WO2023020653A1 - Stiftofen zum herstellen von behältern und verfahren - Google Patents

Stiftofen zum herstellen von behältern und verfahren Download PDF

Info

Publication number
WO2023020653A1
WO2023020653A1 PCT/DE2022/100569 DE2022100569W WO2023020653A1 WO 2023020653 A1 WO2023020653 A1 WO 2023020653A1 DE 2022100569 W DE2022100569 W DE 2022100569W WO 2023020653 A1 WO2023020653 A1 WO 2023020653A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
pin
chamber
axle
drying chamber
Prior art date
Application number
PCT/DE2022/100569
Other languages
English (en)
French (fr)
Inventor
Ulf Reinhardt
Wilko Harms
Original Assignee
Ulf Reinhardt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulf Reinhardt filed Critical Ulf Reinhardt
Priority to EP22755068.8A priority Critical patent/EP4388262A1/de
Priority to CA3229167A priority patent/CA3229167A1/en
Priority to CN202280069920.1A priority patent/CN118119813A/zh
Publication of WO2023020653A1 publication Critical patent/WO2023020653A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/10Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions
    • F26B15/12Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined
    • F26B15/122Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined the objects or batches of material being carried by transversely moving rollers or rods which may rotate
    • F26B15/128Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined the objects or batches of material being carried by transversely moving rollers or rods which may rotate the rods being attached at one end to an endless conveying means, the other end being free to receive hollow articles, e.g. cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/005Devices for treating the surfaces of sheets, webs, or other articles in connection with printing of non-flat articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/008Seals, locks, e.g. gas barriers or air curtains, for drying enclosures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/02Applications of driving mechanisms, not covered by another subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F17/00Printing apparatus or machines of special types or for particular purposes, not otherwise provided for
    • B41F17/08Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces
    • B41F17/14Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of finite length
    • B41F17/18Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of finite length on curved surfaces of articles of varying cross-section, e.g. bottles, lamp glasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F17/00Printing apparatus or machines of special types or for particular purposes, not otherwise provided for
    • B41F17/08Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces
    • B41F17/14Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of finite length
    • B41F17/20Printing apparatus or machines of special types or for particular purposes, not otherwise provided for for printing on filamentary or elongated articles, or on articles with cylindrical surfaces on articles of finite length on articles of uniform cross-section, e.g. pencils, rulers, resistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2217/00Printing machines of special types or for particular purposes
    • B41P2217/50Printing presses for particular purposes
    • B41P2217/60Means for supporting the articles
    • B41P2217/61Means for supporting the articles internally, e.g. for mugs or goblets

Definitions

  • the invention relates to a pin oven for producing containers and methods for producing a pin oven and for increasing the energy efficiency of a pin oven.
  • Containers such as cans for beverages, generally have a coating on an outer lateral surface, which is designed as a coating of lacquer or paint.
  • a coating can, for example, show the brand name of the provider, instructions for use or other content.
  • the inner surfaces of the cans are usually coated in a process step after the pin oven and then dried in a corresponding continuous oven, which is also known as an internal baking oven.
  • paints are used that relate to the manufacturing process of the can.
  • the cans are provided with such a lacquer on an underside of the can in order to adjust the slidability of the cans on the different conveyor belts.
  • a device for applying such a coating to container units is also referred to as a printing device or decorator. In order for this coating to remain stable, it must be cured after application. Pin furnaces are used for this curing of the coating, in which the coating is convectively heated, dried and/or cured.
  • the cans are conveyed in a meandering pattern with a pin chain through a drying chamber of the pin furnace. Meanwhile, a temperature-controlled fluid flow is applied to them in order to heat, dry and harden the coating. For example, the cans are heated to 180°C and exposed to this temperature for a defined period of time. In addition, the cans are subjected to a further flow of fluid in order to position the cans on the pin chain.
  • the pin chain and other components of the pin oven require the use of axes within the drying chamber.
  • Axles are known to be stored with bearings, for example roller bearings. It is possible to arrange the bearings inside the drying chamber or to arrange them outside the drying chamber. An arrangement of the bearings inside the drying chamber means that they can only be reached with great effort in the event of damage. In addition, changing or maintaining the bearing is made more difficult.
  • a bearing arranged outside of the drying chamber results in heat being transported between the drying chamber and the environment via the axes, so that an energy loss via the axes must always be taken into account. It is a worldwide design standard for pin ovens to locate the bearings outside the drying chamber and accept the energy loss through the axles.
  • a disadvantage of existing pin ovens is that their energy consumption is high.
  • the fans used are characterized by high power consumption.
  • a heating unit for example a gas burner or an electric heating coil, is used to heat the process fluid in the furnace chamber, which also requires energy. To the rising In order to meet ecological requirements and increasing sustainability criteria, the energy consumption of pin stoves must be reduced.
  • a pin furnace for producing containers, in particular cans, preferably beverage cans, for example made of or with steel or aluminum, comprising a drying chamber for drying the container with a temperature-controlled process fluid, at least one axis for supporting a bearing element arranged inside the drying chamber, at least one axle bearing arranged outside of the drying chamber, with which the axle is mounted, and wherein the axle bearing is arranged thermally insulated from an environment of the pin furnace.
  • the invention is based on the finding that external axle bearings increase the energy consumption of pin ovens.
  • the increased energy consumption is caused, among other things, by the fact that the axle conducts heat from the drying chamber to the axle bearing, with the heat being emitted from the axle bearing to the environment.
  • the increased energy consumption may also be due to fluid flow from the drying chamber along the axle to the axle bearing.
  • the invention was also based on the finding that this increased energy consumption can be avoided by means of an axle bearing that is thermally insulated from the area surrounding the pin furnace.
  • the drying chamber is designed to dry the containers with a temperature-controlled process fluid.
  • the drying chamber typically has a container inlet through which the containers can enter the drying chamber and a container outlet through which the containers exit the drying chamber.
  • the pin oven has a pin chain.
  • the containers are generally moved between the container inlet and the container outlet by means of the meandering pin chain.
  • the pin chain has pins on which the containers can be arranged with their interior.
  • the temperature-controlled process fluid is applied to the containers.
  • the pin oven has at least one axis for mounting a mounting element arranged inside the drying chamber.
  • the pin furnace has two or more, in particular a large number of axes.
  • the bearing element is to be understood as meaning any element within the drying chamber that can be arranged on an axis, is arranged and/or is mechanically coupled to it.
  • the bearing element can, for example, be part of a chain guide, for example a deflection roller.
  • the pin furnace has at least one axle bearing.
  • the axle bearing is located outside the drying chamber. Arranged outside the drying chamber means in particular that the axle bearing is arranged adjacent to the drying chamber. In addition, this can mean that the axle bearing is in a substantially direct thermal connection to the environment without thermal insulation. In particular, outside the drying chamber does not mean that the axle bearing is fluidically decoupled from the drying chamber.
  • the axle bearing is in particular a rotary bearing, for example a roller bearing, in particular a ball or roller bearing.
  • the axle bearing is to be designed in particular as a high-temperature bearing, since the axle bearing is preferably not thermally insulated from the drying chamber.
  • the axle is mounted with the axle bearing.
  • the axle bearing is thermally insulated from the area surrounding the pin furnace.
  • the area around the pin oven can be a production hall, for example.
  • the axle bearing is arranged in particular within a storage area which is arranged adjacent to the drying chamber, the storage area being thermally insulated from the area surrounding the pin oven.
  • the axle bearing is thermally insulated from the area surrounding the pin oven in such a way that no fluid stream flows out of the drying chamber into the area surrounding the pin oven. It is self-evident for the person skilled in the art that a small proportion of the fluid flow can leak into the environment through certain leaks. Furthermore, this also includes that slight fluid flows are provided from the drying chamber into the surroundings of the pin oven.
  • the axle has a seal between the axle bearing and the drying chamber. With such a seal, fluid flow between the drying chamber and the axle bearing is reduced or avoided.
  • a heat-insulated arrangement of the axle bearing means in particular that the heat exchange between the drying chamber and the environment of the pin furnace by more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, in particular more than 90% is reduced.
  • the heat-insulated arrangement of the axle bearing can also be characterized in that essentially no fluid flow flows out of the drying chamber into the surroundings of the pin oven.
  • a preferred embodiment variant of the pin oven comprises a storage chamber arranged adjacent to the drying chamber, into which the axle protrudes and within which the axle bearing is arranged, the storage chamber being thermally insulated, in particular fluid-tight, from the environment.
  • the storage chamber can protrude into and/or protrude from the pin oven.
  • a chamber wall through which the axis extends is preferably provided between the storage chamber and the drying chamber. This can be realized, for example, by an opening in the chamber wall. It is also preferred that the Chamber wall having the axle bearing and / or the storage chamber. In addition, it is preferred that the storage chamber is thermally insulated.
  • a preferred further development of the pin oven is characterized in that it comprises a connecting space which extends between the drying chamber and the storage chamber and through which the axis extends.
  • connection space can be provided, for example, in the aforementioned chamber wall. Orthogonally to the main extension direction of the axle, the connection space preferably has dimensions that are slightly larger than an axle diameter of the axle. It is preferred that the connecting space is less than 1.5 times, less than 1.3 times and/or less than 1.1 times the diameter of the axle.
  • the storage chamber has an operating opening and the operating opening is closed by means of a closure element.
  • the storage chamber can, for example, be designed concavely on the pin oven in such a way that the storage chamber has the service opening towards the surroundings.
  • the closure element is plate-shaped.
  • the closure element is detachably and/or removably arranged.
  • a further preferred embodiment of the pin furnace is characterized in that the storage chamber is formed by or includes a chamber wall.
  • the chamber wall can be box-shaped, for example.
  • the connecting space is provided adjacent to the chamber wall.
  • a further preferred development of the pin oven comprises an inner wall facing the drying chamber and an outer wall facing away from the drying chamber, with the storage chamber being arranged within an intermediate space between the inner wall and the outer wall.
  • the outer wall can be provided in sections, in particular in a section of the pin furnace in which the storage chamber is arranged.
  • the fact that the storage chamber is arranged within the intermediate space means in particular that the storage chamber is at least partially within the Space is arranged.
  • the portion of the intermediate space in which the storage chamber is not arranged has an insulating material.
  • Another preferred embodiment of the pin furnace is characterized in that the drying chamber has a concavity to form the storage chamber and the axle bearing is arranged inside the concavity.
  • a storage chamber designed in this way is particularly space-saving.
  • the storage chamber is formed by a cover element with a cavity.
  • the cavity is accessible from at least one side of the cover element. In particular, this side faces the drying chamber, so that the axle bearing is accommodated in the cavity.
  • the covering element is designed in the form of a shell and/or hood, so that the shell-shaped and/or hood-shaped covering element covers the axle bearing and the axle bearing is therefore arranged so as to be thermally insulated from the surroundings of the pin furnace.
  • the cover member can be formed in a box shape.
  • the cover element with the cavity has the advantage that the axle bearing, which is thermally insulated from the area surrounding the pin furnace, can be retrofitted.
  • the covering element is detachably, in particular removably, arranged. Such a cover element allows replacement of the axle bearing and maintenance.
  • the pin oven comprises a fluid channel fluidically coupled to the storage chamber for providing a pressurized fluid in order to reduce or prevent the process fluid from escaping from the drying chamber into the storage chamber.
  • a counter-pressure can be generated inside the storage chamber by means of the fluid channel, which counter-pressure prevents the process fluid from getting from the drying chamber into the storage chamber.
  • the fluid channel can, for example, with one of the Pin oven included fans are coupled so that the pressure fluid can be provided.
  • the axle bearing is a high-temperature bearing.
  • a high-temperature bearing is known to those skilled in the art as a bearing that is used in an ambient temperature that is higher than room temperature.
  • high-temperature bearings can be used in environments that reach temperatures of up to 350°C during operation.
  • the high-temperature bearing is preferably designed to be relubrication-free. Furthermore, it is preferred that the high-temperature bearing is lubricated for life. Furthermore, it is preferred that the high-temperature bearing is graphite-lubricated.
  • the object mentioned at the outset is achieved by a method for producing a pin furnace, comprising a drying chamber for drying the containers with a temperature-controlled process fluid, at least one axle for mounting a bearing element arranged inside the drying chamber, comprising the steps: arranging an axle bearing outside the drying chamber for supporting the axle; and heat-insulating the axle bearing from an environment of the pin furnace.
  • the axle bearing is arranged in particular in such a way that the axle is mounted with the axle bearing. It is also preferred that the axle is sealed between the axle bearing and the drying chamber.
  • the step of thermally isolating comprises: placing the axle bearing within a storage chamber and thermally isolating the bearing chamber from the environment.
  • the storage chamber can be thermally insulated from the environment, for example, with a closure element.
  • the thermal insulation can be provided by a chamber wall of the storage chamber.
  • Arranging the axle bearing within a bearing chamber can also mean that the bearing chamber acts as a cover element with a cavity, in particular a bowl-shaped, hood-shaped and/or box-shaped cover element, and the axle bearing is accommodated in the cavity and/or is covered by the cover element. It is also preferred that the storage chamber is closed off from the environment with the closure element.
  • the object mentioned at the beginning is achieved by a method for increasing the energy efficiency of a pin furnace, comprising a drying chamber for drying the containers with a temperature-controlled process fluid, at least one axis for mounting a storage element arranged inside the drying chamber, and an inventory store with which the Axle is stored, comprising the steps of: replacing the stock bearing by removing the stock bearing and arranging an axle bearing for bearing the axle and arranging a cover member with a cavity such that the axle bearing is thermally insulated from the environment.
  • the axle bearing is in particular accommodated in the cavity and/or covered by the cover element.
  • the axle bearing is in particular a high-temperature bearing.
  • the axle bearing is arranged in the same position as the inventory bearing.
  • it may be preferred that the axle is lengthened.
  • pin-type furnaces can be retrofitted with a heat-insulated axle bearing.
  • This retrofitting is particularly suitable for inventory storage located outside. In this way, the energy efficiency of pin ovens that are already in operation can be improved.
  • FIG. 1 a schematic, two-dimensional view of an exemplary embodiment of a pin furnace
  • FIG. 2 a schematic view of a method for producing a pin furnace
  • Figure 3 a schematic view of a method for increasing the
  • FIG. 1 shows a pin furnace 1 for producing containers, in particular cans, for example beverage cans.
  • the pin furnace 1 includes a drying chamber 2 for drying the container with a temperature-controlled process fluid 4, which is shown schematically.
  • the pin oven 1 includes an axis 6 for mounting a mounting element arranged inside the drying chamber 2 .
  • the bearing element can be a deflection roller for a pin chain within the drying chamber 2, for example.
  • the pin furnace 1 comprises an axle bearing 8 which is arranged outside of the drying chamber 2 and with which the axle 6 is mounted.
  • the axle bearing 8 is thermally insulated from an environment 10 of the pin oven 1, so that the heat transfer from the drying chamber 2 to the environment is reduced.
  • the heat-insulated axle bearing means that no fluid flow 4 flows out of the drying chamber 2 into the surroundings 10 of the pin oven 1 .
  • axle bearing 8 is thus provided which is easily accessible for maintenance purposes or for replacing the axle bearing.
  • axle bearing 8 is thermally insulated from the surroundings 10, so that the energy efficiency of the pin furnace 1 is increased. This makes it possible the arrangement of the axle bearing 8 shown in FIG. 1 to combine the advantages of an external and an internal bearing.
  • the drying chamber 2 is delimited by a vertical inner wall 16 .
  • a connecting space 14 leads through the vertical inner wall 16 .
  • the connecting space 14 is formed, among other things, by a horizontal inner wall 18 .
  • the axis 6 extends through the connecting space 14.
  • the axle bearing 8 is arranged in a bearing chamber 12 .
  • the storage chamber 12 is arranged adjacent to the drying chamber 2 .
  • the storage chamber 12 is formed by chamber wall elements 22-28.
  • the storage chamber 12 is also covered by a closure element 20, which can also be a chamber wall element.
  • the axle bearing 8 is thus arranged within a bearing chamber 12 that is thermally insulated from the environment 10 and is closed off.
  • the pin oven 1 also includes an outer wall 30 which is arranged facing away from the drying chamber 2 .
  • An intermediate space 32 is formed between the inner wall 16 and the outer wall 30 , with the storage chamber 12 being arranged at least partially within the intermediate space 32 .
  • Insulation 34 is provided within the remaining intermediate space 32 in order to further insulate the drying chamber 2 from the environment 10 .
  • FIG. 2 shows a schematic view of a method for producing a pin furnace 1.
  • the axle bearing 8 is arranged outside of the drying chamber 2 for supporting the axle 6.
  • the axle bearing 8 is thermally insulated from an environment 10 of the pin furnace 1 . This takes place in particular in such a way that no fluid stream can flow out of the drying chamber 2 into the surroundings 10 of the pin oven 1 .
  • Thermally isolating 102 includes the sub-step 102a in which the axle bearing 8 is placed within a bearing chamber 12 and the bearing chamber is thermally insulated from the environment.
  • Thermally isolating may further include the sub-step 102b in which the storage chamber is thermally insulated from the environment with a closure member 20 .
  • FIG. 3 shows a schematic method for increasing the energy efficiency of a pin oven 1.
  • an inventory warehouse by removing the Inventory camp and arranging an axle bearing 8 for storing the axis 6 exchanged.
  • a cover element which is designed, for example, in the shape of a bowl or a hood, is arranged in such a way that the axle bearing 8 is thermally insulated from the environment 10.
  • the aforesaid pin oven 1 and methods enable an energy efficient pin oven 1. By combining the advantages that an inboard and outboard arrangement of the axle bearing 8 allows, these advantages are realized.
  • the pin furnace 1 is thus characterized by a high level of energy efficiency, while the axle bearings 8 nevertheless have good interchangeability and/or good maintainability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Cookers (AREA)

Abstract

Die Erfindung betrifft einen Stiftofen (1) zum Herstellen von Behältern, umfassend eine Trocknungskammer (2) zum Trocknen der Behälter mit einem temperierten Prozessfluid (4), mindestens eine Achse (6) zur Lagerung eines innerhalb der Trocknungskammer (2) angeordneten Lagerungselements, mindestens ein außerhalb der Trocknungskammer (2) angeordnetes Achsenlager (8), wobei die Achse (6) mit dem Achsenlager (8) gelagert ist, und wobei das Achsenlager (8) wärmeisoliert zu einer Umgebung des Stiftofens (1) angeordnet ist.

Description

Stiftofen zum Herstellen von Behältern und Verfahren
Die Erfindung betrifft einen Stiftofen zum Herstellen von Behältern und Verfahren zur Herstellung eines Stiftofens sowie zur Steigerung der Energieeffizienz eines Stiftofens.
Stiftöfen sind grundsätzlich bekannt. Behälter, wie beispielsweise Dosen für Getränke, weisen in der Regel eine Beschichtung an einer äußeren Mantelfläche auf, die als ein Überzug aus Lack oder Farbe ausgebildet ist. Eine solche Beschichtung kann beispielsweise den Markennamen des Anbieters, Verwendungshinweise oder sonstige Inhalte darstellen.
Darüber hinaus werden die Innenoberflächen der Dosen üblicherweise in einem Prozessschritt nach dem Stiftofen beschichtet und anschließend in einem entsprechenden Durchlaufofen, der auch als Internal Baking Oven bezeichnet wird, getrocknet. Ferner werden solche Lacke eingesetzt, die den Herstellungsprozess der Dose betreffen. Beispielsweise werden die Dosen mit einem solchen Lack auf einer Unterseite der Dose versehen, um die Gleitfähigkeit der Dosen auf den unterschiedlichen Förderbändern einzustellen. Eine Vorrichtung zum Aufträgen einer solchen Beschichtung auf Behältereinheiten wird auch als Bedruckungseinrichtung bzw. also Decorator bezeichnet. Damit diese Beschichtung beständig bleibt, ist diese nach dem Aufträgen auszuhärten. Für diese Aushärtung der Beschichtung werden Stiftöfen verwendet, in denen die Beschichtung konvektiv erwärmt, getrocknet und/oder ausgehärtet wird.
Die Dosen werden mäanderförmig mit einer Stiftkette durch eine Trocknungskammer des Stiftofens befördert. Währenddessen werden diese mit einem temperierten Fluidstrom beaufschlagt, um die Beschichtung zu erwärmen, zu trocknen und auszuhärten. Die Dosen werden beispielsweise auf 180°C erwärmt und über eine definierte Zeitspanne dieser Temperatur ausgesetzt. Darüber hinaus werden die Dosen mit einem weiteren Fluidstrom beaufschlagt, um die Dosen an der Stiftkette zu positionieren. Die Stiftkette sowie weitere Komponenten des Stiftofens erfordern den Einsatz von Achsen innerhalb der T rocknungskammer.
Achsen werden bekannterweise mit Lagern, beispielsweise Wälzlagern, gelagert. Es besteht die Möglichkeit, die Lager innerhalb der Trocknungskammer anzuordnen oder außerhalb der T rocknungskammer anzuordnen. Eine Anordnung der Lager innerhalb der Trocknungskammer resultiert darin, dass diese im Schadensfall nur aufwendig erreichbar sind. Darüber hinaus ist ein Wechsel oder eine Wartung des Lagers erschwert.
Ein außerhalb der Trocknungskammer angeordnetes Lager führt dazu, dass zwischen der Trocknungskammer und der Umgebung ein Wärmetransport über die Achsen erfolgt, sodass stets ein Energieverlust über die Achsen zu berücksichtigen ist. Es ist ein weltweiter Konstruktionsstandard bei Stiftöfen, die Lager außerhalb der T rocknungskammer anzuordnen und den Energieverlust über die Achsen hinzunehmen.
Ein Nachteil bestehender Stiftöfen besteht darin, dass deren Energieverbrauch hoch ist. Insbesondere die eingesetzten Ventilatoren zeichnen sich durch einen hohen Stromverbrauch aus. Darüber hinaus wird zur Aufheizung des Prozessfluids im Ofenraum eine Heizeinheit, beispielsweise ein Gasbrenner oder ein Elektroheizregister, verwendet, die ebenfalls Energie benötigt. Um die steigenden ökologischen Anforderungen und steigenden Nachhaltigkeitskriterien zu erfüllen, ist der Energieverbrauch von Stiftöfen zu reduzieren.
Es ist daher eine Aufgabe der Erfindung, einen Stiftofen zum Herstellen von Behältern und Verfahren zur Herstellung eines Stiftofens sowie zur Steigerung der Energieeffizienz eines Stiftofens bereitzustellen, die einen oder mehrere der genannten Nachteile vermindern oder beseitigen. Es ist insbesondere eine Aufgabe der Erfindung, eine Lösung bereitzustellen, die den Energieverbrauch von Stiftöfen reduziert.
Diese Aufgabe wird gelöst mit einem Stiftofen und Verfahren nach den Merkmalen der unabhängigen Patentansprüche. Weitere vorteilhafte Ausgestaltungen dieser Aspekte sind in den jeweiligen abhängigen Patentansprüchen angegeben. Die in den Patentansprüchen und in der Beschreibung einzeln aufgeführten Merkmale sind in beliebiger, technologisch sinnvoller Weise miteinander kombinierbar, wobei weitere Ausführungsvarianten der Erfindung aufgezeigt werden.
Gemäß einem ersten Aspekt wird die Aufgabe gelöst durch einen Stiftofen zum Herstellen von Behältern, insbesondere von Dosen, vorzugsweise von Getränkedosen, beispielsweise aus oder mit Stahl oder Aluminium, umfassend eine Trocknungskammer zum Trocknen der Behälter mit einem temperierten Prozessfluid, mindestens eine Achse zur Lagerung eines innerhalb der Trocknungskammer angeordneten Lagerungselements, mindestens ein außerhalb der Trocknungskammer angeordnetes Achsenlager, mit dem die Achse gelagert ist, und wobei das Achsenlager wärmeisoliert zu einer Umgebung des Stiftofens angeordnet ist.
Der Erfindung liegt die Erkenntnis zugrunde, dass außenliegende Achsenlager den Energieverbrauch von Stiftöfen erhöhen. Der erhöhte Energieverbrauch wird unter anderem dadurch verursacht, dass die Achse Wärme aus der T rocknungskammer an das Achsenlager leitet, wobei vom Achsenlager ausgehend die Wärme an die Umgebung abgegeben wird. Der erhöhte Energieverbrauch kann ferner durch einen Fluidstrom aus der Trocknungskammer entlang der Achse zu dem Achsenlager bedingt werden. Der Erfindung lag ferner die Erkenntnis zugrunde, dass dieser erhöhte Energieverbrauch durch ein zu der Umgebung des Stiftofens wärmeisoliertes Achsenlager vermieden werden kann. Die Trocknungskammer ist zum Trocknen der Behälter mit einem temperierten Prozessfluid ausgebildet. Die Trocknungskammer weist in der Regel einen Behältereinlass, durch den die Behälter in die Trocknungskammer eintreten können, und einen Behälterauslass, durch den die Behälter aus der T rocknungskammer austreten, auf. Der Stiftofen weist insbesondere eine Stiftkette auf. Zwischen dem Behältereinlass und dem Behälterauslass werden die Behälter in der Regel mittels der mäanderförmig geführten Stiftkette bewegt. Die Stiftkette weist Stifte auf, auf die die Behälter mit ihrem Innenraum anordenbar sind. Um die Behälter auf eine Prozesstemperatur, beispielsweise 180° C, zu erwärmen und auf der Prozesstemperatur für eine vorbestimmte Zeitdauer zu halten, werden die Behälter mit dem temperierten Prozessfluid beaufschlagt.
Der Stiftofen weist die mindestens eine Achse zur Lagerung eines innerhalb der Trocknungskammer angeordneten Lagerungselements auf. Insbesondere weist der Stiftofen zwei oder mehr, insbesondere eine Vielzahl, an Achsen auf. Unter dem Lagerungselement ist jegliches Element innerhalb der Trocknungskammer zu verstehen, das an einer Achse anordenbar ist, angeordnet und/oder mit dieser mechanisch gekoppelt ist. Das Lagerungselement kann beispielsweise ein Teil einer Kettenführung, beispielsweise eine Umlenkrolle, sein.
Darüber hinaus weist der Stiftofen das mindestens eine Achsenlager auf. Das Achsenlager ist außerhalb der Trocknungskammer angeordnet. Außerhalb der Trocknungskammer angeordnet, bedeutet insbesondere, dass das Achsenlager benachbart zu der Trocknungskammer angeordnet ist. Darüber hinaus kann dies bedeuten, dass das Achsenlager ohne eine Wärmeisolierung in einer im Wesentlichen unmittelbaren thermischen Wirkverbindung zu der Umgebung steht. Außerhalb der Trocknungskammer bedeutet insbesondere nicht, dass das Achsenlager fluidisch entkoppelt von der Trocknungskammer ist.
Das Achsenlager ist insbesondere ein Drehlager, beispielsweise ein Wälzlager, insbesondere ein Kugel- oder Rollenlager. Wie im weiteren Verlauf weiter definiert, ist das Achsenlager insbesondere als ein Hochtemperaturlager auszubilden, da das Achsenlager vorzugsweise nicht von der T rocknungskammer wärmeisoliert ist. Die Achse ist mit dem Achsenlager gelagert. Darüber hinaus ist vorgesehen, dass das Achsenlager wärmeisoliert zu der Umgebung des Stiftofens angeordnet ist. Die Umgebung des Stiftofens kann beispielsweise eine Produktionshalle sein. Das Achsenlager ist insbesondere innerhalb eines Lagerbereichs, der benachbart zu der Trocknungskammer angeordnet ist, angeordnet, wobei der Lagerbereich wärmeisoliert zu der Umgebung des Stiftofens ausgebildet ist.
Das Achsenlager ist insbesondere derart zu der Umgebung des Stiftofens wärmeisoliert, dass kein Fluidstrom aus der Trocknungskammer in die Umgebung des Stiftofens strömt. Für den Fachmann ist es selbstverständlich, dass ein geringer Anteil des Fluidstroms durch bestimmte Undichtigkeiten in die Umgebung gelangen kann. Ferner umfasst dies auch, dass geringfügige Fluidströme von der Trocknungskammer in die Umgebung des Stiftofens vorgesehen sind.
Es ist bevorzugt, dass die Achse zwischen dem Achsenlager und der Trocknungskammer eine Dichtung aufweist. Mit einer derartigen Dichtung wird ein Fluidstrom zwischen der Trocknungskammer und dem Achsenlager verringert oder vermieden.
Unter einer wärmeisolierten Anordnung des Achsenlagers ist insbesondere zu verstehen, dass der Wärmeaustausch zwischen der Trocknungskammer und der Umgebung des Stiftofens um mehr als 20 %, mehr als 30 %, mehr als 40 %, mehr als 50 %, mehr als 60 %, mehr als 70 %, mehr als 80 %, insbesondere mehr als 90 % verringert wird. Die wärmeisolierte Anordnung des Achsenlagers kann sich darüber hinaus dadurch auszeichnen, dass im Wesentlichen kein Fluidstrom aus der Trocknungskammer in die Umgebung des Stiftofens strömt.
Eine bevorzugte Ausführungsvariante des Stiftofens umfasst eine benachbart zu der Trocknungskammer angeordnete Lagerkammer, in die die Achse hineinragt und innerhalb der das Achsenlager angeordnet ist, wobei die Lagerkammer wärmeisoliert, insbesondere fluiddicht, zu der Umgebung ausgebildet ist. Die Lagerkammer kann in den Stiftofen hineinragen und/oder aus diesem herausragen. Zwischen der Lagerkammer und der Trocknungskammer ist vorzugsweise eine Kammerwandung vorgesehen, durch die sich die Achse hindurcherstreckt. Dies kann beispielsweise durch eine Öffnung in der Kammerwandung realisiert werden. Es ist ferner bevorzugt, dass die Kammerwandung das Achsenlager und/oder die Lagerkammer aufweist. Es ist darüber hinaus bevorzugt, dass die Lagerkammer wärmeisoliert ausgebildet ist.
Eine bevorzugte Fortbildung des Stiftofens zeichnet sich dadurch aus, dass dieser einen sich zwischen der T rocknungskammer und der Lagerkammer erstreckenden Verbindungsraum umfasst, durch den sich die Achse hindurcherstreckt.
Der Verbindungsraum kann beispielsweise in der im Vorherigen genannten Kammerwandung vorgesehen sein. Orthogonal zu der Haupterstreckungsrichtung der Achse weist der Verbindungsraum vorzugsweise Abmessungen auf, die geringfügig größer sind als ein Achsendurchmesser der Achse. Es ist bevorzugt, dass der Verbindungsraum weniger als das 1 ,5-fache, weniger als das 1 ,3-fache und/oder weniger als das 1 ,1 -fache des Durchmessers der Achse beträgt.
In einer weiteren bevorzugten Ausführungsvariante ist vorgesehen, dass die Lagerkammer eine Bedienöffnung aufweist und die Bedienöffnung mittels eines Verschlusselements verschlossen ist. Die Lagerkammer kann beispielsweise derart konkav an dem Stiftofen ausgebildet sein, dass die Lagerkammer zur Umgebung hin die Bedienöffnung aufweist. Es ist ferner bevorzugt, dass das Verschlusselement plattenförmig ausgebildet ist. Darüber ist es bevorzugt, dass das Verschlusselement lösbar und/oder entfernbar angeordnet ist.
Eine weitere bevorzugte Ausführung des Stiftofens zeichnet sich dadurch aus, dass die Lagerkammer durch eine Kammerwandung ausgebildet ist oder diese umfasst. Die Kammerwandung kann beispielsweise kastenförmig ausgebildet sein. Darüber hinaus ist es bevorzugt, dass angrenzend an die Kammerwandung der Verbindungsraum vorgesehen ist.
Eine weitere bevorzugte Fortbildung des Stiftofens umfasst eine der Trocknungskammer zugewandte Innenwand und eine der Trocknungskammer abgewandte Außenwand, wobei die Lagerkammer innerhalb eines Zwischenraums zwischen der Innenwand und der Außenwand angeordnet ist. Die Außenwand kann abschnittsweise vorgesehen sein, insbesondere in einem Abschnitt des Stiftofens, in dem die Lagerkammer angeordnet ist. Dass die Lagerkammer innerhalb des Zwischenraums angeordnet ist, bedeutet insbesondere, dass die Lagerkammer zumindest abschnittsweise innerhalb des Zwischenraums angeordnet ist. Darüber hinaus ist es bevorzugt, dass der Abschnitt des Zwischenraums, in dem die Lagerkammer nicht angeordnet ist, ein Isolationsmaterial aufweist.
Eine weitere bevorzugte Ausführungsvariante des Stiftofens zeichnet sich dadurch aus, dass die Trocknungskammer zur Ausbildung der Lagerkammer eine Einwölbung aufweist und das Achsenlager innerhalb der Einwölbung angeordnet ist. Eine derartig ausgebildete Lagerkammer ist insbesondere platzsparend.
In einer weiteren bevorzugten Ausführungsvariante des Stiftofens ist vorgesehen, dass die Lagerkammer durch ein Abdeckelement mit einem Hohlraum ausgebildet ist. Der Hohlraum ist von mindestens einer Seite des Abdeckelements zugänglich. Diese Seite ist insbesondere der Trocknungskammer zugewandt, sodass das Achsenlager in dem Hohlraum aufgenommen ist.
Es ist bevorzugt, dass das Abdeckelement schalenförmig und/oder haubenförmig ausgebildet ist, sodass das schalenförmige und/oder haubenförmige Abdeckelement das Achsenlager abdeckt und somit das Achsenlager wärmeisoliert zu der Umgebung des Stiftofens angeordnet ist. Darüber hinaus kann das Abdeckelement kastenförmig ausgebildet werden.
Das Abdeckelement mit dem Hohlraum hat den Vorteil, dass das zu der Umgebung des Stiftofens wärmeisolierte Achsenlager nachrüstbar ist.
Es ist insbesondere bevorzugt, dass das Abdeckelement lösbar, insbesondere entfernbar, angeordnet ist. Ein solches Abdeckelement ermöglicht einen Austausch des Achsenlagers sowie eine Wartung.
Es ist darüber hinaus bevorzugt, dass der Stiftofen einen mit der Lagerkammer fluidisch gekoppelten Fluidkanal zur Bereitstellung eines Druckfluids umfasst, um ein Entweichen des Prozessfluids aus der Trocknungskammer in die Lagerkammer zu verringern oder zu vermeiden.
Mittels des Fluidkanals kann ein Gegendruck innerhalb der Lagerkammer erzeugt werden, der verhindert, dass das Prozessfluid aus der Trocknungskammer in die Lagerkammer gelangt. Der Fluidkanal kann beispielsweise mit einem der von dem Stiftofen umfassten Ventilatoren gekoppelt werden, sodass das Druckfluid bereitstellbar ist.
Eine weitere bevorzugte Ausführungsvariante des Stiftofens zeichnet sich dadurch aus, dass das Achsenlager ein Hochtemperaturlager ist. Ein Hochtemperaturlager ist dem Fachmann bekannt als ein Lager, das in einer Umgebungstemperatur eingesetzt wird, die höher als die Raumtemperatur ist. Beispielsweise können Hochtemperaturlager in Umgebungen eingesetzt werden, die beim Betrieb Temperaturen bis 350° C erreichen.
Darüber hinaus ist das Hochtemperaturlager vorzugsweise nachschmierfrei ausgebildet. Des Weiteren ist es bevorzugt, dass das Hochtemperaturlager lebensdauergeschmiert ausgebildet ist. Ferner ist es bevorzugt, dass das Hochtemperaturlager graphitgeschmiert ist.
Gemäß einem weiteren Aspekt wird die eingangs genannte Aufgabe gelöst durch ein Verfahren zur Herstellung eines Stiftofens, umfassend eine Trocknungskammer zum Trocknen der Behälter mit einem temperierten Prozessfluid, mindestens eine Achse zur Lagerung eines innerhalb der Trocknungskammer angeordneten Lagerungselements, umfassend die Schritte: Anordnen eines Achsenlagers außerhalb der Trocknungskammer zur Lagerung der Achse und Wärmeisolieren des Achsenlagers zu einer Umgebung des Stiftofens.
Das Anordnen des Achsenlagers erfolgt insbesondere derart, dass die Achse mit dem Achsenlager gelagert wird. Es ist darüber hinaus bevorzugt, dass die Achse zwischen dem Achsenlager und der T rocknungskammer abgedichtet wird.
Es ist ferner bevorzugt, dass der Schritt des Wärmeisolierens umfasst: Anordnen des Achsenlagers innerhalb einer Lagerkammer und Wärmeisolieren der Lagerkammer zu der Umgebung. Das Wärmeisolieren der Lagerkammer zu der Umgebung kann beispielsweise mit einem Verschlusselement erfolgen. Darüber hinaus kann das Wärmeisolieren durch eine Kammerwandung der Lagerkammer erfolgen.
Das Anordnen des Achsenlagers innerhalb einer Lagerkammer kann auch bedeuten, dass die Lagerkammer als ein Abdeckelement mit einem Hohlraum, insbesondere ein schalenförmiges, haubenförmiges und/oder kastenförmiges Abdeckelement, ausgebildet ist, und das Achsenlager in dem Hohlraum aufgenommen wird und/oder von dem Abdeckelement abgedeckt ist. Es ist darüber hinaus bevorzugt, dass die Lagerkammer zu der Umgebung mit dem Verschlusselement verschlossen wird.
Gemäß einem weiteren Aspekt wird die eingangs genannte Aufgabe gelöst durch ein Verfahren zur Steigerung der Energieeffizienz eines Stiftofens, umfassend eine Trocknungskammer zum Trocknen der Behälter mit einem temperierten Prozessfluid, mindestens eine Achse zur Lagerung eines innerhalb der Trocknungskammer angeordneten Lagerungselements und ein Bestandslager, mit dem die Achse gelagert ist, umfassend die Schritte: Austauschen des Bestandslagers durch Entfernen des Bestandslagers und Anordnen eines Achsenlagers zur Lagerung der Achse und Anordnen eines Abdeckelements mit einem Hohlraum derart, dass das Achsenlager zu der Umgebung wärmeisoliert ist.
Das Achsenlager wird insbesondere in dem Hohlraum aufgenommen und/oder von dem Abdeckelement abgedeckt. Das Achsenlager ist insbesondere ein Hochtemperaturlager. Das Achsenlager wird insbesondere an gleicher Position angeordnet wie das Bestandslager. Darüber hinaus kann es bevorzugt sein, dass die Achse verlängert wird.
Mit einem solchen Verfahren zur Steigerung der Energieeffizienz können Stiftöfen mit einem wärmeisoliert angeordneten Achsenlager nachgerüstet werden. Dieses Nachrüsten ist insbesondere für außenliegend angeordnete Bestandslager geeignet. Somit kann die Energieeffizienz von bereits im Betrieb befindlichen Stiftöfen verbessert werden.
Die Verfahren und ihre möglichen Fortbildungen weisen Merkmale beziehungsweise Verfahrensschritte auf, die sie insbesondere dafür geeignet machen, für den Stiftofen und seine Fortbildungen verwendet zu werden.
Für weitere Vorteile, Ausführungsvarianten und Ausführungsdetails der weiteren Aspekte und ihrer möglichen Fortbildungen wird auch auf die zuvor erfolgte Beschreibung zu den entsprechenden Merkmalen und Fortbildungen des Stiftofens verwiesen. Bevorzugte Ausführungsbeispiele werden exemplarisch anhand der beiliegenden Figuren erläutert: Es zeigen:
Figur 1 : eine schematische, zweidimensionale Ansicht einer beispielhaften Ausführungsform eines Stiftofens;
Figur 2: eine schematische Ansicht eines Verfahrens zur Herstellung eines Stiftofens; und
Figur 3: eine schematische Ansicht eines Verfahrens zur Steigerung der
Energieeffizienz eines Stiftofens.
In den Figuren sind gleiche oder im Wesentlichen funktionsgleiche beziehungsweise -ähnliche Elemente mit den gleichen Bezugszeichen versehen.
Figur 1 zeigt einen Stiftofen 1 zum Herstellen von Behältern, insbesondere von Dosen, beispielsweise von Getränkedosen. Der Stiftofen 1 umfasst eine Trocknungskammer 2 zum Trocknen der Behälter mit einem temperierten Prozessfluid 4, das schematisch dargestellt ist.
Der Stiftofen 1 umfasst eine Achse 6 zu Lagerung eines innerhalb der Trocknungskammer 2 angeordneten Lagerungselements. Das Lagerungselement kann beispielsweise eine Umlenkrolle für eine Stiftkette innerhalb der Trocknungskammer 2 sein.
Darüber hinaus umfasst der Stiftofen 1 ein außerhalb der Trocknungskammer 2 angeordnetes Achsenlager 8, mit dem die Achse 6 gelagert ist. Das Achsenlager 8 ist wärmeisoliert zu einer Umgebung 10 des Stiftofens 1 angeordnet, sodass der Wärmeübergang von der Trocknungskammer 2 zu der Umgebung reduziert ist. Ferner resultiert das wärmeisolierte Achsenlager dazu, dass kein Fluidstrom 4 aus der Trocknungskammer 2 in die Umgebung 10 des Stiftofens 1 strömt.
Somit wird ein außenliegendes Achsenlager 8 bereitgestellt, das zu Wartungszwecken oder für den Austausch des Achsenlagers gut erreichbar ist. Darüber hinaus ist das Achsenlager 8 wärmeisoliert zu der Umgebung 10 angeordnet, sodass die Energieeffizienz des Stiftofens 1 gesteigert ist. Dadurch ermöglicht es die in Figur 1 gezeigte Anordnung des Achsenlagers 8, die Vorteile eines außenliegenden und eines innenliegenden Lagers zu vereinen.
Die Trocknungskammer 2 wird von einer vertikalen Innenwand 16 umgrenzt. Ein Verbindungsraum 14 führt durch die vertikale Innenwand 16 hindurch. Der Verbindungsraum 14 wird unter anderem von einer horizontalen Innenwand 18 ausgebildet. Die Achse 6 erstreckt sich durch den Verbindungsraum 14.
Das Achsenlager 8 ist in einer Lagerkammer 12 angeordnet. Die Lagerkammer 12 ist benachbart zu der Trocknungskammer 2 angeordnet. Die Lagerkammer 12 wird durch Kammerwandelemente 22 - 28 ausgebildet. Die Lagerkammer 12 wird ferner durch ein Verschlusselement 20, das auch ein Kammerwandelement sein kann, abgedeckt. Somit ist das Achsenlager 8 innerhalb einer wärmeisoliert zur Umgebung 10 abgeschlossenen Lagerkammer 12 angeordnet.
Der Stiftofen 1 umfasst darüber hinaus eine Außenwand 30, die der Trocknungskammer 2 abgewandt angeordnet ist. Zwischen der Innenwand 16 und der Außenwand 30 ist ein Zwischenraum 32 ausgebildet, wobei die Lagerkammer 12 zumindest teilweise innerhalb des Zwischenraums 32 angeordnet ist. Innerhalb des übrigen Zwischenraums 32 ist eine Isolierung 34 vorgesehen, um die Trocknungskammer 2 weiter gegenüber der Umgebung 10 zu isolieren.
Figur 2 zeigt eine schematische Ansicht eines Verfahrens zur Herstellung eines Stiftofens 1. In Schritt 100 wird das Achsenlager 8 außerhalb der Trocknungskammer 2 zur Lagerung der Achse 6 angeordnet. In Schritt 102 wird das Achsenlager 8 zu einer Umgebung 10 des Stiftofens 1 wärmeisoliert. Dies erfolgt insbesondere derart, dass kein Fluidstrom aus der Trocknungskammer 2 in die Umgebung 10 des Stiftofens 1 strömen kann. Das Wärmeisolieren 102 umfasst den Unterschritt 102a, in dem das Achsenlager 8 innerhalb einer Lagerkammer 12 angeordnet und die Lagerkammer zu der Umgebung wärmeisoliert wird. Das Wärmeisolieren kann weiter den Unterschritt 102b aufweisen, in dem die Lagerkammer zu der Umgebung mit einem Verschlusselement 20 wärmeisoliert wird.
Figur 3 zeigt ein schematisches Verfahren zur Steigerung der Energieeffizienz eines Stiftofens 1. In Schritt 200 wird ein Bestandslager durch Entfernen des Bestandslagers und Anordnen eines Achsenlagers 8 zur Lagerung der Achse 6 ausgetauscht. In Schritt 202 wird ein Abdeckelement, das beispielsweise schalenöder haubenförmig ausgebildet ist, derart angeordnet, dass das Achsenlager 8 zu der Umgebung 10 wärmeisoliert ist. Der im Vorherigen genannte Stiftofen 1 und die entsprechenden Verfahren ermöglichen einen energieeffizienten Stiftofen 1. Durch die Kombination der Vorteile, die eine innenliegende und außenliegende Anordnung des Achsenlagers 8 ermöglicht, werden diese Vorteile realisiert.
Die besonderen Randbedingungen bei der Dosenfertigung und insbesondere die dort herrschenden hohen T emperaturen haben in der Vergangenheit dazu geführt, dass bestehende Ansätze zur Isolierung von Achsenlagern 8 nicht verwendet werden konnten. Der Stiftofen 1 zeichnet sich somit durch eine hohe Energieeffizienz aus, wobei dennoch die Achsenlager 8 eine gute Austauschbarkeit und/oder eine gute Wartbarkeit aufweisen.
BEZUGSZEICHEN
1 Stiftofen
2 T rocknungskammer
4 Prozessfluid 6 Achse
8 Achsenlager
10 Umgebung
12 Lagerkammer
14 Verbindungsraum 16 vertikale Innenwand
18 horizontale Innenwand
20 Verschlusselement 22-28 Kammerwandelemente
30 Außenwand 32 Zwischenraum
34 Isolierung

Claims

ANSPRÜCHE
1. Stiftofen (1) zum Herstellen von Behältern, umfassend eine Trocknungskammer (2) zum Trocknen der Behälter mit einem temperierten Prozessfluid (4), mindestens eine Achse (6) zur Lagerung eines innerhalb der Trocknungskammer (2) angeordneten Lagerungselements, mindestens ein außerhalb der Trocknungskammer (2) angeordnetes Achsenlager (8), mit dem die Achse (6) gelagert ist, und wobei das Achsenlager (8) wärmeisoliert zu einer Umgebung des Stiftofens (1) angeordnet ist.
2. Stiftofen (1) nach Anspruch 1 , umfassend eine benachbart zu der Trocknungskammer (2) angeordnete Lagerkammer (12), in die die Achse (6) hineinragt und innerhalb der das Achsenlager (8) angeordnet ist, wobei die Lagerkammer (12) wärmeisoliert, insbesondere fluiddicht, zu der Umgebung ausgebildet ist.
3. Stiftofen (1) nach einem der vorherigen Ansprüche, umfassend einen sich zwischen der Trocknungskammer (2) und der Lagerkammer (12) erstreckenden Verbindungsraum (14), durch den sich die Achse (6) hindurcherstreckt.
4. Stiftofen (1) nach einem der vorherigen Ansprüche, wobei die Lagerkammer (12) eine Bedienöffnung aufweist und die Bedienöffnung mittels eines Verschlusselements (20) verschlossen ist.
5. Stiftofen (1) nach einem der vorherigen Ansprüche, wobei die Lagerkammer (12) durch eine Kammerwandung (22-28) ausgebildet ist oder diese umfasst.
6. Stiftofen (1) nach einem der vorherigen Ansprüche, umfassend eine der Trocknungskammer (2) zugewandte Innenwand (16) und eine der Trocknungskammer (2) abgewandte Außenwand (30), wobei die Lagerkammer (12) innerhalb eines Zwischenraums (32) zwischen der Innenwand und der Außenwand angeordnet ist. Stiftofen (1) nach einem der vorherigen Ansprüche, wobei die Trocknungskammer (2) zur Ausbildung der Lagerkammer (12) eine Einwölbung aufweist und das Achsenlager (8) innerhalb der Einwölbung angeordnet ist. Stiftofen (1) nach einem der vorherigen Ansprüche, wobei die Lagerkammer (12) durch ein Abdeckelement mit einem Hohlraum ausgebildet ist. Stiftofen (1) nach einem der vorherigen Ansprüche, umfassend einen mit der Lagerkammer (12) fluidisch gekoppelten Fluidkanal zur Bereitstellung eines Druckfluids, um ein Entweichen des Prozessfluids (4) aus der Trocknungskammer (2) in die Lagerkammer (12) zu verringern oder zu vermeiden. Stiftofen (1) nach einem der vorherigen Ansprüche, wobei das Achsenlager (8) ein Hochtemperaturlager ist. Verfahren zur Herstellung eines Stiftofens (1), umfassend eine Trocknungskammer (2) zum Trocknen der Behälter mit einem temperierten Prozessfluid (4), mindestens eine Achse (6) zur Lagerung eines innerhalb der Trocknungskammer (2) angeordneten Lagerungselements, umfassend die Schritte:
Anordnen eines Achsenlagers (8) außerhalb der Trocknungskammer (2) zur Lagerung der Achse (6); und
Wärmeisolieren des Achsenlagers (8) zu einer Umgebung des Stiftofens (1). Verfahren nach dem vorherigen Anspruch 11, wobei der Schritt des Wärmeisolierens umfasst: Anordnen des Achsenlagers (8) innerhalb einer Lagerkammer (12) und Wärmeisolieren der Lagerkammer (12) zu der Umgebung. - 16 - Verfahren nach dem vorherigen Anspruch 12, wobei die Lagerkammer (12) zu der Umgebung mit einem Verschlusselement (20) verschlossen wird. Verfahren zur Steigerung der Energieeffizienz eines Stiftofens (1), umfassend eine Trocknungskammer (2) zum Trocknen der Behälter mit einem temperierten Prozessfluid (4), mindestens eine Achse (6) zur Lagerung eines innerhalb der Trocknungskammer (2) angeordneten Lagerungselements und ein Bestandslager, mit dem die Achse (6) gelagert ist, umfassend die Schritte: - Austauschen des Bestandslagers durch Entfernen des Bestandslagers und Anordnen eines Achsenlagers (8) zur Lagerung der Achse (6); und Anordnen eines Abdeckelements mit einem Hohlraum derart, dass das Achsenlager (8) zu der Umgebung wärmeisoliert ist.
PCT/DE2022/100569 2021-08-19 2022-08-05 Stiftofen zum herstellen von behältern und verfahren WO2023020653A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22755068.8A EP4388262A1 (de) 2021-08-19 2022-08-05 Stiftofen zum herstellen von behältern und verfahren
CA3229167A CA3229167A1 (en) 2021-08-19 2022-08-05 Pin oven for producing containers, and method
CN202280069920.1A CN118119813A (zh) 2021-08-19 2022-08-05 用于生产容器的销式烘箱和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021121521.8 2021-08-19
DE102021121521.8A DE102021121521A1 (de) 2021-08-19 2021-08-19 Stiftofen zum Herstellen von Behältern und Verfahren

Publications (1)

Publication Number Publication Date
WO2023020653A1 true WO2023020653A1 (de) 2023-02-23

Family

ID=82939970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2022/100569 WO2023020653A1 (de) 2021-08-19 2022-08-05 Stiftofen zum herstellen von behältern und verfahren

Country Status (5)

Country Link
EP (1) EP4388262A1 (de)
CN (1) CN118119813A (de)
CA (1) CA3229167A1 (de)
DE (1) DE102021121521A1 (de)
WO (1) WO2023020653A1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210187A (en) * 1938-09-20 1940-08-06 Hazel Atlas Glass Co Bottle stabilizer
US3411217A (en) * 1966-12-27 1968-11-19 Cincinnati Printing And Drying Method and apparatus for drying printed silk screened articles
US4042317A (en) * 1975-11-10 1977-08-16 Flynn Burner Corporation Direct flame apparatus for drying can coatings
DE2706829A1 (de) * 1976-02-18 1977-09-01 Sun Chemical Corp Flamm-trockenvorrichtung fuer zylindrische behaelter
US4050888A (en) * 1976-03-19 1977-09-27 Flynn Burner Corporation Conveyor system for passing coated cans through chamber
FR2445281A1 (fr) * 1978-12-28 1980-07-25 Protectaire Syst Dispositif de protection pour transporteur entrainant des articles a travers une atmosphere souillee
US4730575A (en) * 1975-07-29 1988-03-15 Metal Box Limited Coating of articles
ITMI20010387A1 (it) * 2001-02-26 2002-08-26 Sipa Spa Dispositivo e metodo per la presa e la movimentazione di oggetti

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29505921U1 (de) 1995-04-06 1995-06-22 Metzger & Becker Trocknungsanlagen und Gerätebau GmbH, 78532 Tuttlingen Trocknungsofen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210187A (en) * 1938-09-20 1940-08-06 Hazel Atlas Glass Co Bottle stabilizer
US3411217A (en) * 1966-12-27 1968-11-19 Cincinnati Printing And Drying Method and apparatus for drying printed silk screened articles
US4730575A (en) * 1975-07-29 1988-03-15 Metal Box Limited Coating of articles
US4042317A (en) * 1975-11-10 1977-08-16 Flynn Burner Corporation Direct flame apparatus for drying can coatings
DE2706829A1 (de) * 1976-02-18 1977-09-01 Sun Chemical Corp Flamm-trockenvorrichtung fuer zylindrische behaelter
US4050888A (en) * 1976-03-19 1977-09-27 Flynn Burner Corporation Conveyor system for passing coated cans through chamber
FR2445281A1 (fr) * 1978-12-28 1980-07-25 Protectaire Syst Dispositif de protection pour transporteur entrainant des articles a travers une atmosphere souillee
ITMI20010387A1 (it) * 2001-02-26 2002-08-26 Sipa Spa Dispositivo e metodo per la presa e la movimentazione di oggetti

Also Published As

Publication number Publication date
CN118119813A (zh) 2024-05-31
EP4388262A1 (de) 2024-06-26
DE102021121521A1 (de) 2023-02-23
CA3229167A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
EP2737092B1 (de) Rollenwechselvorrichtung für öfen
DE102009045200B4 (de) Verfahren und Vorrichtung zum Bearbeiten von Bauteilen elektrischer Maschinen
EP3282024B1 (de) Chargenofen für glühgut und verfahren zur wärmebehandlung
DD231375A5 (de) Industrieofen, insbesondere mehrkammer-vakuumofen
EP0610488B1 (de) Verfahren und vorrichtung zum trocknen von industriefässern
DE10354165B3 (de) Vorrichtung und Verfahren zur Aushärtung einer Beschichtung in einem Schutzgas
DE102012025207A1 (de) Verfahren und Vorrichtung zur Blasformung von Behältern
DE3740619C1 (en) Heating furnace for a roughed-strip casting installation
WO2023020653A1 (de) Stiftofen zum herstellen von behältern und verfahren
DE19607586C2 (de) Verfahren und Anlage zum Konservieren der Hohlräume von Werkstücken
DE3046171C2 (de) Verfahren und Vorrichtung zum Imprägnieren von porösen Stoffen, insbesondere von Kohleerzeugnissen bei der Herstellung von Kohleelektroden
DE102019212679A1 (de) Bereitstellungsmodul für eine 3D-Druckmaschine
DE102010031226B4 (de) Substratbehandlungsanlage mit einer Transporteinrichtung
EP3209961B1 (de) Trockner für technische gegenstände, insbesondere für lackierte kraftfahrzeugkarosserien
WO2019025080A1 (de) Streckblasmaschine mit thermischer isolierung
EP2093038A1 (de) Rotationsformanlage
EP0657275B1 (de) Riffelwalze für die Herstellung von Wellpappe
EP0486712B1 (de) Vorrichtung zur Aufnahme von einer Oberflächenbehandlung zu unterwerfenden Werkstücken
DE202013010299U1 (de) Vorrichtung zum Imprägnieren von Wicklungsstäben für elektrische Maschinen
WO2000022178A1 (de) Haubenofenanlage
DE102009019127A1 (de) Ofen zur Herstellung von photovoltaischen Dünnschichtzellen
DE3246196C2 (de) Ofen zum Glühen zylindrischer metallischer Körper
DE102014008767A1 (de) Prozesssystem zur Bearbeitung eines Bauteils
DE3207391A1 (de) Maschine zur waermeverformung, insbesondere der kappen von buestenhaltern
DE3720832A1 (de) Gegossener walzenmantel, insbesondere press- oder kalanderwalze zur behandlung bahnfoermigen gutes, sowie verfahren und vorrichtung zu seiner herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3229167

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024003082

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022755068

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022755068

Country of ref document: EP

Effective date: 20240319

ENP Entry into the national phase

Ref document number: 112024003082

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240216