をシリコンのみで構成した場合における、駆動電圧の周波数とミラー40の振れ角との関係を示すグラフである。図5(b)において、各温度における最大振れ角となるときの周波数は、発明者が計算によって算出したものである。
 振動板20がシリコンのみで構成されると、上記式(1)を参照して説明したように、温度変化に伴って振動板20の共振周波数が変動する。たとえば、振動板20の温度が25℃である場合を基準とすると、図5(b)に示すように、このときの振動板20の共振周波数は20kHzである。
 これに対し、振動板20の温度が-15℃に低下すると、振動板20の共振周波数は20.024kHzに上昇し、振動板20の温度が65℃に上昇すると、振動板20の共振周波数は19.976kHzに低下する。このため、このように振動板20の温度が25℃から変化した状態において、振動板20の温度が25℃である場合の共振周波数20kHzで駆動部31に駆動電圧を印加すると、ミラー40の振れ角が顕著に小さくなってしまう。
 これに対し、実施形態1では、振動板20が、シリコンによって形成される第1の層101の他、フッ化スカンジウムによって形成される第2の層102を、一体的に備えている。
 ここで、第2の層102を構成するフッ化スカンジウムは、負の膨張係数を有する。具体的には、フッ化スカンジウムの線膨張係数は、-15ppm/Kである。線膨張係数が負の値である場合、温度上昇に伴い、物質の体積が減少する。このため、第2の層102の密度およびヤング率は、共に増加する。フッ化スカンジウムにおける密度ρの温度係数は、45ppm/Kであり、フッ化スカンジウムにおけるヤング率Eの温度係数は、800ppm/Kである。したがって、第2の層102における上記式(1)の寸法要素および物性要素は、シリコンからなる第1の層101の寸法要素および物性要素に相反することになる。
 このため、振動板20の温度が変化した場合、第1の層101による共振周波数の変化と、第2の層102による共振周波数の変化とが、互いに逆方向に振動板20に作用する。より詳細には、振動板20の温度が上昇した場合、第1の層101により共振周波数を減少させる作用が振動板20に働き、第2の層102により共振周波数を増加させる作用が振動板20に働く。これら相反する作用により、温度変化による振動板20の共振周波数の変動が抑制される。
 このように、実施形態1の構成では、振動板20の温度が変動した場合も、振動板20全体として共振周波数の変化が抑制される。したがって、温度変動にかかわらず、駆動部31への駆動電圧の印加を基準時と同様に行うことで、ミラー40の振れ角を適正な状態に維持できる。
 <検証>
 次に、発明者は、第1の層101および第2の層102の最適な厚みについて検証した。
 まず、図6(a)に示す片持ち梁からなる構造体ST2に第1の層101および第2の層102を適用した場合の第2の層102の好ましい厚みについて、シミュレーションにより検討した。
 構造体ST2は、第1の層101および第2の層102が積層された構造であり、直方体の形状を有する。構造体ST2の左端の面は、設置面に固定される固定端である。実施形態1と同様、第1の層101はシリコンにより構成され、第2の層102はフッ化スカンジウムにより構成されている。
 シミュレーションでは、構造体ST2の長手方向の長さaを7000μmとし、奥行き方向の幅bを1000μmとし、厚みhを500μmとした。第1の層101の厚みをh11とし、第2の層102の厚みをh12とした。第2の層102の厚み12を変動させて、構造体ST2の共振周波数の温度係数TCFを算出した。
 図6(b)は、シミュレーション結果を示すグラフである。
 図6(b)において、横軸は、第2の層102の厚みh12(μm)であり、縦軸は、構造体ST2の共振周波数の温度係数TCF(ppm/K)である。
 構造体ST2の共振周波数F1は、基準温度における共振周波数をF0、基準温度からの温度の変化をΔT、共振周波数の温度係数をTCFとすると、以下の式(3)で算出される。
 F1=F0+F0×TCF×ΔT …(3)
 上記式(3)から、温度変化が生じた場合に共振周波数F1の変動を抑制するためには、共振周波数の温度係数TCFが0に近いことが好ましいことが分かる。
 図6(b)のグラフを参照すると、第2の層102の厚みh12が約30μmの場合に、共振周波数の温度係数TCFの値がほぼ0になった。したがって、図6(a)に示す構造体ST2では、第2の層102の厚みh12は約30μmに設定されるのが好ましいと言える。この場合、共振周波数の温度係数TCFの値をほぼ0にすることができるため、構造体ST2に温度変化が生じたとしても構造体ST2の共振周波数をほぼ一定とすることができる。
 この検証から、図1に示す振動板20においても、振動板20における共振周波数の温度係数TCFの値を0に近づけ得る第2の層102の好ましい厚みの範囲が存在することが分かる。
 ただし、図6(a)に示す構造体ST2は、片持ち梁からなる単純な構成であり、図1に示す振動板20の構成とは大きく異なる。このため、図6(b)のシミュレーション結果から得られた第2の層102の厚みの好ましい範囲(30μm付近の範囲)は、図1の振動板20にはそのまま適用され得ないものと想定され得る。
 そこで、発明者は、図1の構成において、第1の層101および第2の層102の厚みの好ましい範囲を規定可能なパラメータを検討した。そして、発明者は、振動板20の共振周波数の温度係数TCFに対する第1の層101の寄与度と、振動板20の共振周波数の温度特性に対する第2の層102の寄与度との比を、第1の層101および第2の層102の厚みの好ましい範囲を規定可能なパラメータに用い得ると推定した。
 すなわち、振動板20が、シリコンからなる第1の層101と、フッ化スカンジウムからなる第2の層102との積層構造により構成される場合、振動板20の共振周波数の温度係数TCFは、第1の層101および第2の層102の断面積と、第1の層101および第2の層102の線膨張係数およびヤング率の影響を受けると想定され得る。
 ここで、線膨張係数の値は、上記式(1)において、温度変化に伴う振動板20の寸法および密度の変動に関連し、ヤング率の値は、温度変化に伴う振動板の柔らかさに関連する。よって、第1の層101の線膨張係数およびヤング率と、第2の層102の線膨張係数およびヤング率とは、振動板20の共振周波数の温度特性に寄与し得る。
 また、第1の層101および第2の層102の断面積は、第1の層101および第2の層102による上記の寄与が、振動板20にどのような割合で働くかに関連する。すなわち、断面積が大きいほど、各層による上記の寄与が、振動板20に対し、より大きく働く。
 このような考え方から、第1の層101および第2の層102による振動板20の共振周波数の温度特性への影響は、各層の断面積、線膨張係数およびヤング率を用いて以下の式(4-1)、(4-2)のように規定され得る。
 C1=A1×(α1+β1) …(4-1)
 C2=A2×(α2+β2) …(4-2)
 上記式(4-1)は、振動板20の共振周波数の温度特性に対する第1の層101(シリコン)の寄与度C1を示し、上記式(4-2)は、振動板20の共振周波数の温度特性に対する第2の層102(フッ化スカンジウム)の寄与度C2を示している。上記式(4-1)において、第1の層101の線膨張係数、ヤング率の温度係数、および断面積は、それぞれ、α1、β1、A1である。上記式(4-2)において、第2の層102の線膨張係数、ヤング率の温度係数、および断面積は、それぞれ、α2、β2、A2である。
 上記のように、第1の層101(シリコン)の線膨張係数α1およびヤング率の温度係数β1と、第2の層102(フッ化スカンジウム)の線膨張係数α2およびヤング率の温度係数β2とは、互いに逆符号であるため、振動板20の共振周波数の温度特性に対する第1の層101の寄与度C1および第2の層102の寄与度C2は、互いに逆方向に働く。したがって、寄与度C1と寄与度C2との比が1に近づくほど、互いに逆方向の寄与度が均衡し、振動板20の共振周波数の温度係数TCFが0に近づく、すなわち、温度変化に伴い共振周波数が変化しにくくなると考えられる。
 以下では、寄与度C1と寄与度C2との比が「材料比率R」と称される。材料比率Rは、以下の式(5)により算出される。
 R=|C2|/|C1| …(5)
 式(4-1)および式(4―2)に示すように、寄与度C1、C2は、各層の寸法要素として断面積A1、A2のみを含んでいる。したがって、式(5)の材料比率Rは、寸法要素として、断面積A1、A2の比のみを含む。他方、図1の構成では、振動板20における第1の層101および第2の層102の厚みは、振動板20の全範囲において一定である。したがって、第1の層101の断面積と第2の層102の断面積の比は、図1の振動板20の全範囲において一定である。このため、たとえば、図6(a)に示す構造体ST2において、共振周波数の温度係数TCFが0に近づく材料比率Rの好ましい範囲が得られれば、この材料比率Rの好ましい範囲は、図1の振動板20にも同様に適用され得る。
 発明者は、材料比率Rを変化させた場合の共振周波数の温度係数TCFを、シミュレーションにより検証した。
 図7(a)は、このシミュレーションに係る、片持ち梁からなる構造体ST2の構成を模式的に示す断面図である。
 このシミュレーションにおいて、構造体ST2は、図6(a)に示した構造体ST2と同様の構成とし、各部の寸法も、図6(a)の場合と同様に設定した。図7(a)には、図6(a)の構造体ST2を長さaの方向に垂直な平面で切断した断面が示されている。図6(a)、(b)のシミュレーションと同様、第1の層101はシリコンにより構成し、第2の層102はフッ化スカンジウムにより構成した。第1の層101(シリコン)において、線膨張係数α1は3ppm/Kであり、ヤング率の温度係数β1は-60ppm/Kであった。第2の層102(フッ化スカンジウム)において、線膨張係数α2は-15ppm/Kであり、ヤング率の温度係数β2は800ppm/Kであった。
 このような構造体ST2において、第1の層101の厚みと第2の層102の厚みを変化させることにより、第1の層101の断面積A1および第2の層102の断面積A2を変化させ、これにより、材料比率Rを変化させた。こうして変化させた3つの材料比率Rについて、構造体ST2の共振周波数の温度係数TCFを算出した。
 図7(b)は、シミュレーション結果を示すグラフである。
 図7(b)において、横軸は、寄与度C2の絶対値を寄与度C1の絶対値で除した材料比率Rであり、縦軸は、共振周波数の温度係数TCF(ppm/K)である。図7(b)には、シミュレーションにより得られた3つの測定値を実線で繋いだ直線が示されている。
 図7(b)に示すように、材料比率Rが1付近である場合に、TCFが0となっている。また、材料比率Rが0.7以上1.5以下である場合、TCFが-10ppm/K以上10ppm/K以下となる。したがって、材料比率Rが0.7以上1.5以下の範囲に含まれるように、第1の層101の断面積A1(厚み)と第2の層102の断面積A2(厚み)との比率を設定することにより、構造体ST2の共振周波数の温度係数TCFを0付近に設定でき、温度変化に対する構造体ST2の共振周波数の変化を0付近に抑制できる。温度変化に対する構造体ST2の共振周波数の変化をより確実に0付近に設定するためには、材料比率Rを1付近に設定することが好ましい。
 なお、図7(b)のグラフでは、第2の層102を配置せずに第1の層101のみから構造体ST2を構成した場合、すなわち、材料比率Rがゼロである場合のTCFは、-27ppm/Kであり、シリコンの正規のTCFである-30ppm/Kと概ね一致する。よって、図7(b)のグラフは、材料比率RとTCFとの関係を略適正に示していると想定され得る。このことから、横軸に用いた材料比率Rは、構造体ST2の共振周波数の温度係数TCFを評価するためのパラメータとして適正であることが確認できた。
 上記のように、図7(b)のシミュレーションで得られた材料比率Rの好ましい範囲(0.7以上1.5以下)は、図1の振動板20にも同様に適用され得る。よって、図1に示した駆動素子1の振動板20において、材料比率Rがこの範囲となるように、第1の層101および第2の層102の断面積(厚み)を設定することにより、駆動素子1における共振周波数の温度係数TCFをゼロに近づけることができる。
 なお、図1に示した駆動素子1では、可動部24のZ軸負側の面に、可動部24の撓みを抑制するためのリブが設けられる。このため、可動部24における第2の層102の断面積は、上記の断面積A2とは異なる。しかしながら、リブに相当する領域は振動板20全体に対して十分に小さいため、上記のように、材料比率Rの好ましい範囲を図1の振動板20全体に適用することにより、駆動素子1における共振周波数の温度係数TCFをゼロに近づけることができる。
 次に、図7(b)のシミュレーション結果に基づいて、振動板20の共振周波数の温度係数TCFが、-10ppm/K以上10ppm/K以下であることが好ましい理由について説明する。
 図8(a)は、振動板20の共振周波数の温度係数TCF(ppm/K)と、振動板20の温度範囲ΔTw(℃)と、振動板20の共振周波数の変化幅ΔFw(Hz)との関係を示す図である。
 図8(a)の関係は、基準温度(25℃)における共振周波数が20kHzである場合のものである。温度範囲ΔTwは、基準温度(25℃)を中心とする正負の温度範囲であり、変化幅ΔFwは、20kHzを中心とする共振周波数の変化幅である。温度範囲ΔTwは、基準温度(25℃)を中心に正負に同じ幅を持つ。たとえば、温度範囲ΔTwが100℃の範囲は、基準温度(25℃)に対して±50℃範囲である。変化幅ΔFwは、20kHzを中心に正負に同じ幅を持つ。たとえば、変化幅ΔFwが20Hzの範囲は、20kHzに対して±10Hzの範囲である。変化幅ΔFwの正負の幅は、上記式(3)の右辺第2項の算出式(F0×TCF×ΔT)によって算出される。
 図8(a)に示すように、振動板20の共振周波数の温度係数TCFが大きくなると、振動板20の共振周波数の変化幅ΔFwも大きくなる。たとえば、共振周波数の温度係数TCFが10ppm/Kである場合、共振周波数の変化幅ΔFwは20Hzであり、共振周波数の温度係数TCFが20ppm/Kである場合、共振周波数の変化幅ΔFwは40Hzであり、共振周波数の温度係数TCFが30ppm/Kである場合、共振周波数の変化幅ΔFwは60Hzである。
 図8(b)は、駆動電圧の周波数とミラー40の振れ角との関係を示すグラフである。
 図8(b)において、横軸は、振動板20に設置された駆動部31に印加する駆動電圧の周波数(Hz)である。縦軸の振れ角は、最大となる振れ角に基づいて規格化された値である。振動板20の温度が基準温度である25℃のとき、振動板20およびミラー40の共振周波数は基準値の20kHzである。このとき、駆動部31に印加する駆動電圧の周波数が20kHzであると、ミラー40の振れ角が最大となる。
 振動板20の温度が基準温度の25℃から変化することで振動板20の共振周波数が変化すると、駆動部31に20kHzの駆動電圧を印加したとしても、振れ角は最大値から小さくなる。たとえば、共振周波数の温度係数TCFが10ppm/Kの場合、図8(a)に示すように周波数の変化幅ΔFwは20Hzであるため、図8(b)に示すように振れ角は最大値の0.7倍程度に低下する。この場合、振れ角を最大値と同程度に上げるためには、駆動部31に印加する駆動電圧の最大値を、1/0.7=1.4倍程度上げる必要がある。
 このような共振型の駆動素子の場合、非共振型の駆動素子と比較して、駆動部31に印加する駆動電圧の最大値は1/2以下であるため、駆動部31に印加する駆動電圧の最大値が2倍以内であれば、駆動部31に過剰な電圧を印加することを回避でき、駆動部31の信頼性を維持できる。
 上記のように、振動板20の共振周波数の温度係数TCFが10ppm/K以下であれば、駆動部31に印加する駆動電圧の最大値を1.4倍程度に抑えることができる。よって、振動板20の共振周波数の温度係数TCFを、10ppm/K以下とすることにより、駆動部31に過剰な電圧を印加することを回避できる。
 同様に、振動板20の共振周波数の温度係数TCFが負の値を持つ場合も、温度係数TCFが-10ppm/K以上であれば、図8(b)と同様、振れ角の低下を最大値の0.7倍程度に抑えることができる。よって、振動板20の共振周波数の温度係数TCFを、10ppm/K以下とすることにより、駆動部31に印加する駆動電圧の最大値を1.4倍程度に抑えることができ、駆動部31に過剰な電圧を印加することを回避できる。
 図7(b)に戻り、TCFが-10ppm/K以上10ppm/K以下である場合、材料比率Rは0.7以上1.5以下となる。したがって、材料比率Rを0.7以上1.5以下となるよう、第1の層101の材料および第2の層102の材料を選択し、第1の層101の断面積A1(厚み)および第2の層102の断面積A2(厚み)を設定することにより、振動板20の共振周波数の変動を抑制でき、かつ、駆動部31に過剰な電圧を印加することなくミラー40の振れ角を高く維持することができる。
 なお、図7(a)、(b)のシミュレーションでは、図7(a)の構造体ST2を構成する2つの層をそれぞれ構成する2つの材料のうち、正の線膨張係数を有する材料がシリコンであり、負の線膨張係数を有する材料がフッ化スカンジウムであった。しかし、これら2つの材料が他の材料であっても、材料比率Rが上記の範囲となるように、各層の材料と、これら2つの層の断面積の比率とを設定することにより、構造体ST2の共振周波数の温度係数TCFをゼロに近づけることができる。よって、駆動素子1の振動板20を構成する2つの層についても、これら2つの層の材料比率が上記の範囲となるように、各層の材料と、これら2つの層の断面積の比率とを設定することにより、駆動素子1の共振周波数の温度係数をゼロに近づけることができる。
 たとえば、第1の層101は、シリコン(Si)により構成され、第2の層102は、フッ化スカンジウム(ScF)を主成分とする材料により構成されていてもよい。この場合、フッ化スカンジウム(ScF)には、Scを置換するようにイットリア(Y)、マグネシウム(Mg)、バリウム(Ba)、亜鉛(Zn)のうち少なくとも1種類以上が添加されていてもよい。また、第2の層102は、タングステン酸ジルコニウムにより構成されてもよく、タングステン酸ジルコニウムを主成分とする材料により構成されてもよい。この場合も、これら2つの層の材料比率Rが上記の範囲となるように、各層の材料と、これら2つの層の断面積の比率とを設定することにより、駆動素子1の共振周波数の温度係数TCFをゼロに近づけることができる。
 また、上記のように振動板20が構成されると、温度変化に伴う振動板20の反りを抑制することもできる。
 図9(a)、(b)は、それぞれ、比較例および実施形態1における振動板20および固定部10の断面を模式的に示す図である。図9(a)、(b)には、固定部10の下面(固定層103の下面)が、接着剤123を介してパッケージ基板124に設置されている状態が示されている。比較例では、振動板20および固定部10が、シリコンのみで構成されている。
 比較例の場合、環境温度が上昇すると、図9(a)に示すように、パッケージ基板124および第1の層101が熱応力で伸びる。このとき、パッケージ基板124は第1の層101より大きく変化するため、第1の層101において上方向に凸の反りが生じる。
 これに対し、実施形態1の場合、図9(b)に示すように、環境温度が上昇すると、パッケージ基板124および第1の層101には延びる方向の熱応力が生じ、第2の層102には縮む方向の熱応力が生じる。これにより、パッケージ基板124および正の膨張係数を有する第1の層101において生じる上方向に凸の反りの作用と、負の膨張係数を有する第2の層102において生じる下方向に凸の反りの作用とが、振動板20に働く。これら2つの相反する作用により、振動板20の反りが抑制される。このように、実施形態1の構成では、環境温度が変化した場合に、第1の層101、第2の層102およびパッケージ基板124において、伸縮のバランスが取られる。これにより、温度変化に伴う振動板20の変形が抑制される。
 <実施形態1の効果>
 実施形態1によれば、以下の効果が奏される。
 振動板20は、正の線膨張係数を有する第1材料(たとえば、シリコン)と、負の線膨張係数を有する第2材料(たとえば、フッ化スカンジウム)とを含む。このように、第1材料および第2材料の線膨張係数の符号が互いに反対であるため、駆動素子1周辺の環境温度が変化した場合、第1材料による振動板20の共振周波数の変化と第2材料による振動板20の共振周波数の変化とが互いに逆方向に振動板20に作用する。このため、この相反する作用によって、振動板20全体の共振周波数の変動が抑制される。これにより、温度変化に伴う駆動素子1の共振周波数の変動を抑制することができる。
 振動板20が含む正の線膨張係数を有する第1材料のヤング率の温度係数と、振動板20が含む負の線膨張係数を有する第2材料のヤング率の温度係数との符号が、反対である。このように、第1材料および第2材料のヤング率の温度係数の符号が反対である場合、上記式(1)から、第1材料による共振周波数の変化と第2材料による共振周波数の変化とが、逆方向に振動板20に作用し、上記と同様、温度変化に伴う振動板20の変形が抑制される。これにより、温度変化に伴う駆動素子1の共振周波数の変動を抑制することができる。
 振動板20は、正の線膨張係数を有する第1材料からなる第1の層101と、負の線膨張係数を有する第2材料からなる第2の層102とを含む。この構成によれば、線膨張係数の符号が互いに異なる材料からそれぞれ形成される2つの層を配置するといった簡易な構成により、温度変化に伴う振動板20の共振周波数の変動を抑制できる。
 振動板20の共振周波数の温度係数TCFに対する第1材料(第1の層101)の寄与度C1は、上記式(4-1)で規定され、振動板20の共振周波数の温度係数TCFに対する第2材料(第2の層102)の寄与度C2は、上記式(4-2)で規定される。材料比率Rは、上記式(5)により算出される。図7(a)~図8(b)を参照して説明したように、材料比率Rは、0.7~1.5に設定される。これにより、図7(b)を参照して説明したとおり、振動板20の共振周波数の温度係数TCFは-10ppm/K~+10ppm/Kの範囲に制限される。よって、駆動部31に過剰な電圧を印加することを回避しながら、温度変化に伴う振動板20の共振周波数の変動を効果的に抑制でき、可動部24およびミラー40を適正に駆動できる。
 <実施形態1の変更例1>
 上記実施形態1では、振動板20が、正の線膨張係数を有する材料からなる第1の層101と、負の線膨張係数を有する材料からなる第2の層102とが積層されることにより構成された。しかしながら、これに限らず、振動板20は、正の線膨張係数を有する材料と、負の線膨張係数を有する材料とが混ぜ合わされた複合層により構成されてもよい。
 図10(a)は、実施形態1の変更例1に係る、振動板20と駆動部31または配線部32とからなる積層構造の断面を模式的に示す図である。
 振動板20は、複合層131により構成される。複合層131は、正の線膨張係数を有する樹脂(たとえば、エポキシ樹脂やポリイミド樹脂など)に、負の線膨張係数を有するフッ化スカンジウムのフィラー131aが混ぜ合わされて構成される。
 なお、複合層131に含まれる正の線膨張係数を有する材料は、シリコン(Si)でもよい。フィラー131aは、負の線膨張係数を有する材料により構成されればよい。たとえば、フィラー131aは、フッ化スカンジウム(ScF)を主成分とする材料により構成されていてもよい。この場合、フッ化スカンジウム(ScF)には、Scを置換するようにイットリア(Y)、マグネシウム(Mg)、バリウム(Ba)、亜鉛(Zn)のうち少なくとも1種類以上が添加されていてもよい。また、フィラー131aは、タングステン酸ジルコニウムにより構成されてもよく、タングステン酸ジルコニウムを主成分とする材料により構成されてもよい。
 駆動部31および配線部32は、互いに同じ積層構造を備え、一体的に形成されている。駆動部31および配線部32は、振動板20のZ軸正側の面に配置されている。駆動部31および配線部32には、Z軸正方向に、下部電極111と、圧電体層112と、上部電極113、114とが、この順で形成されている。下部電極111と、圧電体層112と、上部電極113とは、実施形態1と同様である。上部電極114は、金(Au)である。
 図10(b)は、実施形態1の変更例1に係る、固定部10と配線部32とからなる積層構造の断面を模式的に示す図である。
 図10(a)に示した複合層131は、固定部10まで延びている。すなわち、複合層131は、固定部10および振動板20の全体に対して一体的に形成されている。固定部10は、複合層131のZ軸負側の面に配置された固定層103をさらに備える。固定層103は、たとえば、シリコン(Si)により構成される。
 また、図10(a)に示した配線部32は、固定部10まで延びている。すなわち、固定部10上の配線部32と、振動板20上の配線部32とは、一体的に形成されている。
 固定部10において、たとえば、配線部32の下部電極111がグランドに接続され、配線部32の上部電極114に駆動電圧が印加されることにより、配線部32に接続された駆動部31の圧電体層112が変形する。これにより、振動板20が駆動され、可動部24およびミラー40(図1参照)が、回動軸R10について回動する。
 次に、図11(a)~図12(c)の断面図を参照して、実施形態1の変更例に係る駆動素子1の形成手順について説明する。
 図11(a)に示すように、シリコン(Si)からなるサポート基板125の上面に、スパッタにより、下部電極111(Pt)、圧電体層112(PZT)および上部電極113(Au)が順に形成される。
 続いて、図11(b)に示すように、駆動部31および配線部32に対応する領域に、下部電極111、圧電体層112および上部電極113が残るように、エッチングにより、下部電極111、圧電体層112および上部電極113が除去される。
 続いて、図11(c)に示すように、上部電極113の上面に、上部電極114(Au)を介して、シリコン(Si)からなるサポート基板122が設置される。
 続いて、図11(d)に示すように、サポート基板125が除去される。
 続いて、図12(a)に示すように、下部電極111の下面に、複合層131が貼り合わされる。複合層131は、あらかじめ、感光性をもたせた樹脂(たとえば、エポキシ樹脂やポリイミド樹脂など)にフィラー131aを混ぜ合わせた材料に対し、半導体のフォトリソプロセスを用いて光を照射および現像処理を行うことにより成形される。複合層131が下部電極111の下面に配置された状態で、たとえば、半導体のフォトリソプロセスを用いることにより、複合層131が下部電極111の下面に設置される。
 続いて、図12(b)に示すように、複合層131が、エッチングにより所望の形状に除去される。これにより、平面視において、複合層131の形状は、図1に示す固定部10および振動板20を合わせた形状とされる。
 続いて、図12(c)に示すように、サポート基板122が除去される。
 その後、固定部10に対応する複合層131の下面に、固定層103が貼り合わされる。また、可動部24に対応する複合層131の下面に、可動部24の強度を維持するための、シリコン(Si)からなるリブが設置され、可動部24に対応する複合層131の上面に、ミラー40が配置される。こうして、駆動素子1が完成する。
 以上、実施形態1の変更例1によれば、振動板20は、正の膨張係数を有する第1材料(たとえば、エポキシ樹脂やポリイミド樹脂などの樹脂)と、負の線膨張係数を有する第2材料(たとえば、フッ化スカンジウム)とが複合された複合層131を含む。よって、実施形態1と同様、駆動素子1周辺の環境温度が変化した場合、第1材料と第2材料との相反する作用により、振動板20の共振周波数の変動を抑制することができる。これにより、温度変化に伴う駆動素子1の共振周波数の変動を抑制でき、可動部24およびミラー40を適正に駆動できる。
 また、本変更例においても、上記式(4-1)、(4-2)が成立する。すなわち、振動板20の共振周波数の温度係数TCFに対する第1材料の寄与度C1は、上記式(4-1)で規定され、振動板20の共振周波数の温度係数TCFに対する第2材料の寄与度C2は、上記式(4-2)で規定される。この場合、寄与度C1の算出式(4-1)において、断面積A1は、複合層131のうち、正の線膨張係数を有する第1材料の平均的な断面積である。寄与度C2の算出式(4-2)において、断面積A2は、負の線膨張係数を有する第2材料(フィラー131a)の平均的な断面積である。そして、実施形態1と同様、上記式(5)により、材料比率Rが算出される。本変更例においても、図7(b)と同様のシミュレーション結果が得られる。
 したがって、本変更例においても、材料比率Rが0.7以上1.5以下の範囲に含まれるように、第1材料の平均的な断面積A1と第2材料の平均的な断面積A2との比率を設定することにより、振動板20共振周波数の温度係数TCFを0付近に設定でき、温度変化に対する振動板20の共振周波数の変化を0付近に抑制できる。温度変化に対する振動板20の共振周波数の変化をより確実に0付近に設定するためには、材料比率Rを1付近に設定することが好ましい。
 <実施形態1の変更例2>
 上記実施形態1において、アーム部21上に、駆動部31に加えて検知部が設置されてもよい。
 図13は、実施形態1の変更例2に係る、駆動素子1の構成を模式的に示す平面図である。
 駆動素子1は、実施形態1と比較して、さらに、4つの検知部51と、4つの配線部52とを備える。4つの検知部51は、振動板20の駆動状態を検知し、それぞれ、4つのアーム部21のY軸方向に延びる部分のZ軸正側の面に配置されている。4つの配線部52は、振動板20および固定部10のZ軸正側の面に配置されている。配線部52の内側(中心1a側)の端部は、検知部51に繋がっており、配線部52の外側の端部は、固定部10において外部の回路等に接続される。検知部51および配線部52は、一体的に形成されており、駆動部31および配線部32と同様の積層構造を有する。振動板20は、実施形態1または実施形態1の変更例1と同様の構成を有する。
 振動板20の駆動時には、L字形状のアーム部21がZ軸方向に反復して駆動される。このとき、検知部51が、アーム部21の駆動状態に応じて伸縮することにより、圧電効果によって、検知部51から配線部52を介して外部の回路に電流が流れる。これにより、外部の回路に流れる電流を参照することにより、アーム部21の駆動状態を検知できる。
 <実施形態2>
 上記実施形態1では、振動板20が音叉形状を含んだが、実施形態2では、振動板がミアンダ形状を含む。
 図14は、実施形態2に係る、駆動素子1の構成を模式的に示す平面図である。
 駆動素子1は、一対の固定部210と、振動板220と、6つの駆動部231と、6つの配線部232と、ミラー240と、を備える。駆動素子1は、ミラー240の中心を通りY軸方向に平行な直線に対して対称となるよう構成されている。駆動素子1の中央には、可動部226が設けられており、可動部226は、X軸方向に延びる回動軸R10について回動する。
 一対の固定部210は、X軸方向に並んでいる。固定部210は、実施形態1または実施形態1の変更例1と同様の積層構造を有する。駆動素子1が設置される際、固定部210のZ軸負側の面(図2(b)または図10(b)の固定層103のZ軸負側の面)が、接着剤を用いてパッケージ基板等に設置される。
 振動板220は、6つのアーム部221と、2つの接続部222と、2つの接続部223と、2つの接続部224と、2つの接続部225と、可動部226と、を備える。振動板220は、ミアンダ形状を含む。すなわち、可動部226からX軸正側の振動板220の部分は、平面視においてミアンダ形状であり、可動部226からX軸負側の振動板220の部分は、平面視においてミアンダ形状である。これら2つのミアンダ形状がX軸方向に向き合うことにより、振動板220の形状が規定されている。また、振動板220は、実施形態1または実施形態1の変更例1と同様の構成を有する。
 アーム部221は、平面視においてY軸方向に長い長方形形状である。可動部226に対して最も外側のアーム部221は、接続部222により固定部210に接続されている。可動部226に対して最も内側のアーム部221は、接続部225により可動部226に接続されている。隣り合うアーム部221は、接続部223、224により互いに接続されている。接続部222、224は、アーム部221のY軸正側の端部に接続されており、接続部223、225は、アーム部221のY軸負側の端部に接続されている。
 ミラー240は、可動部226のZ軸正側の面に配置されている。可動部226のZ軸負側の面には、可動部226の撓みを抑制するためのリブ(図示せず)が形成されている。
 駆動部231は、実施形態1または実施形態1の変更例1の駆動部31と同様の積層構造を有する。配線部232は、実施形態1または実施形態1の変更例1の配線部32と同様の積層構造を有する。実施形態2おいても、駆動部231および配線部232は、一体的に形成されている。
 6つの駆動部231は、それぞれ、6つのアーム部221のZ軸正側の面に配置されている。駆動部231は、いわゆる圧電トランスデューサである。駆動部231に駆動電圧が印加されることにより、当該駆動部31が配置されたアーム部221が駆動される。6つの配線部232は、振動板220および固定部210のZ軸正側の面に配置されている。可動部226に対して最も外側のアーム部221に配置された駆動部231と、可動部226に対して最も内側のアーム部221に配置された駆動部231とは、配線部232により互いに接続されている。可動部226に対して最も外側の駆動部231と、可動部226と固定部10の中間の駆動部231は、それぞれ配線部232により、固定部10において外部の電源等に接続される。配線部232は、駆動部231に駆動電圧を供給する。
 振動板220の駆動時には、可動部226に対して最も外側のアーム部221および最も内側のアーム部221(第1アーム部)と、これら2つのアーム部221の間のアーム部221(第2アーム部)とがZ軸方向において逆方向に振動するよう、第1アーム部上の駆動部231と第2アーム部上の駆動部231に対して逆位相の電圧が印加される。また、X軸方向に並ぶ1組の第1アーム部が同じ方向に振動するよう、1組の第1アーム部上の駆動部231に対して同位相の電圧が印加され、X軸方向に並ぶ1組の第2アーム部が同じ方向に振動するよう、1組の第2アーム部上の駆動部231に対して同位相の電圧が印加される。これにより、可動部226およびミラー240は、回動軸R10を中心として回動し、ミラー240に入射する光の方向が、ミラー240の回動角度に応じて変化させられる。
 実施形態2においても、振動板220は、実施形態1または実施形態1の変更例1と同様の積層構造を備える。すなわち、振動板220は、正の線膨張係数を有する第1材料(たとえば、シリコン)と、負の線膨張係数を有する第2材料(たとえば、フッ化スカンジウム)とを含む。これにより、実施形態1および実施形態1の変更例1と同様、振動板20の共振周波数の変動を抑制することができる。
 また、実施形態2においても、材料比率Rが0.7以上1.5以下の範囲に含まれるように、正の線膨張係数を有する第1材料の断面積A1と負の線膨張係数を有する第2材料の断面積A2との比率を設定することにより、振動板20共振周波数の温度係数TCFを0付近に設定でき、温度変化に対する振動板20の共振周波数の変化を0付近に抑制できる。温度変化に対する振動板20の共振周波数の変化をより確実に0付近に設定するためには、材料比率Rを1付近に設定することが好ましい。
 <実施形態2の変更例>
 上記実施形態2では、アーム部221上に、駆動部231に加えて検知部が設置されてもよい。
 図15は、実施形態2の変更例に係る、駆動素子1の構成を模式的に示す平面図である。
 駆動素子1は、実施形態2と比較して、さらに、4つの検知部251と、4つの配線部252とを備える。4つの検知部251は、振動板20の駆動状態を検知する。4つの検知部251は、可動部226に対して最も外側のアーム部221と、可動部226と固定部10の中間のアーム部221のZ軸正側の面に配置されている。4つの配線部252は、振動板220および固定部210のZ軸正側の面に配置されている。配線部252の内側の端部は、検知部251に繋がっており、配線部52の外側の端部は、固定部210において外部の回路等に接続される。検知部251および配線部252は、一体的に形成されており、駆動部231および配線部232と同様の積層構造を備える。振動板220は、実施形態1または実施形態1の変更例1と同様の構成を有する。
 振動板220の駆動時には、アーム部221がZ軸方向に反復して駆動される。このとき、検知部251が、アーム部221の駆動状態に応じて伸縮することにより、圧電効果によって、検知部251から配線部252を介して外部の回路に電流が流れる。これにより、外部の回路に流れる電流を参照することにより、アーム部221の駆動状態を検知できる。
 <その他の変更例>
 実施形態1および実施形態1の変更例1、2では、振動板20に含まれる第1材料は、線膨張係数が正でありヤング率の温度係数が負である材料(たとえば、シリコン)により構成され、振動板20に含まれる第2材料は、線膨張係数が負でありヤング率の温度係数が正である材料(たとえば、フッ化スカンジウム)により構成された。しかしながら、これに限らず、駆動素子1周辺の環境温度が変化した場合に、第1材料による振動板20の共振周波数の変化と、第2材料による振動板20の共振周波数の変化とが、互いに逆方向に振動板20に作用する限りにおいて、第1材料および第2材料における線膨張係数およびヤング率の温度係数の符号は、上記の組合せに限らない。同様に、実施形態2および実施形態2の変更例においても、第1材料および第2材料における線膨張係数およびヤング率の温度係数の符号は、上記の組合せに限らない。これらの場合も、材料比率Rが0.7以上1.5以下となるように、各材料の線膨張係数、ヤング率の温度係数および断面積が設定されることが好ましい。
 実施形態1、2および実施形態1、2の変更例では、固定部10、210が、下面側に固定層103を備えた。しかしながら、固定層103は、必ずしも設けられる必要はなく、省略されてもよい。この場合、固定部10、210に相当する第2の層102または複合層131の下面が、接着剤を用いてパッケージ基板等に設置される。
 実施形態1および実施形態1の変更例1では、固定層103が、シリコンにより構成された。しかしながら、これに限らず、固定層103は、シリコン以外の材料により構成されてもよい。たとえば、実施形態1において、固定層103は、第2の層102と同じ第2材料(フッ化スカンジウム)により構成されてもよく、実施形態1の変更例1では、固定層103は、複合層131に含まれるフィラー131aの第2材料(フッ化スカンジウム)により構成されてもよい。同様に、実施形態1の変更例2、実施形態2および実施形態2の変更例においても、固定層103は、シリコン以外の材料により構成されてもよい。
 実施形態1の変更例1では、駆動部31および配線部32が、上面側に上部電極114を備えた。しかしながら、駆動部31および配線部32の上面側には、上部電極113が設けられればよく、上部電極114は、図11(a)~図12(c)の形成手順において最終的に除去されてもよい。
 実施形態1の変更例2では、検知部51および配線部52が駆動部31と同様に構成され、圧電効果により生じた電流を参照することにより、アーム部21の駆動状態が検知された。しかしながら、これに限らず、検知部51による検知に、変形に応じて抵抗が変化する歪み抵抗効果を用いることもできる。この場合、たとえば、検知部51は、振動板20上に配置された金属の歪み抵抗体により構成される。あるいは、振動板20を構成するシリコンのZ軸正側の面を変質させ、この部分に歪み抵抗を持たせることにより、検知部51が歪み抵抗体として形成されてもよい。検知部51に繋がる配線部52は、検知部51に電圧を印加するための配線と、検知部51の抵抗値を検出するための配線とからなる。検知部51の抵抗値を参照することにより、アーム部21の駆動状態を検知できる。同様に、実施形態2の変更例においても、検知部251は、変形に応じて抵抗が変化する歪み抵抗体により構成されてもよい。
 実施形態1および実施形態1の変更例1、2では、可動部24のX軸正側およびX軸負側の両側に、1つの固定部10、2つのアーム部21、1組の接続部22、23、2つの駆動部31、および2つの配線部32が設けられたが、これらの構成は、可動部24のX軸正側およびX軸負側のいずれか一方にのみ設けられてもよい。同様に、実施形態2および実施形態2の変更例においても、1つの固定部210、3つのアーム部221、1組の接続部222~225、3つの駆動部231、および3つの配線部232が、可動部226のX軸正側およびX軸負側のいずれか一方にのみに設けられてもよい。
 実施形態1および実施形態1の変更例1、2では、可動部24のZ軸負側の面に、可動部24の撓みを抑制するためのリブが設けられたが、このリブは必ずしも設けられなくてもよい。また、実施形態2および実施形態の変更例では、可動部226のZ軸負側の面に、可動部226の撓みを抑制するためのリブが設けられたが、このリブは必ずしも設けられなくてもよい。
 この他、本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
 1 駆動素子
 10 固定部
 20 振動板
 24 可動部
 31 駆動部
 40 ミラー
 51 検知部
 101 第1の層
 102 第2の層
 131 複合層
 210 固定部
 220 振動板
 226 可動部
 231 駆動部
 240 ミラー
 251 検知部
 R10 回動軸

Claims (10)

  1.  固定部と、
     前記固定部に接続され、回動軸について回動する可動部を有する振動板と、
     前記振動板に配置され、前記振動板を駆動する駆動部と、を備え、
     前記振動板は、正の線膨張係数を有する第1材料と、負の線膨張係数を有する第2材料とを含む、
    ことを特徴とする駆動素子。
     
  2.  請求項1に記載の駆動素子において、
     前記第1材料のヤング率の温度係数と、前記第2材料のヤング率の温度係数との符号が、反対である、
    ことを特徴とする駆動素子。
     
  3.  請求項1または2に記載の駆動素子において、
     前記振動板は、前記第1材料からなる第1の層と、前記第2材料からなる第2の層とを含む、
    ことを特徴とする駆動素子。
     
  4.  請求項1または2に記載の駆動素子において、
     前記振動板は、前記第1材料と前記第2材料とが複合された層を含む、
    ことを特徴とする駆動素子。
     
  5.  請求項3または4に記載の駆動素子において、
     前記第1材料において、線膨張係数をα1とし、ヤング率の温度係数をβ1とし、断面積をA1とし、前記振動板の共振周波数の温度特性に対する前記第1材料の寄与度C1を以下の式(11)で表し、
     前記第2材料において、線膨張係数をα2とし、ヤング率の温度係数をβ2とし、断面積をA2とし、前記振動板の共振周波数の温度特性に対する前記第2材料の寄与度C2を以下の式(12)で表す場合に、
     寄与度C2の絶対値を寄与度C1の絶対値で除した材料比率は、0.7以上1.5以下に設定される、
    ことを特徴とする駆動素子。
     C1=A1×(α1+β1) …(11)
     C2=A2×(α2+β2) …(12)
     
  6.  請求項1ないし5の何れか一項に記載の駆動素子において、
     前記駆動部は、圧電トランスデューサである、
    ことを特徴とする駆動素子。
     
  7.  請求項1ないし6の何れか一項に記載の駆動素子において、
     前記振動板は、音叉形状を含む、
    ことを特徴とする駆動素子。
     
  8.  請求項1ないし6の何れか一項に記載の駆動素子において、
     前記振動板は、ミアンダ形状を含む、
    ことを特徴とする駆動素子。
     
  9.  請求項1ないし8の何れか一項に記載の駆動素子において、
     前記振動板に配置され、前記振動板の駆動状態を検知するための検知部を備える、
    ことを特徴とする駆動素子。
     
  10.  請求項1ないし9の何れか一項に記載の駆動素子において、
     前記可動部にミラーが配置されている、
    ことを特徴とする駆動素子。
PCT/JP2022/014164 2021-08-19 2022-03-24 駆動素子 WO2023021777A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280052960.5A CN117716272A (zh) 2021-08-19 2022-03-24 驱动元件
JP2023542214A JPWO2023021777A1 (ja) 2021-08-19 2022-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-134027 2021-08-19
JP2021134027 2021-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/440,521 Continuation US20240184101A1 (en) 2021-08-19 2024-02-13 Drive element

Publications (1)

Publication Number Publication Date
WO2023021777A1 true WO2023021777A1 (ja) 2023-02-23

Family

ID=85240343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014164 WO2023021777A1 (ja) 2021-08-19 2022-03-24 駆動素子

Country Status (3)

Country Link
JP (1) JPWO2023021777A1 (ja)
CN (1) CN117716272A (ja)
WO (1) WO2023021777A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090067034A1 (en) * 2007-09-07 2009-03-12 Samsung Electro-Mechanics Co., Ltd. Mems structure and optical modulator having temperature compensation layer
JP2010026069A (ja) * 2008-07-16 2010-02-04 Kyoto Univ 振動ミラー素子
JP2012212022A (ja) * 2011-03-31 2012-11-01 Brother Ind Ltd 光スキャナ
JP2013003523A (ja) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc 光走査装置およびミラー駆動装置
JP2014048571A (ja) * 2012-09-03 2014-03-17 Ricoh Co Ltd 光偏向器、画像形成装置及び画像投影装置
US20150253196A1 (en) * 2008-08-05 2015-09-10 California Institute Of Technology Uncooled ir detector arrays based on nanoelectromechanical systems
JP2016114715A (ja) * 2014-12-12 2016-06-23 キヤノン電子株式会社 振動素子、光走査装置、画像形成装置、画像投影装置および画像読み取り装置
JP2017523645A (ja) * 2014-08-21 2017-08-17 スナップトラック・インコーポレーテッド 改善された温度補償を有するマイクロ音響デバイス
WO2020045152A1 (ja) * 2018-08-31 2020-03-05 パナソニックIpマネジメント株式会社 光学反射素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090067034A1 (en) * 2007-09-07 2009-03-12 Samsung Electro-Mechanics Co., Ltd. Mems structure and optical modulator having temperature compensation layer
JP2010026069A (ja) * 2008-07-16 2010-02-04 Kyoto Univ 振動ミラー素子
US20150253196A1 (en) * 2008-08-05 2015-09-10 California Institute Of Technology Uncooled ir detector arrays based on nanoelectromechanical systems
JP2012212022A (ja) * 2011-03-31 2012-11-01 Brother Ind Ltd 光スキャナ
JP2013003523A (ja) * 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc 光走査装置およびミラー駆動装置
JP2014048571A (ja) * 2012-09-03 2014-03-17 Ricoh Co Ltd 光偏向器、画像形成装置及び画像投影装置
JP2017523645A (ja) * 2014-08-21 2017-08-17 スナップトラック・インコーポレーテッド 改善された温度補償を有するマイクロ音響デバイス
JP2016114715A (ja) * 2014-12-12 2016-06-23 キヤノン電子株式会社 振動素子、光走査装置、画像形成装置、画像投影装置および画像読み取り装置
WO2020045152A1 (ja) * 2018-08-31 2020-03-05 パナソニックIpマネジメント株式会社 光学反射素子

Also Published As

Publication number Publication date
CN117716272A (zh) 2024-03-15
JPWO2023021777A1 (ja) 2023-02-23

Similar Documents

Publication Publication Date Title
JP3844784B2 (ja) 圧電/電歪デバイス
JP5229704B2 (ja) 光走査装置
JP4193817B2 (ja) アクチュエータ
JP5916668B2 (ja) ミラー駆動装置及びその駆動方法
JP7154309B2 (ja) マイクロミラーデバイスおよびマイクロミラーデバイスの駆動方法
JP5916667B2 (ja) ミラー駆動装置及びその駆動方法
JP5609244B2 (ja) 振動発電デバイス
WO2013114857A1 (ja) 圧電アクチュエータデバイスとその製造方法
Grinberg et al. A piezoelectric twisting beam actuator
WO2023021777A1 (ja) 駆動素子
JP2007326204A (ja) アクチュエータ
JP5093405B2 (ja) 振動ジャイロ素子
US20240184101A1 (en) Drive element
JP2010122141A (ja) Memsセンサ
WO2020136994A1 (ja) 圧電トランスデューサ
JP2009098253A (ja) 光学反射素子およびこれを用いた画像投影装置
JP5310769B2 (ja) 光スキャナ
JP7455976B2 (ja) 光走査装置、及びマイクロミラーデバイスの駆動方法
JP2000317898A (ja) 圧電/電歪デバイス
JP2022008140A (ja) 振動型アクチュエータ、光学機器および電子機器
Grinberg et al. Direct torsion of bulk PZT using directional interdigitated electrodes
JP5810685B2 (ja) 振動子および振動ジャイロ
WO2023162674A1 (ja) 光学反射素子
WO2023105892A1 (ja) 光学反射素子
WO2022176587A1 (ja) 駆動素子および光偏向素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542214

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280052960.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE