WO2023019661A1 - 一种用于单端双轴承的并联式油路结构及其应用 - Google Patents

一种用于单端双轴承的并联式油路结构及其应用 Download PDF

Info

Publication number
WO2023019661A1
WO2023019661A1 PCT/CN2021/117551 CN2021117551W WO2023019661A1 WO 2023019661 A1 WO2023019661 A1 WO 2023019661A1 CN 2021117551 W CN2021117551 W CN 2021117551W WO 2023019661 A1 WO2023019661 A1 WO 2023019661A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
oil
rotating shaft
deep groove
parallel
Prior art date
Application number
PCT/CN2021/117551
Other languages
English (en)
French (fr)
Inventor
段志强
何庆峰
林晓宁
陈晓杰
Original Assignee
西安中车永电捷力风能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安中车永电捷力风能有限公司 filed Critical 西安中车永电捷力风能有限公司
Publication of WO2023019661A1 publication Critical patent/WO2023019661A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1735Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/163Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at only one end of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1675Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at only one end of the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention belongs to the technical field of motor bearing lubrication, and in particular relates to a parallel oil circuit structure for single-ended double bearings and its application.
  • the bearing configuration has a three-bearing structure, specifically a deep groove ball bearing + a cylindrical bearing at the transmission end, and a non-drive end. a cylindrical bearing.
  • the bearing as a key component in the motor, is also a weak component, and its temperature rise will cause failures such as bearing lockup, lubrication failure, and motor burnout. If the bearing clearance is too small, the amount of grease does not meet the requirements, and the generator is not well aligned, etc., the temperature of the bearing will rise. Among them, the amount of lubricating grease does not meet the requirements, resulting in too much (or too little) lubricating grease in the bearing, which causes the temperature of the bearing to rise, which is one of the main failure phenomena of the doubly-fed wind turbine. This failure phenomenon is more prominent at the transmission end of the three-bearing structure.
  • the oil path of the transmission end bearing is shown in Figure 1.
  • the grease enters from the oil injection hole on the bearing outer cover, passes through the grease channel on the bearing chamber, enters the inner oil storage chamber of the bearing inner cover, and then passes through the bearing to reach the bearing
  • the outer oil storage chamber composed of the outer chamber and the sealing ring, and then through the centrifugal action of the sealing ring, reaches the waste oil chamber of the outer cover of the bearing, and the waste oil enters the oil discharge hole under the action of gravity.
  • the flow line of the oil circuit is in series, and the distance of the grease replenishment path is large.
  • the grease replenishment of the cylindrical bearing will have the following problems: first, the grease cannot be replenished in sufficient amount; second, the grease replenished to the cylindrical bearing must first pass through the deep groove ball bearing before It can flow through the cylindrical bearing, and the quality of grease decreases; in addition, there are gaps between the bearing inner cover and the rotating shaft and between the bearing outer cover and the sealing ring, and the fixed parts (bearing inner cover, outer cover) and rotating parts (rotating shaft, Sealing rings) are not easy to seal, causing grease to leak through the gap between the two. At present, there is no effective means to solve this problem.
  • the inventor of the present invention proposes a parallel oil circuit structure for single-ended double bearings and its application to overcome the defects of the prior art.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a parallel oil circuit structure for single-ended double bearings and its application.
  • a parallel oil circuit structure for single-ended double bearings including a rotating shaft, a bearing chamber is installed in the circumferential direction of the rotating shaft, a cylindrical bearing and a deep groove bearing are respectively arranged between the outer wall of the rotating shaft and the bearing chamber, and the cylindrical A spacer ring is arranged between the bearing and the deep groove bearing, a bearing outer cover and a bearing inner cover are respectively installed on the outer wall of the rotating shaft and at both ends of the bearing chamber, and a sealing ring is also arranged between the bearing outer cover and the rotating shaft;
  • the outer cover of the bearing is provided with an oil injection hole in the radial direction, and the cylindrical bearing and the deep groove bearing are respectively connected to the oil injection hole through two parallel oil passages of the first channel and the second channel, and the cylindrical bearing is formed by an external oil injector. and deep groove bearings are supplied with oil independently.
  • the oil injection hole includes a first oil injection hole and a second oil injection hole whose intervals are set in the circumferential direction of the bearing cover, and the first oil injection hole and the second oil injection hole communicate with the first passage and the second passage respectively.
  • the first passage includes a first annular groove opened on the inner ring of the bearing outer cover and connected with the cylindrical bearing, and the first annular groove is connected with the first oil injection hole for providing the cylindrical bearing with grease.
  • the second channel includes an axial through groove opened axially in the bearing chamber, and a second annular groove opened on the inner cover of the bearing and connected with the deep groove bearing;
  • One end of the axial through groove communicates with the second oil injection hole, and the other end communicates with the second annular groove for providing grease for the deep groove bearing.
  • filter screens are provided at the oil inlets of the first oil injection hole and the second oil injection hole.
  • the bearing chamber is provided with an oil discharge hole, and the interface of the oil discharge hole is arranged below the intersection of the cylindrical bearing and the deep groove bearing.
  • the oil discharge hole is composed of an inclined hole and a straight hole, one end of the inclined hole communicates with the intersection of the cylindrical bearing and the deep groove bearing, and the other end communicates with the straight hole;
  • the angle formed by the inclined hole and the rotating shaft is an acute angle.
  • multiple labyrinth grooves staggered from each other are provided at the matching positions of the bearing outer cover and the sealing ring, as well as the bearing inner cover and the rotating shaft, for delaying the passage of grease between the bearing outer cover and the sealing ring, as well as between the bearing inner cover and the rotating shaft. gap leaks.
  • the lower part of the outer bearing cover and the inner bearing cover and the end of the labyrinth groove are provided with oil return passages, and the oil return passages are respectively connected with the first passage and the second passage for connecting the labyrinth groove The collected grease is returned for reuse.
  • a doubly-fed wind power generator is manufactured by adopting the above-mentioned parallel oil circuit structure.
  • the present invention relates to a parallel oil passage structure for single-end double bearings and its application.
  • the oil passage structure adopts a parallel connection method to provide pressurized grease for deep groove bearings and cylindrical bearings at the same time through two oil passages.
  • this application sets the grease delivery lines in the two bearings in a parallel relationship.
  • the grease replenishment path is shortened for each independent bearing, so that each bearing High-quality and sufficient grease can be obtained at the first time to ensure the lubrication and cooling effect of the double bearing.
  • the present invention is a parallel oil circuit structure for single-ended double bearings and its application.
  • Labyrinth grooves are arranged at the matching positions of the fixed parts (bearing inner cover, outer cover) and the rotating parts (rotating shaft, sealing ring) in a staggered manner.
  • an oil return channel is set at the lower part of the bearing inner cover and outer cover, and at the end of the labyrinth groove, and the sudden change in diameter is used to accelerate the collection of grease in the gap and block the leakage of grease, so as to achieve the purpose of sealing and full utilization of grease, and avoid waste ;
  • the parallel oil circuit structure is applied to the doubly-fed wind power generator, which significantly solves the temperature rise problem of the doubly-fed wind power generator.
  • Fig. 1 is the sectional view of the oil circuit structure of the prior art single-ended double bearing
  • Fig. 2 is a sectional view of the oil circuit structure of the single-ended double bearing of the present invention
  • Fig. 3 is the enlarged schematic diagram of I and II in Fig. 2 of the present invention.
  • Fig. 4 is a cross-sectional view of a labyrinth groove and an oil return channel in the oil passage structure of the single-ended double bearing of the present invention
  • Fig. 5 is the enlarged schematic diagram of III and IV in Fig. 4 of the present invention.
  • Fig. 6 is a schematic structural view of the bearing outer cover of the present invention.
  • Fig. 7 is a schematic diagram of the structure of the bearing inner cover of the present invention.
  • a parallel oil circuit structure for single-end double bearings and its application in the present invention includes a rotating shaft 1, a bearing chamber 2 is installed in the circumferential direction of the rotating shaft 1, and the outer wall of the rotating shaft 1 and the bearing chamber A cylindrical bearing 3 and a deep groove bearing 4 are respectively arranged between the two, that is to say, the cylindrical bearing 3 and the deep groove bearing 4 are covered by the bearing chamber 2, and a spacer ring is arranged between the cylindrical bearing 3 and the deep groove bearing 4 5.
  • the function of the spacer ring 5 is to position the installation of the double bearings.
  • the outer bearing cover 6 and the inner bearing cover 7 are respectively installed, between the outer bearing cover 6 and the rotating shaft 1 A seal ring 8 is also provided.
  • the outer rings in contact with both are provided with annular sealing rings, that is, the double bearing outer cover 6 and the bearing inner cover 7 seal the The bearings are circumferentially sealed.
  • the outer bearing cover 6 is provided with an oil injection hole 61 in the radial direction, and the cylindrical bearing 3 and the deep groove bearing 4 are respectively connected to the oil injection hole 61 through two parallel oil passages of the first channel 9 and the second channel 10 (pointed by the dotted arrow).
  • the cylindrical bearing 3 and the deep groove bearing 4 are independently supplied with oil.
  • the oil injection hole 61 in this embodiment is two independently opened holes, which are respectively the first oil injection hole 611 and the second oil injection hole 612 which are spaced apart from the bearing outer cover 6 in the circumferential direction;
  • the inner ring of the cover 6 and the first annular groove 62 connected with the cylindrical bearing 3, the first annular groove 62 is connected with the first oil injection hole 611, and is used to provide grease for the cylindrical bearing 3;
  • the second passage 10 includes To the axial through groove 21 opened in the bearing chamber 2, and the second annular groove 71 opened on the bearing inner cover 7 and connected with the deep groove bearing 4, one end of the axial through groove 21 is connected to the first
  • the two oil injection holes 612 communicate with each other, and the other end communicates with the second annular groove 71 for providing grease for the deep groove bearing 4 .
  • the oil passages supplied to the cylindrical bearing 3 and the deep groove bearing 4 are two routes arranged in parallel, which obviously shortens the replenishment path of grease, and each bearing can get a first-hand raw grease, so that the bearing needs The sufficient supply and quality of grease can be guaranteed, so that the double bearing can be effectively lubricated and cooled.
  • the first oil injection hole 611 and the second oil injection hole 612 are both arranged at a relatively high point position of the bearing outer cover 6, so that the grease can shorten the flow time by its own gravity; in addition, the first oil injection hole 611 and the second oil injection hole
  • the oil inlets of the oil injection holes 612 are equipped with filter screens to ensure that the grease entering the double bearings has no other impurities and avoid damaging the surface quality of the double bearings.
  • this embodiment also includes an oil discharge hole 22, and the interface (inlet) of the oil discharge hole 22 is arranged below the intersection of the cylindrical bearing 3 and the deep groove bearing 4, that is to say, the oil discharge hole 22 is arranged on the bottom of double bearing.
  • the distance ring 5 communicates with the cylindrical bearing 3 and the deep groove bearing 4.
  • the distance ring 5 is made of high-quality carbon structural steel hot-rolled thick steel plate, and the cylindrical bearing 3 and the deep groove bearing are connected by centrifugal force. The waste grease after the bearing 4 is used is discharged through the oil discharge hole 22 .
  • the oil discharge hole 22 in this embodiment is composed of an inclined hole 221 and a straight hole 222, one end of the inclined hole 221 communicates with the intersection of the cylindrical bearing 3 and the deep groove bearing 4, and the other end communicates with the straight hole 222 , the straight hole 222 is opened on the flange of the bearing chamber 2, and the angle ⁇ formed between the inclined hole 221 and the rotating shaft 1 is an acute angle.
  • both the bearing outer cover 6 and the bearing inner cover 7 in this embodiment are made of ordinary carbon steel medium-thick steel plates.
  • the present invention provides a sealing structure at the matching position of the fixed part (bearing inner cover, outer cover) and the rotating part (rotating shaft, sealing ring), so as to delay the leakage of grease through the gap between the rotating part and the fixing part.
  • a sealing structure at the matching position of the fixed part (bearing inner cover, outer cover) and the rotating part (rotating shaft, sealing ring), so as to delay the leakage of grease through the gap between the rotating part and the fixing part.
  • Groove 11 that is, by setting the labyrinth groove on the sealing ring and the rotating shaft, using direct mutation to accelerate the collection of grease in the gap, delaying the leakage of grease through the gap between the bearing outer cover 6 and the sealing ring 2, and the bearing inner cover 7 and the rotating shaft 1.
  • an oil return channel 12 is provided at the bottom of the bearing outer cover 6 and the bearing inner cover 7 and at the end of the labyrinth groove 11, and the oil return channel 12 is connected with the first channel 9 and the second channel 10 respectively. They are connected to each other, and are used to return and reuse the collected grease in the labyrinth groove 12, to block the leakage of grease, and to realize the sealing effect between the fixed parts (bearing inner cover, outer cover) and the rotating parts (rotating shaft, sealing ring).

Abstract

本发明公开了一种用于单端双轴承的并联式油路结构及其应用,包括转轴,所述转轴周向安装有轴承室,转轴外壁与轴承室之间设有圆柱和深沟轴承,圆柱与深沟轴承之间设有定距环,转轴外壁上、位于轴承室两端分别安装有轴承外盖和内盖,外盖与转轴之间还设有封环;其中,外盖上开设有注油孔,圆柱轴承与深沟轴承分别通过第一、第二通道两路并联油路与注油孔相连通,为圆柱和深沟轴承分别供油;另外在固定件和旋转件配合处设迷宫槽及回油通道。本发明油路结构采用并联方式,通过两路油路同时为深沟轴承和圆柱轴承提供油脂,能够有效地对双轴承进行润滑和冷却;经实际验证,将该并联式油路结构应用于双馈风力发电机中,显著地解决了发电机的温升问题。

Description

一种用于单端双轴承的并联式油路结构及其应用 技术领域
本发明属于电机轴承润滑技术领域,具体涉及一种用于单端双轴承的并联式油路结构及其应用。
背景技术
随着风力发电的飞速发展,单台电机功率越来越大,为了满足使用寿命的要求,轴承配置出现了三轴承结构,具体为传动端一个深沟球轴承+一个圆柱轴承,非传动端使用一个圆柱轴承。
其中,轴承作为电机中的关键部件,也是薄弱部件,其温升问题会造成轴承的抱死、润滑失效和电机烧损等故障。轴承游隙过小、润滑脂量不符合要求、发电机对中不良等都会造成轴承温升高。其中润滑脂量不符合要求,造成轴承内润滑脂过多(或过少)引起轴承温升高是双馈风力发电机的主要故障现象之一。这一故障现象在三轴承结构的传动端更加突出。
现有技术,传动端轴承油路如图1所示,该油脂从轴承外盖上的注油孔进入,通过轴承室上的油脂通道,进入轴承内盖的内储油室,再经过轴承到达轴承室与封环组成的外储油室,然后通过封环的离心作用,到达轴承外盖的废油室,废油脂在重力的作用下进入排油孔。其油路流动线路为串联,油脂补充路径距离大,圆柱轴承的油脂补充会出现以下问题:一是油脂无法得到足量补充;二是给圆柱轴承补充的油脂必须先经过深沟球轴承,才能够流经圆柱轴承,油脂的品量下 降;另外轴承内盖与转轴之间以及轴承外盖与封环之间均存在间隙,而固定件(轴承内盖、外盖)和旋转件(转轴、封环)之间不易密封,导致油脂通过两者之间的缝隙泄露,目前没有解决该问题的有效手段。
有鉴于此,本发明人提出一种用于单端双轴承的并联式油路结构及其应用,以克服现有技术的缺陷。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供一种用于单端双轴承的并联式油路结构及其应用,该油路结构采用并联方式,通过两路油路同时为深沟轴承和圆柱轴承提供加压油脂,实现充分供油的同时保证油脂的品质;另外在固定件(轴承内盖、外盖)和旋转件(转轴、封环)配合位置处错开设置迷宫槽,且在轴承内盖和外盖的下方、迷宫槽的末端设置回油通道实现密封的目的;并且将上述并联式油路结构应用于双馈风力发电机中,显著的解决了发电机温升的问题。
本发明的目的是通过以下技术方案来解决的:
一种用于单端双轴承的并联式油路结构,包括转轴,所述转轴周向安装有轴承室,所述转轴外壁与轴承室之间分别设置有圆柱轴承和深沟轴承,所述圆柱轴承与深沟轴承之间设置有定距环,所述转轴外壁上、位于轴承室两端分别安装有轴承外盖和轴承内盖,所述轴承外盖与转轴之间还设置有封环;
其中,所述轴承外盖沿径向上开设有注油孔,所述圆柱轴承与深沟轴承分别通过第一通道和第二通道两路并联油路与注油孔相连通, 通过外接注油器为圆柱轴承和深沟轴承分别独立供油。
进一步地,所述注油孔包括间距设置在轴承外盖周向上的第一注油孔和第二注油孔,所述第一注油孔与第二注油孔分别与第一通道和第二通道相连通。
进一步地,所述第一通道包括开设在轴承外盖内圈、且与圆柱轴承相接通的第一环形槽,所述第一环形槽与第一注油孔相连通,用于为圆柱轴承提供油脂。
进一步地,所述第二通道包括沿轴向开设在轴承室内的轴向通槽,以及开设在轴承内盖上、且与深沟轴承相接通的第二环形槽;
所述轴向通槽的一端与第二注油孔相连通,另一端与第二环形槽相连通,用于为深沟轴承提供油脂。
进一步地,所述第一注油孔与第二注油孔的进油口处均设有滤网。
进一步地,所述轴承室上开设有排油孔,所述排油孔的接口设置在圆柱轴承与深沟轴承交汇处的下方。
进一步地,所述排油孔由斜孔和直孔组成,所述斜孔的一端与圆柱轴承和深沟轴承的交汇处相连通,另一端与直孔相连通;
所述斜孔与转轴形成的夹角为锐角。
进一步地,所述轴承外盖与封环以及轴承内盖与转轴配合位置处均开设有相互错开的多道迷宫槽,用于延缓油脂通过轴承外盖与封环以及轴承内盖与转轴之间的缝隙泄露。
进一步地,所述轴承外盖与轴承内盖的下部、且位于迷宫槽的末 端均开设有回油通道,所述回油通道分别与第一通道和第二通道相连通,用于将迷宫槽内的收集的油脂回流再利用。
进一步地,一种双馈风力发电机,所述双馈风力发电机采用上述并联式油路结构制作。
与现有技术相比,本发明的有益效果:
1、本发明一种用于单端双轴承的并联式油路结构及其应用,该油路结构采用并联方式,通过两路油路同时为深沟轴承和圆柱轴承提供加压油脂。与现有技术相比,本申请将两个轴承中的油脂输送线路设置为并联关系,相比与现有的串联路线,对每个独立的轴承来说缩短了油脂补充路径,使每个轴承能够第一时间得到高品质、充足的油脂,保证双轴承的润滑和冷却效果。
2、本发明一种用于单端双轴承的并联式油路结构及其应用,在固定件(轴承内盖、外盖)和旋转件(转轴、封环)配合位置处错开设置迷宫槽,且在轴承内盖和外盖的下部、迷宫槽的末端设置回油通道,利用直径突变来加速实现缝隙间油脂的收集和阻断油脂的外泄,实现密封和油脂充分利用的目的,避免浪费;经实际验证,将该并联式油路结构应用于双馈风力发电机中,显著地解决了双馈风力发电机的温升问题。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面 将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术单端双轴承的油路结构剖视图;
图2为本发明单端双轴承的油路结构剖视图;
图3为本发明图2中为Ⅰ和Ⅱ两处的放大示意图;
图4为本发明单端双轴承的油路结构开设迷宫槽及回油通道的剖视图;
图5为本发明图4中Ⅲ和Ⅳ两处的放大示意图;
图6为本发明轴承外盖结构示意图;
图7为本发明轴承内盖结构示意图。
其中:1为转轴;2为轴承室;3为圆柱轴承;4为深沟轴承;5为定距环;6为轴承外盖;7为轴承内盖;8为封环;9为第一通道;10为第二通道;11为迷宫槽;12为回油通道;21为轴向通槽;22为排油孔;61为注油孔;62为第一环形槽;71为第二环形槽;221为斜孔;222为直孔;611为第一注油孔;612为第二注油孔。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与所附权利要求书中所详述的、本发明的一些方面相一致的装置的例子。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图及实施例对本发明作进一步详细描述。
参见图2~7所示,本发明一种用于单端双轴承的并联式油路结构及其应用,包括转轴1,所述转轴1周向安装有轴承室2,转轴1外壁与轴承室2之间分别设置有圆柱轴承3和深沟轴承4,也就是说,通过轴承室2将圆柱轴承3和深沟轴承4包覆,圆柱轴承3与深沟轴承4之间设置有定距环5,定距环5的作用是对双轴承的安装起定位作用,转轴外壁上、位于轴承室2两端分别安装有轴承外盖6和轴承内盖7,轴承外盖6与转轴1之间还设置有封环8,所述轴承外盖6和轴承内盖7与轴承室2连接时,两者接触的外圈均设置环形密封圈,即通过轴承外盖6和轴承内盖7将双轴承周向密封。
其中,轴承外盖6沿径向上开设有注油孔61,圆柱轴承3与深沟轴承4分别通过第一通道9和第二通道10(虚线箭头所指)两路并联油路与注油孔61相连通,通过外接注油器为圆柱轴承3和深沟轴承4分别独立供油。
具体的,本实施例注油孔61为两个独立开设的孔,分别为间距设置在轴承外盖6周向上的第一注油孔611和第二注油孔612;第一通道9包括开设在轴承外盖6内圈、且与圆柱轴承3相接通的第一环形槽62,第一环形槽62与第一注油孔611相连通,用于为圆柱轴承3提供油脂;第二通道10包括沿轴向开设在轴承室2内的轴向通槽21,以及开设在轴承内盖7上、且与深沟轴承4相接通的第二环形槽71,所述轴向通槽21的一端与第二注油孔612相连通,另一端与第 二环形槽71相连通,用于为深沟轴承4提供油脂。通过以上设置,即供给给圆柱轴承3和深沟轴承4的油路为并联设置的两条路线,明显缩短了油脂的补充路径,且每个轴承都能够得到一手的原油脂,使轴承需要的油脂能够得到的充分供给和品质的保证,从而能够有效地对双轴承进行润滑和冷却。
优选的,所述第一注油孔611与第二注油孔612均设置在轴承外盖6的相对高点位置,以便油脂通过自身重力能够缩短流动时间;另外所述第一注油孔611与第二注油孔612的进油口处均设有滤网,保证进入双轴承的油脂无其他杂质,避免损坏双轴承表面质量。
如图2、3所示,本实施例还包括排油孔22,所述排油孔22的接口(入口)设置在圆柱轴承3与深沟轴承4交汇处的下方,也就是说排油孔22设置在双轴承的最底端。如图3所示,定距环5与圆柱轴承3和深沟轴承4相互连通,定距环5采用优质碳素结构钢热轧厚钢板加工制作,利用离心力的作用将圆柱轴承3和深沟轴承4使用后的废油脂通过排油孔22排出。
优选的,本实施例排油孔22由斜孔221和直孔222组成,所述斜孔221的一端与圆柱轴承3和深沟轴承4的交汇处相连通,另一端与直孔222相连通,所述直孔222开设在轴承室2法兰上,所述斜孔221与转轴1形成的夹角α为锐角。通过上述设置,保证油脂能够最大发挥作用,避免浪费。
优选的,本实施例轴承外盖6和轴承内盖7均采用普通碳素钢中厚钢板加工制作。
另外本发明在固定件(轴承内盖、外盖)和旋转件(转轴、封环)配合位置处设置密封结构,延缓油脂通过旋转件和固定件之间的缝隙泄露。具体的如图4、5所示,本实施例在轴承外盖6与封环2以及轴承内盖7与转轴1配合位置处均开设有相互错开的多道(本实施例为三道)迷宫槽11,即通过在封环以及转轴设置迷宫槽利用直接突变来加速收集缝隙间的油脂,延缓油脂通过轴承外盖6与封环2以及轴承内盖7与转轴1之间的缝隙泄露。
优选的,本发明在轴承外盖6与轴承内盖7的下部、且位于迷宫槽11的末端均开设有回油通道12,所述回油通道12分别与第一通道9和第二通道10相连通,用于将迷宫槽12内的收集的油脂回流再利用,阻断油脂外泄,实现固定件(轴承内盖、外盖)和旋转件(转轴、封环)之间的密封效果。
经实际试验验证,将上述单端双轴承的并联式油路结构应用于双馈风力发电机中,显著地解决了发电机的温升问题,延长了发电机的使用寿命。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。
应当理解的是,本发明并不局限于上述已经描述的内容,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种用于单端双轴承的并联式油路结构,其特征在于,包括转轴(1),所述转轴(1)周向安装有轴承室(2),所述转轴(1)外壁与轴承室(2)之间分别设置有圆柱轴承(3)和深沟轴承(4),所述圆柱轴承(3)与深沟轴承(4)之间设置有定距环(5),所述转轴(1)外壁上、位于轴承室(2)两端分别安装有轴承外盖(6)和轴承内盖(7),所述轴承外盖(6)与转轴(1)之间还设置有封环(8);
    其中,所述轴承外盖(6)沿径向上开设有注油孔(61),所述圆柱轴承(3)与深沟轴承(4)分别通过第一通道(9)和第二通道(10)两路并联油路与注油孔(61)相连通,通过外接注油器为圆柱轴承(3)和深沟轴承(4)分别独立供油。
  2. 根据权利要求1所述的一种用于单端双轴承的并联式油路结构,其特征在于,所述注油孔(61)包括间距设置在轴承外盖(6)周向上的第一注油孔(611)和第二注油孔(612),所述第一注油孔(611)与第二注油孔(612)分别与第一通道(9)和第二通道(10)相连通。
  3. 根据权利要求2所述的一种用于单端双轴承的并联式油路结构,其特征在于,所述第一通道(9)包括开设在轴承外盖(6)内圈、且与圆柱轴承(3)相接通的第一环形槽(62),所述第一环形槽(62)与第一注油孔(611)相连通,用于为圆柱轴承(3)提供油脂。
  4. 根据权利要求2所述的一种用于单端双轴承的并联式油路结构,其特征在于,所述第二通道(10)包括沿轴向开设在轴承室(2)内的轴向通槽(21),以及开设在轴承内盖(7)上、且与深沟轴承(4)相接通的第二环形槽(71);
    所述轴向通槽(21)的一端与第二注油孔(612)相连通,另一端与第二环形槽(71)相连通,用于为深沟轴承(4)提供油脂。
  5. 根据权利要求2所述的一种用于单端双轴承的并联式油路结构,其特征在于,所述第一注油孔(611)与第二注油孔(612)的进油口处均设有滤网。
  6. 根据权利要求1所述的一种用于单端双轴承的并联式油路结构,其特征在于,所述轴承室(2)上开设有排油孔(22),所述排油孔(22)的接口设置在圆柱轴承(3)与深沟轴承(4)交汇处的下方。
  7. 根据权利要求6所述的一种用于单端双轴承的并联式油路结构,其特征在于,所述排油孔(22)由斜孔(221)和直孔(222)组成,所述斜孔(221)的一端与圆柱轴承(3)和深沟轴承(4)的交汇处相连通,另一端与直孔(222)相连通;
    所述斜孔(221)与转轴(1)形成的夹角(α)为锐角。
  8. 根据权利要求1所述的一种用于单端双轴承的并联式油路结构,其特征在于,所述轴承外盖(6)与封环(2)以及轴承内盖(7)与转轴(1)配合位置处均开设有相互错开的多道迷宫槽(11),用于延缓油脂通过轴承外盖(6)与封环(2)以及轴承内盖(7)与转轴(1)之间的缝隙泄露。
  9. 根据权利要求8所述的一种用于单端双轴承的并联式油路结构,其特征在于,所述轴承外盖(6)与轴承内盖(7)的下部、且位于迷宫槽(11)的末端均开设有回油通道(12),所述回油通道(12)分别与第一通道(9)和第二通道(10)相连通,用于将迷宫槽(12)内的收集的油脂回流再利用。
  10. 一种双馈风力发电机,其特征在于,所述双馈风力发电机采用权利要求1~9任一项所述一种用于单端双轴承的并联式油路结构制作。
PCT/CN2021/117551 2021-08-20 2021-09-10 一种用于单端双轴承的并联式油路结构及其应用 WO2023019661A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110963092.3A CN113746249B (zh) 2021-08-20 2021-08-20 一种用于单端双轴承的并联式油路结构及其应用
CN202110963092.3 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023019661A1 true WO2023019661A1 (zh) 2023-02-23

Family

ID=78732160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117551 WO2023019661A1 (zh) 2021-08-20 2021-09-10 一种用于单端双轴承的并联式油路结构及其应用

Country Status (2)

Country Link
CN (1) CN113746249B (zh)
WO (1) WO2023019661A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598091B (zh) * 2022-05-10 2022-07-08 佛山市南海九洲普惠风机有限公司 重载电机结构

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321977A (ja) * 2006-05-01 2007-12-13 Ntn Corp 多列転がり軸受装置
CN101764452A (zh) * 2009-09-24 2010-06-30 无锡哈电电机有限公司 高压电机轴承保护装置
CN201588744U (zh) * 2009-11-03 2010-09-22 南车戚墅堰机车车辆工艺研究所有限公司 风力发电增速齿轮箱密封装置
CN102723803A (zh) * 2012-06-26 2012-10-10 东方电气(乐山)新能源设备有限公司 一种新型风力发电机轴承结构
CN202768645U (zh) * 2012-09-14 2013-03-06 唐山联众选煤科技有限公司 组合密封型轴承座
CN103398106A (zh) * 2013-07-31 2013-11-20 东方电气(乐山)新能源设备有限公司 一种风力发电机轴承润滑结构
CN203532311U (zh) * 2013-10-25 2014-04-09 成都市永益泵业有限公司 基于泵轴承的组合密封结构
CN203554159U (zh) * 2013-10-08 2014-04-16 内蒙古伊泰煤制油有限责任公司 引风机电机轴承座润滑结构
CN204942548U (zh) * 2015-08-31 2016-01-06 自贡东方通用压缩机有限公司 天然气压缩机的轴向迷宫式密封结构
CN107508410A (zh) * 2017-10-13 2017-12-22 江苏中车电机有限公司 一种带有双润滑系统的电机用双轴承结构
CN206802089U (zh) * 2017-05-19 2017-12-26 温岭市九洲电机制造有限公司 一种电机的润滑结构
CN110375059A (zh) * 2019-07-17 2019-10-25 成都中车电机有限公司 一种牵引电动机轴承密封结构及安装方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064497A1 (de) * 2008-12-23 2010-06-24 Siemens Aktiengesellschaft Elektrische Maschine mit Rotorstützschild
JP5038445B2 (ja) * 2010-01-05 2012-10-03 大同メタル工業株式会社 内燃機関のすべり軸受
CN103401345A (zh) * 2013-07-31 2013-11-20 东方电气(乐山)新能源设备有限公司 一种新型风力发电机轴承结构
CN109639022A (zh) * 2017-10-09 2019-04-16 抚顺煤矿电机制造有限责任公司 一种电动机轴承油室油路结构
CN207321013U (zh) * 2017-10-13 2018-05-04 江苏中车电机有限公司 一种带有双润滑系统的电机用双轴承结构

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321977A (ja) * 2006-05-01 2007-12-13 Ntn Corp 多列転がり軸受装置
CN101764452A (zh) * 2009-09-24 2010-06-30 无锡哈电电机有限公司 高压电机轴承保护装置
CN201588744U (zh) * 2009-11-03 2010-09-22 南车戚墅堰机车车辆工艺研究所有限公司 风力发电增速齿轮箱密封装置
CN102723803A (zh) * 2012-06-26 2012-10-10 东方电气(乐山)新能源设备有限公司 一种新型风力发电机轴承结构
CN202768645U (zh) * 2012-09-14 2013-03-06 唐山联众选煤科技有限公司 组合密封型轴承座
CN103398106A (zh) * 2013-07-31 2013-11-20 东方电气(乐山)新能源设备有限公司 一种风力发电机轴承润滑结构
CN203554159U (zh) * 2013-10-08 2014-04-16 内蒙古伊泰煤制油有限责任公司 引风机电机轴承座润滑结构
CN203532311U (zh) * 2013-10-25 2014-04-09 成都市永益泵业有限公司 基于泵轴承的组合密封结构
CN204942548U (zh) * 2015-08-31 2016-01-06 自贡东方通用压缩机有限公司 天然气压缩机的轴向迷宫式密封结构
CN206802089U (zh) * 2017-05-19 2017-12-26 温岭市九洲电机制造有限公司 一种电机的润滑结构
CN107508410A (zh) * 2017-10-13 2017-12-22 江苏中车电机有限公司 一种带有双润滑系统的电机用双轴承结构
CN110375059A (zh) * 2019-07-17 2019-10-25 成都中车电机有限公司 一种牵引电动机轴承密封结构及安装方法

Also Published As

Publication number Publication date
CN113746249B (zh) 2022-09-09
CN113746249A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
US5749660A (en) Bearing assembly with dynamic drainage supplied with lubricant
US7040811B2 (en) Oil-damped sealed rolling bearing
WO2023019661A1 (zh) 一种用于单端双轴承的并联式油路结构及其应用
WO2023236446A1 (zh) 传动机构
US3687233A (en) Integral lubrication system
CN108980217B (zh) 一种风电齿轮箱高速轴轴承降温装置
CN111120389A (zh) 一种立式泵自循环稀油润滑轴承体
CN107023565A (zh) 风机用防爆电机轴承的润滑结构
CN102537044B (zh) 风电主轴双角支承油膜轴承
CN108266456A (zh) 一种模块化调心轴承装置
CN212614895U (zh) 一种用于微燃机的组合机械式滑油密封结构
CN104197025A (zh) 一种大型风机的组合密封水冷轴承座
CN210599856U (zh) 三排圆柱滚子轴承
CN110206817A (zh) 三排圆柱滚子轴承
CN202832845U (zh) 柴油机后油封
CN204083254U (zh) 一种大型风机的组合密封水冷轴承座
CN213235814U (zh) 风力回转支承及风电发电机
CN106704386A (zh) 一种阶梯式环下润滑轴承过渡套及其供油盘
CN208281357U (zh) 一种模块化调心轴承装置
CN206409528U (zh) 一种阶梯式环下润滑轴承过渡套及其供油盘
CN206845708U (zh) 风机用防爆电机轴承的润滑结构
CN218670199U (zh) 一种高承载调心滚子轴承
CN211538014U (zh) 一种组合式进料密封结构
CN110966150A (zh) 一种风力发电机组油滑环
CN116816491B (zh) 一种涡轮增压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE