WO2023016204A1 - 放大器模组、射频系统及通信设备 - Google Patents

放大器模组、射频系统及通信设备 Download PDF

Info

Publication number
WO2023016204A1
WO2023016204A1 PCT/CN2022/106615 CN2022106615W WO2023016204A1 WO 2023016204 A1 WO2023016204 A1 WO 2023016204A1 CN 2022106615 W CN2022106615 W CN 2022106615W WO 2023016204 A1 WO2023016204 A1 WO 2023016204A1
Authority
WO
WIPO (PCT)
Prior art keywords
uhf
port
frequency
signal
target
Prior art date
Application number
PCT/CN2022/106615
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023016204A1 publication Critical patent/WO2023016204A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present application relates to the technical field of antennas, in particular to an amplifier module, a radio frequency system and communication equipment.
  • a non-standalone (NSA) mode usually adopts a dual connection mode of a fourth-generation 4G signal and a 5G signal.
  • NSA non-standalone
  • multiple discrete power amplifier modules can be set in the radio frequency system, for example, multiple power amplifier modules for supporting 4G signal transmission
  • the multi-band multi-mode power amplifier (MMPA) and the MMPA device supporting 5G signal transmission can realize the dual transmission of 4G signal and 5G signal.
  • Embodiments of the present application provide an amplifier module, a radio frequency system, and communication equipment, which can improve device integration and reduce costs.
  • the application provides a multi-mode multi-band power amplifier MMPA module, including:
  • the non-UHF amplifying circuit is configured to receive and process the non-UHF transmission signal from the radio frequency transceiver, and output it to the target non-UHF output port through the target selection switch;
  • UHF amplifier circuit including:
  • the UHF transmitting circuit is configured to receive and process the UHF transmitting signal from the radio frequency transceiver, and output it to the target UHF output port through the SPDT switch, the first filter, the coupler and the fifth selection switch in sequence ;
  • the first UHF receiving circuit is configured to sequentially receive and process the first UHF receiving signal of the first target UHF input port through the DP4T switch and the second filter, and output to the radio frequency transceiver ;
  • the second UHF receiving circuit is configured to sequentially receive and process the second target UHF input port through the DP4T switch, the coupler, the first filter and the fourth selection switch. receiving signals at UHF and outputting them to the radio frequency transceiver;
  • the P port of the SPDT switch is connected to the first filter, one T port of the SPDT switch is connected to the UHF transmitting circuit, and the other T port is connected to the second UHF receiving circuit connection; one P port of the DP4T switch is connected to the coupler, the other P port is configured to be connected to the second filter, and the two T ports of the DP4T switch are configured to be respectively connected to two SRS ports , the other two T ports are configured to be respectively connected to the first UHF antenna port for receiving the first UHF receive signal and the second UHF antenna port for the second UHF receive signal;
  • the target UHF output port and the target UHF input port are any one of the two SRS ports and the two UHF antenna ports.
  • the MMPA module supports the processing of radio frequency signals in any frequency band of low frequency, intermediate frequency, high frequency and ultra-high frequency. Since the low frequency amplifier circuit and the target amplifier circuit are powered independently, the target amplifier circuit is an intermediate frequency Amplifying circuit, high-frequency amplifying circuit and ultra-high-frequency amplifying circuit, so that low-frequency signal and other signals can be transmitted at the same time, so that MMPA can output two signals at the same time to support 4G LTE signal and 5G NR signal Amplify to realize EN-DC of 4G LTE signal and 5G NR signal.
  • the MMPA module supports 4-antenna SRS function and supports the receiving and processing of two UHF signals, which simplifies the RF front-end architecture.
  • the antenna multiplexing port supports UHF signals and high-frequency signals sharing the same antenna. Compared with using an external switch circuit to combine circuits to realize corresponding functions, it saves cost and layout area, and reduces circuit insertion loss.
  • the application provides a MMPA module, including:
  • the non-UHF amplifying unit is connected to the target selection switch, and is used to receive and process the non-UHF transmission signal from the radio frequency transceiver, and output it to the target non-UHF output port through the target selection switch;
  • the first ultra-high frequency amplifying unit is connected to the SPDT switch, the first filter, the coupler and the DP4T switch in sequence, and is used to receive the ultra-high frequency transmission signal from the radio frequency transceiver, and perform the ultra-high frequency transmission signal on the described ultra-high frequency transmission signal. After amplification processing, output to the target UHF output port through the SPDT switch, the first filter, the coupler and the DP4T switch in sequence;
  • the second ultra-high frequency amplifying unit is connected to the second filter and the DP4T switch in sequence, and is used to receive the first ultra-high frequency receiving signal of the first target ultra-high frequency input port through the DP4T switch and the second filter in sequence , and after amplifying the first UHF receiving signal, output it to the radio frequency transceiver;
  • the third ultra-high frequency amplifying unit is sequentially connected to the SPDT switch, the first filter, the coupler and the DP4T switch, and is used to sequentially pass through the DP4T switch, the coupler, and the first
  • the filter and the SPDT switch receive a second UHF receiving signal from a second target UHF input port, and after amplifying the second UHF receiving signal, output it to the RF transceiver;
  • the P port of the SPDT switch is connected to the first filter, one T port of the SPDT switch is connected to the first UHF amplifying unit, and the other T port is connected to the third UHF amplifying unit. unit; one P port of the DP4T switch is connected to the coupler, the other P port is connected to the second UHF amplifying unit, and the two T ports of the DP4T switch are connected to the MMPA module one by one The two SRS ports, and the other two T ports are connected one by one to the first UHF antenna port for receiving the first UHF receiving signal in the MMPA module and the second UHF antenna port for receiving the second UHF receiving signal.
  • the second UHF antenna port; the target UHF output port and the target UHF input port are any one of the two SRS ports and the two UHF antenna ports.
  • the present application provides an MMPA module configured with a non-UHF receiving port for receiving non-UHF transmission signals of a radio frequency transceiver, and for receiving a UHF transmission signal of the radio frequency transceiver
  • a non-UHF amplifying circuit connected to the non-UHF receiving port, for amplifying the non-UHF transmission signal
  • a target selection switch connected to the output end of the non-UHF amplifying circuit and the non-UHF output port, for selectively conducting the connection between the non-UHF amplifying circuit and the target non-UHF output port A path, the target non-UHF output port is any one of the non-UHF output ports;
  • a UHF transmitting circuit connected to the UHF receiving port, for amplifying and processing the UHF transmitting signal
  • a first UHF receiving circuit connected to the first UHF output port, for amplifying the first UHF receiving signal
  • a second UHF receiving circuit connected to the second UHF output port, for amplifying the second UHF receiving signal
  • one T port of the SPDT switch is connected to the UHF transmitting circuit, and the other T port is connected to the second UHF receiving circuit;
  • a first filter the first end of the first filter is connected to the P port of the SPDT switch, and is used to filter the UHF transmit signal or the second UHF receive signal;
  • a coupler the first end of the coupler is connected to the second end of the filter, and the second end of the coupler is connected to the coupling port of the MMPA module for detecting the UHF transmission signal/
  • the second UHF receives power information of a signal, and outputs the power information through the coupling port;
  • the first end of the second filter is connected to the first UHF receiving circuit, and is used to filter the first UHF receiving signal;
  • the DP4T switch is a DP4T switch, the first P port of the DP4T switch is connected to the third end of the coupler, the second P port of the DP4T switch is connected to the second end of the second filter, and the DP4T switch
  • the two T ports are connected to the two SRS ports one by one, and the other two T ports are connected to the two UHF antenna ports one by one, for selectively conducting the first UHF receiving circuit, A signal path between any one of the UHF transmitting circuit, the second UHF receiving circuit, and the third UHF output port.
  • the present application provides a radio frequency system, including:
  • the MMPA module as described in any one of the first aspect to the third aspect;
  • a radio frequency transceiver connected to the MMPA module, for sending and/or receiving UHF signals and non-UHF signals;
  • the first antenna unit is connected to the target UHF antenna port of the MMPA module, and the target UHF antenna port includes two SRS ports and two UHF antenna ports;
  • the target antenna unit is connected to the target antenna port of the MMPA module
  • the radio frequency system is used to realize the EN-DC function between the UHF transmission signal and the non-UHF transmission signal through the MMPA module, wherein the non-UHF transmission signal includes a low frequency transmission Any one of signal, intermediate frequency transmission signal and high frequency transmission signal.
  • the present application provides a communication device, including:
  • the radio frequency system as described in the fourth aspect as described in the fourth aspect.
  • Fig. 1A is the frame diagram of a kind of MMPA module of prior art
  • Fig. 1B is the framework schematic diagram of another kind of MMPA module of prior art
  • Fig. 2 is the frame schematic diagram of another kind of MMPA module that the embodiment of the present application provides;
  • Fig. 3 is the frame schematic diagram of another kind of MMPA module that the embodiment of the present application provides;
  • Fig. 4 is the frame schematic diagram of another kind of MMPA module that the embodiment of the present application provides;
  • Fig. 5 is the frame schematic diagram of another kind of MMPA module that the embodiment of the present application provides;
  • FIG. 6 is a schematic diagram of the framework of another MMPA module provided by the embodiment of the present application.
  • Fig. 7 is the frame schematic diagram of another kind of MMPA module that the embodiment of the present application provides;
  • Figure 8 is a schematic diagram of the framework of another MMPA module provided by the embodiment of the present application.
  • Fig. 9 is a schematic framework diagram of another MMPA module provided by the embodiment of the present application.
  • FIG. 10 is a schematic framework diagram of a radio frequency system 1 provided in an embodiment of the present application.
  • FIG. 11 is a schematic framework diagram of another radio frequency system 1 provided in the embodiment of the present application.
  • FIG. 12 is a schematic framework diagram of another radio frequency system 1 provided by an embodiment of the present application.
  • FIG. 13 is a schematic framework diagram of another radio frequency system 1 provided in the embodiment of the present application.
  • FIG. 14 is a schematic framework diagram of another radio frequency system 1 provided in the embodiment of the present application.
  • FIG. 15 is a schematic framework diagram of a communication device A provided in an embodiment of the present application.
  • FIG. 16 is a schematic frame diagram of a mobile phone provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • severeal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the radio frequency system involved in the embodiments of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A user equipment (User Equipment, UE) (for example, a mobile phone), a mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • UE Mobile Station
  • Network devices may include base stations, access points, and the like.
  • the radio frequency system 1 includes an MMPA module 10, a transmitting module 20 (the transmitting module is also called a TXM module), and a radio frequency transceiver 30 and an antenna group 40, wherein the radio frequency transceiver 30 is connected to the MMPA module 10 and the transmitting module 20, and the MMPA module 10 and the transmitting module 20 are connected to the antenna group 40.
  • the radio frequency transceiver is used for sending or receiving radio frequency signals through the signal path of the MMPA module 10 and the antenna group 40, or for sending or receiving radio frequency signals through the transmitting module 20 and the antenna group 40,
  • the MMPA module 10 may also be connected with the transmitting module 20 to form a signal processing path to transmit or receive radio frequency signals through corresponding antennas.
  • the MMPA module 10 is configured with a low frequency signal receiving port LB TX IN, an intermediate frequency signal receiving port MB TX IN, a high frequency signal receiving port HB TX IN, the first low frequency signal transmission port LB1, the second low frequency signal transmission port LB2, the third low frequency signal transmission port LB3, the fourth low frequency signal transmission port LB4, the fifth low frequency signal transmission port LB5, the first intermediate frequency signal transmission port MB1 , the second intermediate frequency signal sending port MB2, the third intermediate frequency signal sending port MB3, the fourth intermediate frequency signal sending port MB4, the fifth intermediate frequency signal sending port MB5, the first high frequency signal sending port HB1, the second high frequency signal sending port HB2 , the third high-frequency signal sending port HB3, the first high-frequency signal forwarding port HB RX1, the second high-frequency signal forwarding port HB RX2, the first low-medium-high-frequency power supply port LMHB_VCC1,
  • the low-frequency amplifier circuit LB PA includes a cascaded low-frequency front-stage PA (shown as a PA close to LB TX IN), a low-frequency matching circuit, and a low-frequency post-stage PA (shown as a PA far away from LB TX IN).
  • the input terminal of the stage PA is connected to the LB TX IN
  • the output terminal of the low-frequency pre-stage PA is connected to the low-frequency matching circuit
  • the low-frequency matching circuit is connected to the low-frequency post-stage PA
  • the power supply terminal of the low-frequency pre-stage PA Connect the LMHB_VCC1
  • the power supply terminal of the low-frequency post-stage PA is connected to the LMB_VCC2 for receiving and processing the low-frequency signal sent by the radio frequency transceiver
  • the low-frequency selection switch is an SP5T switch, the P port of the SP5T switch is connected to the output end of the low-frequency post-stage PA, and the 5 T ports are connected to the LB1, LB2, LB3, LB4, and LB5 in one-to-one correspondence for selecting the guide Through the path between the low-frequency amplifier circuit LB PA and any low-frequency signal sending port;
  • the intermediate frequency amplifier circuit MB PA includes a cascaded intermediate frequency pre-PA (shown as a PA close to MB TX IN), an intermediate frequency matching circuit, and an intermediate frequency post-stage PA (shown as a PA far away from MB TX IN).
  • the input end of the stage PA is connected to the MB TX IN
  • the output end of the intermediate frequency pre-stage PA is connected to the intermediate frequency matching circuit
  • the intermediate frequency matching circuit is connected to the intermediate frequency subsequent stage PA
  • the power supply terminal of the intermediate frequency pre-stage PA Connect the LMHB_VCC1, the power supply end of the intermediate frequency post-stage PA is connected to the LMB_VCC2, for receiving and processing the intermediate frequency signal sent by the radio frequency transceiver;
  • the intermediate frequency selection switch is an SP5T switch, the P port of the SP5T switch is connected to the output terminal of the intermediate frequency post-stage PA, and the five T ports are connected to the MB1, MB2, MB3, MB4, and MB5 in one-to-one correspondence for selecting the guide
  • High-frequency amplifier circuit HB PA including cascaded high-frequency pre-PA (shown as PA close to HB TX IN), high-frequency matching circuit and high-frequency post-stage PA (shown as PA away from HB TX IN),
  • the input end of the high-frequency pre-stage PA is connected to the MB TX IN
  • the output end of the high-frequency pre-stage PA is connected to the high-frequency matching circuit
  • the high-frequency matching circuit is connected to the high-frequency post-stage PA
  • the power supply terminal of the high-frequency pre-stage PA is connected to the LMHB_VCC1
  • the power supply terminal of the high-frequency post-stage PA is connected to the HB_VCC2 for receiving and processing high-frequency signals sent by the radio frequency transceiver;
  • the first high-frequency selection switch is an SPST switch, the P port is connected to the output end of the high-frequency post-stage PA, and the T port is connected to HB1;
  • the second high-frequency selection switch is an SPDT switch, the P port is connected to HB2, one T port is connected to HB1, and the other T port is connected to HB RX2;
  • the third high-frequency selection switch is an SPDT switch, the P port is connected to HB3, one T port is connected to HB1, and the other T port is connected to HB RX1;
  • the first controller CMOS Controller1 is connected to ports SCLK1, port SDA1, port VIO1, and port VBAT1, and is used to receive the first mobile processor industrial interface bus MIPI BUS control signal of port SCLK1 and port SDA1, and receive the first MIPI power supply signal of VIO1 , receiving the first bias voltage signal of VBAT1;
  • the second controller CMOS Controller2 is connected to port SCLK2, port SDA2, port VIO2, and port VBAT2, and is used to receive the second mobile processor industrial interface bus MIPI BUS control signal of port SCLK2 and port SDA2, and receive the second MIPI power supply signal of VIO2 , receiving the second bias voltage signal of VBAT2.
  • the working frequency range of the low frequency signal, intermediate frequency signal and high frequency signal that the signal processing circuit of the MMPA module 10 can process is from 663 MHz to 2690 MHz. It can be seen that the existing MMPA modules only integrate circuits that support low-frequency signals, intermediate-frequency signals, and high-frequency signal processing. GHz ⁇ 3.8GHz)) in various countries, and electronic devices such as mobile phones support the processing of UHF signals has become a must-have requirement.
  • the traditional MMPA module does not consider the dual connection between the fourth-generation 4G wireless access network and the fifth-generation 5G new air interface NR (E-UTRA and New radio) between low-frequency signals, intermediate-frequency signals and high-frequency signals.
  • E-UTRA and New radio the fifth-generation 5G new air interface NR
  • EN-DC Dual Connectivity
  • the power supplies of each signal processing circuit are connected together.
  • an additional MMPA module needs to be added in order to realize the EN-DC before the low-frequency signal and the intermediate-frequency signal, and between the low-frequency signal and the high-frequency signal.
  • the present application provides an amplifier module, a radio frequency system and a communication device, which will be described in detail below.
  • Multi-band multi-mode power amplifier Multi-band multi-mode power amplifier, MMPA module 10
  • MMPA multi-band multi-mode power amplifier
  • the non-UHF amplifying circuit 500 is configured to receive and process the non-UHF transmission signal from the radio frequency transceiver 30, and output it to the target non-UHF output port through the target selection switch 570;
  • UHF amplifying circuit 400 including:
  • the UHF transmission circuit 410 is configured to receive and process the UHF transmission signal from the radio frequency transceiver 30, and after the UHF transmission signal is amplified, the SPDT switch 540, the first filtering Device 610, coupler 710 and DP4T switch 550 are output to the target UHF output port;
  • the first UHF receiving circuit 420 is configured to receive the first UHF receiving signal of the first target UHF input port through the DP4T switch 550 and the second filter 620 in sequence, and to the first UHF receiving signal After the high-frequency received signal is amplified, it is output to the radio frequency transceiver 30;
  • the second UHF receiving circuit 430 is configured to receive the second target UHF input port through the DP4T switch 550, the coupler 710, the first filter 610 and the SPDT switch 540 in sequence. 2. UHF receiving signal, and after amplifying the second UHF receiving signal, output it to the radio frequency transceiver 30;
  • the P port of the SPDT switch 540 is connected to the first filter, one T port of the SPDT switch is connected to the ultrahigh frequency transmitting circuit 410, and the other T port is connected to the second ultrahigh frequency receiving circuit 420; one P port of the DP4T switch 550 is connected to the coupler, the other P port is configured to be connected to the second filter 620, and the two T ports of the DP4T switch are configured to be connected to two One SRS port, and the other two T ports are configured to be respectively connected to the first UHF antenna port 820 for receiving the first UHF receive signal and the second UHF antenna for the second UHF receive signal Port 830: the target UHF output port and the target UHF input port are any one of the two SRS ports and the two UHF antenna ports.
  • the SRS port 810 refers to an antenna port for receiving/sending ultra-high frequency signals, and the symbol "/" indicates or.
  • the target frequency band signal is a high frequency radio frequency signal.
  • the fourth selection switch 540 selects to turn on the UHF transmission circuit 410
  • the fifth selection switch 550 is used to selectively turn on the UHF transmission circuit 410 and the two UHF antenna ports, A signal path between any port of the two SRS ports 810 to support the UHF signal transmission function between the antennas.
  • the SRS switching4 antenna transmission function of the mobile phone is a mandatory option of China Mobile Communications Group CMCC in the "China Mobile 5G Scale Test Technology White Paper_Terminal", and it is optional in the 3rd Generation Partnership Project 3GPP.
  • the base station To measure the uplink signals of the 4 antennas of the mobile phone, and then confirm the quality and parameters of the 4-channel channel, according to the channel reciprocity, the beamforming of the multiple-input multiple-output Massive MIMO antenna array for the downlink is performed according to the channel reciprocity, and finally the downlink 4x4MIMO Get the best data transfer performance.
  • the fifth selection switch 550 when the fourth selection switch 540 selects to turn on the second UHF receiving circuit 430, the fifth selection switch 550 is also used to selectively turn on the second UHF receiving circuit 430 and the two A UHF antenna port, a signal path between any port of the two SRS ports 810.
  • the fifth selector switch 550 is also used to select and conduct the signal path between the first UHF receiving circuit 420 and any of the two UHF antenna ports and the two SRS ports 810 .
  • the fifth selection switch 550 can simultaneously turn on the first UHF receiving circuit 420, and turn on any one of the UHF transmitting circuit 410 and the second UHF receiving circuit 430; The effect of transmitting and receiving at the same time, or achieve the purpose of dual reception.
  • the MMPA module supports the processing of non-UHF signals and UHF signals to support the amplification of 4G LTE signals and 5G NR signals, and realize the EN of 4G LTE signals and 5G NR signals. -DC.
  • the MMPA module supports 4-antenna SRS function, and supports the receiving and/or sending processing of two UHF signals, which simplifies the RF front-end architecture.
  • it supports UHF signals and high-frequency signals through the antenna multiplexing port
  • the common antenna saves cost and layout area, and reduces circuit insertion loss compared to using an external switch circuit to combine circuits to realize corresponding functions.
  • the non-UHF amplifying circuit includes:
  • the low-frequency amplifying circuit 100 is configured to receive the low-frequency transmission signal from the radio frequency transceiver 30, and after amplifying the low-frequency transmission signal, output it to the target low-frequency output port 840 through the first selection switch 510;
  • the intermediate frequency amplifying circuit 200 is configured to receive the intermediate frequency transmission signal from the radio frequency transceiver 30, and after amplifying the intermediate frequency transmission signal, output it to the target intermediate frequency output port 850 through the second selection switch 520;
  • the high-frequency amplifying circuit 300 is configured to receive the high-frequency transmission signal from the radio frequency transceiver 30, and after amplifying the high-frequency transmission signal, output it to the target high-frequency output port 860 through the third selection switch 530 .
  • the first power supply voltage and the second power supply voltage may be less than or equal to 3.6V.
  • the low-frequency signals may include low-frequency signals in 3G, 4G, and 5G networks
  • the intermediate-frequency signals may include intermediate-frequency signals in 3G, 4G, and 5G networks
  • the high-frequency signals may include high-frequency signals in 3G, 4G, and 5G networks
  • UHF signals may include UHF signals in 5G networks.
  • Table 1 shows the frequency band division of signals of 2G network, 3G network, 4G network, and 5G network.
  • the low-frequency amplifier circuit 100 is specifically used to amplify low-frequency transmission signals of 3G networks, 4G networks, and 5G networks;
  • the intermediate-frequency amplifier circuit 200 is specifically used to amplify intermediate-frequency signals of 3G networks, 4G networks, and 5G networks;
  • the amplification circuit 300 is specifically used to amplify high-frequency signals of 3G networks, 4G networks, and 5G networks;
  • the ultra-high-frequency amplification circuit 400 is specifically used to amplify ultra-high-frequency signals of 5G networks.
  • the 5G network will continue to use the frequency band used by 4G, and only the identification before the serial number will be changed.
  • the 5G network has added some ultra-high frequency bands that are not available in the 4G network, such as N77, N78, and N79.
  • the low-frequency signal may include a low-frequency 4G LTE signal and a low-frequency 5G NR signal.
  • the intermediate frequency signal may include an intermediate frequency 4G LTE signal and an intermediate frequency 5G NR signal.
  • the high-frequency signal may include a high-frequency 4G LTE signal and a high-frequency 5G NR signal.
  • UHF signals may include UHF 5G NR signals.
  • the low-frequency amplifying circuit 100 is configured to receive the low-frequency transmission signal under a first supply voltage
  • the intermediate frequency amplifying circuit 200 is configured to receive the intermediate frequency transmission signal under a second power supply voltage
  • the high-frequency amplifying circuit 300 is configured to receive the high-frequency transmission signal under the second power supply voltage
  • the UHF amplifying circuit 400 is configured to receive the UHF transmit signal/the first UHF receive signal/the second UHF receive signal under the second supply voltage.
  • the first power supply voltage and the second power supply voltage may be less than or equal to 3.6V.
  • the MMPA module can simultaneously process low-frequency transmission signals and target frequency band signals.
  • the target frequency band signals are intermediate frequency transmission signals, high-frequency transmission signals and ultra-high frequency transmission signals. Either of the transmitted signals.
  • the MMPA module is used to realize the dual connection between the fourth-generation 4G wireless access network and the fifth-generation 5G new air interface NR between the non-UHF transmission signal and the UHF transmission signal EN-DC function.
  • 4G LTE frequency band 5G NR frequency band EN-DC LB MB LB+MB LB HB LB+HB LB UHB LB+UHB
  • the low frequency amplifier circuit and the intermediate frequency amplifier circuit work at the same time, it satisfies the EN-DC combination of LB+MB; when the low frequency amplifier circuit and the intermediate frequency amplifier circuit work at the same time, it satisfies the EN-DC combination of LB+HB; when When the low-frequency amplifying circuit and the ultra-high-frequency amplifying circuit work simultaneously, it satisfies the EN-DC combination of LB+UHB.
  • the MMPA module 10 can realize dual transmission processing of various signal combinations through independent power supply, and improve device capability.
  • the first selection switch 510 can be an SP5T switch, wherein the P port is connected to the output end of the low-frequency amplifier circuit 100, and the five T ports are connected to five of the MMPA modules 10 one by one.
  • Low-frequency output port (LB TX1-5 in the figure)
  • the five low-frequency output ports can optionally be connected to the second antenna unit (for example: low-frequency antenna unit), and the target low-frequency output port 840 is any one of the five low-frequency output ports.
  • the second selection switch 520 can be an SP5T switch, wherein the P port is connected to the output end of the intermediate frequency amplifier circuit 200, and the five T ports are connected to the five intermediate frequency output ports of the MMPA module 10 one by one (the figure is MB TX1-5) , the five intermediate frequency output ports can optionally be connected to a third antenna unit (for example: an intermediate frequency antenna unit), and the target intermediate frequency output port 850 is any one of the five intermediate frequency output ports.
  • the third selection switch 530 can be a 3P3T switch, the first P port is connected to the output end of the high-frequency amplifier circuit 300, and the second P port is connected to the first high-frequency output port of the MMPA module 10 (shown as HB TX1), The third P port is connected to the second high-frequency output port of the MMPA module 10 (shown as HB TX2), and the first T port is connected to the third high-frequency output port of the MMPA module 10 (shown as HB TX3), The second and third T ports are connected to the two high-frequency transceiver ports (shown as HB TRX1 and HB TRX2) of the MMPA module 10 in one-to-one correspondence, and the first high-frequency output port and the second high-frequency output port can be connected High-frequency receiving module, the high-frequency receiving module is used to receive high-frequency signals, and the third high-frequency output port and the two high-frequency transceiver ports are connected to the fourth antenna unit (for example: high-frequency antenna unit
  • the high-frequency receiving module can be, for example, a radio frequency low noise amplifier module (Low noise amplifier front end module, LFEM), and can also be a diversity receiving module (Diversity Receive Module with antenna switch module and filter) Antenna Switch Module and SAW, DFEM), can also be a multi-band low noise amplifier (Multi band Low Noise Amplifier, MLNA) and so on.
  • LFEM radio frequency low noise amplifier front end module
  • DFEM Diversity receiving module
  • Antenna Switch Module and SAW, DFEM can also be a multi-band low noise amplifier (Multi band Low Noise Amplifier, MLNA) and so on.
  • MLNA Multi band Low Noise Amplifier
  • the MMPA module supports multi-channel flexible processing for low-band, mid-band and high-band radio frequency signals.
  • the UHF transmission circuit 410 includes a single power amplifier, so as to implement power amplification processing on the UHF transmission signal; or,
  • the UHF transmitting circuit 410 includes a plurality of power amplifiers and a power combining unit, which implements power amplification processing of the UHF transmitting signal in a power combining manner.
  • the UHF transmitting circuit 410 includes a first power amplifier, a matching circuit and a second power amplifier, the first power amplifier is connected to the matching circuit, the matching circuit is connected to the second power amplifier, the The second power amplifier is connected to the fourth selection switch 540 .
  • the specific implementation manners of the UHF transmitting circuit 410 can be various, and there is no unique limitation here; in addition, the setting of a single power amplifier simplifies the circuit structure, reduces costs and improves space utilization.
  • both the first UHF receiving circuit 420 and the second UHF receiving circuit 430 include a single low noise amplifier, so as to perform power amplification processing on the UHF receiving signal.
  • the embodiment of the present application provides another multi-mode multi-band power amplifier MMPA module 10, including:
  • the non-UHF amplifying unit 500 is connected to the target selection switch 570, and is used to receive and process the non-UHF transmission signal from the radio frequency transceiver 30, and output it to the target non-UHF output port through the target selection switch 570;
  • the first ultra-high frequency amplifying unit 411 is connected to the SPDT switch 540, the first filter 610, the coupler 710 and the DP4T switch 550 in sequence, and is used to receive the ultra-high frequency transmission signal from the radio frequency transceiver 30, and to the described After the UHF transmission signal is amplified, it is sequentially output to the target UHF output port through the SPDT switch 540, the first filter 610, the coupler 710 and the DP4T switch 550;
  • the second UHF amplifying unit 421 is sequentially connected to the second filter 620 and the DP4T switch 550, and is used to receive the first target UHF input port through the DP4T switch 550 and the second filter 620 in turn. receiving the UHF signal, amplifying the first UHF receiving signal, and outputting it to the RF transceiver 30;
  • the third ultra-high frequency amplifying unit 431 is sequentially connected to the SPDT switch 540, the first filter 610, the coupler 710 and the DP4T switch 550, for sequentially passing through the DP4T switch 550, the coupling
  • the device 710, the first filter 610 and the SPDT switch 540 receive the second UHF receiving signal of the second target UHF input port, and after amplifying the second UHF receiving signal, output to the radio frequency transceiver 30;
  • the P port of the SPDT switch is connected to the first filter 610, one T port of the SPDT switch is connected to the first ultrahigh frequency amplifying unit 411, and the other T port is connected to the third ultrahigh frequency amplifier unit 411.
  • the two SRS ports 810 of the MMPA module, and the other two T ports are connected one by one to the first UHF antenna port for receiving the first UHF receiving signal in the MMPA module and for the second The second UHF antenna port of the UHF receiving signal; the target UHF output port and the target UHF input port are the two SRS ports 810 and the two UHF antenna ports anyone.
  • the MMPA module further supports UHF signals on the basis of supporting non-UHF signals, and the processing circuit at the UHF end supports 4-antenna SRS functions, and supports one UHF signal
  • the reception processing simplifies the RF front-end architecture.
  • the UHF signal and the non-UHF signal share one antenna port, which saves a lot of money compared to using an external switch circuit to combine circuits to realize the corresponding functions. cost and layout area, and reduces circuit insertion loss.
  • the target selection switch 570 includes a first selection switch, a second selection switch and a third selection switch;
  • the non-UHF amplifying unit includes:
  • the low-frequency amplifying unit 110 is connected to the first selection switch 510, and is used to receive and process the low-frequency transmission signal from the radio frequency transceiver 30, and after the low-frequency transmission signal is amplified, the low-frequency transmission signal is output through the first selection switch to target low frequency output port 840;
  • the intermediate frequency amplifying unit 210 is connected to the second selection switch 520, and is used for receiving and processing the intermediate frequency transmission signal from the radio frequency transceiver 30, and after amplifying the intermediate frequency transmission signal, it passes through the second selection switch output to the target intermediate frequency output port 850;
  • the high-frequency amplifying unit 310 is connected to the third selection switch 530, and is used for receiving and processing the high-frequency transmission signal from the radio frequency transceiver 30, and after amplifying the high-frequency transmission signal, the high-frequency transmission signal is passed through the first The three-select switch outputs to the target high-frequency output port 860 .
  • each amplifying unit in the low frequency amplifying unit 110, the intermediate frequency amplifying unit 210, the high frequency amplifying unit 310, the first super high frequency amplifying unit 411, the second super high frequency amplifying unit 421, and the third super high frequency amplifying unit 431 can be A power amplifier is included to amplify the power of the received radio frequency signal.
  • the amplifying unit may further include a plurality of power amplifiers and a power combining unit, which implements power amplification processing of radio frequency signals by means of power combining and the like.
  • the low frequency amplifying unit 100 is powered by the first power supply module 21; the intermediate frequency amplifying unit 200, the high frequency amplifying unit 300, the first ultra high frequency amplifying unit
  • the unit 411 , the second UHF amplifying unit 421 and the third UHF amplifying unit 431 are powered by the second power supply module 22 .
  • the MMPA module supports the processing of radio frequency signals in any frequency band of low frequency, intermediate frequency, high frequency and ultra-high frequency. Since the low frequency amplifier unit and the target amplifier unit are powered independently, the target amplifier unit is the intermediate frequency Amplifying unit, high-frequency amplifying unit and ultra-high-frequency amplifying unit, so that low-frequency signals and other signals can be transmitted simultaneously, so that the MMPA module can output two signals at the same time to support 4G LTE signals and 5G NR Signal amplification realizes EN-DC of 4G LTE signal and 5G NR signal.
  • the MMPA module supports 4-antenna SRS function, and supports the reception and processing of two UHF signals, which simplifies the RF front-end architecture, and saves cost and layout compared to external switch circuits to achieve corresponding functions. area, reducing circuit insertion loss.
  • the embodiment of the present application provides another multi-mode multi-band power amplifier MMPA module 10, which is configured with a non-UHF receiving port 870 for receiving non-UHF transmission signals of the radio frequency transceiver 30,
  • the UHF receiving port 881 for receiving the UHF transmitting signal of the RF transceiver 30, the first UHF output port 882 for sending the first UHF receiving signal from the antenna, and the first UHF output port 882 for sending the signal from the antenna.
  • the second UHF output port 883 of the second UHF receiving signal of the antenna, the non-UHF output port 800 for sending the non-UHF transmitting signal, and the non-UHF output port 800 for sending the third UHF transmitting signal includes two UHF antenna ports (shown as 820 and 830) and two SRS ports 810; the MMPA module includes:
  • a non-UHF amplifying circuit connected to the non-UHF receiving port 870, for amplifying the non-UHF transmission signal
  • the target selection switch 570 is connected to the output terminal of the non-UHF amplifying circuit and the non-UHF output port 800, and is used for selectively conducting between the non-UHF amplifying circuit and the target non-UHF output port
  • the path between, the target non-UHF output port is any one of the non-UHF output ports 800;
  • UHF transmitting circuit 410 connected to the UHF receiving port 881, for amplifying and processing the UHF transmitting signal
  • the first UHF receiving circuit 420 is connected to the first UHF output port 882 for amplifying the UHF receiving signal
  • the second UHF receiving circuit 430 is connected to the second UHF output port 883, and is used to amplify the second UHF receiving signal;
  • a T port of the SPDT switch is connected to the UHF transmitting circuit 410, and another T port is connected to the second UHF receiving circuit 420;
  • a first filter 610 the first end of the first filter 610 is connected to the P port of the SPDT switch, for filtering the UHF transmit signal or the second UHF receive signal;
  • a coupler 710 the first end of the coupler 710 is connected to the second end of the filter 610, and the second end of the coupler 710 is connected to the coupling port 811 of the MMPA module 10 for detecting the power information of the UHF transmit signal/the second UHF receive signal, and output the power information through the coupling port 811;
  • a second filter 620 the first end of the second filter 620 is connected to the first UHF receiving circuit 420, for filtering the first UHF receiving signal;
  • the first P port of the DP4T switch is connected to the third end of the coupler 710
  • the second P port of the DP4T switch is connected to the second end of the second filter 620
  • the DP4T switch The two T ports are connected to the two SRS ports 810 one by one, and the other two T ports are connected to the two UHF antenna ports one by one, for selectively conducting the first UHF receiving circuit 420 .
  • the MMPA module further supports UHF signals on the basis of supporting non-UHF signals, and the processing circuit at the UHF end supports 4-antenna SRS functions, and supports two-way UHF
  • the receiving and/or sending processing of signals simplifies the RF front-end architecture.
  • the antenna multiplexing port supports UHF signals and high-frequency signals to share the same antenna. cost and layout area, and reduce circuit insertion loss.
  • the non-UHF receiving port 870 includes:
  • the non-UHF output port 800 includes:
  • the MMPA module is also configured with a first power supply port 812 and a second power supply port 813;
  • the target selection switch 570 includes a first selection switch, a second selection switch and The third selection switch;
  • the non-UHF amplifier circuit includes a low frequency amplifier circuit, an intermediate frequency amplifier circuit and a high frequency amplifier circuit;
  • the low-frequency amplification circuit 100 is connected to the low-frequency receiving port 871 and the first power supply port 812, and is used to amplify the low-frequency transmission signal under the first power supply voltage of the first power supply port 812;
  • the first selection switch 510 is connected to the output terminal of the low frequency amplifier circuit 100 and the low frequency output port 801, and is used to select and conduct the path between the low frequency amplifier circuit 100 and the target low frequency output port 840, and the target low frequency
  • the output port 840 is any one of the low-frequency output ports 801;
  • the intermediate frequency amplifying circuit 200 is connected to the intermediate frequency receiving port 872 and the second power supply port 813, and is used to amplify the intermediate frequency transmission signal under the second power supply voltage of the second power supply port 813;
  • the second selection switch 520 is connected to the output terminal of the intermediate frequency amplifier circuit 200 and the intermediate frequency output port, and is used to select and conduct the path between the intermediate frequency amplifier circuit 200 and the target intermediate frequency output port 850, and the target intermediate frequency output port Port 850 is any one of the intermediate frequency output ports;
  • the high-frequency amplifying circuit 300 is connected to the high-frequency receiving port 873 and the second power supply port 813, and is used to perform the high-frequency transmission signal under the second power supply voltage of the second power supply port 813 Enlargement processing;
  • the third selection switch 530 is connected to the output terminal of the high-frequency amplifier circuit 300 and the high-frequency output port, and is used to select and conduct the path between the high-frequency amplifier circuit 300 and the target high-frequency output port 860, so The target high-frequency output port 860 is any one of the high-frequency output ports;
  • a UHF transmission circuit configured to amplify the UHF transmission signal under the second power supply voltage of the second power supply port 813;
  • the first UHF receiving circuit is configured to amplify the first UHF receiving signal under the second power supply voltage of the second power supply port 813;
  • the second UHF receiving circuit is configured to amplify the second UHF receiving signal under the second power supply voltage of the second power supply port 813 .
  • the number of the first power supply port 812 and the second power supply port 813 can be set according to the number of power amplifiers included in the corresponding frequency band transmitting circuits, specifically, the number of the first power supply port 812 can be It is equal to the number of power amplifiers in the low-frequency amplifying unit, for example, there may be two.
  • the MMPA module supports the processing of radio frequency signals in any frequency band of low frequency, intermediate frequency, high frequency and ultra-high frequency. Since the low frequency amplifier circuit and the target amplifier circuit are powered independently, the target amplifier circuit is an intermediate frequency Amplifying circuit, high-frequency amplifying circuit and ultra-high-frequency amplifying circuit, so that low-frequency signals and other signals can be transmitted at the same time, so that the MMPA module can output two signals at the same time to support 4G LTE signals and 5G NR Signal amplification realizes EN-DC of 4G LTE signal and 5G NR signal.
  • the MMPA module supports 4-antenna SRS function, and supports the receiving and/or sending processing of two UHF signals, which simplifies the RF front-end architecture.
  • it supports UHF signals and high-frequency signals through the antenna multiplexing port
  • the common antenna saves cost and layout area, and reduces circuit insertion loss compared to using an external switch circuit to combine circuits to realize corresponding functions.
  • the MMPA module is further configured with a first SDATA port, a first SCLK port, a first VIO port, a first VBAT port, a second SDATA port, a second SCLK port, a second VIO port, a second Two VBAT ports; the MMPA module also includes:
  • the first controller is connected to the first SDATA port, the first SCLK port, the first VIO port, the first VBAT port, the first UHB power amplifier, the second UHB power amplifier, the first HB power amplifier, and the second HB power amplifier.
  • the amplifier, the first MB power amplifier, and the second MB power amplifier are used to receive the first mobile processor industrial interface bus MIPI BUS control signal of the first SDATA port and the first SCLK port, and receive the first VIO
  • the first MIPI power supply signal of the port receives the first bias voltage signal of the first VBAT port;
  • the second controller is connected to the second SDATA port, the second SCLK port, the second VIO port, the second VBAT port, the first LB power amplifier, and the second LB power amplifier for receiving the second SDATA port,
  • the second MIPI BUS control signal of the second SCLK port receives the second MIPI power supply signal of the second VIO port, and receives the second bias voltage signal of the second VBAT port.
  • the MMPA module 10 includes the low-frequency processing circuit and related ports in the MMPA module 10 shown in FIG. 1B, In addition to the intermediate frequency processing circuit and related ports, the high frequency processing circuit and related ports, the first controller (shown as CMOS Controller1), the second controller (shown as CMOS Controller2) and related ports, it is also configured to receive radio frequency
  • the UHF receiving port of the N77 frequency band signal of the transceiver (shown as n77 TX IN), is used to send the first UHF sending port of the N77 frequency band signal to the RF transceiver (shown as n77 RX1), and is used to send
  • the second UHF sending port (shown as n77 RX1) for the RF transceiver to send signals in the N77 frequency band, 2 SRS ports (shown as SRS OUT1, SRS OUT2), the multiplexing port of the N77 and N41 frequency
  • the UHB amplifier circuit (UHB PA in the figure) is used to receive the UHF signal of the RF transceiver through the port n77 TX IN, perform amplification processing, and output through the SPDT switch, filter, first coupler and DP4T switch To the first target UHF output port, the first target UHF output port is any one of port SRS OUT1, port SRS OUT2, port N77/N41 ANT1, port N77 ANT2;
  • the first UHF receiving circuit (shown as a low-noise filter connected to port n77 RX1) is used to pass through the second target UHF receiving port, DP4T switch, and the second coupler (close to the first controller in the figure) coupler) and SPDT switch to receive and process the UHF signal, and send it to the RF transceiver through port n77 RX1, the second target UHF receiving port is port SRS OUT1, port SRS OUT2, port N77/N41 ANT1, port Any one of N77 ANT2;
  • the second UHF receiving circuit (shown as a low-noise filter connected to port n77 RX2) is used to pass through the third target UHF receiving port, the first coupler (the coupler far away from the first controller in the figure) ), the filter and the SPDT switch receive and process the UHF signal, and send it to the RF transceiver through the port n77 RX2, and the third target UHF receiving port is the port N77 ANT2.
  • the power amplifier of the low-frequency amplifier circuit is powered by ports LB_VCC1 and LB_VCC2, and the power amplifiers of the intermediate frequency amplifier circuit, high-frequency amplifier circuit, and ultra-high frequency amplifier circuit are powered by port MHB_UHB_VCC1 and port MHB_UHB_VCC2, so that through independent power supply, It can process low-frequency signals and target frequency band signals at the same time, and the target frequency band signals are any one of intermediate frequency signals, high-frequency signals and ultra-high-frequency signals to realize the EN-DC function.
  • the embodiment of the present application provides a radio frequency system 1, including:
  • MMPA module 10 as described in any embodiment of Fig. 2 to Fig. 9;
  • the first antenna unit 30 is connected to the target UHF antenna port of the MMPA module, and the target UHF antenna port includes two SRS ports 810 and two UHF antenna ports (820 and 830 among the figures) ;
  • the target antenna unit 80 is connected to the target antenna port 804 of the MMPA module;
  • the radio frequency system 1 is used to realize the EN-DC function between the UHF transmission signal and the non-UHF transmission signal through the MMPA module 10, wherein the non-UHF transmission signal includes Any one of low frequency transmission signal, intermediate frequency transmission signal and high frequency transmission signal.
  • the MMPA module further supports UHF signals on the basis of supporting non-UHF signals, and the processing circuit at the UHF end supports 4-antenna SRS functions, and supports two-way UHF
  • the receiving and/or sending processing of signals simplifies the RF front-end architecture.
  • the antenna multiplexing port supports UHF signals and high-frequency signals to share the same antenna. cost and layout area, and reduce circuit insertion loss.
  • the target antenna port 804 includes a low-frequency antenna port 805, a low-frequency antenna port 806, and a high-frequency antenna port 807; the target antenna unit 80 includes:
  • the second antenna unit 40 is connected to the low-frequency antenna port 805 of the MMPA module;
  • the third antenna unit 50 is connected to the low-frequency antenna port 806 of the MMPA module;
  • the fourth antenna unit 60 is connected to the high-frequency antenna port 807 of the MMPA module.
  • the radio frequency system 1 further includes:
  • the first power supply module 21 is connected to the low-frequency amplifying circuit 100 of the MMPA module 10, and is used to provide a first power supply voltage for the low-frequency amplifying circuit 100;
  • the second power supply module 22 is used to connect the intermediate frequency amplifying circuit 200, the high frequency amplifying circuit 300 and the ultrahigh frequency amplifying circuit 400 of the MMPA module 10, and is used for providing the intermediate frequency amplifying circuit 200 and the high frequency amplifying circuit Any circuit in 300 and the ultra-high frequency amplifying circuit 400 provides a second supply voltage;
  • the radio frequency system 1 is used to provide the low frequency amplifying circuit 100 with the first power supply voltage through the first power supply module 21, so as to realize the processing of the low frequency transmission signal, and at the same time to provide the low frequency amplifier circuit 100 with the first power supply voltage through the second power supply module 22.
  • the first power supply voltage is provided for the IF amplifying circuit 200 or the high frequency amplifying circuit 300 or the UHF amplifying circuit 400 so as to realize the processing of the IF transmitting signal or the high frequency transmitting signal or the UHF transmitting signal.
  • the input voltage of the first power supply module 21 and the second power supply module 22 may be the output voltage of the battery unit, generally between 3.6V-4.2V.
  • the first power supply voltage and the second power supply voltage to supply power to each amplifying circuit, it is possible to avoid adding a boost circuit in the power supply module, so as to reduce the cost of each power supply module.
  • both the first power supply module 21 and the second power supply module 22 may be power management ICs (Power management IC, PMIC).
  • PMIC power management IC
  • a PMIC without a boost circuit can be used to supply power to each amplifying unit.
  • the first power supply voltage and the second power supply voltage may be equal or different.
  • the size of the first power supply voltage and the second power supply voltage may be based on communication requirements and/or The specific structure of each amplifier circuit is set.
  • the first power supply module 21 may include RF PMIC#1
  • the second power supply module 22 may include RF PMIC#2.
  • RF PMIC#1 and RF PMIC#2 do not include a boost circuit, that is, the output voltage of RF PMIC#1 and RF PMIC#2 is less than or equal to the input voltage of RF PMIC#1 and RF PMIC#2.
  • both the first power supply module 21 and the second power supply module 22 may include a Buck Source, and the supply voltage Vcc at the output terminal of the Buck Source is less than or equal to 3.6V.
  • a step-down power supply can be understood as an output voltage lower than the input voltage, that is, a step-down adjustable regulated DC power supply.
  • the radio frequency system 1 includes a first power supply module 21, a second power supply module 22 and various antenna units matched with the MMPA module, so that the radio frequency system 1 as a whole supports low frequency, intermediate frequency, high frequency and super
  • the target amplifier circuit is any one of the intermediate frequency amplifier circuit, high frequency amplifier circuit and ultra-high frequency amplifier circuit, so that the low frequency signal and the target amplifier circuit
  • Other signals can be transmitted at the same time, so that the MMPA module can output two signals at the same time to support the amplification of 4G LTE signals and 5G NR signals, and realize the EN-DC of 4G LTE signals and 5G NR signals.
  • the MMPA module supports 4-antenna SRS function, and supports the receiving and processing of two UHF signals, which simplifies the RF front-end architecture, and saves cost and layout area compared with external switch circuits to combine circuits to realize corresponding functions. , reducing the circuit insertion loss.
  • the first antenna unit 30 includes:
  • the first antenna 31 is connected to the first UHF antenna port 820;
  • the second antenna 32 is connected to the second UHF antenna port 830;
  • the third antenna 33 is connected to the first SRS port 810;
  • the fourth antenna 34 is connected to the second SRS port 810 .
  • the first antenna 31 , the second antenna 32 , the third antenna 33 and the fourth antenna 34 all support ultra-high frequency signals, such as N77.
  • the first antenna unit since the first antenna unit has four antennas corresponding to the four ports one-to-one, they are set independently of each other, which improves the flexibility and stability of signal transmission and reception.
  • the radio frequency system 1 further includes:
  • the first radio frequency switch 81 includes a P port and two T ports, the P port is connected to the third antenna, and the first T port is connected to the first SRS port 810;
  • the first receiving module 91 is connected to the second T port of the first radio frequency switch for receiving the UHF signal received by the third antenna;
  • the second radio frequency switch 82 includes a P port and two T ports, the P port is connected to the fourth antenna, and the first T port is connected to the second SRS port 810;
  • the second receiving module 92 is connected to the second T port of the second radio frequency switch, and is used for receiving the UHF signal received by the fourth antenna.
  • the first receiving module and the second receiving module can be radio frequency low noise amplifier module (Low noise amplifier front end module, LFEM), can also be the diversity receiving module (Diversity Receive module) with antenna switch module and filter Module with Antenna Switch Module and SAW, DFEM), can also be a multi-band low noise amplifier (Multi band Low Noise Amplifier, MLNA) and so on.
  • LFEM radio frequency low noise amplifier front end module
  • DFEM Diversity Receive module
  • DFEM Filersity Receive module with antenna switch module and filter Module with Antenna Switch Module and SAW, DFEM
  • MLNA Multi band Low Noise Amplifier
  • the first receiving module and the second receiving module are connected to two UHF signal receiving ports of the RF transceiver 30 one by one, and are used to output the received UHF receiving signals to the RF transceiver 30 to realize Reception of multiple UHF signals.
  • this embodiment of the present application provides a communication device A, including:
  • the radio frequency transceiver 30 is the radio frequency system 1 described in any one of the embodiments shown in FIG. 10 to FIG. 14 .
  • the signal sending port and the signal receiving port of each frequency band on the radio frequency transceiver 30 are respectively connected to the amplification circuit of the corresponding frequency band.
  • the low frequency signal sending port and the low frequency signal receiving port of the radio frequency transceiver 30 can be connected to the low frequency Amplifying circuit 100
  • the intermediate frequency signal sending port and the intermediate frequency signal receiving port of the radio frequency transceiver 30 can be connected to the intermediate frequency amplifier circuit 200
  • the high frequency signal sending port of the radio frequency transceiver 30 and the high frequency signal receiving port can be connected to the high frequency amplifier circuit 300
  • the UHF signal receiving port and the UHF signal sending port of the transceiver 30 can be connected to the UHF amplifier circuit 400, etc., and can also be connected to a signal receiving module to realize the reception of signals in various frequency bands.
  • a signal receiving module to realize the reception of signals in various frequency bands.
  • the communication device A separates the power supply of the low-frequency signal from the processing circuit of other signals, and can transmit two signals at the same time, so that the MMPA module 100 can output two signals at the same time, so as to support the The amplification of 4G LTE signal and 5G NR signal realizes the EN-DC of 4G LTE signal and 5G NR signal.
  • the MMPA module supports the receiving and processing of two channels of UHF signals, which simplifies the RF front-end architecture, and reduces circuit insertion loss compared to external switch circuits for decombining.
  • the communication device is a smartphone 1600 as an example for description.
  • the communication device is a smartphone 1600 as an example for description.
  • communication interface 163 radio frequency system 164
  • input/output (I/O) subsystem 166 These components optionally communicate via one or more communication buses 169 or signal lines 169 .
  • the smart phone 1600 shown in FIG. 16 is not limited to the mobile phone, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the various components shown in FIG. 16 are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Memory 162 optionally includes high-speed random access memory, and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • non-volatile memory such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 162 include an operating system, a communication module (or an instruction set), a global positioning system (GPS) module (or an instruction set), and the like.
  • GPS global positioning system
  • Processor 161 and other control circuits may be used to control the operation of smartphone 1600 .
  • the processor 161 may be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, and the like.
  • the processor 161 may be configured to implement a control algorithm that controls usage of the antenna in the smartphone 1600 .
  • the processor 161 may also issue control commands and the like for controlling switches in the radio frequency system 164 .
  • the communication interface 163 includes an internal interface and an external interface.
  • the internal interface can be an interface for mutual communication between the processor 161, the memory 162, the radio frequency system 164, and the input/output (I/O) subsystem 166.
  • the external interface can be an interface with an external device. An interface for connecting and communicating.
  • I/O subsystem 166 couples input/output peripherals on smartphone 1600 such as a keypad and other input control devices to communication interface 163 .
  • I/O subsystem 166 optionally includes a touch screen, keys, tone generator, accelerometer (motion sensor), ambient light sensor and other sensors, light emitting diodes and other status indicators, data ports, and the like.
  • a user may control the operation of smartphone 1600 by supplying commands via I/O subsystem 166 and may use the output resources of I/O subsystem 166 to receive status information and other output from smartphone 1600 . For example, a user presses a button to turn the phone on or off.
  • the radio frequency system 164 may be the radio frequency system in any of the foregoing embodiments, wherein the radio frequency system 164 may also be used to process radio frequency signals of multiple different frequency bands.
  • the radio frequency system 164 may also be used to process radio frequency signals of multiple different frequency bands.
  • the Sub-6G frequency band may specifically include a 2.496GHz-6GHz frequency band and a 3.3GHz-6GHz frequency band.
  • logic instructions in the memory 162 can be implemented in the form of software function units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 162 may be configured to store software programs and computer-executable programs, such as program instructions or modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 161 runs software programs, instructions or modules stored in the memory 162 to execute functional applications and data processing, that is, implement the methods in the above-mentioned embodiments.
  • the memory 162 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the mobile phone 1600, and the like.
  • the memory 162 may include a high-speed random access memory, and may also include a non-volatile memory.
  • various media that can store program codes such as U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc., can also be temporary state storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请提供一种放大器模组、射频系统及通信设备,MMPA模组支持非超高频信号和超高频信号的处理,以支持对4G LTE信号和5G NR信号的放大,实现4G LTE信号和5G NR信号的EN-DC。同时,该MMPA模组支持4天线SRS功能,以及支持两路超高频信号的接收和/或发送处理,简化了射频前端架构,此外,通过天线复用端口支持超高频信号与高频信号共天线,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少电路插损。

Description

放大器模组、射频系统及通信设备 技术领域
本申请涉及天线技术领域,特别是涉及一种放大器模组、射频系统及通信设备。
背景技术
目前,第五代5G移动通信网络中,非独立组网(Non-Standalone,NSA)模式通常采用第四代4G信号和5G信号的双连接模式。一般,对于支持5G通信技术的通信设备,为了提高4G和5G双连接模式下的通信性能,可在射频系统中设置多个分立设置的功率放大器模组,例如,多个用于支持4G信号发射的多频多模功率放大器(Multi-band multi-mode power amplifier,MMPA)以及支持5G信号发射的MMPA器件,以实现4G信号和5G信号的双发射。
发明内容
本申请实施例提供一种放大器模组、射频系统及通信设备,可以提高器件集成度,降低成本。
第一方面,本申请提供一种多模式多频段功率放大器MMPA模组,包括:
非超高频放大电路,被配置为接收和处理来自射频收发器的非超高频发射信号,并经目标选择开关输出至目标非超高频输出端口;
超高频放大电路,包括:
超高频发射电路,被配置为接收和处理来自所述射频收发器的超高频发射信号,依次经SPDT开关、第一滤波器、耦合器和第五选择开关输出至目标超高频输出端口;
第一超高频接收电路,被配置为依次通过所述DP4T开关和第二滤波器接收和处理第一目标超高频输入端口的第一超高频接收信号,并输出至所述射频收发器;
第二超高频接收电路,被配置为依次通过所述DP4T开关、所述耦合器、所述第一滤波器和所述第四选择开关接收和处理第二目标超高频输入端口的第二超高频接收信号,并输出至所述射频收发器;
其中,所述SPDT开关的P端口与所述第一滤波器连接,所述SPDT开关的一个T端口与所述超高频发射电路连接,另一个T端口与所述第二超高频接收电路连接;所述DP4T开关的一个P端口与所述耦合器连接,另一个P端口被配置为与第二滤波器连接,所述DP4T开关的两个T端口被配置为分别连接至两个SRS端口,另两个T端口被配置为分别连接至用于接收第一超高频接收信号的第一超高频天线端口和用于第二超高频接收信号的第二超高频天线端口;所述目标超高频输出端口和所述目标超高频输入端口为所述两个SRS端口和所述两个超高频天线端口的任意一个。
可以看出,本申请实施例中,MMPA模组支持低频、中频、高频和超高频中任一频段的射频信号的处理,由于低频放大电路与目标放大电路独立供电,目标放大电路为中频放大电路、高频放大电路以及超高频放大电路中任一电路,从而低频信号与其他信号可以实现同时发射,进而可以使MMPA同时输出两路信号,以支持对4G LTE信号和5G NR信号的放大,实现4G LTE信号和5G NR信号的EN-DC。同时,该MMPA模组支持4天线SRS功能,以及支持两路超高频信号的接收处理,简化了射频前端架构,此外,通过天线复用端口支持超高频信号与高频信号共天线,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少了电路插损。
第二方面,本申请提供一种MMPA模组,包括:
非超高频放大单元,连接目标选择开关,用于接收和处理来自射频收发器的非超高频发射信号,并经所述目标选择开关输出至目标非超高频输出端口;
第一超高频放大单元,依次连接SPDT开关、第一滤波器、耦合器和DP4T开关,用于接收来自所述射频收发器的超高频发射信号,并对所述超高频发射信号进行放大处理后,依次经所述SPDT开关、所述第一滤波器、所述耦合器和所述DP4T开关输出至目标超高频输出端口;
第二超高频放大单元,依次连接第二滤波器和DP4T开关,用于依次通过所述DP4T开关、所述第二滤波器接收第一目标超高频输入端口的第一超高频接收信号,并对所述第一超高频接收信号进行放大处理后,输出至所述射频收发器;
第三超高频放大单元,依次连接所述SPDT开关、所述第一滤波器、所述耦合器和所述DP4T开关,用于依次通过所述DP4T开关、所述耦合器、所述第一滤波器和所述SPDT开关接收第二目标超高频输 入端口的第二超高频接收信号,并对所述第二超高频接收信号进行放大处理后,输出至所述射频收发器;
其中,所述SPDT开关的P端口与所述第一滤波器连接,所述SPDT开关的一个T端口连接所述第一超高频放大单元,另一个T端口连接所述第三超高频放大单元;所述DP4T开关的一个P端口与所述耦合器连接,另一个P端口连接所述第二超高频放大单元,所述DP4T开关的两个T端口一一对应连接所述MMPA模组的两个SRS端口,另两个T端口一一对应连接所述MMPA模组中用于接收第一超高频接收信号的第一超高频天线端口和用于第二超高频接收信号的第二超高频天线端口;所述目标超高频输出端口和所述目标超高频输入端口为所述两个SRS端口和所述两个超高频天线端口的任意一个。
第三方面,本申请提供一种MMPA模组,被配置有用于接收射频收发器的非超高频发射信号的非超高频接收端口、用于接收所述射频收发器的超高频发射信号的超高频接收端口、用于发送来自天线的第一超高频接收信号的第一超高频输出端口、用于发送来自天线的第二超高频接收信号的第二超高频输出端口以及用于发送所述非超高频发射信号的非超高频输出端口用于发送所述超高频发射信号的第三超高频输出端口以及第一供电端口和第二供电端口,所述第三超高频输出端口包括两个超高频天线端口和两个SRS端口;所述MMPA模组包括:
非超高频放大电路,连接所述非超高频接收端口,用于对所述非超高频发射信号进行放大处理;
目标选择开关,连接所述非超高频放大电路的输出端和所述非超高频输出端口,用于选择导通所述非超高频放大电路与目标非超高频输出端口之间的通路,所述目标非超高频输出端口为所述非超高频输出端口中任意一个;
超高频发射电路,连接所述超高频接收端口,用于对所述超高频发射信号进行放大处理;
第一超高频接收电路,连接所述第一超高频输出端口,用于对所述第一超高频接收信号进行放大处理;
第二超高频接收电路,连接所述第二超高频输出端口,用于对所述第二超高频接收信号进行放大处理;
SPDT开关,所述SPDT开关的一个T端口与所述超高频发射电路连接,另一个T端口与所述第二超高频接收电路连接;
第一滤波器,所述第一滤波器的第一端连接所述SPDT开关的P端口,用于对所述超高频发射信号或者所述第二超高频接收信号进行滤波;
耦合器,所述耦合器的第一端连接所述滤波器的第二端,所述耦合器的第二端连接所述MMPA模组的耦合端口,用于检测所述超高频发射信号/所述第二超高频接收信号的功率信息,并将所述功率信息通过所述耦合端口输出;
第二滤波器,所述第二滤波器的第一端与所述第一超高频接收电路连接,用于对所述第一超高频接收信号进行滤波;
为DP4T开关,所述DP4T开关的第一个P端口连接所述耦合器的第三端,所述DP4T开关的第二个P端口连接所述第二滤波器的第二端,所述DP4T开关的两个T端口一一对应连接所述两个SRS端口,另两个T端口一一对应连接所述两个超高频天线端口,用于选择导通所述第一超高频接收电路、所述超高频发射电路、所述第二超高频接收电路中任一电路与所述第三超高频输出端口之间的信号通路。
第四方面,本申请提供一种射频系统,包括:
如第一方面至第三方面任一方面所述的MMPA模组;
射频收发器,连接所述MMPA模组,用于发送和/或接收超高频信号和非超高频信号;
第一天线单元,连接所述MMPA模组的目标超高频天线端口,所述目标超高频天线端口包括两个SRS端口和两个超高频天线端口;
目标天线单元,连接所述MMPA模组的目标天线端口;
所述射频系统用于通过所述MMPA模组实现所述超高频发射信号和所述非超高频发射信号之间的EN-DC的功能,其中,所述非超高频信号包括低频发射信号、中频发射信号、高频发射信号中任意一种。
第五方面,本申请提供一种通信设备,包括:
如第四方面所述的射频系统。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为现有技术的一种MMPA模组的框架示意图;
图1B为现有技术的另一种MMPA模组的框架示意图;
图2为本申请实施例提供的另一种MMPA模组的框架示意图;
图3为本申请实施例提供的另一种MMPA模组的框架示意图;
图4为本申请实施例提供的另一种MMPA模组的框架示意图;
图5为本申请实施例提供的另一种MMPA模组的框架示意图;
图6为本申请实施例提供的另一种MMPA模组的框架示意图;
图7为本申请实施例提供的另一种MMPA模组的框架示意图;
图8为本申请实施例提供的另一种MMPA模组的框架示意图;
图9为本申请实施例提供的另一种MMPA模组的框架示意图;
图10为本申请实施例提供的一种射频系统1的框架示意图;
图11为本申请实施例提供的另一种射频系统1的框架示意图;
图12为本申请实施例提供的另一种射频系统1的框架示意图;
图13为本申请实施例提供的另一种射频系统1的框架示意图;
图14为本申请实施例提供的另一种射频系统1的框架示意图;
图15为本申请实施例提供的一种通信设备A的框架示意图;
图16为本申请实施例提供的一种手机的框架示意图。
具体实施方式
为了便于理解本申请,为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请,附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。网络设备可以包括基站、接入点等。
目前,如图1A所示,手机等电子设备常用的射频系统1的架构,该射频系统1包括MMPA模组10、发射模组20(发射模组又称为TXM模组)、射频收发器30和天线组40,其中,所述射频收发器30连接所述MMPA模组10和所述发射模组20,所述MMPA模组10和所述发射模组20连接所述天线组40。所述射频收发器用于通过所述MMPA模组10、所述天线组40的信号通路发送或者接收射频信号,或者用于通过所述发射模组20、所述天线组40发送或者接收射频信号,此外,MMPA模组10也可能和发射模组20连接,形成信号处理通路以实现通过对应的天线发送或者接收射频信号。
如图1B所示的本申请实施例提供的一种MMPA模组10的示例,该MMPA模组10配置有低频信号接收端口LB TX IN、中频信号接收端口MB TX IN、高频信号接收端口HB TX IN、第一低频信号发送端口LB1、第二低频信号发送端口LB2、第三低频信号发送端口LB3、第四低频信号发送端口LB4、第五低频信号发送端口LB5、第一中频信号发送端口MB1、第二中频信号发送端口MB2、第三中频信号发送端口MB3、第四中频信号发送端口MB4、第五中频信号发送端口MB5、第一高频信号发送端口HB1、第二高频信号发送端口HB2、第三高频信号发送端口HB3、第一高频信号转发端口HB RX1、第二高频信号转发端口HB RX2、第一低中高频供电端口LMHB_VCC1、第二高频供电端口HB_VCC2、第二低中频供电端口LMB_VCC2、端口SCLK1、端口SDA1、端口VIO1、端口VBAT1、端口SCLK2、端口SDA2、端口VIO2、端口VBAT2,该MMPA模组10包括:
低频放大电路LB PA,包括级联的低频前级PA(图示为接近LB TX IN的PA)、低频匹配电路和低频后级PA(图示为远离LB TX IN的PA),所述低频前级PA的输入端连接所述LB TX IN,所述低频前级 PA的输出端连接所述低频匹配电路,所述低频匹配电路连接所述低频后级PA,所述低频前级PA的供电端连接所述LMHB_VCC1,所述低频后级PA的供电端连接所述LMB_VCC2,用于接收和处理射频收发器发送的低频信号;
低频选择开关,为SP5T开关,所述SP5T开关的P端口连接所述低频后级PA的输出端,5个T端口一一对应连接所述LB1、LB2、LB3、LB4、LB5,用于选择导通低频放大电路LB PA与任一低频信号发送端口之间的通路;
中频放大电路MB PA,包括级联的中频前级PA(图示为接近MB TX IN的PA)、中频匹配电路和中频后级PA(图示为远离MB TX IN的PA),所述中频前级PA的输入端连接所述MB TX IN,所述中频前级PA的输出端连接所述中频匹配电路,所述中频匹配电路连接所述中频后级PA,所述中频前级PA的供电端连接所述LMHB_VCC1,所述中频后级PA的供电端连接所述LMB_VCC2,用于接收和处理射频收发器发送的中频信号;
中频选择开关,为SP5T开关,所述SP5T开关的P端口连接所述中频后级PA的输出端,5个T端口一一对应连接所述MB1、MB2、MB3、MB4、MB5,用于选择导通中频放大电路MB PA与任一中频信号发送端口之间的通路;
高频放大电路HB PA,包括级联的高频前级PA(图示为接近HB TX IN的PA)、高频匹配电路和高频后级PA(图示为远离HB TX IN的PA),所述高频前级PA的输入端连接所述MB TX IN,所述高频前级PA的输出端连接所述高频匹配电路,所述高频匹配电路连接所述高频后级PA,所述高频前级PA的供电端连接所述LMHB_VCC1,所述高频后级PA的供电端连接所述HB_VCC2,用于接收和处理射频收发器发送的高频信号;
第一高频选择开关,为SPST开关,P端口连接所述高频后级PA的输出端,T端口连接HB1;
第二高频选择开关,为SPDT开关,P端口连接HB2,一个T端口连接HB1,另一个T端口连接HB RX2;
第三高频选择开关,为SPDT开关,P端口连接HB3,一个T端口连接HB1,另一个T端口连接HB RX1;
第一控制器CMOS Controller1,连接端口SCLK1、端口SDA1、端口VIO1、端口VBAT1,用于接收端口SCLK1、端口SDA1的第一移动处理器工业接口总线MIPI BUS控制信号,接收VIO1的第一MIPI供电信号,接收VBAT1的第一偏置电压信号;
第二控制器CMOS Controller2,连接端口SCLK2、端口SDA2、端口VIO2、端口VBAT2,用于接收端口SCLK2、端口SDA2的第二移动处理器工业接口总线MIPI BUS控制信号,接收VIO2的第二MIPI供电信号,接收VBAT2的第二偏置电压信号。
上述MMPA模组10的信号处理电路所能够处理的低频信号、中频信号及高频信号的工作频率范围从663MHz~2690MHz。可见,现有的MMPA模组仅集成了支持低频信号、中频信号及高频信号处理的电路,随着第五代5G超高频(例如:UHB n77(3.3GHz~4.2GHz),n78(3.3GHz~3.8GHz))在各国的陆续商用,手机等电子设备支持超高频信号的处理已经成为必选需求。
目前方案中,为了支持超高频信号的处理能力,终端厂商需要再额外使用一颗支持超高频的功率放大器模组。同时,传统的MMPA模组在供电上没有考虑低频信号、中频信号及高频信号之间进行第四代4G无线接入网与第五代5G新空口NR的双连接(E-UTRA and New radio Dual Connectivity,EN-DC)时的情况,各个信号处理电路的电源都是连接在一起的。这种情况下为了实现低频信号和中频信号、低频信号和高频信号之前的EN-DC需要额外再增加一颗MMPA模组。
针对上述问题,本申请提供一种放大器模组、射频系统及通信设备,下面进行详细说明。
如图2所示,本申请实施例提供一种多频多模功率放大器(Multi-band multi-mode power amplifier,MMPA)模组10,包括:
非超高频放大电路500,被配置为接收和处理来自射频收发器30的非超高频发射信号,并经目标选择开关570输出至目标非超高频输出端口;
超高频放大电路400,包括:
超高频发射电路410,被配置为接收和处理来自所述射频收发器30的超高频发射信号,并对所述超高频发射信号进行放大处理后,依次经SPDT开关540、第一滤波器610、耦合器710和DP4T开关550输出至目标超高频输出端口;
第一超高频接收电路420,被配置为依次通过所述DP4T开关550和第二滤波器620接收第一目标超高频输入端口的第一超高频接收信号,并对所述第一超高频接收信号进行放大处理后,输出至所述射频收发器30;
第二超高频接收电路430,被配置为依次通过所述DP4T开关550、所述耦合器710、所述第一滤波 器610和所述SPDT开关540接收第二目标超高频输入端口的第二超高频接收信号,并对所述第二超高频接收信号进行放大处理后,输出至所述射频收发器30;
所述SPDT开关540的P端口与所述第一滤波器连接,所述SPDT开关的一个T端口与所述超高频发射电路410连接,另一个T端口与所述第二超高频接收电路420连接;所述DP4T开关550的一个P端口与所述耦合器连接,另一个P端口被配置为与第二滤波器620连接,所述DP4T开关的两个T端口被配置为分别连接至两个SRS端口,另两个T端口被配置为分别连接用于接收第一超高频接收信号的第一超高频天线端口820和用于第二超高频接收信号的第二超高频天线端口830;所述目标超高频输出端口和所述目标超高频输入端口为所述两个SRS端口和所述两个超高频天线端口的任意一个。
示例的,所述SRS端口810是指用于接收/发送超高频信号的天线端口,所述符号“/”表示或者。所述目标频段信号为高频段的射频信号。
具体实现中,当所述第四选择开关540选择导通超高频发射电路410时,所述第五选择开关550用于选择导通超高频发射电路410与两个超高频天线端口、两个SRS端口810中任一端口之间的信号通路,以支持超高频信号在天线之间的轮射功能。其中,手机的SRS切换switching4天线发射功能是中国移动通信集团CMCC在《中国移动5G规模试验技术白皮书_终端》中的必选项,在第三代合作伙伴计划3GPP中为可选,其主要目的是为了基站通过测量手机4天线上行信号,进而确认4路信道质量及参数,根据信道互易性再针对4路信道做下行最大化多输入多输出Massive MIMO天线阵列的波束赋形,最终使下行4x4MIMO获得最佳数据传输性能。
具体实现中,当所述第四选择开关540选择导通第二超高频接收电路430时,所述第五选择开关550还用于选择导通所述第二超高频接收电路430与两个超高频天线端口、两个SRS端口810中任一端口之间的信号通路。
具体实现中,所述第五选择开关550还用于选择导通所述第一超高频接收电路420与两个超高频天线端口、两个SRS端口810中任一端口之间的信号通路。
可以理解的是,所述第五选择开关550可以同时导通第一超高频接收电路420,以及导通超高频发射电路410和第二超高频接收电路430中的任意一个;进而达到发射和接收同时进行的效果,或者达到进行双接收的目的。
可以看出,本申请实施例中,MMPA模组支持非超高频信号和超高频信号的处理,以支持对4G LTE信号和5G NR信号的放大,实现4G LTE信号和5G NR信号的EN-DC。同时,该MMPA模组支持4天线SRS功能,以及支持两路超高频信号的接收和/或发送处理,简化了射频前端架构,此外,通过天线复用端口支持超高频信号与高频信号共天线,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少电路插损。
在一些实施例中,如图3所示,所述非超高频放大电路包括:
低频放大电路100,被配置为接收来自射频收发器30的低频发射信号,并对所述低频发射信号进行放大处理后,经第一选择开关510输出至目标低频输出端口840;
中频放大电路200,被配置为接收来自所述射频收发器30的中频发射信号,并对所述中频发射信号进行放大处理后,经第二选择开关520输出至目标中频输出端口850;
高频放大电路300,被配置为接收来自所述射频收发器30的高频发射信号,并对所述高频发射信号进行放大处理后,经第三选择开关530输出至目标高频输出端口860。
示例的,第一供电电压和第二供电电压可以小于或等于3.6V。
示例的,低频信号可包括3G、4G、5G网络中的低频信号,中频信号可包括3G、4G、5G网络中的中频信号,高频信号可包括3G、4G、5G网络中的高频信号,超高频信号可包括5G网络中的超高频信号。2G网络、3G网络、4G网络、5G网络的信号的频段划分如表1所示。
表1
Figure PCTCN2022106615-appb-000001
示例的,低频放大电路100具体用于对3G网络、4G网络、5G网络的低频发射信号进行放大;中频放大电路200具体用于对3G网络、4G网络、5G网络的中频信号进行放大;高频放大电路300具体用于对3G网络、4G网络、5G网络的高频信号进行放大;超高频放大电路400具体用于对5G网络的超高频信号进行放大。
需要说明的是,5G网络中沿用4G所使用的频段,仅更改序号之前的标识。此外,5G网络还新增了一些4G网络中没有的超高频段,例如,N77、N78和N79等。
示例的,低频信号可包括低频的4G LTE信号和低频的5G NR信号。中频信号可包括中频的4G LTE信号和中频的5G NR信号。高频信号可包括高频的4G LTE信号和高频的5G NR信号。超高频信号可包括超高频的5G NR信号。
在一些实施例中,所述低频放大电路100,被配置为在第一供电电压下接收所述低频发射信号;
所述中频放大电路200,被配置为在第二供电电压下接收所述中频发射信号;
所述高频放大电路300,被配置为在所述第二供电电压下接收所述高频发射信号;
所述超高频放大电路400,被配置为在所述第二供电电压下接收所述超高频发射信号/所述第一超高频接收信号/所述第二超高频接收信号。
示例的,第一供电电压和第二供电电压可以小于或等于3.6V。
可见,本示例中,由于第一供电电压和第二供电电压独立供电,因此MMPA模组可以同时处理低频发射信号和目标频段信号,目标频段信号为中频发射信号、高频发射信号以及超高频发射信号中任意一种。
在一些实施例中,所述MMPA模组用于实现非超高频发射信号和所述超高频发射信号之间的第四代4G无线接入网与第五代5G新空口NR的双连接EN-DC功能。
示例的,非超高频发射信号和所述超高频发射信号之间的EN-DC的不同组合如表2所示。
表2
4G LTE频段 5G NR频段 EN-DC
LB MB LB+MB
LB HB LB+HB
LB UHB LB+UHB
具体的,当低频放大电路和中频放大电路同时工作时,其满足LB+MB的EN-DC组合;当低频放大电路和中频放大电路同时工作时,其满足LB+HB的EN-DC组合;当低频放大电路和超高频放大电路同时工作时,其满足LB+UHB的EN-DC组合。
可以看出,本申请实施例中,MMPA模组10通过独立供电能够实现多种信号组合的双发射处理,提高器件能力。
在一些实施例中,如图4所示,第一选择开关510可以是SP5T开关,其中,P端口连接低频放大电路100的输出端,5个T端口一一对应连接MMPA模组10的5个低频输出端口(图示为LB TX1-5),该5个低频输出端口可选连接第二天线单元(例如:低频天线单元),目标低频输出端口840为5个低频输出端口中任意一个。
第二选择开关520可以是SP5T开关,其中,P端口连接中频放大电路200的输出端,5个T端口一一对应连接MMPA模组10的5个中频输出端口(图示为MB TX1-5),该5个中频输出端口可选连接第三天线单元(例如:中频天线单元),目标中频输出端口850为5个中频输出端口中任意一个。
第三选择开关530可以是3P3T开关,第一个P端口连接高频放大电路300的输出端,第二个P端口连接MMPA模组10的第一高频输出端口(图示为HB TX1),第三个P端口连接MMPA模组10的第二高频输出端口(图示为HB TX2),第一个T端口连接MMPA模组10的第三高频输出端口(图示为HB TX3),第二个和第三个T端口一一对应连接MMPA模组10的2个高频收发端口(图示为HB TRX1和HB TRX2),第一高频输出端口和第二高频输出端口可以连接高频接收模组,高频接收模组用于接收高频信号,第三高频输出端口、2个高频收发端口均连接第四天线单元(例如:高频天线单元)。
其中,所述高频接收模组例如可以是射频低噪声放大器模组(Low noise amplifier front end module,LFEM),还可以为带天线开关模组和滤波器的分集接收模组(Diversity Receive Module with Antenna Switch Module and SAW,DFEM),还可以为多频段低噪放大器(Multi band Low Noise Amplifier,MLNA)等。
可见,本示例中,MMPA模组支持针对低频段、中频段以及高频段的射频信号的多路灵活处理。
在一些可能的示例中,所述超高频发射电路410包括单个功率放大器,以实现对所述超高频发射信 号进行功率放大处理;或者,
所述超高频发射电路410包括多个功率放大器以及功率合成单元,以功率合成方式来实现对所述超高频发射信号的功率放大处理。
例如,所述超高频发射电路410包括第一功率放大器、匹配电路和第二功率放大器,所述第一功率放大器连接所述匹配电路,所述匹配电路连接所述第二功率放大器,所述第二功率放大器连接所述第四选择开关540。
可见,本示例中,超高频发射电路410的具体实现方式可以是多种多样的,此处不做唯一限定;此外,单个功率放大器的设置简化电路结构,降低成本提高空间利用率。
在一些可能的示例中,所述第一超高频接收电路420和所述第二超高频接收电路430均包括单个低噪声放大器,以实现对所述超高频接收信号进行功率放大处理。
可见,本示例中,单个低噪声放大器的设置简化电路结构,降低成本提高空间利用率。
如图5所示,本申请实施例提供另一种多模式多频段功率放大器MMPA模组10,包括:
非超高频放大单元500,连接目标选择开关570,用于接收和处理来自射频收发器30的非超高频发射信号,并经所述目标选择开关570输出至目标非超高频输出端口;
第一超高频放大单元411,依次连接SPDT开关540、第一滤波器610、耦合器710和DP4T开关550,用于接收来自所述射频收发器30的超高频发射信号,并对所述超高频发射信号进行放大处理后,依次经所述SPDT开关540、所述第一滤波器610、所述耦合器710和所述DP4T开关550输出至目标超高频输出端口;
第二超高频放大单元421,依次连接第二滤波器620和DP4T开关550,用于依次通过所述DP4T开关550、所述第二滤波器620接收第一目标超高频输入端口的第一超高频接收信号,并对所述第一超高频接收信号进行放大处理后,输出至所述射频收发器30;
第三超高频放大单元431,依次连接所述SPDT开关540、所述第一滤波器610、所述耦合器710和所述DP4T开关550,用于依次通过所述DP4T开关550、所述耦合器710、所述第一滤波器610和所述SPDT开关540接收第二目标超高频输入端口的第二超高频接收信号,并对所述第二超高频接收信号进行放大处理后,输出至所述射频收发器30;
其中,所述SPDT开关的P端口与所述第一滤波器610连接,所述SPDT开关的一个T端口连接所述第一超高频放大单元411,另一个T端口连接所述第三超高频放大单元431;所述DP4T开关的一个P端口与所述耦合器710连接,另一个P端口连接所述第二超高频放大单元421,所述DP4T开关的两个T端口一一对应连接所述MMPA模组的两个SRS端口810,另两个T端口一一对应连接所述MMPA模组中用于接收第一超高频接收信号的第一超高频天线端口和用于第二超高频接收信号的第二超高频天线端口;所述目标超高频输出端口和所述目标超高频输入端口为所述两个SRS端口810和所述两个超高频天线端口的任意一个。
可以看出,本申请实施例中,MMPA模组在支持非超高频信号的基础上进一步支持超高频信号,且超高频端的处理电路支持4天线SRS功能,以及支持一路超高频信号的接收处理,简化了射频前端架构,此外,通过天线复用端口830使得超高频信号与非超高频信号共用一个天线端口,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少了电路插损。
在一些实施例中,如图6所示,所述目标选择开关570包括第一选择开关、第二选择开关和第三选择开关;所述非超高频放大单元包括:
低频放大单元110,连接所述第一选择开关510,用于接收和处理来自射频收发器30的低频发射信号,并对所述低频发射信号进行放大处理后,经所述第一选择开关输出至目标低频输出端口840;
中频放大单元210,连接所述第二选择开关520,用于接收和处理来自所述射频收发器30的中频发射信号,并对所述中频发射信号进行放大处理后,经所述第二选择开关输出至目标中频输出端口850;
高频放大单元310,连接所述第三选择开关530,用于接收和处理来自所述射频收发器30的高频发射信号,并对所述高频发射信号进行放大处理后,经所述第三选择开关输出至目标高频输出端口860。
示例的,低频放大单元110、中频放大单元210、高频放大单元310、第一超高频放大单元411、第二超高频放大单元421、第三超高频放大单元431中各放大单元可包括一个功率放大器,以对接收到射频信号进行功率放大处理。
示例的,放大单元还可以包括多个功率放大器以及功率合成单元,以功率合成等方式来实现对射频信号的功率放大处理。
在一些实施例中,如图6所示,所述低频放大单元100通过第一供电模块21进行供电;所述中频放大单元200、所述高频放大单元300、所述第一超高频放大单元411、所述第二超高频放大单元421和所述第三超高频放大单元431通过第二供电模块22进行供电。
可以看出,本申请实施例中,MMPA模组支持低频、中频、高频和超高频中任一频段的射频信号的处理,由于低频放大单元与目标放大单元独立供电,目标放大单元为中频放大单元、高频放大单元以及超高频放大单元中任一单元,从而低频信号与其他信号可以实现同时发射,进而可以使MMPA模组同时输出两路信号,以支持对4G LTE信号和5G NR信号的放大,实现4G LTE信号和5G NR信号的EN-DC。同时,该MMPA模组支持4天线SRS功能,以及支持两路超高频信号的接收和处理,简化了射频前端架构,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少了电路插损。
如图7所示,本申请实施例提供另一种多模式多频段功率放大器MMPA模组10,被配置有用于接收射频收发器30的非超高频发射信号的非超高频接收端口870、用于接收所述射频收发器30的超高频发射信号的超高频接收端口881、用于发送来自天线的第一超高频接收信号的第一超高频输出端口882、用于发送来自天线的第二超高频接收信号的第二超高频输出端口883以及用于发送所述非超高频发射信号的非超高频输出端口800、用于发送第三超高频发射信号的第三超高频输出端口,所述第三超高频输出端口包括两个超高频天线端口(图示为820和830)和两个SRS端口810;所述MMPA模组包括:
非超高频放大电路,连接所述非超高频接收端口870,用于对所述非超高频发射信号进行放大处理;
目标选择开关570,连接所述非超高频放大电路的输出端和所述非超高频输出端口800,用于选择导通所述非超高频放大电路与目标非超高频输出端口之间的通路,所述目标非超高频输出端口为所述非超高频输出端口800中任意一个;
超高频发射电路410,连接所述超高频接收端口881,用于对所述超高频发射信号进行放大处理;
第一超高频接收电路420,连接所述第一超高频输出端口882,用于对所述超高频接收信号进行放大处理;
第二超高频接收电路430,连接所述第二超高频输出端口883,用于对所述第二超高频接收信号进行放大处理;
SPDT开关,所述SPDT开关的一个T端口与所述超高频发射电路410连接,另一个T端口与所述第二超高频接收电路420连接;
第一滤波器610,所述第一滤波器610的第一端连接所述SPDT开关的P端口,用于对所述超高频发射信号或者所述第二超高频接收信号进行滤波;
耦合器710,所述耦合器710的第一端连接所述滤波器610的第二端,所述耦合器710的第二端连接所述MMPA模组10的耦合端口811,用于检测所述超高频发射信号/所述第二超高频接收信号的功率信息,并将所述功率信息通过所述耦合端口811输出;
第二滤波器620,所述第二滤波器620的第一端与所述第一超高频接收电路420连接,用于对所述第一超高频接收信号进行滤波;
DP4T开关,所述DP4T开关的第一个P端口连接所述耦合器710的第三端,所述DP4T开关的第二个P端口连接第二滤波器620的第二端,所述DP4T开关的两个T端口一一对应连接所述两个SRS端口810,另两个T端口一一对应连接所述两个超高频天线端口,用于选择导通所述第一超高频接收电路420、所述超高频发射电路410、所述第二超高频接收电路430中任一电路与所述第三超高频输出端口之间的信号通路。
可以看出,本申请实施例中,MMPA模组在支持非超高频信号的基础上进一步支持超高频信号,且超高频端的处理电路支持4天线SRS功能,以及支持两路超高频信号的接收和/或发送处理,简化了射频前端架构,此外,通过天线复用端口支持超高频信号与高频信号共天线,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少电路插损。
在一些实施例中,如图8所示,所述非超高频接收端口870包括:
用于接收射频收发器30的低频发射信号的低频接收端口871;
用于接收所述射频收发器30的中频发射信号的中频接收端口872;以及
用于接收所述射频收发器30的高频发射信号的高频接收端口873;
所述非超高频输出端口800包括:
用于发送所述低频发射信号的低频输出端口801;
用于发送所述中频发射信号的中频输出端口802;以及
用于发送所述高频发射信号的高频输出端口803。
在一些实施例中,请继续参阅图8,所述MMPA模组还被配置有第一供电端口812和第二供电端口813;所述目标选择开关570包括第一选择开关、第二选择开关和第三选择开关;所述非超高频放大电路包括低频放大电路、中频放大电路和高频放大电路;
低频放大电路100,连接所述低频接收端口871和所述第一供电端口812,用于在所述第一供电端口812的第一供电电压下,对所述低频发射信号进行放大处理;
第一选择开关510,连接所述低频放大电路100的输出端和所述低频输出端口801,用于选择导通所述低频放大电路100与目标低频输出端口840之间的通路,所述目标低频输出端口840为所述低频输出端口801中任意一个;
中频放大电路200,连接所述中频接收端口872和所述第二供电端口813,用于在所述第二供电端口813的所述第二供电电压下,对所述中频发射信号进行放大处理;
第二选择开关520,连接所述中频放大电路200的输出端和所述中频输出端口,用于选择导通所述中频放大电路200与目标中频输出端口850之间的通路,所述目标中频输出端口850为所述中频输出端口中任意一个;
高频放大电路300,连接所述高频接收端口873和所述第二供电端口813,用于在所述第二供电端口813的所述第二供电电压下,对所述高频发射信号进行放大处理;
第三选择开关530,连接所述高频放大电路300的输出端和所述高频输出端口,用于选择导通所述高频放大电路300与目标高频输出端口860之间的通路,所述目标高频输出端口860为所述高频输出端口中任意一个;
超高频发射电路,用于在所述第二供电端口813的所述第二供电电压下,对所述超高频发射信号进行放大处理;
第一超高频接收电路,用于在所述第二供电端口813的所述第二供电电压下,对所述第一超高频接收信号进行放大处理;
第二超高频接收电路,用于在所述第二供电端口813的所述第二供电电压下,对所述第二超高频接收信号进行放大处理。
需要说明的是的,第一供电端口812、第二供电端口813的数量可根据对应的各频段发射电路所包括的功率放大器的数量来设定,具体的,其第一供电端口812的数量可与低频放大单元中功率放大器的数量相等,例如,可以为2个。
可以看出,本申请实施例中,MMPA模组支持低频、中频、高频和超高频中任一频段的射频信号的处理,由于低频放大电路与目标放大电路独立供电,目标放大电路为中频放大电路、高频放大电路以及超高频放大电路中任一电路,从而低频信号与其他信号可以实现同时发射,进而可以使MMPA模组同时输出两路信号,以支持对4G LTE信号和5G NR信号的放大,实现4G LTE信号和5G NR信号的EN-DC。同时,该MMPA模组支持4天线SRS功能,以及支持两路超高频信号的接收和/或发送处理,简化了射频前端架构,此外,通过天线复用端口支持超高频信号与高频信号共天线,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少电路插损。
在一些实施例中,所述MMPA模组还配置有第一SDATA端口、第一SCLK端口、第一VIO端口、第一VBAT端口、第二SDATA端口、第二SCLK端口、第二VIO端口、第二VBAT端口;所述MMPA模组还包括:
第一控制器,连接所述第一SDATA端口、第一SCLK端口、第一VIO端口、第一VBAT端口、第一UHB功率放大器、第二UHB功率放大器、第一HB功率放大器、第二HB功率放大器、第一MB功率放大器、第二MB功率放大器,用于接收所述第一SDATA端口、所述第一SCLK端口的第一移动处理器工业接口总线MIPI BUS控制信号,接收所述第一VIO端口的第一MIPI供电信号,接收所述第一VBAT端口的第一偏置电压信号;
第二控制器,连接所述第二SDATA端口、第二SCLK端口、第二VIO端口、第二VBAT端口、第一LB功率放大器、第二LB功率放大器,用于接收所述第二SDATA端口、所述第二SCLK端口的第二MIPI BUS控制信号,接收所述第二VIO端口的第二MIPI供电信号,接收所述第二VBAT端口的第二偏置电压信号。
示例的,如图9所示本申请实施例提供的一种MMPA模组10的结构示意图,该MMPA模组10除包括如图1B所示的MMPA模组10中的低频处理电路和相关端口、中频处理电路和相关端口、高频处理电路和相关端口、第一控制器(图示为CMOS Controller1)、第二控制器(图示为CMOS Controller2)和相关端口之外,还配置有用于接收射频收发器的N77频段信号的超高频接收端口(图示为n77 TX IN),用于向 射频收发器发送N77频段信号的第一超高频发送端口(图示为n77 RX1)、用于向射频收发器发送N77频段信号的第二超高频发送端口(图示为n77 RX1)、2个SRS端口(图示为SRS OUT1、SRS OUT2)、N77频段和N41频段天线复用端口(图示为N77/N41 ANT)、耦合端口(图示为CPL_OUT)、第一中高超高频供电端口MHB_UHB_VCC1、第二中高超高频供电端口MHB_UHB_VCC2、第一低频供电端口LB_VCC1、第二低频供电端口LB_VCC2;MMPA模组10还包括:
超高频放大电路(图示为UHB PA),用于通过端口n77 TX IN接收射频收发器的超高频信号,进行放大处理,并经SPDT开关、滤波器、第一耦合器以及DP4T开关输出至第一目标超高频输出端口,所述第一目标超高频输出端口为端口SRS OUT1、端口SRS OUT2、端口N77/N41 ANT1、端口N77 ANT2中的任意一个;
第一超高频接收电路(图示为连接端口n77 RX1的低噪声滤波器),用于经第二目标超高频接收端口、DP4T开关、第二耦合器(图中为靠近第一控制器的耦合器)以及SPDT开关接收和处理超高频信号,并通过端口n77 RX1发送至射频收发器,第二目标超高频接收端口为端口SRS OUT1、端口SRS OUT2、端口N77/N41 ANT1、端口N77 ANT2中的任意一个;
第二超高频接收电路(图示为连接端口n77 RX2的低噪声滤波器),用于经第三目标超高频接收端口、第一耦合器(图中为远离第一控制器的耦合器)、滤波器以及SPDT开关接收和处理超高频信号,并通过端口n77 RX2发送至射频收发器,第三目标超高频接收端口为端口N77 ANT2。
此外,低频放大电路部分的功率放大器通过端口LB_VCC1、LB_VCC2进行供电,中频放大电路、高频放电路、以及超高频放大电路部分的功率放大器通过端口MHB_UHB_VCC1、端口MHB_UHB_VCC2进行供电,从而通过独立供电,能够同时处理低频信号和目标频段信号,目标频段信号为中频信号、高频信号以及超高频信号中的任意一种,实现EN-DC功能。
如图10所示,本申请实施例提供一种射频系统1,包括:
如图2至图9任一实施例所述的MMPA模组10;
射频收发器30,连接所述MMPA模组,用于发送和/或接收超高频信号和非超高频信号;
第一天线单元30,连接所述MMPA模组的目标超高频天线端口,所述目标超高频天线端口包括两个SRS端口810和两个超高频天线端口(图中为820和830);
目标天线单元80,连接所述MMPA模组的目标天线端口804;
所述射频系统1用于通过所述MMPA模组10实现所述超高频发射信号和所述非超高频发射信号之间的EN-DC的功能,其中,所述非超高频信号包括低频发射信号、中频发射信号、高频发射信号中任意一种。
可以看出,本申请实施例中,MMPA模组在支持非超高频信号的基础上进一步支持超高频信号,且超高频端的处理电路支持4天线SRS功能,以及支持两路超高频信号的接收和/或发送处理,简化了射频前端架构,此外,通过天线复用端口支持超高频信号与高频信号共天线,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少电路插损。
在一些实施例中,如图11所示,所述目标天线端口804包括低频天线端口805、低频天线端口806和高频天线端口807;所述目标天线单元80包括:
第二天线单元40,连接所述MMPA模组的低频天线端口805;
第三天线单元50,连接所述MMPA模组的低频天线端口806;
第四天线单元60,连接所述MMPA模组的高频天线端口807。在一些实施例中,如图12所示,所述射频系统1还包括:
第一供电模块21,连接所述MMPA模组10的低频放大电路100,用于为所述低频放大电路100提供第一供电电压;
第二供电模块22,用于连接所述MMPA模组10的中频放大电路200、高频放大电路300和超高频放大电路400,用于为所述中频放大电路200、所述高频放大电路300和所述超高频放大电路400中任一电路提供第二供电电压;
所述射频系统1用于通过所述第一供电模块21为所述低频放大电路100提供所述第一供电电压,以实现对低频发射信号的处理,同时用于通过所述第二供电模块22为所述中频放大电路200或者高频放大电路300或者超高频放大电路400提供所述第一供电电压,以实现对中频发射信号或者高频发射信号或者超高频发射信号的处理。
示例的,第一供电模块21和第二供电模块22的输入电压可以为电池单元的输出电压,一般在3.6V-4.2V之间。通过采用第一供电电压和第二供电电压来为各放大电路供电,可以避免在供电模块中增 加boost升压电路,以降低各供电模块的成本。
具体的,第一供电模块21、第二供电模块22均可以是电源管理芯片(Power management IC,PMIC)。当采用功率合成的方式对射频信号进行功率放大处理时,可以采用不含boost升压电路的PMIC来为各放大单元供电。
示例的,第一供电电压和第二供电电压可以相等,也可以不同,在本申请实施例中,对第一供电电压、第二供电电压的大小不做唯一限定,可以根据通信需求和/或各放大电路的具体结构来设定。此外,第一供电模块21可包括RF PMIC#1,第二供电模块22可包括RF PMIC#2。RF PMIC#1、RF PMIC#2中均不包括boost升压电路,也即,RF PMIC#1、RF PMIC#2的输出电压小于或等于RF PMIC#1、RF PMIC#2的输入电压。
在一些实施例中,第一供电模块21和第二供电模块22可均包括降压电源(Buck Source),其降压电源的输出端的供电电压Vcc小于或等于3.6V。降压电源可以理解是一种输出电压低于输入电压,即降压型可调稳压直流电源。
可以看出,本申请实施例中,射频系统1包括与MMPA模组配套的第一供电模块21、第二供电模块22和各个天线单元,使得射频系统1整体支持低频、中频、高频和超高频中任一频段的射频信号的处理,由于低频放大电路与目标放大电路独立供电,目标放大电路为中频放大电路、高频放大电路以及超高频放大电路中任一电路,从而低频信号与其他信号可以实现同时发射,进而可以使MMPA模组同时输出两路信号,以支持对4G LTE信号和5G NR信号的放大,实现4G LTE信号和5G NR信号的EN-DC。同时,该MMPA模组支持4天线SRS功能,以及支持两路超高频信号的接收处理,简化了射频前端架构,相比于外搭开关电路去合路以实现对应功能节约了成本和布局面积,减少了电路插损。
在一些实施例中,如图13所示,所述第一天线单元30包括:
第一天线31,连接第一个超高频天线端口820;
第二天线32,连接第二个超高频天线端口830;
第三天线33,连接第一个SRS端口810;
第四天线34,连接第二个SRS端口810。
示例的,第一天线31、第二天线32、第三天线33和第四天线34均支持超高频信号,如N77。
可见,本示例中,由于第一天线单元存在与四个端口一一对应的四个天线,相互独立设置,提高信号收发的灵活性和稳定性。
在一些实施例中,如图14所示,所述射频系统1还包括:
第一射频开关81,包括一P端口和两个T端口,所述P端口连接所述第三天线,第一个T端口连接所述第一个SRS端口810;
第一接收模块91,连接所述第一射频开关的第二个T端口,用于接收所述第三天线所接收的超高频信号;
第二射频开关82,包括一P端口和两个T端口,所述P端口连接所述第四天线,第一个T端口连接所述第二个SRS端口810;
第二接收模块92,连接所述第二射频开关的第二个T端口,用于接收所述第四天线所接收的超高频信号。
示例的,第一接收模块和第二接收模块可以是射频低噪声放大器模组(Low noise amplifier front end module,LFEM),还可以为带天线开关模组和滤波器的分集接收模组(Diversity Receive Module with Antenna Switch Module and SAW,DFEM),还可以为多频段低噪放大器(Multi band Low Noise Amplifier,MLNA)等。
示例的,第一接收模块和第二接收模块一一对应连接射频收发器30的两个超高频信号接收端口,用于将各自接收到的超高频接收信号输出至射频收发器30以实现多路超高频信号的接收。
可见,本示例中,通过控制四路超高频信号接收通路(MMPA模组中的两路超高频信号接收通路和MMPA模组外的两路超高频信号接收通路)同时接收超高频信号,可以实现对超高频信号的4*4MIMO功能,提高射频系统1对5G超高频信号的接收和发射性能。
如图15所示,本申请实施例提供一种通信设备A,包括:
射频收发器30如图10至图14任一实施例所述的射频系统1。
示例的,射频收发器30上的各个频段的信号发送端口、信号接收端口分别与对应的频段的放大电路连接,具体来说,射频收发器30的低频信号发送端口和低频信号接收端口可以连接低频放大电路100,射频收发器30的中频信号发送端口和中频信号接收端口可以连接中频放大电路200,射频收发器30的高 频信号发送端口和高频信号接收端口可以连接高频放大电路300,射频收发器30的超高频信号接收端口和超高频信号发送端口可以连接超高频放大电路400等,此外,还可以连接信号接收模组等以实现各频段信号的接收。此处不做唯一限定。
可以看出,本申请实施例中,通信设备A将低频信号与其他信号的处理电路的供电分离,可以实现同时发射两路信号,进而可以使MMPA模组100同时输出两路信号,以支持对4G LTE信号和5G NR信号的放大,实现对4G LTE信号和5G NR信号的EN-DC。此外,MMPA模组支持两路超高频信号的接收处理,简化了射频前端架构,相比于外搭开关电路去合路可以减少电路插损。
如图16所示,进一步的,以通信设备为智能手机1600为例进行说明,具体的,如图16所示,该智能手机1600可包括处理器161、存储器162(其任选地包括一个或多个计算机可读存储介质)、通信接口163、射频系统164、输入/输出(I/O)子系统166。这些部件任选地通过一个或多个通信总线169或信号线169进行通信。本领域技术人员可以理解,图16所示的智能手机1600并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图16中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成电路。
存储器162任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器162中的软件部件包括操作系统、通信模块(或指令集)、全球定位系统(GPS)模块(或指令集)等。
处理器161和其他控制电路(诸如射频系统164中的控制电路)可以用于控制智能手机1600的操作。该处理器161可以基于一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
处理器161可以被配置为实现控制智能手机1600中的天线的使用的控制算法。处理器161还可以发出用于控制射频系统164中各开关的控制命令等。
通信接口163包括内部接口和外部接口,内部接口可以是处理器161、存储器162、射频系统164、输入/输出(I/O)子系统166之间相互通信的接口,外部接口可以是与外部设备进行连接并通信的接口。
I/O子系统166将智能手机1600上的输入/输出外部设备诸如键区和其他输入控制设备耦接到通信接口163。I/O子系统166任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据端口等。示例性的,用户可以通过经由I/O子系统166供给命令来控制智能手机1600的操作,并且可以使用I/O子系统166的输出资源来从智能手机1600接收状态信息和其他输出。例如,用户按压按钮即可启动手机或者关闭手机。
射频系统164可以为前述任一实施例中的射频系统,其中,射频系统164还可用于处理多个不同频段的射频信号。例如用于接收1575MHz的卫星定位信号的卫星定位射频电路、用于处理IEEE802.11通信的2.4GHz和5GHz频段的WiFi和蓝牙收发射频电路、用于处理蜂窝电话频段(诸如850MHz、900MHz、1800MHz、1900MHz、2100MHz的频段、和Sub-6G频段)的无线通信的蜂窝电话收发射频电路。其中,Sub-6G频段可具体包括2.496GHz-6GHz频段,3.3GHz-6GHz频段。
此外,上述的存储器162中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器162作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器161通过运行存储在存储器162中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中的方法。
存储器162可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据手机1600的使用所创建的数据等。此外,存储器162可以包括高速随机存取存储器,还可以包括非易失性存储器。例如,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种多模式多频段功率放大器MMPA模组,其特征在于,包括:
    非超高频放大电路,被配置为接收和处理来自射频收发器的非超高频发射信号,并经目标选择开关输出至目标非超高频输出端口;
    超高频放大电路,包括:
    超高频发射电路,被配置为接收和处理来自所述射频收发器的超高频发射信号,依次经SPDT开关、第一滤波器、耦合器和第五选择开关输出至目标超高频输出端口;
    第一超高频接收电路,被配置为依次通过DP4T开关和第二滤波器接收和处理第一目标超高频输入端口的第一超高频接收信号,并输出至所述射频收发器;
    第二超高频接收电路,被配置为依次通过所述DP4T开关、所述耦合器、所述第一滤波器和第四选择开关接收和处理第二目标超高频输入端口的第二超高频接收信号,并输出至所述射频收发器;
    其中,所述SPDT开关的P端口与所述第一滤波器连接,所述SPDT开关的一个T端口与所述超高频发射电路连接,另一个T端口与所述第二超高频接收电路连接;所述DP4T开关的一个P端口与所述耦合器连接,另一个P端口被配置为与第二滤波器连接,所述DP4T开关的两个T端口被配置为分别连接至两个SRS端口,另两个T端口被配置为分别连接至用于接收第一超高频接收信号的第一超高频天线端口和用于第二超高频接收信号的第二超高频天线端口;所述目标超高频输出端口和所述目标超高频输入端口为所述两个SRS端口和所述两个超高频天线端口的任意一个。
  2. 根据权利要求1所述的MMPA模组,其特征在于,所述目标选择开关包括第一选择开关、第二选择开关和第三选择开关,所述目标非超高频输出端口包括目标低频输出端口、目标中频输出端口和目标高频输出端口;所述非超高频放大电路包括:
    低频放大电路,被配置为接收来自射频收发器的低频发射信号,并对所述低频发射信号进行放大处理后,经第一选择开关输出至目标低频输出端口;
    中频放大电路,被配置为接收来自所述射频收发器的中频发射信号,并对所述中频发射信号进行放大处理后,经第二选择开关输出至目标中频输出端口;
    高频放大电路,被配置为接收来自所述射频收发器的高频发射信号,并对所述高频发射信号进行放大处理后,经第三选择开关输出至目标高频输出端口。
  3. 根据权利要求2所述的MMPA模组,其特征在于,
    所述低频放大电路,被配置为在第一供电电压下接收所述低频发射信号;
    所述中频放大电路,被配置为在第二供电电压下接收所述中频发射信号;
    所述高频放大电路,被配置为在所述第二供电电压下接收所述高频发射信号;
    所述超高频放大电路,被配置为在所述第二供电电压下接收所述超高频发射信号/所述第一超高频接收信号/所述第二超高频接收信号。
  4. 根据权利要求3所述的MMPA模组,其特征在于,所述MMPA模组用于实现非超高频发射信号和所述超高频发射信号之间的第四代4G无线接入网与第五代5G新空口NR的双连接EN-DC功能。
  5. 根据权利要求1-4任一项所述的MMPA模组,其特征在于,
    所述超高频发射电路包括单个功率放大器,以实现对所述超高频发射信号进行功率放大处理;或者,
    所述超高频发射电路包括多个功率放大器以及功率合成单元,以功率合成方式来实现对所述超高频发射信号的功率放大处理。
  6. 根据权利要求1或4所述的MMPA模组,其特征在于,所述第一超高频接收电路和所述第二超高频接收电路均包括单个低噪声放大器,以实现对所述超高频接收信号进行功率放大处理。
  7. 根据权利要求2或4所述的MMPA模组,其特征在于,所述第三选择开关为3P3T开关,所述3P3T开关的第一个P端口连接所述高频放大电路的输出端,所述3P3T开关的第二个P端口连接所述MMPA模组的第一高频输出端口,所述3P3T开关的第三个P端口连接所述MMPA模组的第二高频输出端口,所述3P3T开关的第一个T端口连接所述MMPA模组的第三高频输出端口,所述3P3T开关的第二个和第三个T端口一一对应连接所述MMPA模组的2个高频收发端口。
  8. 根据权利要求1或4所述的MMPA模组,其特征在于,当所述第四选择开关选择导通超高频发射电路时,所述第五选择开关用于选择导通超高频发射电路与第一超高频天线端口、第二超高频天线端口、两个SRS端口中任一端口之间的信号通路;
    当所述第四选择开关选择导通第二超高频接收电路时,所述第五选择开关还用于选择导通所述第二超高频接收电路与第一超高频天线端口、第二超高频天线端口、两个SRS端口中任一端口之间的信号通 路;
    所述第五选择开关还用于选择导通所述第一超高频接收电路与第一超高频天线端口、第二超高频天线端口、两个SRS端口中任一端口之间的信号通路。
  9. 一种MMPA模组,其特征在于,包括:
    非超高频放大单元,连接目标选择开关,用于接收和处理来自射频收发器的非超高频发射信号,并经所述目标选择开关输出至目标非超高频输出端口;
    第一超高频放大单元,依次连接SPDT开关、第一滤波器、耦合器和DP4T开关,用于接收来自所述射频收发器的超高频发射信号,并对所述超高频发射信号进行放大处理后,依次经所述SPDT开关、所述第一滤波器、所述耦合器和所述DP4T开关输出至目标超高频输出端口;
    第二超高频放大单元,依次连接第二滤波器和DP4T开关,用于依次通过所述DP4T开关、所述第二滤波器接收第一目标超高频输入端口的第一超高频接收信号,并对所述第一超高频接收信号进行放大处理后,输出至所述射频收发器;
    第三超高频放大单元,依次连接所述SPDT开关、所述第一滤波器、所述耦合器和所述DP4T开关,用于依次通过所述DP4T开关、所述耦合器、所述第一滤波器和所述SPDT开关接收第二目标超高频输入端口的第二超高频接收信号,并对所述第二超高频接收信号进行放大处理后,输出至所述射频收发器;
    其中,所述SPDT开关的P端口与所述第一滤波器连接,所述SPDT开关的一个T端口连接所述第一超高频放大单元,另一个T端口连接所述第三超高频放大单元;所述DP4T开关的一个P端口与所述耦合器连接,另一个P端口连接所述第二超高频放大单元,所述DP4T开关的两个T端口一一对应连接所述MMPA模组的两个SRS端口,另两个T端口一一对应连接所述MMPA模组中用于接收第一超高频接收信号的第一超高频天线端口和用于第二超高频接收信号的第二超高频天线端口;所述目标超高频输出端口和所述目标超高频输入端口为所述两个SRS端口和所述两个超高频天线端口的任意一个。
  10. 根据权利要求9所述的MMPA模组,其特征在于,所述目标选择开关包括第一选择开关、第二选择开关和第三选择开关,所述目标非超高频输出端口包括目标低频输出端口、目标中频输出端口和目标高频输出端口;所述非超高频放大单元包括:
    低频放大单元,连接所述第一选择开关,用于接收和处理来自射频收发器的低频发射信号,并对所述低频发射信号进行放大处理后,经所述第一选择开关输出至目标低频输出端口;
    中频放大单元,连接所述第二选择开关,用于接收和处理来自所述射频收发器的中频发射信号,并对所述中频发射信号进行放大处理后,经所述第二选择开关输出至目标中频输出端口;
    高频放大单元,连接所述第三选择开关,用于接收和处理来自所述射频收发器的高频发射信号,并对所述高频发射信号进行放大处理后,经所述第三选择开关输出至目标高频输出端口。
  11. 根据权利要求10所述的MMPA模组,其特征在于,
    所述低频放大单元通过第一供电模块进行供电;
    所述中频放大单元、所述高频放大单元、所述第一超高频放大单元、所述第二超高频放大单元和所述第三超高频放大单元通过第二供电模块进行供电。
  12. 一种MMPA模组,其特征在于,被配置有用于接收射频收发器的非超高频发射信号的非超高频接收端口、
    用于接收所述射频收发器的超高频发射信号的超高频接收端口、用于发送来自天线的第一超高频接收信号的第一超高频输出端口、用于发送来自天线的第二超高频接收信号的第二超高频输出端口以及用于发送所述非超高频发射信号的非超高频输出端口、用于发送所述超高频发射信号的第三超高频输出端口,所述第三超高频输出端口包括两个超高频天线端口和两个SRS端口;所述MMPA模组包括:
    非超高频放大电路,连接所述非超高频接收端口,用于对所述非超高频发射信号进行放大处理;
    目标选择开关,连接所述非超高频放大电路的输出端和所述非超高频输出端口,用于选择导通所述非超高频放大电路与目标非超高频输出端口之间的通路,所述目标非超高频输出端口为所述非超高频输出端口中任意一个;
    超高频发射电路,连接所述超高频接收端口,用于对所述超高频发射信号进行放大处理;
    第一超高频接收电路,连接所述第一超高频输出端口,用于对所述第一超高频接收信号进行放大处理;
    第二超高频接收电路,连接所述第二超高频输出端口,用于对所述第二超高频接收信号进行放大处理;
    SPDT开关,所述SPDT开关的一个T端口与所述超高频发射电路连接,另一个T端口与所述第二超高 频接收电路连接;
    第一滤波器,所述第一滤波器的第一端连接所述SPDT开关的P端口,用于对所述超高频发射信号或者所述第二超高频接收信号进行滤波;
    耦合器,所述耦合器的第一端连接所述滤波器的第二端,所述耦合器的第二端连接所述MMPA模组的耦合端口,用于检测所述超高频发射信号/所述第二超高频接收信号的功率信息,并将所述功率信息通过所述耦合端口输出;
    第二滤波器,所述第二滤波器的第一端与所述第一超高频接收电路连接,用于对所述第一超高频接收信号进行滤波;
    DP4T开关,所述DP4T开关的第一个P端口连接所述耦合器的第三端,所述DP4T开关的第二个P端口连接所述第二滤波器的第二端,所述DP4T开关的两个T端口一一对应连接所述两个SRS端口,另两个T端口一一对应连接所述两个超高频天线端口,用于选择导通所述第一超高频接收电路、所述超高频发射电路、所述第二超高频接收电路中任一电路与所述第三超高频输出端口之间的信号通路。
  13. 根据权利要求12所述的MMPA模组,其特征在于,所述非超高频接收端口包括:
    用于接收射频收发器的低频发射信号的低频接收端口;
    用于接收所述射频收发器的中频发射信号的中频接收端口;以及
    用于接收所述射频收发器的高频发射信号的高频接收端口;
    所述非超高频输出端口包括:
    用于发送所述低频发射信号的低频输出端口;
    用于发送所述中频发射信号的中频输出端口;以及
    用于发送所述高频发射信号的高频输出端口。
  14. 根据权利要求13所述的MMPA模组,其特征在于,所述MMPA模组还被配置有第一供电端口和第二供电端口;所述目标选择开关包括第一选择开关、第二选择开关和第三选择开关;所述目标非超高频输出端口包括目标低频输出端口、目标中频输出端口和目标高频输出端口;所述非超高频放大电路包括低频放大电路、中频放大电路和高频放大电路;
    低频放大电路,连接所述低频接收端口和所述第一供电端口,用于在所述第一供电端口的第一供电电压下,对所述低频发射信号进行放大处理;
    第一选择开关,连接所述低频放大电路的输出端和所述低频输出端口,用于选择导通所述低频放大电路与目标低频输出端口之间的通路,所述目标低频输出端口为所述低频输出端口中任意一个;
    中频放大电路,连接所述中频接收端口和所述第二供电端口,用于在所述第二供电端口的所述第二供电电压下,对所述中频发射信号进行放大处理;
    第二选择开关,连接所述中频放大电路的输出端和所述中频输出端口,用于选择导通所述中频放大电路与目标中频输出端口之间的通路,所述目标中频输出端口为所述中频输出端口中任意一个;
    高频放大电路,连接所述高频接收端口和所述第二供电端口,用于在所述第二供电端口的所述第二供电电压下,对所述高频发射信号进行放大处理;
    第三选择开关,连接所述高频放大电路的输出端和所述高频输出端口,用于选择导通所述高频放大电路与目标高频输出端口之间的通路,所述目标高频输出端口为所述高频输出端口中任意一个;
    超高频发射电路,用于在所述第二供电端口的所述第二供电电压下,对所述超高频发射信号进行放大处理;
    第一超高频接收电路,用于在所述第二供电端口的所述第二供电电压下,对所述第一超高频接收信号进行放大处理;
    第二超高频接收电路,用于在所述第二供电端口的所述第二供电电压下,对所述第二超高频接收信号进行放大处理。
  15. 一种射频系统,其特征在于,包括:
    如权利要求1-14任一项所述的MMPA模组;
    射频收发器,连接所述MMPA模组,用于发送和/或接收超高频信号和非超高频信号;
    第一天线单元,连接所述MMPA模组的目标超高频天线端口,所述目标超高频天线端口包括两个SRS端口和两个超高频天线端口;
    目标天线单元,连接所述MMPA模组的目标天线端口;
    所述射频系统用于通过所述MMPA模组实现所述超高频发射信号和所述非超高频发射信号之间的EN-DC的功能,其中,所述非超高频信号包括低频发射信号、中频发射信号、高频发射信号中任意一种。
  16. 根据权利要求15所述的射频系统,其特征在于,所述目标天线端口包括低频天线端口、中频天线端口和高频天线端口;所述目标天线单元包括:
    第二天线单元,连接所述低频天线端口;
    第三天线单元,连接所述中频天线端口;
    第四天线单元,连接所述高频天线端口。
  17. 根据权利要求16所述的射频系统,其特征在于,所述射频系统还包括:
    第一供电模块,连接所述MMPA模组的低频放大电路,用于为所述低频放大电路提供第一供电电压;
    第二供电模块,用于连接所述MMPA模组的中频放大电路、高频放大电路和超高频放大电路,用于为所述中频放大电路、所述高频放大电路和所述超高频放大电路中任一电路提供第二供电电压;
    所述射频系统用于通过所述第一供电模块为所述低频放大电路提供所述第一供电电压,以实现对低频发射信号的处理,同时用于通过所述第二供电模块为所述中频放大电路或者高频放大电路或者超高频放大电路提供所述第一供电电压,以实现对中频发射信号或者高频发射信号或者超高频发射信号的处理。
  18. 根据权利要求15-17任一项所述的射频系统,其特征在于,所述第一天线单元包括:
    第一天线,连接第一个超高频天线端口;
    第二天线,连接第二个超高频天线端口;
    第三天线,连接第一个SRS端口;
    第四天线,连接第二个SRS端口。
  19. 根据权利要求18所述的射频系统,其特征在于,所述射频系统还包括:
    第一射频开关,包括一P端口和两个T端口,所述P端口连接所述第三天线,第一个T端口连接所述第一个SRS端口;
    第一接收模块,连接所述第一射频开关的第二个T端口,用于接收所述第三天线所接收的超高频信号;
    第二射频开关,包括一P端口和两个T端口,所述P端口连接所述第四天线,第一个T端口连接所述第二个SRS端口;
    第二接收模块,连接所述第二射频开关的第二个T端口,用于接收所述第四天线所接收的超高频信号。
  20. 一种通信设备,其特征在于,包括:
    如权利要求15-19任一项所述的射频系统。
PCT/CN2022/106615 2021-08-12 2022-07-20 放大器模组、射频系统及通信设备 WO2023016204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110928226.8A CN113676211B (zh) 2021-08-12 2021-08-12 放大器模组、射频系统及通信设备
CN202110928226.8 2021-08-12

Publications (1)

Publication Number Publication Date
WO2023016204A1 true WO2023016204A1 (zh) 2023-02-16

Family

ID=78542759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106615 WO2023016204A1 (zh) 2021-08-12 2022-07-20 放大器模组、射频系统及通信设备

Country Status (2)

Country Link
CN (1) CN113676211B (zh)
WO (1) WO2023016204A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676211B (zh) * 2021-08-12 2022-10-28 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN216721326U (zh) * 2022-01-28 2022-06-10 Oppo广东移动通信有限公司 射频前端模组和射频系统
CN114826318A (zh) * 2022-04-12 2022-07-29 Oppo广东移动通信有限公司 一种双发射频电路及电子设备
CN114826295B (zh) * 2022-04-22 2024-05-10 Oppo广东移动通信有限公司 一种射频电路及电子设备
CN115664438A (zh) * 2022-12-28 2023-01-31 深圳市江元科技(集团)有限公司 一种射频电路、射频设备及发送方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301396A (zh) * 2015-06-23 2017-01-04 株式会社村田制作所 通信单元
CN112448734A (zh) * 2020-10-14 2021-03-05 深圳市锐尔觅移动通信有限公司 射频模块、终端设备及信号发射方法
WO2021143877A1 (zh) * 2020-01-17 2021-07-22 Oppo广东移动通信有限公司 射频电路和电子设备
WO2021147519A1 (zh) * 2020-01-22 2021-07-29 Oppo广东移动通信有限公司 射频系统和电子设备
CN113676211A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016109949A1 (zh) * 2015-01-07 2016-07-14 华为技术有限公司 射频前端系统、终端设备和基站
US10659121B2 (en) * 2017-03-15 2020-05-19 Skyworks Solutions, Inc. Apparatus and methods for radio frequency front-ends
CN212588326U (zh) * 2020-05-26 2021-02-23 Oppo广东移动通信有限公司 射频PA Mid器件、射频系统和通信设备
CN112187297B (zh) * 2020-09-27 2022-08-09 Oppo广东移动通信有限公司 射频收发系统和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301396A (zh) * 2015-06-23 2017-01-04 株式会社村田制作所 通信单元
WO2021143877A1 (zh) * 2020-01-17 2021-07-22 Oppo广东移动通信有限公司 射频电路和电子设备
WO2021147519A1 (zh) * 2020-01-22 2021-07-29 Oppo广东移动通信有限公司 射频系统和电子设备
CN112448734A (zh) * 2020-10-14 2021-03-05 深圳市锐尔觅移动通信有限公司 射频模块、终端设备及信号发射方法
CN113676211A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备

Also Published As

Publication number Publication date
CN113676211A (zh) 2021-11-19
CN113676211B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2023016204A1 (zh) 放大器模组、射频系统及通信设备
WO2023016196A1 (zh) 放大器模组、射频系统及通信设备
WO2023016218A1 (zh) 放大器模组、射频系统及通信设备
WO2023016197A1 (zh) 放大器模组、射频系统及通信设备
WO2022116728A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2023016200A1 (zh) 放大器模组、射频系统及通信设备
CN216490477U (zh) 射频系统和通信设备
WO2023016199A1 (zh) 射频系统和通信设备
WO2021238453A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023016209A1 (zh) 发射模组、射频系统及通信设备
WO2022116724A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2023016198A1 (zh) 射频系统和通信设备
WO2023103687A1 (zh) 射频前端器件、射频收发系统和通信设备
CN216721325U (zh) 射频模组和通信设备
CN113676191B (zh) 发射模组、射频系统及通信设备
WO2023098201A1 (zh) 射频系统及通信设备
WO2023098111A1 (zh) 射频系统及通信设备
WO2023098110A1 (zh) 射频系统及通信设备
CN114553250A (zh) 射频系统和通信设备
WO2023016185A1 (zh) 发射模组、射频系统及通信设备
CN114124115B (zh) 射频收发系统和通信设备
WO2023016216A1 (zh) 放大器模组、射频系统及通信设备
WO2023016217A1 (zh) 放大器模组、射频系统及通信设备
WO2024045774A1 (zh) 多模多频功率放大器件、切换方法、射频前端装置和设备
WO2023142765A1 (zh) 射频前端模组和射频系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE