WO2023017760A1 - 高周波回路、通信装置および高周波回路の電力増幅方法 - Google Patents

高周波回路、通信装置および高周波回路の電力増幅方法 Download PDF

Info

Publication number
WO2023017760A1
WO2023017760A1 PCT/JP2022/029743 JP2022029743W WO2023017760A1 WO 2023017760 A1 WO2023017760 A1 WO 2023017760A1 JP 2022029743 W JP2022029743 W JP 2022029743W WO 2023017760 A1 WO2023017760 A1 WO 2023017760A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output terminal
switch
phase shift
capacitor
Prior art date
Application number
PCT/JP2022/029743
Other languages
English (en)
French (fr)
Inventor
健二 田原
秀享 高橋
佳依 山本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280055361.9A priority Critical patent/CN117859264A/zh
Publication of WO2023017760A1 publication Critical patent/WO2023017760A1/ja
Priority to US18/432,115 priority patent/US20240178868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • the present invention relates to a high frequency circuit, a communication device, and a power amplification method for a high frequency circuit.
  • Patent Document 1 discloses a first amplifier (carrier amplifier) that amplifies a first signal divided from an input signal in a region where the power level of the input signal is equal to or higher than the first level and outputs a second signal, and a second signal amplifier. and a second amplifier ( A high-frequency circuit (power amplifier circuit) including a peak amplifier) and a second transformer to which a fourth signal is input is disclosed.
  • the carrier amplifier is better than the carrier amplifier that amplifies the input signal in the low power region to the high power region and the peak amplifier that amplifies only the input signal in the high power region. Amplification operation time becomes longer. For this reason, the carrier amplifier tends to deteriorate more easily than the peak amplifier, and there is a possibility that the amplification performance of the high-frequency circuit will deteriorate along with the deterioration of the carrier amplifier.
  • a high-frequency circuit includes a first amplifying element and a second amplifying element, an output transformer having an input side coil and an output side coil, a first amplifying element and a second A bias circuit connected to the amplifying element, a first output terminal connected to one end of the output coil, a second output terminal connected to the other end of the output coil, and between the first output terminal and ground.
  • a second switch connected between the second output terminal and the ground; an input terminal connected to the output terminal of the first amplifying element; and an output terminal connected to one end of the input side coil.
  • a second phase shift circuit having an input end connected to the output terminal of the second amplifying element and an output end connected to the other end of the input side coil.
  • a power amplification method for a high-frequency circuit includes a first amplifying element and a second amplifying element, an output transformer having an input side coil and an output side coil, a first amplifying element and a second amplifying element. a first output terminal connected to one end of the output side coil; a second output terminal connected to the other end of the output side coil; and a bias circuit connected between the first output terminal and the ground. a second switch connected between the second output terminal and the ground; an input terminal connected to the output terminal of the first amplifying element; and an output terminal connected to one end of the input side coil.
  • the bias circuit supplies the first bias voltage to the first amplifying element and the bias circuit to the second amplifying element.
  • a second bias voltage having a voltage value smaller than that of the first bias voltage is supplied to turn on the first switch and turn off the second switch, the first bias is applied from the bias circuit to the first amplifying element.
  • a voltage is supplied, and a second bias voltage having a voltage value higher than the first bias voltage is supplied from the bias circuit to the second amplifying element.
  • a high-frequency circuit including a Doherty power amplifier in which degradation of amplification performance is suppressed, a communication device, and a power amplification method for a high-frequency circuit.
  • FIG. 1A is a circuit configuration diagram of a high frequency circuit and a communication device according to an embodiment.
  • FIG. 1B is a circuit configuration diagram of a high-frequency circuit according to Modification 1 of the embodiment.
  • FIG. 2A is a circuit state diagram of the radio frequency circuit according to the embodiment when transmitting a band A signal in a high power mode.
  • FIG. 2B is a circuit state diagram of the high-frequency circuit according to the embodiment when a band A signal is transmitted in the middle/low power mode.
  • FIG. 3A is a circuit state diagram of the radio frequency circuit according to the embodiment when transmitting a band B signal in a high power mode.
  • FIG. 3B is a circuit state diagram of the high-frequency circuit according to the embodiment when transmitting a band B signal in the middle/low power mode.
  • FIG. 4 is an operation flow chart showing a power amplification method for a high frequency circuit according to the embodiment.
  • FIG. 5 is a circuit configuration diagram of a high-frequency circuit according to Modification 2 of the embodiment.
  • FIG. 6 is a circuit configuration diagram of a high-frequency circuit according to Modification 3 of the embodiment.
  • 7A is a plan view and a cross-sectional view of a high-frequency circuit according to Example 1.
  • FIG. 7B is a plan view and a cross-sectional view of a high-frequency circuit according to Example 2.
  • FIG. 5 is a circuit configuration diagram of a high-frequency circuit according to Modification 2 of the embodiment.
  • FIG. 6 is a circuit configuration diagram of a high-frequency circuit according to Modification 3 of the embodiment.
  • 7A is a plan view and a cross-sectional view of a high-frequency circuit according to Example 1.
  • FIG. 7B is a plan view and a cross-sectional view of a high-frequency circuit according to Example 2.
  • the x-axis and the y-axis are axes orthogonal to each other on a plane parallel to the main surface of the module substrate.
  • the x-axis is parallel to the first side of the module substrate
  • the y-axis is parallel to the second side orthogonal to the first side of the module substrate.
  • the z-axis is an axis perpendicular to the main surface of the module substrate, and its positive direction indicates an upward direction and its negative direction indicates a downward direction.
  • connection includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements.
  • Connected between A and B means connected to both A and B between A and B, in addition to being serially connected in the path connecting A and B, It includes parallel connection (shunt connection) between the path and the ground.
  • plan view of the module board means viewing an object by orthographic projection from the positive side of the z-axis onto the xy plane.
  • a is located between B and C means that at least one of a plurality of line segments connecting any point in B and any point in C passes through A.
  • Distance between A and B in plan view of the module substrate means the length of a line segment connecting a representative point in the area of A and a representative point in the area of B orthogonally projected onto the xy plane. means.
  • the representative point the central point of the area or the closest point to the opponent's area can be used, but it is not limited to this.
  • the component is placed on the board includes the component being placed on the main surface of the board and the component being placed inside the board.
  • the component is arranged on the main surface of the board means that the component is arranged in contact with the main surface of the board, and that the component is arranged above the main surface without contacting the main surface. (eg, a component is laminated onto another component placed in contact with a major surface).
  • the component is arranged on the main surface of the substrate may include that the component is arranged in a concave portion formed in the main surface.
  • Components are located within a substrate means that, in addition to encapsulating components within a module substrate, all of the components are located between major surfaces of the substrate, but some of the components are located between major surfaces of the substrate. Including not covered by the substrate and only part of the component being placed in the substrate.
  • signal path refers to a transmission line composed of a wire through which a high-frequency signal propagates, an electrode directly connected to the wire, and a terminal directly connected to the wire or the electrode.
  • FIG. 1A is a circuit configuration diagram of a high frequency circuit 1 and a communication device 4 according to an embodiment.
  • a communication device 4 includes a high frequency circuit 1, an antenna 2, and an RF signal processing circuit (RFIC) 3.
  • RFIC RF signal processing circuit
  • the high frequency circuit 1 transmits high frequency signals between the antenna 2 and the RFIC 3 .
  • a detailed circuit configuration of the high-frequency circuit 1 will be described later.
  • the antenna 2 is connected to the antenna connection terminal 100 of the high frequency circuit 1, transmits a high frequency signal output from the high frequency circuit 1, and receives a high frequency signal from the outside and outputs it to the high frequency circuit 1.
  • the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as down-conversion on the received signal input via the receiving path of the high-frequency circuit 1, and converts the received signal generated by the signal processing into a baseband signal processing circuit (BBIC, not shown). Further, the RFIC 3 performs signal processing such as up-conversion on the transmission signal input from the BBIC, and outputs the transmission signal generated by the signal processing to the transmission path of the high frequency circuit 1 .
  • the RFIC 3 also has a control section that controls the switches, amplification elements, bias circuits, etc. of the high-frequency circuit 1 . Some or all of the functions of the RFIC 3 as a control section may be implemented outside the RFIC 3, for example, in the BBIC or the high frequency circuit 1.
  • the RFIC 3 also functions as a control unit that controls the power supply voltage and bias voltage supplied to each amplifier of the high frequency circuit 1 . Specifically, RFIC 3 outputs a digital control signal to high frequency circuit 1 . Each amplifier of the high frequency circuit 1 is supplied with a power supply voltage and a bias voltage controlled by the digital control signal.
  • the RFIC 3 also functions as a control unit that controls connection of each switch of the high-frequency circuit 1 based on the band (frequency band) used.
  • the antenna 2 is not an essential component in the communication device 4 according to the present embodiment.
  • the high frequency circuit 1 includes power amplifiers 10 and 20, preamplifiers 11 and 21, phase shift lines 12 and 22, transformers 31 and 32, matching circuits 71, 72, 73 and 74, It comprises switches 40 , 41 and 42 , filters 61 and 62 , bias circuit 50 , output terminals 76 and 77 , input terminal 110 and antenna connection terminal 100 .
  • the input terminal 110 is connected to the RFIC 3, and the antenna connection terminal 100 is connected to the antenna 2.
  • the output terminal 76 is an example of a first output terminal, and the output terminal 77 is an example of a second output terminal.
  • Each of the input terminal 110, the antenna connection terminal 100, the output terminal 76, and the output terminal 77 may be a metal conductor such as a metal electrode and a metal bump, or may be a single point on metal wiring.
  • the transformer 31 has an input side coil 311 and an output side coil 312 .
  • One end of the input coil 311 is connected to the input terminal 110, and the other end of the input coil 311 is grounded.
  • One end of the output side coil 312 is connected to the input terminal of the preamplifier 11 and the other end of the output side coil 312 is connected to the input terminal of the preamplifier 21 .
  • Transformer 31 divides the high-frequency signal output from input terminal 110 into two high-frequency signals having opposite phases. The two distributed high-frequency signals are input to preamplifiers 11 and 21, respectively.
  • the preamplifier 11 amplifies the high-frequency signals of band A and band B input from one end of the output side coil 312 .
  • the preamplifier 21 amplifies the high-frequency signals of band A and band B input from the other end of the output side coil 312 .
  • the power amplifier 10 is an example of a first amplification element and has an amplification transistor.
  • the power amplifier 20 is an example of a second amplification element and has an amplification transistor.
  • the amplification transistor is, for example, a bipolar transistor such as a heterojunction bipolar transistor (HBT) or a field effect transistor such as a MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • HBT heterojunction bipolar transistor
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • the power amplifiers 10 and 20 function as class A (or class AB) amplifying elements capable of amplifying all power levels of the input signal, and are class C capable of amplifying with low distortion in the high output region. It also functions as an amplification element. Power amplifiers 10 and 20 can switch between class A (or class AB) operation and class C operation depending on the magnitude of the bias voltage supplied from bias circuit 50 .
  • a phase shift circuit may be arranged instead of the transformer 31 . Also, the transformer 31 and the preamplifiers 11 and 21 may be omitted.
  • the input terminal of the power amplifier 10 is connected to the output terminal of the preamplifier 11 via the matching circuit 71 .
  • An input terminal of the power amplifier 20 is connected to an output terminal of the preamplifier 21 via a matching circuit 72 .
  • the phase shift line 12 is an example of a first phase shift circuit, and is, for example, a 1/4 wavelength transmission line.
  • the phase shift line 12 delays the phase of the high frequency signal input from one end thereof by 1/4 wavelength and outputs it from the other end.
  • One end of the phase shift line 12 is connected to the output terminal of the power amplifier 10 and the other end of the phase shift line 12 is connected to one end of the input side coil 321 .
  • the phase shift line 22 is an example of a second phase shift circuit and is, for example, a 1/4 wavelength transmission line.
  • the phase shift line 22 delays the phase of the high-frequency signal input from one end thereof by 1/4 wavelength and outputs it from the other end.
  • One end of the phase shift line 22 is connected to the output terminal of the power amplifier 20 and the other end of the phase shift line 22 is connected to the other end of the input side coil 321 .
  • first phase shift circuit and the second phase shift circuit may not have the form of phase shift lines, and may be, for example, circuits composed of chip-shaped inductors and capacitors. More specifically, each of the first phase shift circuit and the second phase shift circuit has two inductors connected in series with each other and a capacitor connected between the connection point of the two inductors and the ground. It may be an LC circuit. Also, each of the first phase shift circuit and the second phase shift circuit includes two capacitors connected in series with each other, an inductor connected between one end of one of the two capacitors and the ground, and an LC circuit having an inductor connected between the other end of the one capacitor and ground.
  • FIG. 1B is a circuit configuration diagram of a high-frequency circuit 1C according to Modification 1 of the embodiment.
  • each of the first phase shift circuit and the second phase shift circuit is the LC circuit.
  • the high frequency circuit 1C includes power amplifiers 10 and 20, preamplifiers 11 and 21, phase shift circuits 13 and 14, transformers 31 and 32, matching circuits 71, 72, 73 and 74, It comprises switches 40 , 41 and 42 , filters 61 and 62 , bias circuit 50 , output terminals 76 and 77 , input terminal 110 and antenna connection terminal 100 .
  • a high-frequency circuit 1C according to this modification differs from the high-frequency circuit 1 according to the embodiment in the configuration of the phase shift circuit.
  • description of the same points as those of the high-frequency circuit 1 according to the embodiment will be omitted, and different points will be mainly described.
  • the phase shift circuit 13 is an example of a first phase shift circuit and has capacitors 231 and 232 and inductors 233 and 234 .
  • the capacitor 231 is an example of a fifth capacitor and has one end (one electrode) connected to the output terminal of the power amplifier 10 .
  • the capacitor 232 is an example of a sixth capacitor, and has one end (one electrode) connected to the other end (the other electrode) of the capacitor 231 and the other end (the other electrode) connected to one end of the input side coil 321 . ing. That is, capacitors 231 and 232 are connected in series between the output terminal of power amplifier 10 and one end of input side coil 321 .
  • the inductor 233 is an example of a fifth inductor, and is connected between the connection point between the capacitors 231 and 232 and the ground.
  • the inductor 234 is an example of a sixth inductor, and is connected between the connection point between the capacitor 232 and one end of the input side coil 321 and the ground.
  • the phase shift circuit 14 is an example of a second phase shift circuit and has capacitors 241 and 242 and inductors 243 and 244.
  • the capacitor 241 is an example of a seventh capacitor and has one end (one electrode) connected to the output terminal of the power amplifier 20 .
  • the capacitor 242 is an example of an eighth capacitor, and has one end (one electrode) connected to the other end (the other electrode) of the capacitor 241 and the other end (the other electrode) connected to the other end of the input side coil 321 . It is That is, capacitors 241 and 242 are connected in series between the output terminal of power amplifier 20 and the other end of input side coil 321 .
  • the inductor 243 is an example of a seventh inductor, and is connected between the connection point between the capacitors 241 and 242 and the ground.
  • the inductor 244 is an example of an eighth inductor, and is connected between the connection point between the capacitor 242 and the other end of the input side coil 321 and the ground.
  • the phase shift circuit 13 delays the phase of the high-frequency signal input from one end of the capacitor 231 by 1/4 wavelength and outputs it from the other end of the capacitor 232. Also, the phase shift circuit 14 delays the phase of the high-frequency signal input from one end of the capacitor 241 by 1/4 wavelength and outputs it from the other end of the capacitor 242 .
  • both the phase shift circuits 13 and 14 are composed of two capacitors and two inductors. A configuration having two capacitors and two inductors is sufficient.
  • a phase shift circuit is defined as a circuit that advances or delays the phase shift of a high-frequency signal propagating through a transmission line.
  • the phase shift circuit has (1) a line width larger or smaller than the line connected to the phase shift circuit, and (2) a spiral or meander type phase shift line having a longer line length. is.
  • the phase shift circuit may be configured with circuit elements such as an inductor and a capacitor.
  • the transformer 32 is an example of an output transformer and has an input side coil 321 and an output side coil 322 .
  • One end of the input side coil 321 is connected to the other end of the phase shift line 12 and the other end of the input side coil 321 is connected to the other end of the phase shift line 22 .
  • the middle point of the input side coil 321 is connected to the power supply (power supply voltage Vcc).
  • One end of the output side coil 322 is connected to the output terminal 76 via the matching circuit 73 , and the other end of the output side coil 322 is connected to the output terminal 77 via the matching circuit 74 .
  • the switch 41 is an example of a first switch and is connected between the output terminal 76 and the ground.
  • the switch 42 is an example of a second switch and is connected between the output terminal 77 and the ground.
  • the filter 61 is an example of a first filter and has a passband including band A (first band). An input terminal of the filter 61 is connected to the output terminal 76 .
  • Filter 62 is an example of a second filter and has a passband including band B (second band). The input end of filter 62 is connected to output terminal 77 .
  • the switch 40 is an example of an antenna switch, is connected to the antenna connection terminal 100, switches connection and disconnection between the antenna connection terminal 100 and the filter 61, and connects and disconnects the antenna connection terminal 100 and the filter 62. switch.
  • the matching circuit 71 matches the output impedance of the preamplifier 11 and the input impedance of the power amplifier 10 .
  • the matching circuit 72 matches the output impedance of the preamplifier 21 and the input impedance of the power amplifier 20 .
  • the matching circuit 73 performs impedance matching between the transformer 32 and the filter 61 .
  • the matching circuit 74 performs impedance matching between the transformer 32 and the filter 62 .
  • the filters 61 and 62, the switch 40, and the matching circuits 71-74 are not essential components of the high-frequency circuit according to the present invention.
  • a bias circuit 50 is connected to power amplifiers 10, 20 and preamplifiers 11 and 21, and supplies a bias voltage (and/or bias current) to each of these amplifiers.
  • the bias circuit 50 has bias supply circuits 51, 52, 53 and 54, for example.
  • the bias supply circuit 51 is an example of a first bias circuit, and supplies the power amplifier 10 with a first bias voltage (and/or a first bias current).
  • the bias supply circuit 52 is an example of a second bias circuit, and supplies the power amplifier 20 with a second bias voltage (and/or a second bias current).
  • the bias supply circuit 53 supplies the preamplifier 11 with a third bias voltage (and/or a third bias current).
  • the bias supply circuit 54 supplies the preamplifier 21 with a fourth bias voltage (and/or a fourth bias current).
  • the bias circuit 50 changes the first bias voltage (and/or the first bias current) supplied to the power amplifier 10 in synchronization with the switching timing of conduction and non-conduction of the switches 41 and 42, and also changes the power amplifier. Varying the second bias voltage (and/or the second bias current) supplied to 20 . Also, the voltage value (current value) of the first bias voltage (and/or the first bias current) is different from the voltage value (current value) of the second bias voltage (and/or the second bias current).
  • the bias voltage is supplied from the bias circuit 50 to the power amplifiers 10 and 20.
  • the bias circuit 50 supplies a bias current.
  • a bias current is supplied as a bias voltage by a resistive element arranged on a path connecting the amplifiers 10 and 20 . Therefore, in the high-frequency circuit according to the present invention, "the bias voltage supplied from the bias circuit 50 to the power amplifiers 10 and 20" can be rephrased as “the bias current supplied from the bias circuit 50 to the power amplifiers 10 and 20". It is possible. Further, along with this, “the voltage value of the first bias voltage and the voltage value of the second bias voltage are different” means “the current value of the first bias current and the current value of the second bias current are different.” ” can be rephrased.
  • the bias supply circuit 51 supplies the power amplifier 10 with a second bias voltage (and/or a second bias current). a first bias voltage (and/or a first bias current) having a voltage value (current value) greater than the
  • the bias supply circuit 52 supplies the power amplifier 20 with a voltage lower than the first bias voltage (and/or the first bias current).
  • a second bias voltage (and/or a second bias current) having a value (current value) is provided.
  • the bias supply circuit 51 supplies the power amplifier 10 with a first bias voltage having a voltage value smaller than the second bias voltage.
  • the bias supply circuit 52 supplies the power amplifier 20 with a second bias having a voltage value higher than the first bias voltage. Supply voltage.
  • the bias circuit 50 does not have to have the four bias supply circuits 51 to 54.
  • a single bias supply circuit may supply a plurality of bias voltages having different voltage values to each amplifier. .
  • each of Band A and Band B, and each of Band A to Band D are for a communication system constructed using radio access technology (RAT).
  • RAT radio access technology
  • It means a frequency band predefined by a standardization organization (e.g., 3GPP (registered trademark) (3rd Generation Partnership Project), IEEE (Institute of Electrical and Electronics Engineers), etc.), and is not limited to the bands exemplified above.
  • 3GPP registered trademark
  • IEEE Institute of Electrical and Electronics Engineers
  • a communication system for example, a 4G-LTE system, a 5G-NR system, a WLAN (Wireless Local Area Network) system, etc. can be used, but the communication system is not limited to these.
  • the high-frequency circuit 1 can transmit high-frequency signals of band A and band B from the input terminal 110 toward the antenna connection terminal 100 .
  • the signal of band A can be output via the output terminal 76 and the signal of band B can be output via the output terminal 77 .
  • Power amplifiers 10 and 20 can operate exclusively as carrier amplifiers and peak amplifiers depending on the magnitude of the bias voltage supplied from bias circuit 50 . Therefore, the high-frequency circuit 1 can function as a Doherty-type power amplifier circuit having high efficiency and a large back-off amount for the signals of band A and band B.
  • a Doherty power amplifier circuit means an amplifier circuit that achieves high efficiency by using multiple power amplifiers as carrier amplifiers and peak amplifiers.
  • a carrier amplifier means an amplifier in a Doherty-type power amplifier circuit that operates regardless of whether the power of a high-frequency signal (input) is low or high.
  • a peak amplifier means an amplifier in a Doherty power amplifier circuit that mainly operates when the power of a high-frequency signal (input) is high. Therefore, when the input power of the high frequency signal is low, the high frequency signal is mainly amplified by the carrier amplifier, and when the input power of the high frequency signal is high, the high frequency signal is amplified and synthesized by the carrier amplifier and the peak amplifier. Due to such operation, in the Doherty power amplifier circuit, the load impedance seen from the carrier amplifier increases at low output power, and the efficiency at low output power is improved.
  • the power amplifiers 10 and 20 have different sizes. According to this, the saturated powers (intercept points) of power amplifiers 10 and 20 can be made different. Therefore, the back-off amount, which is the power difference from the high output region in which the carrier amplifier and peak amplifier are on to the low output region in which only the carrier amplifier is on, is set to the carrier amplifier and peak amplifier of power amplifiers 10 and 20. can be changed according to the switching of .
  • the size of the amplifier depends on the number of stages, cells, or fingers of the transistors that make up the amplifier. Therefore, different sizes have different transistor stages, cells or fingers.
  • FIG. 2A is a circuit state diagram of the high-frequency circuit 1 according to the embodiment when transmitting a band A signal in the high power mode.
  • FIG. 2B is a circuit state diagram of the high-frequency circuit 1 according to the embodiment when transmitting a band A signal in the middle/low power mode.
  • the power amplifier 10 when the high-frequency circuit 1 transmits a signal of band A in the high power mode, the power amplifier 10 operates as a carrier amplifier (class A or class AB operation), and the power amplifier 20 operates as a peak amplifier. (Class C operation).
  • the bias supply circuit 51 supplies the power amplifier 10 with a first bias voltage having a higher voltage value than the second bias voltage.
  • the bias supply circuit 52 supplies the power amplifier 20 with a second bias voltage having a voltage value lower than that of the first bias voltage.
  • the switch 41 is in a non-conducting state and the switch 42 is in a conducting state.
  • both power amplifiers 10 and 20 When the band A signal is transmitted in high power mode, both power amplifiers 10 and 20 operate (ON).
  • a band A signal transmitted through the input terminal 110, the preamplifier 11, the power amplifier 10, and the phase shift line 12 and a band A signal transmitted through the input terminal 110, the preamplifier 21, the power amplifier 20, and the phase shift line 22 are are voltage-synthesized by the transformer 32 , and the voltage-synthesized band A signal is output from the antenna connection terminal 100 via the output terminal 76 , the filter 61 and the switch 40 .
  • one of the two power amplifiers always operates as a carrier amplifier and the other always operates as a peak amplifier.
  • a transmission line is connected. Therefore, a phase difference of 90 degrees is added to the signals input to the two preamplifiers, and a phase difference of 180 degrees is added to the two band A signals input to the output transformer.
  • the two power amplifiers 10 and 20 exclusively switch between the carrier amplifier and the peak amplifier. Connected. Therefore, a 180-degree phase difference is added to the signals input to the two preamplifiers by the transformer 31, and a 180-degree phase difference is added to the two band A signals input to the transformer 32. be done.
  • the high frequency circuit 1 As described above, the signals input to the two preamplifiers are added with a phase difference of 180 degrees by the transformer 31. Therefore, the high frequency circuit 1 is a differential amplification type power amplifier. It can also be applied as an amplifier.
  • the power amplifier 10 when the high-frequency circuit 1 transmits a signal of band A in the middle/low power mode, the power amplifier 10 operates as a carrier amplifier (class A or class AB operation), and the power amplifier 20 operates as a peak amplifier (class C operation).
  • the bias supply circuit 51 supplies the power amplifier 10 with a first bias voltage having a higher voltage value than the second bias voltage.
  • the bias supply circuit 52 supplies the power amplifier 20 with a second bias voltage having a voltage value lower than that of the first bias voltage.
  • the switch 41 is in a non-conducting state and the switch 42 is in a conducting state.
  • the power amplifier 10 When the band A signal is transmitted in the middle/low power mode, the power amplifier 10 operates (ON) and the power amplifier 20 does not operate (OFF). In this case, the output impedance of the power amplifier 20 is open, and the impedance of the other end of the input side coil 321 is shorted by the phase shift line 22 .
  • the band A signal transmitted through the input terminal 110 , the preamplifier 11 , the power amplifier 10 , and the phase shift line 12 is voltage-converted by the transformer 32 , and the voltage-converted band A signal is output to the output terminal 76 and the filter 61 . and output from the antenna connection terminal 100 via the switch 40 .
  • the output impedance of the power amplifier 10 is doubled in the middle/low power mode as compared to the high power mode. That is, in the middle/low power mode, the power amplifier 20 is turned off and the output impedance of the power amplifier 10 is increased, so that the high frequency circuit 1 can operate with high efficiency.
  • both the power amplifiers 10 and 20 operate to output a high power signal, and the output impedance of the power amplifiers 10 and 20 is low, thereby suppressing signal distortion. becomes possible.
  • FIG. 3A is a circuit state diagram of the high-frequency circuit 1 according to the embodiment when transmitting a band B signal in the high power mode.
  • FIG. 3B is a circuit state diagram of the high-frequency circuit 1 according to the embodiment when transmitting a band B signal in the middle/low power mode.
  • the power amplifier 20 when the high-frequency circuit 1 transmits a signal of band B in the high power mode, the power amplifier 20 operates as a carrier amplifier (class A or class AB operation), and the power amplifier 10 operates as a peak amplifier. (Class C operation).
  • the bias supply circuit 51 supplies the power amplifier 10 with a first bias voltage having a voltage value smaller than that of the second bias voltage.
  • the bias supply circuit 52 supplies the power amplifier 20 with a second bias voltage having a voltage value higher than the first bias voltage.
  • the switch 41 is in a conducting state, and the switch 42 is in a non-conducting state.
  • both power amplifiers 10 and 20 When the signal of band B is transmitted in high power mode, both power amplifiers 10 and 20 operate (ON).
  • a band B signal transmitted through the input terminal 110, the preamplifier 11, the power amplifier 10, and the phase shift line 12 and a band B signal transmitted through the input terminal 110, the preamplifier 21, the power amplifier 20, and the phase shift line 22 are are voltage-synthesized by the transformer 32 , and the voltage-synthesized band B signal is output from the antenna connection terminal 100 via the output terminal 77 , the filter 62 and the switch 40 .
  • the power amplifier 20 when the high-frequency circuit 1 transmits a signal of band B in the middle/low power mode, the power amplifier 20 operates as a carrier amplifier (class A or class AB operation), and the power amplifier 10 operates as a peak amplifier (class C operation).
  • the bias supply circuit 51 supplies the power amplifier 10 with a first bias voltage having a voltage value smaller than that of the second bias voltage.
  • the bias supply circuit 52 supplies the power amplifier 20 with a second bias voltage having a voltage value higher than the first bias voltage.
  • the switch 41 is in a conducting state, and the switch 42 is in a non-conducting state.
  • the power amplifier 20 When the signal of band B is transmitted in the middle/low power mode, the power amplifier 20 operates (ON) and the power amplifier 10 does not operate (OFF). In this case, the output impedance of the power amplifier 10 is open, and the impedance at one end of the input side coil 321 is shorted by the phase shift line 12 .
  • the band B signal transmitted through the input terminal 110 , the preamplifier 21 , the power amplifier 20 , and the phase shift line 22 is voltage-converted by the transformer 32 , and the voltage-converted band B signal is output to the output terminal 77 and the filter 62 . and output from the antenna connection terminal 100 via the switch 40 .
  • the output impedance of the power amplifier 20 is doubled in the middle/low power mode as compared to the high power mode. That is, in the middle/low power mode, the power amplifier 10 is turned off and the output impedance of the power amplifier 20 is increased, so that the high frequency circuit 1 can operate with high efficiency.
  • both the power amplifiers 10 and 20 operate to output a high power signal, and the output impedance of the power amplifiers 10 and 20 is low, thereby suppressing signal distortion. becomes possible.
  • FIG. 4 is an operation flowchart showing the power amplification method of the high frequency circuit 1 according to the embodiment.
  • control unit of the high-frequency circuit 1 selects which of band A and band B signals to transmit, for example, based on an instruction from the RFIC 3 (S10).
  • the control unit of the high frequency circuit 1 When transmission of the band A signal is selected in step S10, the control unit of the high frequency circuit 1 supplies a first bias voltage having a higher voltage value than the second bias voltage from the bias circuit 50 to the power amplifier 10. . This causes the power amplifier 10 to operate as a carrier amplifier. Further, the control section of the high frequency circuit 1 supplies a second bias voltage having a voltage value smaller than the first bias voltage from the bias circuit 50 to the power amplifier 20 . This causes the power amplifier 20 to operate as a peak amplifier. Further, the control unit of the high-frequency circuit 1 brings the switch 41 into a non-conducting state and brings the switch 42 into a conducting state (S20). As a result, when transmitting a band A signal, the high frequency circuit 1 operates as a Doherty power amplifier with the power amplifier 10 as a carrier amplifier and the power amplifier 20 as a peak amplifier. transmit a band A signal.
  • the control unit of the high-frequency circuit 1 supplies the power amplifier 10 with a first bias voltage having a smaller voltage value than the second bias voltage from the bias circuit 50. supply. This causes the power amplifier 10 to operate as a peak amplifier. Further, the control section of the high-frequency circuit 1 supplies a second bias voltage having a higher voltage value than the first bias voltage from the bias circuit 50 to the power amplifier 20 . This causes the power amplifier 20 to operate as a carrier amplifier. Further, the control unit of the high-frequency circuit 1 brings the switch 41 into the conducting state and brings the switch 42 into the non-conducting state (S30). As a result, when transmitting a band B signal, the high frequency circuit 1 operates as a Doherty power amplifier using the power amplifier 20 as a carrier amplifier and the power amplifier 10 as a peak amplifier. transmit band B signals.
  • the power amplifiers 10 and 20 can be exclusively switched to the carrier amplifier and the peak amplifier.
  • the switches 41 and 42 are exclusively switched between conduction and non-conduction to transmit the band A signal via the output terminal 76 and transmit the band B signal to the output terminal 76. 77 can be sent. Therefore, since it is possible to avoid fixing one of the power amplifiers 10 and 20 to a carrier amplifier that is likely to deteriorate and operate it, the high frequency circuit 1 having a Doherty power amplifier in which the deterioration of the power amplifiers 10 and 20 is suppressed. can provide
  • the high-frequency circuit 1 according to the present embodiment is not limited to transmitting two different bands.
  • the high-frequency circuit 1 according to this embodiment can also be applied when transmitting a signal of one band.
  • the control section of the high-frequency circuit 1 supplies a first bias voltage having a higher voltage value than the second bias voltage from the bias circuit 50 to the power amplifier 10 during the first period. This causes the power amplifier 10 to operate as a carrier amplifier. Further, the control section of the high frequency circuit 1 supplies a second bias voltage having a voltage value smaller than the first bias voltage from the bias circuit 50 to the power amplifier 20 . This causes the power amplifier 20 to operate as a peak amplifier. Further, the control unit of the high-frequency circuit 1 brings the switch 41 into a non-conducting state and brings the switch 42 into a conducting state.
  • the high frequency circuit 1 when transmitting a band A signal in the first period, operates as a Doherty power amplifier with the power amplifier 10 as a carrier amplifier and the power amplifier 20 as a peak amplifier.
  • a band A signal is transmitted via terminal 76 .
  • control section of the high-frequency circuit 1 supplies a first bias voltage having a voltage value smaller than the second bias voltage from the bias circuit 50 to the power amplifier 10 during a second period different from the first period. This causes the power amplifier 10 to operate as a peak amplifier. Further, the control section of the high-frequency circuit 1 supplies a second bias voltage having a higher voltage value than the first bias voltage from the bias circuit 50 to the power amplifier 20 . This causes the power amplifier 20 to operate as a carrier amplifier. Further, the control unit of the high-frequency circuit 1 brings the switch 41 into the conducting state and brings the switch 42 into the non-conducting state.
  • the high frequency circuit 1 when transmitting a band A signal in the second period, operates as a Doherty power amplifier with the power amplifier 10 as a carrier amplifier and the power amplifier 20 as a peak amplifier.
  • a band A signal is transmitted via terminal 77 .
  • the power amplifiers 10 and 20 can be exclusively switched to the carrier amplifier and the peak amplifier.
  • the band A signal is transmitted via the output terminal 76 in the first period, and the second A band A signal can be transmitted via output terminal 77 during the period. Therefore, since it is possible to avoid fixing one of the power amplifiers 10 and 20 to a carrier amplifier that is likely to deteriorate and operate it, the high frequency circuit 1 having a Doherty power amplifier in which the deterioration of the power amplifiers 10 and 20 is suppressed. can provide
  • control section of the high frequency circuit 1 controls the magnitude of the bias voltage of the bias circuit 50 and the conduction of the switches 41 and 42.
  • the RFIC 3 included in the communication device 4 may control them.
  • the power amplification method of the high-frequency circuit 1 switches between the carrier amplifier and the peak amplifier by changing the magnitude of the bias voltage supplied to each amplifier, but is not limited to this.
  • a method of setting each amplifier as a carrier amplifier and a peak amplifier it is also possible to vary the magnitude of the power supply voltage supplied to each amplifier, or vary the size of each amplifier.
  • the power amplifier 10 when the switch 41 is in a non-conducting state and the switch 42 is in a conducting state, the power amplifier 10 operates in class AB or class A, and , when the power amplifier 20 is operated in class C, the switch 41 is made conductive, and the switch 42 is made non-conductive, the power amplifier 10 is operated in class C and the power amplifier 20 is operated in class AB or class A. may operate.
  • FIG. 5 is a circuit configuration diagram of a high frequency circuit 1A according to Modification 2 of the embodiment.
  • the high frequency circuit 1A includes power amplifiers 10 and 20, preamplifiers 11 and 21, phase shift lines 12 and 22, transformers 31 and 32, matching circuits 71, 72, 73, 74, and 120. , 130, 140 and 150, filters 61, 62, 63 and 64, a bias circuit 50, output terminals 76 and 77, an input terminal 110, and an antenna connection terminal 100 (not shown).
  • a high frequency circuit 1A according to this modification has two matching circuits 120 and 130 and filters 61 and 63 connected to an output terminal 76 and two matching circuits 120 and 130 and filters 61 and 63 connected to an output terminal 77, unlike the high frequency circuit 1 according to the embodiment.
  • the configuration differs in that circuits 140 and 150 and filters 62 and 64 are connected.
  • descriptions of the same points as those of the high-frequency circuit 1 according to the embodiment will be omitted, and different points will be mainly described.
  • the filter 61 is an example of a first filter and has a passband including band A (first band).
  • the input end of filter 61 is connected to matching circuit 120 via terminal 172 .
  • the filter 62 is an example of a second filter and has a passband including band B (second band).
  • the input of filter 62 is connected to matching circuit 140 via terminal 174 .
  • the filter 63 is an example of a third filter and has a passband including band C (third band).
  • the input end of filter 63 is connected to matching circuit 130 via terminal 173 .
  • the filter 64 is an example of a fourth filter and has a passband including band D (fourth band).
  • the input of filter 64 is connected to matching circuit 150 via terminal 175 .
  • the switch 60 is an example of an antenna switch, is connected to the antenna connection terminal 100, switches connection and disconnection between the antenna connection terminal 100 and the filter 61, and connects and disconnects the antenna connection terminal 100 and the filter 62. , switching between connection and disconnection between the antenna connection terminal 100 and the filter 63 , and switching between connection and disconnection between the antenna connection terminal 100 and the filter 64 .
  • each of the filters 61 to 64 may constitute a multiplexer whose common terminal is connected to the antenna connection terminal 100, in which case the switch 60 may be omitted. Further, each of the filters 61 to 64 may constitute a duplexer together with a reception filter if it is for frequency division duplex (FDD), or may configure a duplexer together with a filter for time division duplex (TDD). Division Duplex), a switch for switching between transmission and reception may be arranged at least one of the front stage and the rear stage of each filter.
  • FDD frequency division duplex
  • TDD time division duplex
  • Division Duplex a switch for switching between transmission and reception may be arranged at least one of the front stage and the rear stage of each filter.
  • the matching circuit 120 is an example of a first circuit, and is connected between the output terminal 76 and the filter 61 .
  • Matching circuit 120 has switches 121 and 122 , capacitor 123 and inductor 124 .
  • the capacitor 123 is an example of a first capacitor, and is arranged in series on the first path connecting the output terminal 76 and the filter 61 .
  • a switch 122 is an example of a first switch and is connected between the first path and the ground.
  • the switch 121 is an example of a third switch, the inductor 124 is an example of a first inductor, and the switch 121 and the inductor 124 are connected in series with each other.
  • a series connection circuit of the switch 121 and the inductor 124 is connected in parallel to the first path.
  • the matching circuit 140 is an example of a second circuit and is connected between the output terminal 77 and the filter 62 .
  • Matching circuit 140 has switches 141 and 142 , capacitor 143 and inductor 144 .
  • the capacitor 143 is an example of a third capacitor and is arranged in series on the second path connecting the output terminal 77 and the filter 62 .
  • Switch 142 is an example of a second switch and is connected between the second path and the ground.
  • the switch 141 is an example of a fifth switch, the inductor 144 is an example of a third inductor, and the switch 141 and the inductor 144 are connected in series with each other.
  • a series connection circuit of the switch 141 and the inductor 144 is connected in parallel to the second path.
  • the matching circuit 130 is an example of a third circuit and is connected between the output terminal 76 and the filter 63 .
  • Matching circuit 130 has switches 131 and 132 , capacitor 133 and inductor 134 .
  • the capacitor 133 is an example of a second capacitor, and is arranged in series on the third path connecting the output terminal 76 and the filter 63 .
  • a switch 132 is an example of a sixth switch and is connected between the third path and the ground.
  • the switch 131 is an example of a fourth switch, the inductor 134 is an example of a second inductor, and the switch 131 and the inductor 134 are connected in series with each other.
  • a series connection circuit of the switch 131 and the inductor 134 is connected in parallel to the third path.
  • the matching circuit 150 is an example of a fourth circuit and is connected between the output terminal 77 and the filter 64.
  • Matching circuit 150 has switches 151 and 152 , capacitor 153 and inductor 154 .
  • the capacitor 153 is an example of a fourth capacitor, and is arranged in series on the fourth path connecting the output terminal 77 and the filter 64 .
  • a switch 152 is an example of a seventh switch and is connected between the fourth path and the ground.
  • the switch 151 is an example of an eighth switch, the inductor 154 is an example of a fourth inductor, and the switch 151 and the inductor 154 are connected in series with each other.
  • a series connection circuit of the switch 151 and the inductor 154 is connected in parallel to the fourth path.
  • matching circuits 120 , 130 , 140 and 150 may be included in the IC 160 .
  • each of the switches 121, 122, 131, 132, 141, 142, 151 and 152 is a switch element including, for example, an FET.
  • the high-frequency circuit 1A can transmit a high-frequency signal of any one of bands A to D from the input terminal 110 to the antenna connection terminal 100.
  • the switches 121 and 122 When transmitting a signal of band A, the switches 121 and 122 are in a non-conducting state, the switch 142 is in a conducting state, and the switch 141 is in a non-conducting state.
  • the other end of the output coil 322 In order to transmit the band A signal output from the power amplifiers 10 and 20 to the first path via the output terminal 76, the other end of the output coil 322 must be short-circuited. Since there is a connection wire between the other end of the output side coil 322 and the switch 142, even if the switch 142 is turned on and the vicinity of the switch 142 is shorted to the ground, the impedance of the other end of the output side coil 322 is The inductance component of the connection wiring deviates from the short-circuit point.
  • a capacitor 143 arranged in series between the switch 142 and the other end of the output side coil 322 short-circuits the impedance at the other end of the output side coil 322 shifted from the short-circuit point due to the inductance component of the connection wiring. state can be made.
  • the capacitor 143 is connected closer to the other end of the output side coil 322.
  • the impedance at the other end of the output side coil 322 shifted from the short-circuit point due to the inductance component of the connection wiring can be brought into a short-circuit state with high accuracy.
  • the matching circuit 130 has a parallel connection circuit of the inductor 134 and the capacitor 133 between the output terminal 76 and the ground.
  • a parallel connection circuit (LC resonant circuit) of inductor 134 and capacitor 133 functions as a band-elimination filter that does not pass band A signals.
  • the matching circuit 130 is in an open state with respect to the band A signal as the switches 131 and 132 are turned on. This allows the band A signal to pass through the first path with low loss.
  • the switches 151 and 152 may be in a conductive state.
  • the matching circuit 150 has a parallel connection circuit of the inductor 154 and the capacitor 153 between the output terminal 77 and the ground.
  • the parallel connection circuit (LC resonance circuit) of the inductor 154 and the capacitor 153 can function as a band-elimination filter that does not pass band A signals.
  • the matching circuit 150 becomes open for the band A signal as the switches 151 and 152 become conductive.
  • the band A signals output from the power amplifiers 10 and 20 are transmitted from the first path to the filter 61 without passing through the switches arranged in series. Therefore, the high-frequency circuit 1A can transmit a high-frequency signal of band A with low loss.
  • the switches 131 and 132 are rendered non-conductive, the switch 152 is rendered conductive, and the switch 151 is rendered non-conductive.
  • the other end of the output side coil 322 In order to transmit the band C signal output from the power amplifiers 10 and 20 to the third path via the output terminal 76, the other end of the output side coil 322 must be short-circuited. Since there is a connection wire between the other end of the output side coil 322 and the switch 152, even if the switch 152 is turned on and the vicinity of the switch 152 is shorted to the ground, the impedance of the other end of the output side coil 322 is The inductance component of the connection wiring deviates from the short-circuit point.
  • a capacitor 153 arranged in series between the switch 152 and the other end of the output side coil 322 short-circuits the impedance at the other end of the output side coil 322 shifted from the short-circuit point due to the inductance component of the connection wiring. state can be made.
  • the capacitor 153 and the switch 152 it is desirable that the capacitor 153 is connected closer to the other end of the output side coil 322. As a result, the impedance at the other end of the output side coil 322 shifted from the short-circuit point due to the inductance component of the connection wiring can be brought into a short-circuit state with high accuracy.
  • the switches 121 and 122 of the matching circuit 120 are turned on.
  • a parallel connection circuit of the inductor 124 and the capacitor 123 is arranged between the output terminal 76 and the ground.
  • a parallel connection circuit (LC resonance circuit) of the inductor 124 and the capacitor 123 functions as a band rejection filter that does not pass the band C signal.
  • the matching circuit 120 is in an open state with respect to the signal of the band C when the switches 121 and 122 are turned on. This allows the band C signal to pass through the third path with low loss.
  • the switches 141 and 142 may be in a conductive state.
  • the matching circuit 140 has a parallel connection circuit of the inductor 144 and the capacitor 143 between the output terminal 77 and the ground.
  • the parallel connection circuit (LC resonance circuit) of the inductor 144 and the capacitor 143 can function as a band rejection filter that does not pass the band C signal.
  • the matching circuit 140 is in an open state with respect to the band C signal as the switches 141 and 142 are in a conductive state.
  • the band C signals output from the power amplifiers 10 and 20 are transmitted from the third path to the filter 63 without passing through the switches arranged in series. Therefore, the high frequency circuit 1A can transmit the high frequency signal of the band C with low loss.
  • the switches 141 and 142 are rendered non-conductive, the switch 122 is rendered conductive, and the switch 121 is rendered non-conductive.
  • one end of the output coil 322 In order to transmit the band B signal output from the power amplifiers 10 and 20 to the second path via the output terminal 77, one end of the output coil 322 must be short-circuited. Since there is a connection wire between one end of the output side coil 322 and the switch 122, even if the switch 122 is turned on and the vicinity of the switch 122 is shorted to the ground, the impedance of one end of the output side coil 322 is The short-circuit point is shifted by the inductance component of the wiring.
  • a capacitor 123 arranged in series between the switch 122 and one end of the output side coil 322 changes the impedance at one end of the output side coil 322 shifted from the short-circuit point due to the inductance component of the connection wiring to a short-circuit state. It becomes possible to
  • the capacitor 123 and the switch 122 it is desirable that the capacitor 123 is connected closer to one end of the output side coil 322. As a result, the impedance at one end of the output side coil 322, which is displaced from the short-circuit point due to the inductance component of the connection wiring, can be brought into a short-circuit state with high accuracy.
  • the switches 151 and 152 of the matching circuit 150 are turned on.
  • the matching circuit 150 has a parallel connection circuit of the inductor 154 and the capacitor 153 between the output terminal 77 and the ground.
  • a parallel connection circuit (LC resonance circuit) of inductor 154 and capacitor 153 functions as a band rejection filter that does not pass band B signals.
  • the matching circuit 150 becomes open for the signal of the band B by turning on the switches 151 and 152 . This allows the band B signal to pass through the second path with low loss.
  • the switches 131 and 132 may be in a conducting state.
  • the matching circuit 130 has a parallel connection circuit of the inductor 134 and the capacitor 133 between the output terminal 76 and the ground.
  • the parallel connection circuit (LC resonance circuit) of the inductor 134 and the capacitor 133 can function as a band-elimination filter that does not pass band B signals.
  • the matching circuit 130 is in an open state with respect to the band B signal as the switches 131 and 132 are in a conductive state.
  • the band B signals output from the power amplifiers 10 and 20 are transmitted from the second path to the filter 62 without passing through the switches arranged in series. Therefore, the high-frequency circuit 1A can transmit the high-frequency signal of band B with low loss.
  • the switches 151 and 152 are rendered non-conductive, the switch 132 is rendered conductive, and the switch 131 is rendered non-conductive.
  • one end of the output coil 322 In order to transmit the band D signal output from the power amplifiers 10 and 20 to the fourth path via the output terminal 77, one end of the output coil 322 must be short-circuited. Since there is a connection wire between one end of the output side coil 322 and the switch 132, even if the switch 132 is turned on and the vicinity of the switch 132 is shorted to the ground, the impedance of one end of the output side coil 322 is The inductance component of the wiring deviates from the short-circuit point.
  • a capacitor 133 arranged in series between the switch 132 and one end of the output side coil 322 changes the impedance at one end of the output side coil 322 shifted from the short-circuited point due to the inductance component of the connection wiring to a short-circuit state. It becomes possible to
  • the capacitor 133 and the switch 132 it is desirable that the capacitor 133 is connected closer to one end of the output side coil 322. As a result, the impedance at one end of the output side coil 322, which is displaced from the short-circuit point due to the inductance component of the connection wiring, can be brought into a short-circuit state with high accuracy.
  • the switches 141 and 142 of the matching circuit 140 are turned on.
  • the matching circuit 140 has a parallel connection circuit of the inductor 144 and the capacitor 143 between the output terminal 77 and the ground.
  • a parallel connection circuit (LC resonance circuit) of inductor 144 and capacitor 143 functions as a band-elimination filter that does not pass band D signals. That is, the matching circuit 140 becomes open for the signal of the band D as the switches 141 and 142 become conductive. This allows the signal of band D to pass through the fourth path with low loss.
  • the switches 121 and 122 may be in a conductive state.
  • a parallel connection circuit of the inductor 124 and the capacitor 123 is arranged between the output terminal 76 and the ground.
  • the parallel connection circuit (LC resonance circuit) of the inductor 124 and the capacitor 123 can function as a band-elimination filter that does not pass the band D signal. That is, the matching circuit 120 becomes open to the signal of the band D as the switches 121 and 122 are turned on.
  • the band D signals output from the power amplifiers 10 and 20 are transmitted from the fourth path to the filter 64 without passing through the switches arranged in series. Therefore, the high-frequency circuit 1A can transmit the high-frequency signal of the band D with low loss.
  • the capacitor 123 of the matching circuit 120 functions as a phase (impedance) adjusting element at one end of the output side coil 322 when transmitting the band C signal, and when transmitting the band C signal, , functions as an element for an LC parallel resonant circuit for ensuring isolation between the first path and the second path.
  • the capacitor 133 of the matching circuit 130 functions as a phase (impedance) adjusting element at one end of the output side coil 322 when transmitting a band D signal, and when transmitting a band A signal, It functions as an LC parallel resonance circuit element for ensuring isolation between the first path and the second path.
  • the capacitor 143 of the matching circuit 140 functions as a phase (impedance) adjusting element at the other end of the output side coil 322 when transmitting a signal of band A, and when transmitting a signal of band D, , and functions as an LC parallel resonant circuit element for ensuring isolation between the third path and the fourth path.
  • the capacitor 153 of the matching circuit 150 functions as a phase (impedance) adjusting element at the other end of the output side coil 322 when transmitting a band C signal, and functions as a phase (impedance) adjusting element at the other end of the output side coil 322 when transmitting a band B signal. , and functions as an LC parallel resonant circuit element for ensuring isolation between the third path and the fourth path.
  • each of the capacitors 123, 133, 143 and 153 is a multifunctional element having multiple functions, so the number of circuit elements in the matching circuits 120 to 150 can be reduced. Therefore, the size of the high frequency circuit 1A can be reduced.
  • the switches 132 and 141, the capacitor 143, the inductor 144, the matching circuit 150, and the filter 64 may be omitted in the high frequency circuit 1A according to this modification.
  • the switch 142 is arranged close to the other end of the output side coil 322, the frequencies of the band A and the band C do not overlap, and the frequency interval is sufficiently secured. It is required that The operation of this circuit configuration will be described below.
  • the switches 121 and 122 are in a non-conducting state, and the switch 142 is in a conducting state. As a result, the impedance at the other end of the output side coil 322 can be short-circuited.
  • the switch 131 of the matching circuit 130 becomes conductive.
  • the matching circuit 130 has a parallel connection circuit of the inductor 134 and the capacitor 133 between the output terminal 76 and the terminal 173 .
  • a parallel connection circuit of inductor 134 and capacitor 133 functions as a filter that does not pass band A signals.
  • the matching circuit 130 is in an open state with respect to the band A signal due to the switch 131 being in a conductive state. This allows the band A signal to pass through the first path with low loss.
  • the switch 131 when transmitting a signal of band C, the switch 131 is in a non-conducting state and the switch 142 is in a conducting state. As a result, the impedance at the other end of the output side coil 322 can be short-circuited.
  • the switches 121 and 122 of the matching circuit 120 are turned on.
  • a parallel connection circuit of the inductor 124 and the capacitor 123 is arranged between the output terminal 76 and the ground.
  • a parallel connection circuit of the inductor 124 and the capacitor 123 functions as a band elimination filter that does not pass band C signals.
  • the matching circuit 120 is in an open state with respect to the signal of the band C when the switches 121 and 122 are turned on. This allows the band C signal to pass through the third path with low loss.
  • the switch 142 when transmitting a signal of band B, the switch 142 is in a non-conducting state and the switch 122 is in a conducting state.
  • one end of output side coil 322 In order to transmit the band B signal output from power amplifiers 10 and 20 to the second path via output terminal 77, one end of output side coil 322 must be short-circuited.
  • the capacitor 123 arranged in series between the switch 122 and one end of the output side coil 322 the inductance component of the connection wiring between the one end of the output side coil 322 and the switch 122 deviates from the short-circuit point. It is possible to short-circuit the impedance at one end of the output side coil 322 .
  • the band A signal can pass through the first path with low loss
  • the band B signal can pass through the second path with low loss
  • the band C signal can pass through the third path. can pass through with low loss.
  • a high-frequency circuit 1A having a plurality of amplifying elements and transformers capable of transmitting a plurality of high-frequency signals of bands A to C with low loss.
  • FIG. 6 is a circuit configuration diagram of a high-frequency circuit 1B according to Modification 3 of the embodiment.
  • the high frequency circuit 1B includes power amplifiers 10 and 20, preamplifiers 11 and 21, phase shift lines 12a, 12b, 22a and 22b, capacitors 12c and 22c, transformers 31 and 32, matching It comprises circuits 71 , 72 , 73 and 74 , switches 40 , 41 and 42 , filters 61 and 62 , bias circuit 50 , output terminals 76 and 77 , input terminal 110 and antenna connection terminal 100 .
  • a high-frequency circuit 1B according to this modification differs from the high-frequency circuit 1 according to the embodiment mainly in the configuration of the phase shift circuits connected to the output terminals of the power amplifiers 10 and 20.
  • FIG. Hereinafter, regarding the high-frequency circuit 1B according to the present modification, description of the same points as those of the high-frequency circuit 1 according to the embodiment will be omitted, and different points will be mainly described.
  • the phase shift lines 12a and 12b and the capacitor 12c form a first phase shift circuit, which shifts the phase of the input signal by approximately -90 degrees (delays it by 90 degrees).
  • the phase shift line 12a is an example of a first phase shift line, and has one end connected to the output terminal of the power amplifier 10 and the other end connected to one end of the phase shift line 12b.
  • the phase shift line 12 b is an example of a second phase shift line, and has one end connected to the other end of the phase shift line 12 a and the other end connected to one end of the input side coil 321 .
  • the capacitor 12c is an example of a ninth capacitor, and has one end (one electrode) connected to a connection point between the other end of the phase shift line 12a and one end of the phase shift line 12b, and the other end (the other electrode) connected to the ground. It is connected to the.
  • the capacitor 12c is connected between the connection point of the phase shift lines 12a and 12b and the ground, the total line length of the phase shift lines 12a and 12b is set shorter than 1/4 wavelength. Therefore, the high frequency circuit 1B can be miniaturized.
  • the phase shift lines 22a and 22b and the capacitor 22c form a second phase shift circuit, which shifts the phase of the input signal by approximately -90 degrees (delays it by 90 degrees).
  • the phase shift line 22a is an example of a third phase shift line, and has one end connected to the output terminal of the power amplifier 20 and the other end connected to one end of the phase shift line 22b.
  • the phase shift line 22b is an example of a fourth phase shift line, and has one end connected to the other end of the phase shift line 22a and the other end connected to the other end of the input side coil 321 .
  • the capacitor 22c is an example of a tenth capacitor, and has one end (one electrode) connected to a connection point between the other end of the phase shift line 22a and one end of the phase shift line 22b, and the other end (the other electrode) connected to the ground. It is connected to the.
  • the total line length of the phase shift lines 22a and 22b is set shorter than 1/4 wavelength by connecting the capacitor 22c between the connection point of the phase shift lines 22a and 22b and the ground. Therefore, the high frequency circuit 1B can be miniaturized.
  • Power amplifiers 10 and 20, preamplifiers 11 and 21, and matching circuits 71 and 72 may be included in semiconductor IC 80.
  • capacitors 12 c and 22 c may be included in semiconductor IC 80 .
  • the capacitors 12c and 22c are built in the semiconductor IC 80 together with the power amplifiers 10 and 20, the size of the high frequency circuit 1B can be reduced.
  • the capacitors 12c and 22c may be arranged between the power amplifier 10 and the power amplifier 20 in the semiconductor IC80. According to this, the space of the semiconductor IC 80 can be effectively used, which can contribute to the miniaturization of the high frequency circuit 1B.
  • both the first phase-shift circuit and the second phase-shift circuit have two phase-shift lines and capacitors. At least one of the phase circuits need only have two phase shift lines and a capacitor.
  • FIG. 7A is a plan view and a cross-sectional view of the high-frequency circuit 1 according to Example 1.
  • FIG. (a) of FIG. 7A is a plan view of the high-frequency circuit 1 according to the first embodiment, and is a perspective view of the main surface of the module substrate 90 from the positive side of the z-axis
  • (b) of FIG. 1 is a cross-sectional view of a high-frequency circuit 1 according to No. 1.
  • FIG. The cross section of the high-frequency circuit 1 in (b) of FIG. 7A is taken along line VIIA-VIIA in (a) of FIG. 7A. Also, in (a) of FIG.
  • FIG. 7A marks representing the functions of the power amplifiers 10 and 20 are attached so that the arrangement relationship of the power amplifiers 10 and 20 can be easily understood. not Also, in FIG. 7A, illustration of the wiring that connects the module substrate 90 and each circuit component is omitted.
  • the high-frequency circuit 1 shown in FIG. 7A may further include a resin member covering the surface of the module substrate 90 and part of the circuit components, and a shield electrode layer covering the surface of the resin member.
  • a resin member covering the surface of the module substrate 90 and part of the circuit components
  • a shield electrode layer covering the surface of the resin member.
  • illustration of the resin member and the shield electrode layer is omitted.
  • the high-frequency circuit 1 further has a module substrate 90 in addition to the circuit configuration shown in FIG. 1A. Also, the preamplifiers 11 and 21, the transformer 31, the matching circuits 71 to 74, the switches 40 to 42, and the filters 61 and 62 included in the high frequency circuit 1 are arranged on the module substrate 90 although not shown in FIG. 7A. may be
  • the module board 90 is a board on which circuit components that make up the high-frequency circuit 1 are mounted.
  • the module substrate 90 for example, a Low Temperature Co-fired Ceramics (LTCC) substrate having a laminated structure of a plurality of dielectric layers, a High Temperature Co-fired Ceramics (HTCC) substrate, A component-embedded substrate, a substrate having a redistribution layer (RDL), a printed substrate, or the like is used.
  • LTCC Low Temperature Co-fired Ceramics
  • HTCC High Temperature Co-fired Ceramics
  • RDL redistribution layer
  • the power amplifiers 10 and 20 are arranged on the surface of the module substrate 90 .
  • the power amplifiers 10 and 20 are included in the semiconductor IC 81.
  • the semiconductor IC 81 is arranged on the module substrate 90 .
  • the semiconductor IC 81 is configured using, for example, CMOS (Complementary Metal Oxide Semiconductor), and may be specifically manufactured by an SOI (Silicon on Insulator) process.
  • the semiconductor IC 81 may be made of at least one of GaAs, SiGe, and GaN.
  • the semiconductor material of the semiconductor IC 81 is not limited to the materials described above. At least one of preamplifiers 11 and 21 , matching circuits 71 and 72 , and switches 41 and 42 may be included in semiconductor IC 81 .
  • Phase shift lines 12 (fifth phase shift line) and 22 (sixth phase shift line), an input side coil 321 and an output side coil 322 are formed on or inside the module substrate 90 .
  • the phase shift lines 12 and 22, the input side coil 321, and the output side coil 322 are composed of planar conductors formed on the surface of the module substrate 90 or inside.
  • the phase shift lines 12 and 22, the input side coil 321, and the output side coil 322 may be formed on the same layer of the module substrate 90, or may be formed on different layers.
  • each of the phase shift lines 12 and 22, the input side coil 321, and the output side coil 322 may be formed over multiple layers.
  • the winding direction of the phase shift line 12 and the winding direction of the phase shift line 22 are the same.
  • FIG. 7B is a plan view and cross-sectional view of a high-frequency circuit 1C according to Example 2.
  • FIG. (a) of FIG. 7B is a plan view of a high-frequency circuit 1C according to Modification 1, and is a perspective view of the main surface of the module substrate 90 from the z-axis positive side, and (b) of FIG. 7B is a modification.
  • 1 is a cross-sectional view of a high-frequency circuit 1C according to No. 1.
  • FIG. The cross section of the high frequency circuit 1C in (b) of FIG. 7B is taken along line VIIB-VIIB in (a) of FIG. 7B. Also, in FIG.
  • a high-frequency circuit 1C according to the present embodiment differs from the high-frequency circuit 1 according to the first embodiment in the arrangement configuration of the phase shift circuit.
  • description of the same points as those of the high-frequency circuit 1 according to the first embodiment will be omitted, and different points will be mainly described.
  • the high frequency circuit 1C further has a module substrate 90 in addition to the circuit configuration shown in FIG. 1B. Also, preamplifiers 11 and 21, transformer 31, matching circuits 71-74, switches 40-42, and filters 61 and 62 included in high-frequency circuit 1C are arranged on module substrate 90, although not shown in FIG. 7B. may be
  • Phase shift circuits 13 and 14, an input side coil 321, and an output side coil 322 are formed on the surface of or inside the module substrate 90.
  • Capacitors 231 and 232 (not shown) and inductors 233 and 234 (not shown) constituting phase shift circuit 13 are chip-shaped circuit components, for example, surface-mounted components, and are mounted on the surface of module substrate 90.
  • Capacitors 241 and 242 (not shown) and inductors 243 and 244 (not shown) that constitute phase shift circuit 14 are chip-shaped circuit components, for example, surface-mounted components, and are mounted on the surface of module substrate 90.
  • the input side coil 321 and the output side coil 322 are composed of planar conductors formed on the surface of or inside the module substrate 90 .
  • the input side coil 321 and the output side coil 322 may be formed on the same layer of the module substrate 90, or may be formed on separate layers. Also, each of the input side coil 321 and the output side coil 322 may be formed over a plurality of layers.
  • the inductors 233 and 243 are arranged inside the input side coil 321 and the output side coil 322, and the capacitors 231 and 241 are arranged inside the input side coil 321 and the output side coil 321. It is arranged outside the side coil 322 .
  • the winding direction of inductor 233 (and 234) and the winding direction of inductor 243 (and 244) are preferably the same. According to this, the magnetic field coupling between the phase shift circuit 13 and the phase shift circuit 14 is reduced compared to the case where the winding directions of the inductors 233 (and 234) and the winding directions of the inductors 243 (and) 244) are opposite to each other. can be suppressed. Therefore, the transmission loss of the high frequency signal transmitted through the high frequency circuit 1C can be reduced.
  • high-frequency circuit 1 includes power amplifiers 10 and 20, transformer 32 having input side coil 321 and output side coil 322, and bias circuit 50 connected to power amplifiers 10 and 20. , an output terminal 76 connected to one end of the output side coil 322, an output terminal 77 connected to the other end of the output side coil 322, a switch 41 connected between the output terminal 76 and the ground, and an output A switch 42 connected between the terminal 77 and the ground, a phase shift line 12 whose input terminal is connected to the output terminal of the power amplifier 10 and whose output terminal is connected to one end of the input side coil 321, and whose input terminal is and a phase shift line 22 connected to the output terminal of the power amplifier 20 and having the output end connected to the other end of the input side coil 321 .
  • the power amplifiers 10 and 20 can be exclusively switched to the carrier amplifier and the peak amplifier.
  • carrier amplifiers are more prone to deterioration than peak amplifiers.
  • the high frequency circuit 1 having a Doherty power amplifier in which the deterioration of the power amplifiers 10 and 20 is suppressed. can provide
  • the bias circuit 50 includes a bias supply circuit 51 that changes the first bias voltage supplied to the power amplifier 10 in synchronization with switching timing of conduction and non-conduction of the switches 41 and 42; a bias supply circuit 52 for changing the second bias voltage supplied to the power amplifier 20 in synchronization with the switching timing of conduction and non-conduction of 41 and 42, the voltage value of the first bias voltage and the second bias voltage; may differ from the voltage value of
  • the bias supply circuit 51 supplies the power amplifier 10 with a first bias voltage having a relatively large voltage value. Further, when the power amplifier 20 is to be operated as a peak amplifier, the bias supply circuit 52 supplies the power amplifier 20 with a second bias voltage having a voltage value smaller than the first bias voltage. Further, when the power amplifier 10 is to be operated as a peak amplifier, the bias supply circuit 51 supplies the power amplifier 10 with a first bias voltage having a relatively small voltage value. Further, when the power amplifier 20 is to be operated as a carrier amplifier, the bias supply circuit 52 supplies the power amplifier 20 with a second bias voltage having a voltage value higher than the first bias voltage. Therefore, the bias circuit 50 can switch the power amplifiers 10 and 20 exclusively to the carrier amplifier and the peak amplifier.
  • the high-frequency circuit 1 further includes a filter 61 connected to the output terminal 76 and having a passband including band A, and a filter 62 connected to the output terminal 77 and having a passband including band B.
  • the power amplifier 10 is used as a carrier amplifier, the power amplifier 20 is used as a peak amplifier, and a band A signal is output from the output terminal 76, and the power amplifier 20 is used as a carrier amplifier, and the power amplifier 10 is used as a peak amplifier. It becomes possible to output the B signal from the output terminal 77 .
  • the switch 41 arranged on the signal path connecting the output terminal 76 and the filter 61 is shunt-connected to the ground, the transmission loss of the band A signal due to the ON resistance of the switch can be avoided.
  • the switch 42 arranged in the signal path connecting the output terminal 77 and the filter 62 is shunt-connected to the ground, it is possible to avoid the transmission loss of the band B signal due to the ON resistance of the switch.
  • the high-frequency circuit 1A includes a filter 61 having a passband including the A band, a filter 62 having a passband including the band B, a filter 63 having a passband including the band C, an output terminal 76 and the filter 61 , a matching circuit 140 connected between the output terminal 77 and the filter 62, and a matching circuit 130 connected between the output terminal 76 and the filter 63.
  • the matching circuit 120 includes a capacitor 123 connected in series with a first path connecting the output terminal 76 and the filter 61, a switch 122 connected between the first path and the ground, and a switch 121 connected in series with each other.
  • Matching circuit 130 has a switch 142 connected between, a capacitor 133 connected in series with a third path connecting output terminal 76 and filter 63, and a switch 131 and inductor 134 connected in series with each other.
  • a series connection circuit of the switch 131 and the inductor 134 may be connected in parallel to the third path.
  • the signal of band A can pass through the first path with low loss without passing through the switches arranged in series, and the signal of band B can pass through the first path without passing through the switches arranged in series. It is possible to pass through two paths with low loss, and the signal of band C can pass through the third path with low loss without passing through the switches arranged in series. Therefore, it is possible to provide a high-frequency circuit 1A capable of transmitting a plurality of high-frequency signals of bands A to C with low loss.
  • the capacitor 123 may be connected closer to the output terminal 76 than the capacitor 123 and the switch 122 .
  • the impedance at one end of the output side coil 322 deviated from the short-circuit point due to the inductance component of the connection wiring connecting the one end of the output side coil 322 and the switch 122 can be brought into a short-circuited state with high accuracy.
  • the high-frequency circuit 1A further includes a filter 64 having a passband including band D, and a matching circuit 150 connected between the output terminal 77 and the filter 64.
  • the matching circuit 140 further includes A capacitor 143 arranged in series on the second path, and a switch 141 and an inductor 144 connected in series with each other.
  • 130 further has a switch 132 connected between the third path and ground
  • the matching circuit 150 includes a capacitor 153 connected in series with a fourth path connecting the output terminal 77 and the filter 64, and a second It has a switch 152 connected between the 4th path and the ground, and a switch 151 and an inductor 154 connected in series with each other.
  • the power amplifiers 10 and 20 may have different sizes.
  • the phase shift circuit 13 is connected in series with the capacitor 231 connected to the output terminal of the power amplifier 10 and between the output terminal of the power amplifier 10 and one end of the input side coil 321.
  • the inductor 233 connected between the connected capacitor 232, the connection point between the capacitors 231 and 232, and the ground, and the connection point between the capacitor 232 and one end of the input side coil 321, and the ground. and an inductor 234 .
  • the phase shift circuit 13 can delay the phase of the high-frequency signal input from one end of the capacitor 231 and output it from the other end of the capacitor 232 .
  • the phase shift circuit 14 includes a capacitor 241 connected to the output terminal of the power amplifier 20, and between the output terminal of the power amplifier 20 and the other end of the input side coil 321. Between the capacitor 242 connected in series, the inductor 243 connected between the connection point of the capacitors 241 and 242 and the ground, and the connection point between the capacitor 242 and the other end of the input side coil 321 and the ground and an inductor 244 connected to .
  • the phase shift circuit 14 can delay the phase of the high frequency signal input from one end of the capacitor 241 and output it from the other end of the capacitor 242 .
  • the first phase shift circuit has phase shift lines 12a and 12b and a capacitor 12c, one end of the phase shift line 12a is connected to the output terminal of the power amplifier 10, The other end of the line 12a is connected to one end of the phase shift line 12b, the other end of the phase shift line 12b is connected to one end of the input side coil 321, and one end of the capacitor 12c is connected to the other end of the phase shift line 12a. 12b, and the other end of capacitor 12c may be grounded.
  • the high frequency circuit 1B can be miniaturized.
  • the second phase shift circuit has phase shift lines 22a and 22b and a capacitor 22c, one end of the phase shift line 22a is connected to the output terminal of the power amplifier 20, The other end of the line 22a is connected to one end of the phase shift line 22b, the other end of the phase shift line 22b is connected to the other end of the input side coil 321, and one end of the capacitor 22c is phase shifted with the other end of the phase shift line 22a. It may be connected to a connection point with one end of the line 22b, and the other end of the capacitor 22c may be grounded.
  • the high frequency circuit 1B can be miniaturized.
  • high-frequency circuit 1 includes module substrate 90, power amplifiers 10 and 20 are included in semiconductor IC 80 disposed on the main surface of module substrate 90, and capacitors 12c and 22c are included in semiconductor IC 80.
  • the high frequency circuit 1 can be miniaturized.
  • the high frequency circuit 1 further includes a module substrate 90
  • the first phase shift circuit includes at least the phase shift line 12
  • the second phase shift circuit includes at least the phase shift line 22
  • the input coil 321 the output
  • the side coil 322 and the phase shift lines 12 and 22 are composed of plane conductors formed on or inside the module substrate 90.
  • the winding direction of the phase shift line 12 and the phase shift line 22 are aligned. may be the same as the winding direction of .
  • phase shift lines 12 and 22 can be suppressed compared to a configuration in which the winding directions of the phase shift lines 12 and 22 are opposite to each other. Therefore, the transmission loss of the high frequency signal transmitted through the high frequency circuit 1 can be reduced.
  • the communication device 4 includes an RFIC 3 that processes high frequency signals, and a high frequency circuit 1 that transmits high frequency signals between the RFIC 3 and the antenna 2 .
  • the effect of the high-frequency circuit 1 can be realized in the communication device 4.
  • the first bias voltage is supplied from the bias circuit 50 to the power amplifier 10 when the switch 41 is in a non-conducting state and the switch 42 is in a conducting state.
  • the bias A first bias voltage is supplied from the circuit 50 to the power amplifier 10 and a second bias voltage having a voltage value higher than the first bias voltage is supplied from the bias circuit 50 to the power amplifier 20 .
  • the power amplifiers 10 and 20 can be exclusively switched to the carrier amplifier and the peak amplifier.
  • the power amplifier A high frequency signal amplified and synthesized by 10 and 20 is output from an output terminal 76, and when power amplifier 20 operates as a carrier amplifier and power amplifier 10 operates as a peak amplifier, the signals are amplified and synthesized by power amplifiers 10 and 20. It becomes possible to output the high-frequency signal thus obtained from the output terminal 77 . Therefore, it is possible to avoid operating either of the power amplifiers 10 and 20 by fixing it to a carrier amplifier that is likely to deteriorate, so that deterioration of the high-frequency circuit 1 can be suppressed.
  • the power amplifier 10 when the switch 41 is in a non-conducting state and the switch 42 is in a conducting state, the power amplifier 10 operates in class AB or class A, and When the power amplifier 20 is operated in class C, the switch 41 is made conductive, and the switch 42 is made non-conductive, the power amplifier 20 is operated in class AB or class A, and the power amplifier 10 is operated in class C. make it work.
  • the power amplifier 10 can When the power amplifier 20 operates and the power amplifier 20 operates in class C, the high-frequency signal amplified and synthesized by the power amplifiers 10 and 20 is output from the output terminal 76, the power amplifier 20 operates in class AB, and the power amplifier 10 operates in class C.
  • the power amplifiers 10 and 20 are in class operation, it is possible to output from the output terminal 77 the high-frequency signal amplified and synthesized by the power amplifiers 10 and 20 . Therefore, it is possible to avoid operating either of the power amplifiers 10 and 20 by fixing it to a carrier amplifier that is likely to deteriorate, so that deterioration of the high-frequency circuit 1 can be suppressed.
  • the high-frequency circuit, the communication device, and the power amplification method for the high-frequency circuit according to the embodiments of the present invention have been described above with reference to the embodiments, examples, and modifications.
  • the power amplification method for a high frequency circuit is not limited to the above embodiments, examples and modifications.
  • Another embodiment realized by combining arbitrary components in the above embodiments, examples, and modifications, and the above embodiments, examples, and modifications without departing from the gist of the present invention The present invention also includes modified examples obtained by performing various modifications that can be conceived by those skilled in the art, and various devices incorporating the above-described high-frequency circuit and communication device.
  • each of the matching circuits 120 to 150 has a capacitor, an inductor, and two switches, but is not limited to this.
  • Each of matching circuits 120, 130, 140 and 150 may have circuit elements in addition to a capacitor, an inductor, and two switches.
  • the present invention can be widely used in communication equipment such as mobile phones as a high-frequency circuit arranged in the front-end part supporting multiband.
  • RFIC radio frequency identification circuit
  • 20 power amplifier 11, 21 preamplifier 12, 12a, 12b, 22, 22a, 22b phase shift line 12c, 22c, 123, 133, 143, 153, 231, 232, 241, 242 capacitor 13, 14 transition phase circuits 31, 32 transformers 40, 41, 42, 60, 121, 122, 131, 132, 141, 142, 151, 152 switches 50 bias circuits 51, 52, 53, 54 bias supply circuits 61, 62, 63, 64 Filters 71, 72, 73, 74, 120, 130, 140, 150 Matching circuits 76, 77 Output terminals 80, 81 Semiconductor IC 90 module substrate 100 antenna connection terminal 110 input terminal 124, 134, 144, 154, 233, 234, 243, 244 inductor 160 IC 172, 173, 174, 175 Terminals 311, 321 Input side coils 312, 322 Out

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

高周波回路(1)は、パワーアンプ(10および20)と、入力側コイル(321)および出力側コイル(322)を有するトランス(32)と、パワーアンプ(10および20)に接続されたバイアス回路(50)と、出力側コイル(322)の一端に接続された出力端子(76)と、出力側コイル(322)の他端に接続された出力端子(77)と、出力端子(76)とグランドとの間に接続されたスイッチ(41)と、出力端子(77)とグランドとの間に接続されたスイッチ(42)と、入力端がパワーアンプ(10)の出力端子に接続され、出力端が入力側コイル(321)の一端に接続された移相線路(12)と、入力端がパワーアンプ(20)の出力端子に接続され、出力端が入力側コイル(321)の他端に接続された移相線路(22)と、を備える。

Description

高周波回路、通信装置および高周波回路の電力増幅方法
 本発明は、高周波回路、通信装置および高周波回路の電力増幅方法に関する。
 特許文献1には、入力信号の電力レベルが第1レベル以上の領域において入力信号から分配された第1信号を増幅して第2信号を出力する第1アンプ(キャリアアンプ)と、第2信号が入力される第1トランスと、入力信号の電力レベルが第1レベルより高い第2レベル以上の領域において入力信号から分配された第3信号を増幅して第4信号を出力する第2アンプ(ピークアンプ)と、第4信号が入力される第2トランスと、を備える高周波回路(電力増幅回路)が開示されている。
特開2018-137566号公報
 特許文献1に開示された高周波回路において、例えば、低電力領域から高電力領域までの入力信号を増幅するキャリアアンプと、高電力領域の入力信号のみを増幅するピークアンプとでは、キャリアアンプのほうが増幅動作時間が長くなる。このため、ピークアンプよりもキャリアアンプのほうが相対的に劣化し易い傾向があり、キャリアアンプの劣化に合わせて高周波回路の増幅性能が劣化してしまう可能性がある。
 本発明は、上記課題を解決するためになされたものであって、増幅性能の劣化が抑制された電力増幅器を含む高周波回路、通信装置および高周波回路の電力増幅方法を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波回路は、第1増幅素子および第2増幅素子と、入力側コイルおよび出力側コイルを有する出力トランスと、第1増幅素子および第2増幅素子に接続されたバイアス回路と、出力側コイルの一端に接続された第1出力端子と、出力側コイルの他端に接続された第2出力端子と、第1出力端子とグランドとの間に接続された第1スイッチと、第2出力端子とグランドとの間に接続された第2スイッチと、入力端が第1増幅素子の出力端子に接続され、出力端が入力側コイルの一端に接続された第1移相回路と、入力端が第2増幅素子の出力端子に接続され、出力端が入力側コイルの他端に接続された第2移相回路と、を備える。
 また、本発明の一態様に係る高周波回路の電力増幅方法は、第1増幅素子および第2増幅素子と、入力側コイルおよび出力側コイルを有する出力トランスと、第1増幅素子および第2増幅素子に接続されたバイアス回路と、出力側コイルの一端に接続された第1出力端子と、出力側コイルの他端に接続された第2出力端子と、第1出力端子とグランドとの間に接続された第1スイッチと、第2出力端子とグランドとの間に接続された第2スイッチと、入力端が第1増幅素子の出力端子に接続され、出力端が入力側コイルの一端に接続された第1移相回路と、入力端が第2増幅素子の出力端子に接続され、出力端が入力側コイルの他端に接続された第2移相回路と、を備える高周波回路の電力増幅方法であって第1スイッチを非導通状態とし、かつ、第2スイッチを導通状態とした場合、バイアス回路から第1増幅素子へ第1バイアス電圧を供給し、かつ、バイアス回路から第2増幅素子へ第1バイアス電圧よりも小さい電圧値の第2バイアス電圧を供給し、第1スイッチを導通状態とし、かつ、第2スイッチを非導通状態とした場合、バイアス回路から第1増幅素子へ第1バイアス電圧を供給し、かつ、バイアス回路から第2増幅素子へ第1バイアス電圧よりも大きい電圧値の第2バイアス電圧を供給する。
 本発明によれば、増幅性能の劣化が抑制されたドハティ型の電力増幅器を含む高周波回路、通信装置および高周波回路の電力増幅方法を提供することが可能となる。
図1Aは、実施の形態に係る高周波回路および通信装置の回路構成図である。 図1Bは、実施の形態の変形例1に係る高周波回路の回路構成図である。 図2Aは、実施の形態に係る高周波回路の、バンドAの信号をハイパワーモードで送信する場合の回路状態図である。 図2Bは、実施の形態に係る高周波回路の、バンドAの信号をミドル/ローパワーモードで送信する場合の回路状態図である。 図3Aは、実施の形態に係る高周波回路の、バンドBの信号をハイパワーモードで送信する場合の回路状態図である。 図3Bは、実施の形態に係る高周波回路の、バンドBの信号をミドル/ローパワーモードで送信する場合の回路状態図である。 図4は、実施の形態に係る高周波回路の電力増幅方法を示す動作フローチャートである。 図5は、実施の形態の変形例2に係る高周波回路の回路構成図である。 図6は、実施の形態の変形例3に係る高周波回路の回路構成図である。 図7Aは、実施例1に係る高周波回路の平面図および断面図である。 図7Bは、実施例2に係る高周波回路の平面図および断面図である。
 以下、本発明の実施の形態について詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態等は、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化する場合がある。
 また、以下において、平行および垂直等の要素間の関係性を示す用語、矩形状等の要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。
 以下の各図において、x軸およびy軸は、モジュール基板の主面と平行な平面上で互いに直交する軸である。具体的には、平面視においてモジュール基板が矩形状を有する場合、x軸は、モジュール基板の第1辺に平行であり、y軸は、モジュール基板の第1辺と直交する第2辺に平行である。また、z軸は、モジュール基板の主面に垂直な軸であり、その正方向は上方向を示し、その負方向は下方向を示す。
 本発明の回路構成において、「接続される」とは、接続端子および/または配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「AおよびBの間に接続される」とは、AおよびBの間でAおよびBの両方に接続されることを意味し、AおよびBを結ぶ経路に直列接続されることに加えて、当該経路とグランドとの間に並列接続(シャント接続)されることを含む。
 本発明の部品配置において、「モジュール基板の平面視」とは、z軸正側からxy平面に物体を正投影して見ることを意味する。「AがBおよびCの間に配置される」とは、B内の任意の点とC内の任意の点とを結ぶ複数の線分のうちの少なくとも1つがAを通ることを意味する。「モジュール基板の平面視におけるA及およびBの間の距離」とは、xy平面に正投影されたAの領域内の代表点とBの領域内の代表点とを結ぶ線分の長さを意味する。ここで、代表点としては、領域の中心点または相手の領域に最も近い点などを用いることができるが、これに限定されない。また、「平行」および「垂直」などの要素間の関係性を示す用語、および、「矩形」などの要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の誤差をも含むことを意味する。
 また、本発明の部品配置において、「部品が基板に配置される」とは、部品が基板の主面上に配置されること、および、部品が基板内に配置されることを含む。「部品が基板の主面上に配置される」とは、部品が基板の主面に接触して配置されることに加えて、部品が主面と接触せずに当該主面の上方に配置されること(例えば、部品が主面と接触して配置された他の部品上に積層されること)を含む。また、「部品が基板の主面上に配置される」は、主面に形成された凹部に部品が配置されることを含んでもよい。「部品が基板内に配置される」とは、部品がモジュール基板内にカプセル化されることに加えて、部品の全部が基板の両主面の間に配置されているが部品の一部が基板に覆われていないこと、および、部品の一部のみが基板内に配置されていることを含む。
 また、本開示において、「信号経路」とは、高周波信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。
 (実施の形態)
 [1.高周波回路1および通信装置4の回路構成]
 本実施の形態に係る高周波回路1および通信装置4の回路構成について、図1Aを参照しながら説明する。図1Aは、実施の形態に係る高周波回路1および通信装置4の回路構成図である。
 [1.1 通信装置4の回路構成]
 まず、通信装置4の回路構成について説明する。図1Aに示すように、本実施の形態に係る通信装置4は、高周波回路1と、アンテナ2と、RF信号処理回路(RFIC)3と、を備える。
 高周波回路1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波回路1の詳細な回路構成については後述する。
 アンテナ2は、高周波回路1のアンテナ接続端子100に接続され、高周波回路1から出力された高周波信号を送信し、また、外部から高周波信号を受信して高周波回路1へ出力する。
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波回路1の受信経路を介して入力された受信信号をダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(BBIC、図示せず)へ出力する。また、RFIC3は、BBICから入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された送信信号を、高周波回路1の送信経路に出力する。また、RFIC3は、高周波回路1が有するスイッチ、増幅素子およびバイアス回路等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部または全部は、RFIC3の外部に実装されてもよく、例えば、BBICまたは高周波回路1に実装されてもよい。
 また、RFIC3は、高周波回路1が有する各アンプに供給される電源電圧およびバイアス電圧を制御する制御部としての機能も有する。具体的には、RFIC3は、ディジタル制御信号を高周波回路1に出力する。高周波回路1の各アンプには、上記ディジタル制御信号により制御された電源電圧およびバイアス電圧が供給される。
 また、RFIC3は、使用されるバンド(周波数帯域)に基づいて、高周波回路1が有する各スイッチの接続を制御する制御部としての機能も有する。
 なお、本実施の形態に係る通信装置4において、アンテナ2は、必須の構成要素ではない。
 [1.2 高周波回路1の回路構成]
 次に、高周波回路1の回路構成について説明する。図1Aに示すように、高周波回路1は、パワーアンプ10および20と、プリアンプ11および21と、移相線路12および22と、トランス31および32と、整合回路71、72、73および74と、スイッチ40、41および42と、フィルタ61および62と、バイアス回路50と、出力端子76および77と、入力端子110と、アンテナ接続端子100と、を備える。
 入力端子110は、RFIC3に接続され、アンテナ接続端子100は、アンテナ2に接続される。出力端子76は、第1出力端子の一例であり、出力端子77は、第2出力端子の一例である。
 なお、入力端子110、アンテナ接続端子100、出力端子76、出力端子77のそれぞれは、金属電極および金属バンプなどの金属導体であってもよく、また、金属配線上の一点であってもよい。
 トランス31は、入力側コイル311および出力側コイル312を有する。入力側コイル311の一端は入力端子110に接続され、入力側コイル311の他端はグランドに接続されている。出力側コイル312の一端はプリアンプ11の入力端子に接続され、出力側コイル312の他端はプリアンプ21の入力端子に接続されている。トランス31は、入力端子110から出力される高周波信号を、逆相を有する2つの高周波信号に分配する。分配された2つの高周波信号のそれぞれは、プリアンプ11および21に入力される。
 プリアンプ11は、出力側コイル312の一端から入力されたバンドAおよびバンドBの高周波信号を増幅する。プリアンプ21は、出力側コイル312の他端から入力されたバンドAおよびバンドBの高周波信号を増幅する。
 パワーアンプ10は、第1増幅素子の一例であり、増幅トランジスタを有する。パワーアンプ20は、第2増幅素子の一例であり、増幅トランジスタを有する。上記増幅トランジスタは、例えば、ヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)等のバイポーラトランジスタ、または、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等の電界効果トランジスタである。
 パワーアンプ10および20は、入力信号の全ての電力レベルに対して増幅動作可能なA級(またはAB級)増幅素子として機能し、また、高出力領域において低歪の増幅動作が可能なC級増幅素子としても機能する。パワーアンプ10および20は、バイアス回路50から供給されるバイアス電圧の大きさにより、A級(またはAB級)動作およびC級動作を切り替えることが可能である。
 なお、トランス31に代えて、移相回路が配置されていてもよい。また、トランス31、プリアンプ11および21はなくてもよい。
 パワーアンプ10の入力端子は、整合回路71を介してプリアンプ11の出力端子に接続されている。パワーアンプ20の入力端子は、整合回路72を介してプリアンプ21の出力端子に接続されている。
 移相線路12は、第1移相回路の一例であり、例えば1/4波長伝送線路である。移相線路12は、その一端から入力された高周波信号の位相を1/4波長遅らせてその他端から出力する。移相線路12の一端はパワーアンプ10の出力端子に接続され、移相線路12の他端は入力側コイル321の一端に接続されている。
 移相線路22は、第2移相回路の一例であり、例えば1/4波長伝送線路である。移相線路22は、その一端から入力された高周波信号の位相を1/4波長遅らせてその他端から出力する。移相線路22の一端はパワーアンプ20の出力端子に接続され、移相線路22の他端は入力側コイル321の他端に接続されている。
 なお、第1移相回路および第2移相回路は、移相線路という形態を有していなくてもよく、例えば、チップ状のインダクタおよびキャパシタで構成された回路であってもよい。より具体的には、第1移相回路および第2移相回路のそれぞれは、互いに直列接続された2つのインダクタ、および当該2つのインダクタの接続点とグランドとの間に接続されたキャパシタを有するLC回路であってもよい。また、第1移相回路および第2移相回路のそれぞれは、互いに直列接続された2つのキャパシタ、当該2つのキャパシタのうちの1つのキャパシタの一方端とグランドとの間に接続されたインダクタ、および当該1つのキャパシタの他方端とグランドとの間に接続されたインダクタを有するLC回路であってもよい。
 図1Bは、実施の形態の変形例1に係る高周波回路1Cの回路構成図である。本変形例に係る高周波回路1Cは、第1移相回路および第2移相回路のそれぞれが上記LC回路である。同図に示すように、高周波回路1Cは、パワーアンプ10および20と、プリアンプ11および21と、移相回路13および14と、トランス31および32と、整合回路71、72、73および74と、スイッチ40、41および42と、フィルタ61および62と、バイアス回路50と、出力端子76および77と、入力端子110と、アンテナ接続端子100と、を備える。本変形例に係る高周波回路1Cは、実施の形態に係る高周波回路1と比較して、移相回路の構成が異なる。以下、本変形例に係る高周波回路1Cについて、実施の形態に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 移相回路13は、第1移相回路の一例であり、キャパシタ231および232と、インダクタ233および234と、を有する。キャパシタ231は、第5キャパシタの一例であり、一端(一方の電極)が、パワーアンプ10の出力端子に接続されている。キャパシタ232は、第6キャパシタの一例であり、一端(一方の電極)がキャパシタ231の他端(他方の電極)に接続され、他端(他方の電極)が入力側コイル321の一端に接続されている。つまり、キャパシタ231および232は、パワーアンプ10の出力端子と入力側コイル321の一端との間に、直列接続されている。インダクタ233は、第5インダクタの一例であり、キャパシタ231とキャパシタ232との接続点とグランドとの間に接続されている。インダクタ234は、第6インダクタの一例であり、キャパシタ232との入力側コイル321の一端との接続点とグランドとの間に接続されている。
 移相回路14は、第2移相回路の一例であり、キャパシタ241および242と、インダクタ243および244と、を有する。キャパシタ241は、第7キャパシタの一例であり、一端(一方の電極)が、パワーアンプ20の出力端子に接続されている。キャパシタ242は、第8キャパシタの一例であり、一端(一方の電極)がキャパシタ241の他端(他方の電極)に接続され、他端(他方の電極)が入力側コイル321の他端に接続されている。つまり、キャパシタ241および242は、パワーアンプ20の出力端子と入力側コイル321の他端との間に、直列接続されている。インダクタ243は、第7インダクタの一例であり、キャパシタ241とキャパシタ242との接続点とグランドとの間に接続されている。インダクタ244は、第8インダクタの一例であり、キャパシタ242との入力側コイル321の他端との接続点とグランドとの間に接続されている。
 上記構成により、移相回路13は、例えば、キャパシタ231の一端から入力された高周波信号の位相を1/4波長遅らせて、キャパシタ232の他端から出力する。また、移相回路14は、例えば、キャパシタ241の一端から入力された高周波信号の位相を1/4波長遅らせてキャパシタ242の他端から出力する。
 なお、本変形例に係る高周波回路1Cにおいて、移相回路13および14の双方が、2つのキャパシタおよび2つのインダクタで構成されるものとしたが、移相回路13および14の少なくとも一方が、2つのキャパシタおよび2つのインダクタを有する構成であればよい。
 なお、移相回路とは、伝送線路を伝搬する高周波信号の移相を進ませる、または、移相を遅らせる回路と定義される。具体的には、移相回路は、当該移相回路に接続される線路よりも(1)線幅が大きい、または、小さい、(2)スパイラル型またはミアンダ型により線路長が長い、移相線路である。また、具体的には、移相回路は、インダクタおよびキャパシタの回路素子で構成されてもよい。
 トランス32は、出力トランスの一例であり、入力側コイル321および出力側コイル322を有する。入力側コイル321の一端は移相線路12の他端に接続され、入力側コイル321の他端は移相線路22の他端に接続されている。なお、図示していないが、入力側コイル321の中点は電源(電源電圧Vcc)に接続されている。出力側コイル322の一端は、整合回路73を介して出力端子76に接続され、出力側コイル322の他端は、整合回路74を介して出力端子77に接続されている。
 スイッチ41は、第1スイッチの一例であり、出力端子76とグランドとの間に接続されている。スイッチ42は、第2スイッチの一例であり、出力端子77とグランドとの間に接続されている。
 フィルタ61は、第1フィルタの一例であり、バンドA(第1バンド)を含む通過帯域を有する。フィルタ61の入力端は、出力端子76に接続されている。フィルタ62は、第2フィルタの一例であり、バンドB(第2バンド)を含む通過帯域を有する。フィルタ62の入力端は、出力端子77に接続されている。
 スイッチ40は、アンテナスイッチの一例であり、アンテナ接続端子100に接続され、アンテナ接続端子100とフィルタ61との接続および非接続を切り替え、また、アンテナ接続端子100とフィルタ62との接続および非接続を切り替える。
 整合回路71は、プリアンプ11の出力インピーダンスとパワーアンプ10の入力インピーダンスとを整合させる。整合回路72は、プリアンプ21の出力インピーダンスとパワーアンプ20の入力インピーダンスとを整合させる。
 整合回路73は、トランス32とフィルタ61とのインピーダンス整合をとる。整合回路74は、トランス32とフィルタ62とのインピーダンス整合をとる。
 なお、フィルタ61および62、スイッチ40、ならびに整合回路71~74は、本発明に係る高周波回路に必須の構成要素ではない。
 バイアス回路50は、パワーアンプ10、20、プリアンプ11および21に接続され、これらの各アンプにバイアス電圧(および/またはバイアス電流)を供給する。バイアス回路50は、例えば、バイアス供給回路51、52、53および54を有する。バイアス供給回路51は、第1バイアス回路の一例であり、パワーアンプ10に第1バイアス電圧(および/または第1バイアス電流)を供給する。バイアス供給回路52は、第2バイアス回路の一例であり、パワーアンプ20に第2バイアス電圧(および/または第2バイアス電流)を供給する。また、バイアス供給回路53はプリアンプ11に第3バイアス電圧(および/または第3バイアス電流)を供給する。また、バイアス供給回路54はプリアンプ21に第4バイアス電圧(および/または第4バイアス電流)を供給する。バイアス回路50は、スイッチ41および42の導通および非導通の切り替えタイミングに同期して、パワーアンプ10に供給される第1バイアス電圧(および/または第1バイアス電流)を変化させ、また、パワーアンプ20に供給される第2バイアス電圧(および/または第2バイアス電流)を変化させる。また、第1バイアス電圧(および/または第1バイアス電流)の電圧値(電流値)と第2バイアス電圧(および/または第2バイアス電流)の電圧値(電流値)とは異なる。
 なお、本実施の形態では、バイアス回路50からパワーアンプ10および20に対してバイアス電圧を供給するものとしているが、実施には、バイアス回路50からはバイアス電流が供給され、バイアス回路50とパワーアンプ10および20とを結ぶ経路に配置された抵抗素子により、バイアス電流がバイアス電圧として供給される。よって、本発明に係る高周波回路において、「バイアス回路50からパワーアンプ10および20に供給されるバイアス電圧」は、「バイアス回路50からパワーアンプ10および20に供給されるバイアス電流」と言い換えることが可能である。また、これに伴い、「第1バイアス電圧の電圧値と第2バイアス電圧の電圧値とは異なる、」とは、「第1バイアス電流の電流値と第2バイアス電流の電流値とは異なる、」と言い換えることが可能である。
 ここで、パワーアンプ10をキャリアアンプとして動作(A級またはAB級動作)させたい場合には、バイアス供給回路51はパワーアンプ10に対して、第2バイアス電圧(および/または第2バイアス電流)よりも大きい電圧値(電流値)を有する第1バイアス電圧(および/または第1バイアス電流)を供給する。また、パワーアンプ20をピークアンプとして動作(C級動作)させたい場合には、バイアス供給回路52はパワーアンプ20に対して、第1バイアス電圧(および/または第1バイアス電流)よりも小さい電圧値(電流値)を有する第2バイアス電圧(および/または第2バイアス電流)を供給する。
 また、パワーアンプ10をピークアンプとして動作(C動作)させたい場合には、バイアス供給回路51はパワーアンプ10に対して、第2バイアス電圧よりも小さい電圧値を有する第1バイアス電圧を供給する。また、パワーアンプ20をキャリアアンプとして動作(A級またはAB級動作)させたい場合には、バイアス供給回路52はパワーアンプ20に対して、第1バイアス電圧よりも大きい電圧値を有する第2バイアス電圧を供給する。
 なお、バイアス回路50は、4つのバイアス供給回路51~54を有していなくてもよく、例えば、1つのバイアス供給回路から異なる電圧値を有する複数のバイアス電圧を各アンプに供給してもよい。
 なお、本実施の形態において、バンドAおよびバンドBのそれぞれ、ならびに後述するバンドA~バンドDのそれぞれは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのために、標準化団体など(例えば3GPP(登録商標)(3rd Generation Partnership Project)、IEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された周波数バンドを意味し、上記で例示したバンドに限定されない。本実施の形態では、通信システムとしては、例えば4G-LTEシステム、5G-NRシステムおよびWLAN(Wireless Local Area Network)システム等を用いることができるが、これらに限定されない。
 上記回路構成によれば、高周波回路1は、バンドAおよびバンドBの高周波信号を、入力端子110からアンテナ接続端子100へ向けて送信することが可能である。このとき、例えば、バンドAの信号を、出力端子76を経由して出力し、バンドBの信号を、出力端子77を経由して出力することが可能となる。パワーアンプ10および20は、バイアス回路50から供給されるバイアス電圧の大きさにより、キャリアアンプおよびピークアンプとして排他的に動作することが可能となる。よって、高周波回路1は、バンドAおよびバンドBの信号を高効率かつ高バックオフ量を有するドハティ型の電力増幅回路として機能することが可能となる。
 なお、ドハティ型の電力増幅回路とは、複数の電力増幅器をキャリアアンプおよびピークアンプとして用いることで高効率を実現する増幅回路を意味する。キャリアアンプとは、ドハティ型の電力増幅回路において、高周波信号(入力)の電力が低くても高くても動作する増幅器を意味する。ピークアンプとは、ドハティ型の電力増幅回路において、高周波信号(入力)の電力が高い場合に主として動作する増幅器を意味する。したがって、高周波信号の入力電力が低い場合は、高周波信号は主としてキャリアアンプで増幅され、高周波信号の入力電力が高い場合には、高周波信号はキャリアアンプおよびピークアンプで増幅され合成される。このような動作により、ドハティ型の電力増幅回路では、低出力電力においてキャリアアンプからみた負荷インピーダンスが増大し、低出力電力における効率が向上する。
 なお、パワーアンプ10および20は、互いにサイズが異なっていることが望ましい。これによれば、パワーアンプ10および20の飽和電力(インターセプトポイント)を異ならせることができる。よって、キャリアアンプおよびピークアンプがオン状態である高出力領域から、キャリアアンプのみがオン状態である低出力領域までの電力差であるバックオフ量を、パワーアンプ10および20のキャリアアンプおよびピークアンプの切り替えに応じて変化させることが可能となる。
 なお、アンプのサイズは、当該アンプを構成するトランジスタの段数、セル数またはフィンガー数に依存する。したがって、サイズが異なれば、トランジスタの段数、セル数またはフィンガー数が異なる。
 [1.3 高周波回路1における高周波信号の流れ]
 次に、高周波回路1におけるバンドAおよびバンドBの高周波信号の流れについて説明する。
 図2Aは、実施の形態に係る高周波回路1の、バンドAの信号をハイパワーモードで送信する場合の回路状態図である。また、図2Bは、実施の形態に係る高周波回路1の、バンドAの信号をミドル/ローパワーモードで送信する場合の回路状態図である。
 まず、図2Aに示すように、高周波回路1がハイパワーモードのバンドAの信号を伝送する場合、パワーアンプ10がキャリアアンプとして動作(A級またはAB級動作)し、パワーアンプ20がピークアンプとして動作(C級動作)する。なお、この場合、バイアス供給回路51はパワーアンプ10に対して、第2バイアス電圧よりも大きい電圧値を有する第1バイアス電圧を供給する。また、バイアス供給回路52はパワーアンプ20に対して、第1バイアス電圧よりも小さい電圧値を有する第2バイアス電圧を供給する。また、スイッチ41は非導通状態であり、スイッチ42は導通状態である。
 バンドAの信号をハイパワーモードで送信している場合、パワーアンプ10および20の双方が動作(ON)する。この場合、入力端子110、プリアンプ11、パワーアンプ10、移相線路12を伝送するバンドAの信号と、入力端子110、プリアンプ21、パワーアンプ20、移相線路22を伝送するバンドAの信号とが、トランス32で電圧合成され、当該電圧合成されたバンドAの信号が出力端子76、フィルタ61およびスイッチ40を経由してアンテナ接続端子100から出力される。
 なお、従来の高周波回路では、2つのパワーアンプのうちの一方が常にキャリアアンプとして動作し、他方が常にピークアンプとして動作するため、2つのアンプのいずれか一方の出力端子のみに1/4波長伝送線路が接続される。このため、2つのプリアンプに入力される信号には90度の位相差が付加されることで、出力トランスへ入力されるバンドAの2つの信号には180度の位相差が付加される。これに対して、本実施の形態に係る高周波回路1では、2つのパワーアンプ10および20は、キャリアアンプおよびピークアンプを排他的に切り替えるため、2つのアンプの出力端子の双方に移相回路が接続される。このため、2つのプリアンプに入力される信号には、トランス31により180度の位相差が付加されることで、トランス32へ入力されるバンドAの2つの信号には180度の位相差が付加される。
 本実施の形態に係る高周波回路1では、上記のように、2つのプリアンプに入力される信号はトランス31により180度の位相差が付加されるので、高周波回路1は、差動増幅型の電力増幅器としても適用することが可能である。
 次に、図2Bに示すように、高周波回路1がミドル/ローパワーモードのバンドAの信号を伝送する場合、パワーアンプ10がキャリアアンプとして動作(A級またはAB級動作)し、パワーアンプ20がピークアンプとして動作(C級動作)する。なお、この場合、バイアス供給回路51はパワーアンプ10に対して、第2バイアス電圧よりも大きい電圧値を有する第1バイアス電圧を供給する。また、バイアス供給回路52はパワーアンプ20に対して、第1バイアス電圧よりも小さい電圧値を有する第2バイアス電圧を供給する。また、スイッチ41は非導通状態であり、スイッチ42は導通状態である。
 バンドAの信号をミドル/ローパワーモードで送信している場合、パワーアンプ10は動作(ON)し、パワーアンプ20は動作しない(OFF)。この場合、パワーアンプ20の出力インピーダンスはオープン状態となり、移相線路22により入力側コイル321の他端のインピーダンスはショート状態となる。これにより、入力端子110、プリアンプ11、パワーアンプ10、移相線路12を伝送するバンドAの信号が、トランス32で電圧変換され、当該電圧変換されたバンドAの信号が出力端子76、フィルタ61およびスイッチ40を経由してアンテナ接続端子100から出力される。
 バンドAの信号を伝送する場合、ハイパワーモードに対してミドル/ローパワーモードでは、パワーアンプ10の出力インピーダンスは2倍となる。つまり、ミドル/ローパワーモードでは、パワーアンプ20がオフ状態となり、パワーアンプ10の出力インピーダンスが高くなることで、高周波回路1は高効率動作することが可能となる。
 一方、ハイパワーモードでは、パワーアンプ10および20の双方が動作することでハイパワーの信号を出力することができ、かつ、パワーアンプ10および20の出力インピーダンスが低いことで、信号歪を抑制することが可能となる。
 図3Aは、実施の形態に係る高周波回路1の、バンドBの信号をハイパワーモードで送信する場合の回路状態図である。また、図3Bは、実施の形態に係る高周波回路1の、バンドBの信号をミドル/ローパワーモードで送信する場合の回路状態図である。
 まず、図3Aに示すように、高周波回路1がハイパワーモードのバンドBの信号を伝送する場合、パワーアンプ20がキャリアアンプとして動作(A級またはAB級動作)し、パワーアンプ10がピークアンプとして動作(C級動作)する。なお、この場合、バイアス供給回路51はパワーアンプ10に対して、第2バイアス電圧よりも小さい電圧値を有する第1バイアス電圧を供給する。また、バイアス供給回路52はパワーアンプ20に対して、第1バイアス電圧よりも大きい電圧値を有する第2バイアス電圧を供給する。また、スイッチ41は導通状態であり、スイッチ42は非導通状態である。
 バンドBの信号をハイパワーモードで送信している場合、パワーアンプ10および20の双方が動作(ON)する。この場合、入力端子110、プリアンプ11、パワーアンプ10、移相線路12を伝送するバンドBの信号と、入力端子110、プリアンプ21、パワーアンプ20、移相線路22を伝送するバンドBの信号とが、トランス32で電圧合成され、当該電圧合成されたバンドBの信号が出力端子77、フィルタ62およびスイッチ40を経由してアンテナ接続端子100から出力される。
 次に、図3Bに示すように、高周波回路1がミドル/ローパワーモードのバンドBの信号を伝送する場合、パワーアンプ20がキャリアアンプとして動作(A級またはAB級動作)し、パワーアンプ10がピークアンプとして動作(C級動作)する。なお、この場合、バイアス供給回路51はパワーアンプ10に対して、第2バイアス電圧よりも小さい電圧値を有する第1バイアス電圧を供給する。また、バイアス供給回路52はパワーアンプ20に対して、第1バイアス電圧よりも大きい電圧値を有する第2バイアス電圧を供給する。また、スイッチ41は導通状態であり、スイッチ42は非導通状態である。
 バンドBの信号をミドル/ローパワーモードで送信している場合、パワーアンプ20は動作(ON)し、パワーアンプ10は動作しない(OFF)。この場合、パワーアンプ10の出力インピーダンスはオープン状態となり、移相線路12により入力側コイル321の一端のインピーダンスはショート状態となる。これにより、入力端子110、プリアンプ21、パワーアンプ20、移相線路22を伝送するバンドBの信号が、トランス32で電圧変換され、当該電圧変換されたバンドBの信号が出力端子77、フィルタ62およびスイッチ40を経由してアンテナ接続端子100から出力される。
 バンドBの信号を伝送する場合、ハイパワーモードに対してミドル/ローパワーモードでは、パワーアンプ20の出力インピーダンスは2倍となる。つまり、ミドル/ローパワーモードでは、パワーアンプ10がオフ状態となり、パワーアンプ20の出力インピーダンスが高くなることで、高周波回路1は高効率動作することが可能となる。
 一方、ハイパワーモードでは、パワーアンプ10および20の双方が動作することでハイパワーの信号を出力することができ、かつ、パワーアンプ10および20の出力インピーダンスが低いことで、信号歪を抑制することが可能となる。
 図4は、実施の形態に係る高周波回路1の電力増幅方法を示す動作フローチャートである。
 まず、高周波回路1の制御部は、例えばRFIC3からの指示に基づいて、バンドAおよびバンドBのいずれの信号を送信するかを選択する(S10)。
 ステップS10にてバンドAの信号を送信することを選択した場合、高周波回路1の制御部は、バイアス回路50からパワーアンプ10に第2バイアス電圧よりも電圧値の大きな第1バイアス電圧を供給する。これにより、パワーアンプ10をキャリアアンプとして動作させる。また、高周波回路1の制御部は、バイアス回路50からパワーアンプ20に第1バイアス電圧よりも電圧値の小さな第2バイアス電圧を供給する。これにより、パワーアンプ20をピークアンプとして動作させる。また、高周波回路1の制御部は、スイッチ41を非導通状態とし、スイッチ42を導通状態とする(S20)。これにより、バンドAの信号を送信する場合には、高周波回路1は、パワーアンプ10をキャリアアンプとし、パワーアンプ20をピークアンプとするドハティ型の電力増幅器として動作し、出力端子76を経由してバンドAの信号を送信する。
 また、ステップS10にてバンドBの信号を送信することを選択した場合、高周波回路1の制御部は、バイアス回路50からパワーアンプ10に第2バイアス電圧よりも電圧値の小さな第1バイアス電圧を供給する。これにより、パワーアンプ10をピークアンプとして動作させる。また、高周波回路1の制御部は、バイアス回路50からパワーアンプ20に第1バイアス電圧よりも電圧値の大きな第2バイアス電圧を供給する。これにより、パワーアンプ20をキャリアアンプとして動作させる。また、高周波回路1の制御部は、スイッチ41を導通状態とし、スイッチ42を非導通状態とする(S30)。これにより、バンドBの信号を送信する場合には、高周波回路1は、パワーアンプ20をキャリアアンプとし、パワーアンプ10をピークアンプとするドハティ型の電力増幅器として動作し、出力端子77を経由してバンドBの信号を送信する。
 これによれば、バイアス回路50から各アンプに供給されるバイアス電圧の大きさを変化させることにより、パワーアンプ10および20を、キャリアアンプおよびピークアンプに排他的に切り替えることができる。また、上記切り替えと連動させて、スイッチ41および42の導通および非導通を排他的に切り替えることにより、バンドAの信号を、出力端子76を経由して送信し、バンドBの信号を、出力端子77を経由して送信することができる。よって、パワーアンプ10および20のいずれかを、劣化し易いキャリアアンプに固定して動作させることを回避できるので、パワーアンプ10および20の劣化が抑制されたドハティ型の電力増幅器を有する高周波回路1を提供できる。
 また、バンドAおよびバンドBの信号を送信するにあたり、入力端子110からフィルタ61および62までの信号経路に、スイッチが直列配置されていないので、当該スイッチのオン抵抗による伝送損失の増加を抑制できる。
 なお、本実施の形態に係る高周波回路1は、2つの異なるバンドを送信することに限定されない。本実施の形態に係る高周波回路1は、1つのバンドの信号を送信する場合にも適用できる。
 以下、例えば、バンドAの信号のみを送信する場合の動作について説明する。
 まず、高周波回路1の制御部は、第1の期間に、バイアス回路50からパワーアンプ10に第2バイアス電圧よりも電圧値の大きな第1バイアス電圧を供給する。これにより、パワーアンプ10をキャリアアンプとして動作させる。また、高周波回路1の制御部は、バイアス回路50からパワーアンプ20に第1バイアス電圧よりも電圧値の小さな第2バイアス電圧を供給する。これにより、パワーアンプ20をピークアンプとして動作させる。また、高周波回路1の制御部は、スイッチ41を非導通状態とし、スイッチ42を導通状態とする。これにより、第1の期間にバンドAの信号を送信する場合には、高周波回路1は、パワーアンプ10をキャリアアンプとし、パワーアンプ20をピークアンプとするドハティ型の電力増幅器として動作し、出力端子76を経由してバンドAの信号を送信する。
 また、高周波回路1の制御部は、第1の期間と異なる第2の期間に、バイアス回路50からパワーアンプ10に第2バイアス電圧よりも電圧値の小さな第1バイアス電圧を供給する。これにより、パワーアンプ10をピークアンプとして動作させる。また、高周波回路1の制御部は、バイアス回路50からパワーアンプ20に第1バイアス電圧よりも電圧値の大きな第2バイアス電圧を供給する。これにより、パワーアンプ20をキャリアアンプとして動作させる。また、高周波回路1の制御部は、スイッチ41を導通状態とし、スイッチ42を非導通状態とする。これにより、第2の期間にバンドAの信号を送信する場合には、高周波回路1は、パワーアンプ10をキャリアアンプとし、パワーアンプ20をピークアンプとするドハティ型の電力増幅器として動作し、出力端子77を経由してバンドAの信号を送信する。
 これによれば、バイアス回路50から各アンプに供給されるバイアス電圧の大きさを変化させることにより、パワーアンプ10および20を、キャリアアンプおよびピークアンプに排他的に切り替えることができる。また、上記切り替えと連動させて、スイッチ41および42の導通および非導通を排他的に切り替えることにより、第1の期間においてバンドAの信号を、出力端子76を経由して送信し、第2の期間においてバンドAの信号を、出力端子77を経由して送信することができる。よって、パワーアンプ10および20のいずれかを、劣化し易いキャリアアンプに固定して動作させることを回避できるので、パワーアンプ10および20の劣化が抑制されたドハティ型の電力増幅器を有する高周波回路1を提供できる。
 なお、高周波回路1の上記回路動作では、高周波回路1の制御部が、バイアス回路50のバイアス電圧の大きさならびにスイッチ41および42の導通を制御しているが、高周波回路1の制御部に代わって、通信装置4が有するRFIC3がこれらを制御してもよい。
 また、本実施の形態に係る高周波回路1の電力増幅方法は、各アンプに供給するバイアス電圧の大きさを変化させることで、キャリアアンプおよびピークアンプを切り替えるが、これに限定されない。各アンプをキャリアアンプおよびピークアンプに設定する方法としては、各アンプに供給される電源電圧の大きさを可変する、または、各アンプのサイズを可変するなどを用いてもよい。
 つまり、本実施の形態に係る高周波回路1の電力増幅方法は、スイッチ41を非導通状態とし、かつ、スイッチ42を導通状態とした場合、パワーアンプ10をAB級動作またはA級動作させ、かつ、パワーアンプ20をC級動作させ、スイッチ41を導通状態とし、かつ、スイッチ42を非導通状態とした場合、パワーアンプ10をC級動作させ、かつ、パワーアンプ20をAB級動作またはA級動作させてもよい。
 これにより、パワーアンプ10および20のいずれかを、劣化し易いキャリアアンプに固定して動作させることを回避できるので、パワーアンプ10および20の劣化が抑制されたドハティ型の電力増幅器を有する高周波回路を提供できる。
 [1.4 変形例2に係る高周波回路1Aの回路構成]
 図5は、実施の形態の変形例2に係る高周波回路1Aの回路構成図である。同図に示すように、高周波回路1Aは、パワーアンプ10および20と、プリアンプ11および21と、移相線路12および22と、トランス31および32と、整合回路71、72、73、74、120、130、140および150と、フィルタ61、62、63および64と、バイアス回路50と、出力端子76および77と、入力端子110と、アンテナ接続端子100(図示せず)と、を備える。本変形例に係る高周波回路1Aは、実施の形態に係る高周波回路1と比較して、出力端子76に2つの整合回路120および130ならびにフィルタ61および63が接続され、出力端子77に2つの整合回路140および150ならびにフィルタ62および64が接続されている点が構成として異なる。以下、本変形例に係る高周波回路1Aについて、実施の形態に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 フィルタ61は、第1フィルタの一例であり、バンドA(第1バンド)を含む通過帯域を有する。フィルタ61の入力端は、端子172を経由して整合回路120に接続されている。
 フィルタ62は、第2フィルタの一例であり、バンドB(第2バンド)を含む通過帯域を有する。フィルタ62の入力端は、端子174を経由して整合回路140に接続されている。
 フィルタ63は、第3フィルタの一例であり、バンドC(第3バンド)を含む通過帯域を有する。フィルタ63の入力端は、端子173を経由して整合回路130に接続されている。
 フィルタ64は、第4フィルタの一例であり、バンドD(第4バンド)を含む通過帯域を有する。フィルタ64の入力端は、端子175を経由して整合回路150に接続されている。
 スイッチ60は、アンテナスイッチの一例であり、アンテナ接続端子100に接続され、アンテナ接続端子100とフィルタ61との接続および非接続を切り替え、また、アンテナ接続端子100とフィルタ62との接続および非接続を切り替え、また、アンテナ接続端子100とフィルタ63との接続および非接続を切り替え、また、アンテナ接続端子100とフィルタ64との接続および非接続を切り替える。
 なお、フィルタ61~64は、共通端子はアンテナ接続端子100に接続されたマルチプレクサを構成していてもよく、この場合には、スイッチ60はなくてもよい。また、フィルタ61~64のそれぞれは、周波数分割複信(FDD:Frequency Division Duplex)用である場合には、受信用フィルタとともにデュプレクサを構成していてもよいし、時分割複信(TDD:Time Division Duplex)方式用である場合には、各フィルタの前段および後段の少なくとも一方に、送信および受信を切り替えるスイッチが配置されていてもよい。
 整合回路120は、第1回路の一例であり、出力端子76とフィルタ61との間に接続されている。整合回路120は、スイッチ121および122と、キャパシタ123とインダクタ124と、を有している。
 キャパシタ123は、第1キャパシタの一例であり、出力端子76とフィルタ61とを結ぶ第1経路に直列配置されている。スイッチ122は、第1スイッチの一例であり、第1経路とグランドとの間に接続されている。スイッチ121は、第3スイッチの一例であり、インダクタ124は、第1インダクタの一例であり、スイッチ121とインダクタ124とは、互いに直列接続されている。スイッチ121とインダクタ124との直列接続回路は、第1経路に並列接続されている。
 整合回路140は、第2回路の一例であり、出力端子77とフィルタ62との間に接続されている。整合回路140は、スイッチ141および142と、キャパシタ143とインダクタ144と、を有している。
 キャパシタ143は、第3キャパシタの一例であり、出力端子77とフィルタ62とを結ぶ第2経路に直列配置されている。スイッチ142は、第2スイッチの一例であり、第2経路とグランドとの間に接続されている。スイッチ141は、第5スイッチの一例であり、インダクタ144は、第3インダクタの一例であり、スイッチ141とインダクタ144とは、互いに直列接続されている。スイッチ141とインダクタ144との直列接続回路は、第2経路に並列接続されている。
 整合回路130は、第3回路の一例であり、出力端子76とフィルタ63との間に接続されている。整合回路130は、スイッチ131および132と、キャパシタ133とインダクタ134と、を有している。
 キャパシタ133は、第2キャパシタの一例であり、出力端子76とフィルタ63とを結ぶ第3経路に直列配置されている。スイッチ132は、第6スイッチの一例であり、第3経路とグランドとの間に接続されている。スイッチ131は、第4スイッチの一例であり、インダクタ134は、第2インダクタの一例であり、スイッチ131とインダクタ134とは、互いに直列接続されている。スイッチ131とインダクタ134との直列接続回路は、第3経路に並列接続されている。
 整合回路150は、第4回路の一例であり、出力端子77とフィルタ64との間に接続されている。整合回路150は、スイッチ151および152と、キャパシタ153とインダクタ154と、を有している。
 キャパシタ153は、第4キャパシタの一例であり、出力端子77とフィルタ64とを結ぶ第4経路に直列配置されている。スイッチ152は、第7スイッチの一例であり、第4経路とグランドとの間に接続されている。スイッチ151は、第8スイッチの一例であり、インダクタ154は、第4インダクタの一例であり、スイッチ151とインダクタ154とは、互いに直列接続されている。スイッチ151とインダクタ154との直列接続回路は、第4経路に並列接続されている。
 なお、整合回路120、130、140および150は、IC160に含まれていてもよい。
 なお、スイッチ121、122、131、132、141、142、151および152のそれぞれは、例えば、FETなどを含むスイッチ素子である。
 上記回路構成によれば、高周波回路1Aは、バンドA~バンドDのいずれかの高周波信号を、入力端子110からアンテナ接続端子100へ向けて送信することが可能である。このとき、バンドAを伝送する整合回路120の第1経路、バンドBを伝送する整合回路140の第2経路、バンドCを伝送する整合回路130の第3経路、およびバンドDを伝送する整合回路150の第4経路には、スイッチが直列配置されていないので、バンドA~バンドDの高周波信号を低損失で伝送することが可能となる。
 次に、高周波回路1AにおけるバンドA~バンドDの高周波信号の流れとスイッチ動作との関係について説明する。
 バンドAの信号を伝送する場合、スイッチ121および122が非導通状態となり、スイッチ142が導通状態となり、スイッチ141が非導通状態となる。パワーアンプ10および20から出力されたバンドAの信号を、出力端子76を経由して第1経路に伝送するには、出力側コイル322の他端を短絡状態とする必要がある。出力側コイル322の他端とスイッチ142との間には接続配線があるため、スイッチ142を導通状態としてスイッチ142の近傍をグランドに短絡しても、出力側コイル322の他端のインピーダンスは、当該接続配線のインダクタンス成分の分だけ短絡点からずれることとなる。これに対して、スイッチ142と出力側コイル322の他端との間に直列配置されたキャパシタ143により、上記接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の他端におけるインピーダンスを短絡状態とすることが可能となる。
 なお、キャパシタ143およびスイッチ142のうち、キャパシタ143の方が出力側コイル322の他端に近く接続されていることが望ましい。これにより、上記接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の他端におけるインピーダンスを、精度よく短絡状態とすることが可能となる。
 また、整合回路130のスイッチ131および132が導通状態となる。これにより、整合回路130は、出力端子76とグランドとの間に、インダクタ134とキャパシタ133との並列接続回路が配置される。インダクタ134とキャパシタ133との並列接続回路(LC共振回路)は、バンドAの信号を通過させない帯域除去フィルタとして機能する。つまり、整合回路130は、スイッチ131および132が導通状態となることにより、バンドAの信号に対してオープン状態となる。これにより、バンドAの信号は第1経路を低損失で通過することが可能となる。
 なお、整合回路150において、スイッチ151および152が導通状態となっていてもよい。これにより、整合回路150は、出力端子77とグランドとの間に、インダクタ154とキャパシタ153との並列接続回路が配置される。これにより、インダクタ154とキャパシタ153との並列接続回路(LC共振回路)は、バンドAの信号を通過させない帯域除去フィルタとして機能させることが可能となる。つまり、整合回路150は、スイッチ151および152が導通状態となることにより、バンドAの信号に対してオープン状態となる。
 上記のスイッチ動作により、パワーアンプ10および20から出力されたバンドAの信号は、直列配置されたスイッチを経由せずに、第1経路からフィルタ61へと伝送する。よって、高周波回路1Aは、バンドAの高周波信号を低損失で伝送することが可能となる。
 次に、バンドCの信号を伝送する場合、スイッチ131および132が非導通状態となり、スイッチ152が導通状態となり、スイッチ151が非導通状態となる。パワーアンプ10および20から出力されたバンドCの信号を、出力端子76を経由して第3経路に伝送するには、出力側コイル322の他端を短絡状態とする必要がある。出力側コイル322の他端とスイッチ152との間には接続配線があるため、スイッチ152を導通状態としてスイッチ152の近傍をグランドに短絡しても、出力側コイル322の他端のインピーダンスは、当該接続配線のインダクタンス成分の分だけ短絡点からずれることとなる。これに対して、スイッチ152と出力側コイル322の他端との間に直列配置されたキャパシタ153により、上記接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の他端におけるインピーダンスを短絡状態とすることが可能となる。
 なお、キャパシタ153およびスイッチ152のうち、キャパシタ153の方が出力側コイル322の他端に近く接続されていることが望ましい。これにより、上記接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の他端におけるインピーダンスを、精度よく短絡状態とすることが可能となる。
 また、整合回路120のスイッチ121および122が導通状態となる。これにより、整合回路120は、出力端子76とグランドとの間に、インダクタ124とキャパシタ123との並列接続回路が配置される。インダクタ124とキャパシタ123との並列接続回路(LC共振回路)は、バンドCの信号を通過させない帯域除去フィルタとして機能する。つまり、整合回路120は、スイッチ121および122が導通状態となることにより、バンドCの信号に対してオープン状態となる。これにより、バンドCの信号は第3経路を低損失で通過することが可能となる。
 なお、整合回路140において、スイッチ141および142が導通状態となっていてもよい。これにより、整合回路140は、出力端子77とグランドとの間に、インダクタ144とキャパシタ143との並列接続回路が配置される。これにより、インダクタ144とキャパシタ143との並列接続回路(LC共振回路)は、バンドCの信号を通過させない帯域除去フィルタとして機能させることが可能となる。つまり、整合回路140は、スイッチ141および142が導通状態となることにより、バンドCの信号に対してオープン状態となる。
 上記のスイッチ動作により、パワーアンプ10および20から出力されたバンドCの信号は、直列配置されたスイッチを経由せずに、第3経路からフィルタ63へと伝送する。よって、高周波回路1Aは、バンドCの高周波信号を低損失で伝送することが可能となる。
 次に、バンドBの信号を伝送する場合、スイッチ141および142が非導通状態となり、スイッチ122が導通状態となり、スイッチ121が非導通状態となる。パワーアンプ10および20から出力されたバンドBの信号を、出力端子77を経由して第2経路に伝送するには、出力側コイル322の一端を短絡状態とする必要がある。出力側コイル322の一端とスイッチ122との間には接続配線があるため、スイッチ122を導通状態としてスイッチ122の近傍をグランドに短絡しても、出力側コイル322の一端のインピーダンスは、当該接続配線のインダクタンス成分の分だけ短絡点からずれることとなる。これに対して、スイッチ122と出力側コイル322の一端との間に直列配置されたキャパシタ123により、上記接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の一端におけるインピーダンスを短絡状態とすることが可能となる。
 なお、キャパシタ123およびスイッチ122のうち、キャパシタ123の方が出力側コイル322の一端に近く接続されていることが望ましい。これにより、上記接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の一端におけるインピーダンスを、精度よく短絡状態とすることが可能となる。
 また、整合回路150のスイッチ151および152が導通状態となる。これにより、整合回路150は、出力端子77とグランドとの間に、インダクタ154とキャパシタ153との並列接続回路が配置される。インダクタ154とキャパシタ153との並列接続回路(LC共振回路)は、バンドBの信号を通過させない帯域除去フィルタとして機能する。つまり、整合回路150は、スイッチ151および152が導通状態となることにより、バンドBの信号に対してオープン状態となる。これにより、バンドBの信号は第2経路を低損失で通過することが可能となる。
 なお、整合回路130において、スイッチ131および132が導通状態となっていてもよい。これにより、整合回路130は、出力端子76とグランドとの間に、インダクタ134とキャパシタ133との並列接続回路が配置される。これにより、インダクタ134とキャパシタ133との並列接続回路(LC共振回路)は、バンドBの信号を通過させない帯域除去フィルタとして機能させることが可能となる。つまり、整合回路130は、スイッチ131および132が導通状態となることにより、バンドBの信号に対してオープン状態となる。
 上記のスイッチ動作により、パワーアンプ10および20から出力されたバンドBの信号は、直列配置されたスイッチを経由せずに、第2経路からフィルタ62へと伝送する。よって、高周波回路1Aは、バンドBの高周波信号を低損失で伝送することが可能となる。
 次に、バンドDの信号を伝送する場合、スイッチ151および152が非導通状態となり、スイッチ132が導通状態となり、スイッチ131が非導通状態となる。パワーアンプ10および20から出力されたバンドDの信号を、出力端子77を経由して第4経路に伝送するには、出力側コイル322の一端を短絡状態とする必要がある。出力側コイル322の一端とスイッチ132との間には接続配線があるため、スイッチ132を導通状態としてスイッチ132の近傍をグランドに短絡しても、出力側コイル322の一端のインピーダンスは、当該接続配線のインダクタンス成分の分だけ短絡点からずれることとなる。これに対して、スイッチ132と出力側コイル322の一端との間に直列配置されたキャパシタ133により、上記接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の一端におけるインピーダンスを短絡状態とすることが可能となる。
 なお、キャパシタ133およびスイッチ132のうち、キャパシタ133の方が出力側コイル322の一端に近く接続されていることが望ましい。これにより、上記接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の一端におけるインピーダンスを、精度よく短絡状態とすることが可能となる。
 また、整合回路140のスイッチ141および142が導通状態となる。これにより、整合回路140は、出力端子77とグランドとの間に、インダクタ144とキャパシタ143との並列接続回路が配置される。インダクタ144とキャパシタ143との並列接続回路(LC共振回路)は、バンドDの信号を通過させない帯域除去フィルタとして機能する。つまり、整合回路140は、スイッチ141および142が導通状態となることにより、バンドDの信号に対してオープン状態となる。これにより、バンドDの信号は第4経路を低損失で通過することが可能となる。
 なお、整合回路120において、スイッチ121および122が導通状態となっていてもよい。これにより、整合回路120は、出力端子76とグランドとの間に、インダクタ124とキャパシタ123との並列接続回路が配置される。これにより、インダクタ124とキャパシタ123との並列接続回路(LC共振回路)は、バンドDの信号を通過させない帯域除去フィルタとして機能させることが可能となる。つまり、整合回路120は、スイッチ121および122が導通状態となることにより、バンドDの信号に対してオープン状態となる。
 上記のスイッチ動作により、パワーアンプ10および20から出力されたバンドDの信号は、直列配置されたスイッチを経由せずに、第4経路からフィルタ64へと伝送する。よって、高周波回路1Aは、バンドDの高周波信号を低損失で伝送することが可能となる。
 ここで、整合回路120のキャパシタ123は、バンドCの信号を伝送する場合には、出力側コイル322の一端の位相(インピーダンス)調整用素子として機能し、バンドCの信号を伝送する場合には、第1経路と第2経路とのアイソレーションを確保するためのLC並列共振回路用素子として機能している。また、整合回路130のキャパシタ133は、バンドDの信号を伝送する場合には、出力側コイル322の一端の位相(インピーダンス)調整用素子として機能し、バンドAの信号を伝送する場合には、第1経路と第2経路とのアイソレーションを確保するためのLC並列共振回路用素子として機能している。また、整合回路140のキャパシタ143は、バンドAの信号を伝送する場合には、出力側コイル322の他端の位相(インピーダンス)調整用素子として機能し、バンドDの信号を伝送する場合には、第3経路と第4経路とのアイソレーションを確保するためのLC並列共振回路用素子として機能している。また、整合回路150のキャパシタ153は、バンドCの信号を伝送する場合には、出力側コイル322の他端の位相(インピーダンス)調整用素子として機能し、バンドBの信号を伝送する場合には、第3経路と第4経路とのアイソレーションを確保するためのLC並列共振回路用素子として機能している。
 つまり、キャパシタ123、133、143および153のそれぞれは、複数の機能を兼用する多機能素子であるため、整合回路120~150の回路素子数を低減できる。よって、高周波回路1Aの小型化が図られる。
 なお、本変形例に係る高周波回路1Aにおいて、スイッチ132および141、キャパシタ143、インダクタ144、整合回路150、ならびにフィルタ64はなくてもよい。ただし、この場合には、スイッチ142が出力側コイル322の他端に近接して配置されていること、および、バンドAとバンドCとの周波数が重なっておらず、かつ、周波数間隔が十分確保されていることが必要となる。この回路構成の動作について以下、説明する。
 まず、バンドAの信号を伝送する場合、スイッチ121および122が非導通状態となり、スイッチ142が導通状態となる。これにより、出力側コイル322の他端におけるインピーダンスを短絡状態とすることが可能となる。
 また、整合回路130のスイッチ131が導通状態となる。これにより、整合回路130は、出力端子76と端子173との間に、インダクタ134とキャパシタ133との並列接続回路が配置される。インダクタ134とキャパシタ133との並列接続回路は、バンドAの信号を通過させないフィルタとして機能する。つまり、整合回路130は、スイッチ131が導通状態となることにより、バンドAの信号に対してオープン状態となる。これにより、バンドAの信号は第1経路を低損失で通過することが可能となる。
 次に、バンドCの信号を伝送する場合、スイッチ131が非導通状態となり、スイッチ142が導通状態となる。これにより、出力側コイル322の他端におけるインピーダンスを短絡状態とすることが可能となる。
 また、整合回路120のスイッチ121および122が導通状態となる。これにより、整合回路120は、出力端子76とグランドとの間に、インダクタ124とキャパシタ123との並列接続回路が配置される。インダクタ124とキャパシタ123との並列接続回路は、バンドCの信号を通過させない帯域除去フィルタとして機能する。つまり、整合回路120は、スイッチ121および122が導通状態となることにより、バンドCの信号に対してオープン状態となる。これにより、バンドCの信号は第3経路を低損失で通過することが可能となる。
 次に、バンドBの信号を伝送する場合、スイッチ142が非導通状態となり、スイッチ122が導通状態となる。パワーアンプ10および20から出力されたバンドBの信号を、出力端子77を経由して第2経路に伝送するには、出力側コイル322の一端を短絡状態とする必要がある。これに対して、スイッチ122と出力側コイル322の一端との間に直列配置されたキャパシタ123により、出力側コイル322の一端とスイッチ122との間の接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の一端におけるインピーダンスを短絡状態とすることが可能となる。
 上記動作により、バンドAの信号は第1経路を低損失で通過することが可能となり、バンドBの信号は第2経路を低損失で通過することが可能となり、バンドCの信号は第3経路を低損失で通過することが可能となる。
 これにより、複数のバンドA~バンドCの高周波信号を低損失で伝送可能な、複数の増幅素子およびトランスを有する高周波回路1Aを提供できる。
 [1.5 変形例3に係る高周波回路1Bの回路構成]
 図6は、実施の形態の変形例3に係る高周波回路1Bの回路構成図である。同図に示すように、高周波回路1Bは、パワーアンプ10および20と、プリアンプ11および21と、移相線路12a、12b、22aおよび22bと、キャパシタ12cおよび22cと、トランス31および32と、整合回路71、72、73および74と、スイッチ40、41および42と、フィルタ61および62と、バイアス回路50と、出力端子76および77と、入力端子110と、アンテナ接続端子100と、を備える。本変形例に係る高周波回路1Bは、実施の形態に係る高周波回路1と比較して、パワーアンプ10および20の出力端子に接続された移相回路の構成が主として異なる。以下、本変形例に係る高周波回路1Bについて、実施の形態に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 移相線路12aおよび12bとキャパシタ12cとは、第1移相回路を構成し、入力された信号の位相を略-90度シフトする(90度遅らせる)。移相線路12aは、第1移相線路の一例であり、一端がパワーアンプ10の出力端子に接続され、他端が移相線路12bの一端に接続されている。移相線路12bは、第2移相線路の一例であり、一端が移相線路12aの他端に接続され、他端が入力側コイル321の一端に接続されている。キャパシタ12cは、第9キャパシタの一例であり、一端(一方の電極)が移相線路12aの他端と移相線路12bの一端との接続点に接続され、他端(他方の電極)がグランドに接続されている。
 上記構成によれば、移相線路12aおよび12bの接続点とグランドとの間にキャパシタ12cが接続されていることにより、移相線路12aおよび12bの合計線路長を1/4波長よりも短く設定できるので、高周波回路1Bを小型化できる。
 移相線路22aおよび22bとキャパシタ22cとは、第2移相回路を構成し、入力された信号の位相を略-90度シフトする(90度遅らせる)。移相線路22aは、第3移相線路の一例であり、一端がパワーアンプ20の出力端子に接続され、他端が移相線路22bの一端に接続されている。移相線路22bは、第4移相線路の一例であり、一端が移相線路22aの他端に接続され、他端が入力側コイル321の他端に接続されている。キャパシタ22cは、第10キャパシタの一例であり、一端(一方の電極)が移相線路22aの他端と移相線路22bの一端との接続点に接続され、他端(他方の電極)がグランドに接続されている。
 上記構成によれば、移相線路22aおよび22bの接続点とグランドとの間にキャパシタ22cが接続されていることにより、移相線路22aおよび22bの合計線路長を1/4波長よりも短く設定できるので、高周波回路1Bを小型化できる。
 なお、パワーアンプ10および20、プリアンプ11および21、ならびに整合回路71および72は、半導体IC80に含まれていてもよい。この場合、キャパシタ12cおよび22cは、半導体IC80に含まれていてもよい。
 これによれば、キャパシタ12cおよび22cがパワーアンプ10および20とともに半導体IC80に内蔵されるので、高周波回路1Bを小型化できる。
 さらに、キャパシタ12cおよび22cは、半導体IC80内において、パワーアンプ10とパワーアンプ20との間に配置されていてもよい。これによれば、半導体IC80のスペースを有効活用できるので、高周波回路1Bの小型化に寄与できる。
 なお、本変形例に係る高周波回路1Bにおいて、第1移相回路および第2移相回路の双方が、2つの移相線路およびキャパシタを有するものとしたが、第1移相回路および第2移相回路の少なくとも一方が、2つの移相線路およびキャパシタを有していればよい。
 [2.高周波回路1の実装構成]
 本実施の形態に係る高周波回路1の実装構成について、図7Aおよび図7Bを参照しながら説明する。
 図7Aは、実施例1に係る高周波回路1の平面図および断面図である。図7Aの(a)は、実施例1に係る高周波回路1の平面図であり、z軸正側からモジュール基板90の主面を透視した図であり、図7Aの(b)は、実施例1に係る高周波回路1の断面図である。図7Aの(b)における高周波回路1の断面は、図7Aの(a)のVIIA-VIIA線における断面である。また、図7Aの(a)では、パワーアンプ10および20の配置関係が容易に理解されるよう、その機能を表すマークが付されているが、実際の各アンプには、当該マークは付されていない。また、図7Aにおいて、モジュール基板90および各回路部品を接続する配線の図示が省略されている。
 なお、図7Aに示された高周波回路1は、さらに、モジュール基板90の表面および回路部品の一部を覆う樹脂部材、ならびに、樹脂部材の表面を覆うシールド電極層を備えてもよいが、図7Aでは、樹脂部材およびシールド電極層の図示が省略されている。
 高周波回路1は、図1Aに示された回路構成に加えて、さらに、モジュール基板90を有している。また、高周波回路1に含まれるプリアンプ11および21、トランス31、整合回路71~74、スイッチ40~42、ならびにフィルタ61および62は、図7Aには示されていないが、モジュール基板90に配置されていてもよい。
 モジュール基板90は、高周波回路1を構成する回路部品を実装する基板である。モジュール基板90としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板、高温同時焼成セラミックス(High Temperature Co-fired Ceramics:HTCC)基板、部品内蔵基板、再配線層(Redistribution Layer:RDL)を有する基板、または、プリント基板等が用いられる。
 モジュール基板90の表面上には、パワーアンプ10および20などが配置されている。
 パワーアンプ10および20は、半導体IC81に含まれている。半導体IC81は、モジュール基板90上に配置されている。半導体IC81は、例えばCMOS(Complementary Metal Oxide Semiconductor)を用いて構成され、具体的にはSOI(Silicon on Insulator)プロセスにより製造されてもよい。また、半導体IC81は、GaAs、SiGe及びGaNのうちの少なくとも1つで構成されてもよい。なお、半導体IC81の半導体材料は、上述した材料に限定されない。なお、プリアンプ11および21、整合回路71および72、ならびにスイッチ41および42の少なくともいずれかは、半導体IC81に含まれていてもよい。
 モジュール基板90の表面または内部には、移相線路12(第5移相線路)および22(第6移相線路)、入力側コイル321、ならびに出力側コイル322が形成されている。移相線路12および22、入力側コイル321、ならびに出力側コイル322は、モジュール基板90の表面または内部に形成された平面導体で構成されている。移相線路12および22と、入力側コイル321と、出力側コイル322とは、モジュール基板90の同層に形成されてもよいし、また、別層に形成されてもよい。また、移相線路12および22、入力側コイル321、ならびに出力側コイル322のそれぞれは、複数層にわたって形成されていてもよい。
 ここで、モジュール基板90を平面視した場合、移相線路12の巻き方向と移相線路22の巻き方向とは同じである。
 これによれば、移相線路12の巻き方向と移相線路22の巻き方向とが同じであることにより、図7Aに示すように、移相線路12の磁束方向と移相線路22の磁束方向とが同じとなる。このため、移相線路12の磁束方向と移相線路22の磁束方向とが逆である場合と比較して、移相線路12と移相線路22との磁界結合を抑制できる。よって、高周波回路1を伝送する高周波信号の伝送損失を低減できる。
 図7Bは、実施例2に係る高周波回路1Cの平面図および断面図である。図7Bの(a)は、変形例1に係る高周波回路1Cの平面図であり、z軸正側からモジュール基板90の主面を透視した図であり、図7Bの(b)は、変形例1に係る高周波回路1Cの断面図である。図7Bの(b)における高周波回路1Cの断面は、図7Bの(a)のVIIB-VIIB線における断面である。また、図7Bの(a)では、パワーアンプ10および20の配置関係が容易に理解されるよう、その機能を表すマークが付されているが、実際の各アンプには、当該マークは付されていない。また、図7Bにおいて、モジュール基板90および各回路部品を接続する配線の図示が省略されている。本実施例に係る高周波回路1Cは、実施例1に係る高周波回路1と比較して、移相回路の配置構成が異なる。以下、本実施例に係る高周波回路1Cについて、実施例1に係る高周波回路1と同じ点は説明を省略し、異なる点を中心に説明する。
 高周波回路1Cは、図1Bに示された回路構成に加えて、さらに、モジュール基板90を有している。また、高周波回路1Cに含まれるプリアンプ11および21、トランス31、整合回路71~74、スイッチ40~42、ならびにフィルタ61および62は、図7Bには示されていないが、モジュール基板90に配置されていてもよい。
 モジュール基板90の表面または内部には、移相回路13および14、入力側コイル321、ならびに出力側コイル322が形成されている。移相回路13を構成するキャパシタ231、232(図示せず)、インダクタ233および234(図示せず)は、チップ状の回路部品であり、例えば表面実装型の部品であり、モジュール基板90の表面に配置されている。移相回路14を構成するキャパシタ241、242(図示せず)、インダクタ243および244(図示せず)は、チップ状の回路部品であり、例えば表面実装型の部品であり、モジュール基板90の表面に配置されている。入力側コイル321および出力側コイル322は、モジュール基板90の表面または内部に形成された平面導体で構成されている。入力側コイル321および出力側コイル322は、モジュール基板90の同層に形成されてもよいし、また、別層に形成されてもよい。また、入力側コイル321および出力側コイル322のそれぞれは、複数層にわたって形成されていてもよい。
 本実施例では、モジュール基板90を平面視した場合、インダクタ233および243は、入力側コイル321および出力側コイル322の内方に配置されており、キャパシタ231および241は、入力側コイル321および出力側コイル322の外方に配置されている。
 なお、インダクタ233(および234)の巻き方向とインダクタ243(および)244)の巻き方向とは、同じであることが望ましい。これによれば、インダクタ233(および234)の巻き方向とインダクタ243(および)244)の巻き方向とが逆である場合と比較して、移相回路13と移相回路14との磁界結合を抑制できる。よって、高周波回路1Cを伝送する高周波信号の伝送損失を低減できる。
 [3.効果など]
 以上のように、本実施の形態に係る高周波回路1は、パワーアンプ10および20と、入力側コイル321および出力側コイル322を有するトランス32と、パワーアンプ10および20に接続されたバイアス回路50と、出力側コイル322の一端に接続された出力端子76と、出力側コイル322の他端に接続された出力端子77と、出力端子76とグランドとの間に接続されたスイッチ41と、出力端子77とグランドとの間に接続されたスイッチ42と、入力端がパワーアンプ10の出力端子に接続され、出力端が入力側コイル321の一端に接続された移相線路12と、入力端がパワーアンプ20の出力端子に接続され、出力端が入力側コイル321の他端に接続された移相線路22と、を備える。
 これによれば、バイアス回路50からパワーアンプ10および20に供給されるバイアス電圧の大きさを変化させることにより、パワーアンプ10および20を、キャリアアンプおよびピークアンプに排他的に切り替えることができる。なお、ピークアンプよりもキャリアアンプのほうが劣化し易い。上記切り替えと連動させて、スイッチ41および42の導通および非導通を排他的に切り替えることにより、例えば、パワーアンプ10がキャリアアンプ動作しパワーアンプ20がピークアンプ動作している場合には、パワーアンプ10および20で増幅され合成された高周波信号を出力端子76から出力し、パワーアンプ20がキャリアアンプ動作しパワーアンプ10がピークアンプ動作している場合には、パワーアンプ10および20で増幅され合成された高周波信号を出力端子77から出力することが可能となる。よって、パワーアンプ10および20のいずれかを、劣化し易いキャリアアンプに固定して動作させることを回避できるので、パワーアンプ10および20の劣化が抑制されたドハティ型の電力増幅器を有する高周波回路1を提供できる。
 また例えば、高周波回路1において、バイアス回路50は、スイッチ41および42の導通および非導通の切り替えタイミングに同期してパワーアンプ10に供給される第1バイアス電圧を変化させるバイアス供給回路51と、スイッチ41および42の導通および非導通の切り替えタイミングに同期してパワーアンプ20に供給される第2バイアス電圧を変化させるバイアス供給回路52と、を備え、第1バイアス電圧の電圧値と第2バイアス電圧の電圧値とは異なってもよい。
 これによれば、パワーアンプ10をキャリアアンプとして動作させたい場合には、バイアス供給回路51はパワーアンプ10に対して、相対的に大きい電圧値を有する第1バイアス電圧を供給する。また、パワーアンプ20をピークアンプとして動作させたい場合には、バイアス供給回路52はパワーアンプ20に対して、上記第1バイアス電圧よりも小さい電圧値を有する第2バイアス電圧を供給する。また、パワーアンプ10をピークアンプとして動作させたい場合には、バイアス供給回路51はパワーアンプ10に対して、相対的に小さい電圧値を有する第1バイアス電圧を供給する。また、パワーアンプ20をキャリアアンプとして動作させたい場合には、バイアス供給回路52はパワーアンプ20に対して、上記第1バイアス電圧よりも大きい電圧値を有する第2バイアス電圧を供給する。よって、バイアス回路50により、パワーアンプ10および20を、キャリアアンプおよびピークアンプに排他的に切り替えることができる。
 また例えば、高周波回路1は、さらに、出力端子76に接続され、バンドAを含む通過帯域を有するフィルタ61と、出力端子77に接続され、バンドBを含む通過帯域を有するフィルタ62と、を備えてもよい。
 これによれば、例えば、パワーアンプ10をキャリアアンプとし、パワーアンプ20をピークアンプとしてバンドAの信号を出力端子76から出力し、パワーアンプ20をキャリアアンプとし、パワーアンプ10をピークアンプとしてバンドBの信号を出力端子77から出力させることが可能となる。このとき、出力端子76とフィルタ61とを結ぶ信号経路に配置されたスイッチ41はグランドにシャント接続されているので、スイッチのオン抵抗によるバンドAの信号の伝送損失を回避できる。また、出力端子77とフィルタ62とを結ぶ信号経路に配置されたスイッチ42はグランドにシャント接続されているので、スイッチのオン抵抗によるバンドBの信号の伝送損失を回避できる。
 また例えば、高周波回路1Aは、Aバンドを含む通過帯域を有するフィルタ61と、バンドBを含む通過帯域を有するフィルタ62と、バンドCを含む通過帯域を有するフィルタ63と、出力端子76とフィルタ61との間に接続された整合回路120と、出力端子77とフィルタ62との間に接続された整合回路140と、出力端子76とフィルタ63との間に接続された整合回路130と、を備え、整合回路120は、出力端子76とフィルタ61とを結ぶ第1経路に直列配置されたキャパシタ123と、第1経路とグランドとの間に接続されたスイッチ122と、互いに直列接続されたスイッチ121およびインダクタ124と、を有し、スイッチ121とインダクタ124との直列接続回路は、第1経路に並列接続され、整合回路140は、出力端子77とフィルタ62を結ぶ第2経路と、グランドとの間に接続されたスイッチ142を有し、整合回路130は、出力端子76とフィルタ63とを結ぶ第3経路に直列配置されたキャパシタ133と、互いに直列接続されたスイッチ131およびインダクタ134と、を有し、スイッチ131とインダクタ134との直列接続回路は、第3経路に並列接続されていてもよい。
 これによれば、バンドAの信号は直列配置されたスイッチを経由せずに第1経路を低損失で通過することが可能となり、バンドBの信号は直列配置されたスイッチを経由せずに第2経路を低損失で通過することが可能となり、バンドCの信号は直列配置されたスイッチを経由せずに第3経路を低損失で通過することが可能となる。よって、複数のバンドA~バンドCの高周波信号を低損失で伝送可能な高周波回路1Aを提供できる。
 また例えば、高周波回路1Aにおいて、キャパシタ123およびスイッチ122のうち、キャパシタ123の方が出力端子76に近く接続されていてもよい。
 これによれば、出力側コイル322の一端とスイッチ122とを結ぶ接続配線のインダクタンス成分により短絡点からずれた出力側コイル322の一端におけるインピーダンスを、精度よく短絡状態とすることが可能となる。
 また例えば、高周波回路1Aは、さらに、バンドDを含む通過帯域を有するフィルタ64と、出力端子77とフィルタ64との間に接続された整合回路150と、を備え、整合回路140は、さらに、第2経路に直列配置されたキャパシタ143と、互いに直列接続されたスイッチ141およびインダクタ144と、を有し、スイッチ141とインダクタ144との直列接続回路は、第2経路に並列接続され、整合回路130は、さらに、第3経路とグランドとの間に接続されたスイッチ132を有し、整合回路150は、出力端子77とフィルタ64とを結ぶ第4経路に直列配置されたキャパシタ153と、第4経路とグランドとの間に接続されたスイッチ152と、互いに直列接続されたスイッチ151およびインダクタ154と、を有し、スイッチ152とインダクタ154との直列接続回路は、第4経路に並列接続されていてもよい。
 これによれば、バンドA~バンドDの高周波信号を低損失で伝送することが可能となる。
 また例えば、高周波回路1において、パワーアンプ10および20は、互いにサイズが異なってもよい。
 これによれば、パワーアンプ10および20のキャリアアンプおよびピークアンプの切り替えに応じて、バックオフ量を変化させることが可能となる。
 また例えば、高周波回路1Cにおいて、移相回路13は、パワーアンプ10の出力端子に接続されたキャパシタ231と、パワーアンプ10の出力端子と入力側コイル321の一端との間に、キャパシタ231と直列接続されたキャパシタ232と、キャパシタ231とキャパシタ232との接続点とグランドとの間に接続されたインダクタ233と、キャパシタ232との入力側コイル321の一端との接続点とグランドとの間に接続されたインダクタ234と、を有してもよい。
 これによれば、移相回路13は、キャパシタ231の一端から入力された高周波信号の位相を遅らせて、キャパシタ232の他端から出力することが可能となる。
 また例えば、高周波回路1Cにおいて、移相回路14は、パワーアンプ20の出力端子に接続されたキャパシタ241と、パワーアンプ20の出力端子と入力側コイル321の他端との間に、キャパシタ241と直列接続されたキャパシタ242と、キャパシタ241とキャパシタ242との接続点とグランドとの間に接続されたインダクタ243と、キャパシタ242との入力側コイル321の他端との接続点とグランドとの間に接続されたインダクタ244と、を有してもよい。
 これによれば、移相回路14は、キャパシタ241の一端から入力された高周波信号の位相を遅らせて、キャパシタ242の他端から出力することが可能となる。
 また例えば、高周波回路1Bにおいて、第1移相回路は、移相線路12aおよび12bと、キャパシタ12cと、を有し、移相線路12aの一端はパワーアンプ10の出力端子に接続され、移相線路12aの他端は移相線路12bの一端に接続され、移相線路12bの他端は入力側コイル321の一端に接続され、キャパシタ12cの一端は移相線路12aの他端と移相線路12bの一端との接続点に接続され、キャパシタ12cの他端はグランドに接続されていてもよい。
 これによれば、キャパシタ12cが配置されることで、パワーアンプ10で増幅された高周波信号の位相を90度遅らせるための移相線路12aおよび12bの合計線路長を、1/4波長よりも短くできるので、高周波回路1Bを小型化できる。
 また例えば、高周波回路1Bにおいて、第2移相回路は、移相線路22aおよび22bと、キャパシタ22cと、を有し、移相線路22aの一端はパワーアンプ20の出力端子に接続され、移相線路22aの他端は移相線路22bの一端に接続され、移相線路22bの他端は入力側コイル321の他端に接続され、キャパシタ22cの一端は移相線路22aの他端と移相線路22bの一端との接続点に接続され、キャパシタ22cの他端はグランドに接続されていてもよい。
 これによれば、キャパシタ22cが配置されることで、パワーアンプ20で増幅された高周波信号の位相を90度遅らせるための移相線路22aおよび22bの合計線路長を、1/4波長よりも短くできるので、高周波回路1Bを小型化できる。
 また例えば、高周波回路1は、モジュール基板90を備え、パワーアンプ10および20は、モジュール基板90の主面に配置された半導体IC80に含まれており、キャパシタ12cおよび22cは、半導体IC80に含まれていてもよい。
 これによれば、高周波回路1を小型化できる。
 また例えば、高周波回路1は、さらに、モジュール基板90を備え、第1移相回路は少なくとも移相線路12を含み、第2移相回路は少なくとも移相線路22を含み、入力側コイル321、出力側コイル322、移相線路12および22は、モジュール基板90の表面または内部に形成された平面導体で構成され、モジュール基板90を平面視した場合、移相線路12の巻き方向と移相線路22の巻き方向とは同じであってもよい。
 これによれば、移相線路12の巻き方向と移相線路22の巻き方向とが逆である構成と比較して、移相線路12と移相線路22との磁界結合を抑制できる。よって、高周波回路1を伝送する高周波信号の伝送損失を低減できる。
 また、本実施の形態に係る通信装置4は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波回路1と、を備える。
 これによれば、高周波回路1の効果を通信装置4で実現することができる。
 また、本実施の形態に係る高周波回路1の電力増幅方法は、スイッチ41を非導通状態とし、かつ、スイッチ42を導通状態とした場合、バイアス回路50からパワーアンプ10へ第1バイアス電圧を供給し、かつ、バイアス回路50からパワーアンプ20へ第1バイアス電圧よりも小さな電圧値の第2バイアス電圧を供給し、スイッチ41を導通状態とし、かつ、スイッチ42を非導通状態とした場合、バイアス回路50からパワーアンプ10へ第1バイアス電圧を供給し、かつ、バイアス回路50からパワーアンプ20へ第1バイアス電圧よりも大きな電圧値の第2バイアス電圧を供給する。
 これによれば、バイアス回路50からパワーアンプ10および20に供給されるバイアス電圧の大きさを変化させることにより、パワーアンプ10および20を、キャリアアンプおよびピークアンプに排他的に切り替えることができる。上記切り替えと連動させて、スイッチ41および42の導通および非導通を排他的に切り替えることにより、例えば、パワーアンプ10がキャリアアンプ動作しパワーアンプ20がピークアンプ動作している場合には、パワーアンプ10および20で増幅され合成された高周波信号を出力端子76から出力し、パワーアンプ20がキャリアアンプ動作しパワーアンプ10がピークアンプ動作している場合には、パワーアンプ10および20で増幅され合成された高周波信号を出力端子77から出力することが可能となる。よって、パワーアンプ10および20のいずれかを、劣化し易いキャリアアンプに固定して動作させることを回避できるので、高周波回路1の劣化を抑制することが可能となる。
 また、本実施の形態に係る高周波回路1の電力増幅方法は、スイッチ41を非導通状態とし、かつ、スイッチ42を導通状態とした場合、パワーアンプ10をAB級動作またはA級動作させ、かつ、パワーアンプ20をC級動作させ、スイッチ41を導通状態とし、かつ、スイッチ42を非導通状態とした場合、パワーアンプ20をAB級動作またはA級動作させ、かつ、パワーアンプ10をC級動作させる。
 これによれば、パワーアンプ10および20のAB級動作/C級動作の切り替えに連動させて、スイッチ41および42の導通および非導通を排他的に切り替えることにより、例えば、パワーアンプ10がAB級動作しパワーアンプ20がC級動作している場合には、パワーアンプ10および20で増幅され合成された高周波信号を出力端子76から出力し、パワーアンプ20がAB級動作しパワーアンプ10がC級動作している場合には、パワーアンプ10および20で増幅され合成された高周波信号を出力端子77から出力することが可能となる。よって、パワーアンプ10および20のいずれかを、劣化し易いキャリアアンプに固定して動作させることを回避できるので、高周波回路1の劣化を抑制することが可能となる。
 (その他の実施の形態など)
 以上、本発明の実施の形態に係る高周波回路、通信装置および高周波回路の電力増幅方法について、実施の形態、実施例および変形例を挙げて説明したが、本発明に係る高周波回路、通信装置および高周波回路の電力増幅方法は、上記実施の形態、実施例および変形例に限定されるものではない。上記実施の形態、実施例および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態、実施例および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路および通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、上記変形例に係る高周波回路において、整合回路120~150のそれぞれは、キャパシタ、インダクタ、および2つのスイッチを有しているが、これに限定されない。整合回路120、130、140および150のそれぞれは、キャパシタ、インダクタ、および2つのスイッチのほかに回路素子を有していてもよい。
 また例えば、上記実施の形態、実施例および変形例に係る高周波回路および通信装置において、図面に開示された各回路素子および信号経路を接続する経路の間に、別の回路素子および配線などが挿入されていてもよい。
 本発明は、マルチバンド対応のフロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。
 1、1A、1B、1C  高周波回路
 2  アンテナ
 3  RF信号処理回路(RFIC)
 4  通信装置
 10、20  パワーアンプ
 11、21  プリアンプ
 12、12a、12b、22、22a、22b  移相線路
 12c、22c、123、133、143、153、231、232、241、242  キャパシタ
 13、14  移相回路
 31、32  トランス
 40、41、42、60、121、122、131、132、141、142、151、152  スイッチ
 50  バイアス回路
 51、52、53、54  バイアス供給回路
 61、62、63、64  フィルタ
 71、72、73、74、120、130、140、150  整合回路
 76、77  出力端子
 80、81  半導体IC
 90  モジュール基板
 100  アンテナ接続端子
 110  入力端子
 124、134、144、154、233、234、243、244  インダクタ
 160  IC
 172、173、174、175  端子
 311、321  入力側コイル
 312、322  出力側コイル

Claims (16)

  1.  第1増幅素子および第2増幅素子と、
     入力側コイルおよび出力側コイルを有する出力トランスと、
     前記第1増幅素子および前記第2増幅素子に接続されたバイアス回路と、
     前記出力側コイルの一端に接続された第1出力端子と、
     前記出力側コイルの他端に接続された第2出力端子と、
     前記第1出力端子とグランドとの間に接続された第1スイッチと、
     前記第2出力端子とグランドとの間に接続された第2スイッチと、
     入力端が前記第1増幅素子の出力端子に接続され、出力端が前記入力側コイルの一端に接続された第1移相回路と、
     入力端が前記第2増幅素子の出力端子に接続され、出力端が前記入力側コイルの他端に接続された第2移相回路と、を備える、
     高周波回路。
  2.  前記バイアス回路は、
     前記第1スイッチおよび前記第2スイッチの導通および非導通の切り替えタイミングに同期して前記第1増幅素子に供給される第1バイアス電圧を変化させる第1バイアス回路と、
     前記第1スイッチおよび前記第2スイッチの導通および非導通の切り替えタイミングに同期して前記第2増幅素子に供給される第2バイアス電圧を変化させる第2バイアス回路と、を備え、
     前記第1バイアス電圧の電圧値と前記第2バイアス電圧の電圧値とは異なる、
     請求項1に記載の高周波回路。
  3.  さらに、
     前記第1出力端子に接続され、第1バンドを含む通過帯域を有する第1フィルタと、
     前記第2出力端子に接続され、第2バンドを含む通過帯域を有する第2フィルタと、を備える、
     請求項1または2に記載の高周波回路。
  4.  第1バンドを含む通過帯域を有する第1フィルタと、
     第2バンドを含む通過帯域を有する第2フィルタと、
     第3バンドを含む通過帯域を有する第3フィルタと、
     前記第1出力端子と前記第1フィルタとの間に接続された第1回路と、
     前記第2出力端子と前記第2フィルタとの間に接続された第2回路と、
     前記第1出力端子と前記第3フィルタとの間に接続された第3回路と、を備え、
     前記第1回路は、
      前記第1出力端子と前記第1フィルタとを結ぶ第1経路に直列配置された第1キャパシタと、
      前記第1経路とグランドとの間に接続された前記第1スイッチと、
      互いに直列接続された第3スイッチおよび第1インダクタと、を有し、
      前記第3スイッチと前記第1インダクタとの直列接続回路は、前記第1経路に並列接続され、
     前記第2回路は、
      前記第2出力端子と前記第2フィルタを結ぶ第2経路と、グランドとの間に接続された前記第2スイッチを有し、
     前記第3回路は、
      前記第1出力端子と前記第3フィルタとを結ぶ第3経路に直列配置された第2キャパシタと、
      互いに直列接続された第4スイッチおよび第2インダクタと、を有し、
      前記第4スイッチと前記第2インダクタとの直列接続回路は、前記第3経路に並列接続されている、
     請求項1または2に記載の高周波回路。
  5.  前記第1キャパシタおよび前記第1スイッチのうち、前記第1キャパシタの方が前記第1出力端子に近く接続されている、
     請求項4に記載の高周波回路。
  6.  さらに、
     第4バンドを含む通過帯域を有する第4フィルタと、
     前記第2出力端子と前記第4フィルタとの間に接続された第4回路と、を備え、
     前記第2回路は、さらに、
      前記第2経路に直列配置された第3キャパシタと、
      互いに直列接続された第5スイッチおよび第3インダクタと、を有し、
      前記第5スイッチと前記第3インダクタとの直列接続回路は、前記第2経路に並列接続され、
     前記第3回路は、さらに、
      前記第3経路とグランドとの間に接続された第6スイッチを有し、
     前記第4回路は、
      前記第2出力端子と前記第4フィルタとを結ぶ第4経路に直列配置された第4キャパシタと、
      前記第4経路とグランドとの間に接続された第7スイッチと、
      互いに直列接続された第8スイッチおよび第4インダクタと、を有し、
      前記第8スイッチと前記第4インダクタとの直列接続回路は、前記第4経路に並列接続されている、
     請求項5に記載の高周波回路。
  7.  前記第1増幅素子および前記第2増幅素子は、互いにサイズが異なる、
     請求項1~6のいずれか1項に記載の高周波回路。
  8.  前記第1移相回路は、
     前記第1増幅素子の出力端子に接続された第5キャパシタと、
     前記第1増幅素子の出力端子と前記入力側コイルの前記一端との間に、前記第5キャパシタと直列接続された第6キャパシタと、
     前記第5キャパシタと前記第6キャパシタとの接続点とグランドとの間に接続された第5インダクタと、
     前記第6キャパシタと前記入力側コイルの前記一端との接続点とグランドとの間に接続された第6インダクタと、を有する、
     請求項1~7のいずれか1項に記載の高周波回路。
  9.  前記第2移相回路は、
     前記第2増幅素子の出力端子に接続された第7キャパシタと、
     前記第2増幅素子の出力端子と前記入力側コイルの前記他端との間に、前記第7キャパシタと直列接続された第8キャパシタと、
     前記第7キャパシタと前記第8キャパシタとの接続点とグランドとの間に接続された第7インダクタと、
     前記第8キャパシタと前記入力側コイルの前記他端との接続点とグランドとの間に接続された第8インダクタと、を有する、
     請求項8に記載の高周波回路。
  10.  前記第1移相回路は、
     第1移相線路および第2移相線路と、
     第9キャパシタと、を有し、
     前記第1移相線路の一端は、前記第1増幅素子の出力端子に接続され、前記第1移相線路の他端は、前記第2移相線路の一端に接続され、前記第2移相線路の他端は、前記入力側コイルの前記一端に接続され、
     前記第9キャパシタの一端は、前記第1移相線路の前記他端と前記第2移相線路の前記一端との接続点に接続され、前記第9キャパシタの他端はグランドに接続されている、
     請求項1~7のいずれか1項に記載の高周波回路。
  11.  前記第2移相回路は、
     第3移相線路および第4移相線路と、
     第10キャパシタと、を有し、
     前記第3移相線路の一端は、前記第2増幅素子の出力端子に接続され、前記第3移相線路の他端は、前記第4移相線路の一端に接続され、前記第4移相線路の他端は、前記入力側コイルの前記他端に接続され、
     前記第10キャパシタの一端は、前記第3移相線路の前記他端と前記第4移相線路の前記一端との接続点に接続され、前記第10キャパシタの他端はグランドに接続されている、
     請求項10に記載の高周波回路。
  12.  さらに、モジュール基板を備え、
     前記第1増幅素子および前記第2増幅素子は、前記モジュール基板の主面に配置された半導体ICに含まれており、
     前記第9キャパシタおよび前記第10キャパシタは、前記半導体ICに含まれている、
     請求項11に記載の高周波回路。
  13.  さらに、モジュール基板を備え、
     前記第1移相回路は、少なくとも第5移相線路を含み、
     前記第2移相回路は、少なくとも第6移相線路を含み、
     前記入力側コイル、前記出力側コイル、前記第5移相線路および前記第6移相線路は、前記モジュール基板の表面または内部に形成された平面導体で構成され、
     前記モジュール基板を平面視した場合、前記第5移相線路の巻き方向と前記第6移相線路の巻き方向とは同じである、
     請求項1~11のいずれか1項に記載の高周波回路。
  14.  高周波信号を処理する信号処理回路と、
     前記信号処理回路とアンテナとの間で前記高周波信号を伝送する、請求項1~13のいずれか1項に記載の高周波回路と、を備える、
     通信装置。
  15.  第1増幅素子および第2増幅素子と、
     入力側コイルおよび出力側コイルを有する出力トランスと、
     前記第1増幅素子および前記第2増幅素子に接続されたバイアス回路と、
     前記出力側コイルの一端に接続された第1出力端子と、
     前記出力側コイルの他端に接続された第2出力端子と、
     前記第1出力端子とグランドとの間に接続された第1スイッチと、
     前記第2出力端子とグランドとの間に接続された第2スイッチと、
     入力端が前記第1増幅素子の出力端子に接続され、出力端が前記入力側コイルの一端に接続された第1移相回路と、
     入力端が前記第2増幅素子の出力端子に接続され、出力端が前記入力側コイルの他端に接続された第2移相回路と、を備える、高周波回路の電力増幅方法であって、
     第1スイッチを非導通状態とし、かつ、第2スイッチを導通状態とした場合、前記バイアス回路から前記第1増幅素子へ第1バイアス電圧を供給し、かつ、前記バイアス回路から前記第2増幅素子へ前記第1バイアス電圧よりも小さな電圧値の第2バイアス電圧を供給し、
     第1スイッチを導通状態とし、かつ、第2スイッチを非導通状態とした場合、前記バイアス回路から前記第1増幅素子へ第1バイアス電圧を供給し、かつ、前記バイアス回路から前記第2増幅素子へ前記第1バイアス電圧よりも大きな電圧値の第2バイアス電圧を供給する、
     高周波回路の電力増幅方法。
  16.  第1増幅素子および第2増幅素子と、
     入力側コイルおよび出力側コイルを有する出力トランスと、
     前記出力側コイルの一端に接続された第1出力端子と、
     前記出力側コイルの他端に接続された第2出力端子と、
     前記第1出力端子とグランドとの間に接続された第1スイッチと、
     前記第2出力端子とグランドとの間に接続された第2スイッチと、
     入力端が前記第1増幅素子の出力端子に接続され、出力端が前記入力側コイルの一端に接続された第1移相回路と、
     入力端が前記第2増幅素子の出力端子に接続され、出力端が前記入力側コイルの他端に接続された第2移相回路と、を備える、高周波回路の電力増幅方法であって、
     第1スイッチを非導通状態とし、かつ、第2スイッチを導通状態とした場合、前記第1増幅素子をAB級動作またはA級動作させ、かつ、前記第2増幅素子をC級動作させ、
     第1スイッチを導通状態とし、かつ、第2スイッチを非導通状態とした場合、前記第1増幅素子をC級動作させ、かつ、前記第2増幅素子をAB級動作またはA級動作させる、
     高周波回路の電力増幅方法。
PCT/JP2022/029743 2021-08-12 2022-08-03 高周波回路、通信装置および高周波回路の電力増幅方法 WO2023017760A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280055361.9A CN117859264A (zh) 2021-08-12 2022-08-03 高频电路、通信装置以及高频电路的功率放大方法
US18/432,115 US20240178868A1 (en) 2021-08-12 2024-02-05 Radio frequency circuit, communication device, and power amplification method for radio frequency circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021131534 2021-08-12
JP2021-131534 2021-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/432,115 Continuation US20240178868A1 (en) 2021-08-12 2024-02-05 Radio frequency circuit, communication device, and power amplification method for radio frequency circuit

Publications (1)

Publication Number Publication Date
WO2023017760A1 true WO2023017760A1 (ja) 2023-02-16

Family

ID=85199980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029743 WO2023017760A1 (ja) 2021-08-12 2022-08-03 高周波回路、通信装置および高周波回路の電力増幅方法

Country Status (3)

Country Link
US (1) US20240178868A1 (ja)
CN (1) CN117859264A (ja)
WO (1) WO2023017760A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204170A (ja) * 2013-04-01 2014-10-27 富士通セミコンダクター株式会社 電力増幅器及び通信装置
JP2018137566A (ja) * 2017-02-21 2018-08-30 株式会社村田製作所 電力増幅回路
WO2019054176A1 (ja) * 2017-09-15 2019-03-21 株式会社村田製作所 高周波回路、フロントエンド回路および通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204170A (ja) * 2013-04-01 2014-10-27 富士通セミコンダクター株式会社 電力増幅器及び通信装置
JP2018137566A (ja) * 2017-02-21 2018-08-30 株式会社村田製作所 電力増幅回路
WO2019054176A1 (ja) * 2017-09-15 2019-03-21 株式会社村田製作所 高周波回路、フロントエンド回路および通信装置

Also Published As

Publication number Publication date
CN117859264A (zh) 2024-04-09
US20240178868A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US11757478B2 (en) Radio frequency module and communication device
WO2021039068A1 (ja) 高周波モジュールおよび通信装置
US11431365B2 (en) Radio frequency module and communication device
JP2021197642A (ja) 高周波モジュールおよび通信装置
US11881876B2 (en) Radio frequency module and communication device
JP2021175073A (ja) 高周波モジュールおよび通信装置
JP2021174854A (ja) 高周波モジュールおよび通信装置
US11394407B2 (en) Radio frequency module and communication device
KR20210116227A (ko) 고주파 모듈 및 통신 장치
JP2021145283A (ja) 高周波モジュールおよび通信装置
WO2023017760A1 (ja) 高周波回路、通信装置および高周波回路の電力増幅方法
WO2023068079A1 (ja) 高周波回路および通信装置
WO2023008255A1 (ja) 高周波回路および通信装置
WO2022255389A1 (ja) 高周波モジュールおよび通信装置
WO2022259892A1 (ja) 増幅回路及び高周波回路
WO2022254875A1 (ja) 高周波回路および通信装置
WO2023157725A1 (ja) 高周波回路および通信装置
WO2023203858A1 (ja) 高周波回路および通信装置
WO2023017761A1 (ja) 電力増幅回路及び電力増幅方法
WO2023286492A1 (ja) 電力増幅回路及び電力増幅方法
WO2023281944A1 (ja) 電力増幅回路及び電力増幅方法
WO2023203859A1 (ja) 高周波回路および通信装置
WO2022209749A1 (ja) 高周波モジュール及び通信装置
WO2023074253A1 (ja) 高周波回路および通信装置
CN117378141A (zh) 高频电路和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280055361.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE