WO2024045774A1 - 多模多频功率放大器件、切换方法、射频前端装置和设备 - Google Patents

多模多频功率放大器件、切换方法、射频前端装置和设备 Download PDF

Info

Publication number
WO2024045774A1
WO2024045774A1 PCT/CN2023/100680 CN2023100680W WO2024045774A1 WO 2024045774 A1 WO2024045774 A1 WO 2024045774A1 CN 2023100680 W CN2023100680 W CN 2023100680W WO 2024045774 A1 WO2024045774 A1 WO 2024045774A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
power amplifier
radio frequency
output
switch
Prior art date
Application number
PCT/CN2023/100680
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024045774A1 publication Critical patent/WO2024045774A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the embodiments of the present disclosure relate to but are not limited to the field of wireless radio frequency technology, and in particular, to a multi-mode multi-frequency power amplifier circuit, a radio frequency system and a wireless communication device.
  • ENDC is the abbreviation of EUTRA NR Dual-Connectivity, E stands for E-UTRA, which belongs to the air interface of 3GPP LTE and is the eighth version of 3GPP, N stands for New radio 5G, and D stands for LTE and 5G dual connection.
  • E stands for E-UTRA
  • N stands for New radio 5G
  • D stands for LTE and 5G dual connection.
  • ENDC can be understood as the mutual compatibility of 4G and 5G dual connections.
  • Embodiments of the present disclosure provide a multi-mode multi-frequency power amplifier circuit, a radio frequency system and a wireless communication device, which can improve the integration of radio frequency devices, save area and reduce costs when realizing dual connections.
  • inventions of the present disclosure provide a multi-mode multi-frequency power amplifier device configured to be connected to a radio frequency transceiver.
  • the multi-mode multi-frequency power amplifier device includes: an intermediate frequency signal transmission path and a low frequency signal transmission path, the The intermediate frequency signal transmission path is used to amplify the intermediate frequency radio frequency signal input by the radio frequency transceiver and then output it.
  • the low frequency signal transmission path is used to amplify the low frequency radio frequency signal input by the radio frequency transceiver and then output it, wherein:
  • the intermediate frequency signal transmission path includes a first switch, and the intermediate frequency signal transmission path is configured to pass through the first switch.
  • a switch is connected to the first intermediate frequency output channel and the second intermediate frequency output channel of the radio frequency transceiver respectively.
  • the first switch is used to connect multiple other multi-mode multi-frequency power amplifier devices to the radio frequency transceiver.
  • the input of the intermediate frequency signal transmitting path is switched to the output of the first intermediate frequency output channel or the output of the second intermediate frequency output channel, so that the multi-mode multi-frequency power amplifier device is connected to the The intermediate frequency output channel of the radio frequency transceiver is different from the intermediate frequency output channel connected to the other multi-mode multi-frequency power amplifier components;
  • the low-frequency signal transmission path includes a second switch, and the low-frequency signal transmission path is configured to be connected to the first low-frequency output channel and the second low-frequency output channel of the radio frequency transceiver through the second switch.
  • the second switch is used to switch the input of the low-frequency signal transmission path to the output of the first low-frequency output channel or the output of the first low-frequency output channel when the radio frequency transceiver is connected to multiple other multi-mode multi-frequency power amplifier devices to implement non-independent networking.
  • the output of the second low-frequency output channel is such that the low-frequency output channel of the radio frequency transceiver connected to the multi-mode multi-frequency power amplifier device is different from the low-frequency output channels connected to the other multi-mode multi-frequency power amplifier devices.
  • embodiments of the present disclosure also provide a switching method of a multi-mode multi-frequency power amplifier device, which is suitable for the aforementioned multi-mode multi-frequency power amplifier device, and the multi-mode multi-frequency power amplifier device is connected to a radio frequency transceiver, The radio frequency transceiver is also connected to other multi-mode multi-frequency power amplifier devices;
  • the radio frequency transceiver outputs a first radio frequency signal to other multi-mode multi-frequency power amplifier devices and a second radio frequency signal to the multi-mode multi-frequency power amplifier device through multiple output channels, wherein, the first radio frequency signal and the second radio frequency signal are located in different frequency bands;
  • the multi-mode multi-frequency power amplifier device determines whether to switch the connection between the device and the radio frequency transceiver according to the output channel through which the radio frequency transceiver outputs the first radio frequency signal to the other multi-mode multi-frequency power amplifier, Therefore, the output channel of the device for receiving the second radio frequency signal is different from the output channel of the other multi-mode multi-frequency power amplifier for receiving the first radio frequency signal.
  • embodiments of the present disclosure also provide a radio frequency front-end device, including a radio frequency transceiver, a first multi-mode multi-frequency power amplifier device and a second multi-mode multi-frequency power amplifier device connected to the radio frequency transceiver, in:
  • the radio frequency transceiver is used to send radio frequency signals to the first multi-mode multi-frequency power amplifier device and the second multi-mode multi-frequency power amplifier device respectively through the output channel.
  • the radio frequency signals sent to the first multi-mode multi-frequency power amplifier device are
  • the radio frequency signals sent to the second multi-mode multi-frequency power amplifier device have different frequency bands;
  • the second multi-mode multi-frequency amplifier device is used to switch the output channel of the radio frequency transceiver through which the device receives radio frequency signals according to the output channel through which the radio frequency transceiver sends radio frequency signals to the first multi-mode multi-frequency power amplifier device, Therefore, the output channel of the device for receiving radio frequency signals is different from the output channel of the first multi-mode multi-frequency power amplifier for receiving radio frequency signals.
  • an embodiment of the present disclosure also provides a wireless communication device, including the aforementioned radio frequency front-end device.
  • the MMPA provided by the embodiment of the present disclosure integrates a power amplifier that supports medium frequency and low frequency, and can be used in conjunction with existing MMPA to support non-independent networking, avoid the waste of high-frequency amplification modules, save costs, and reduce the PCB area occupied.
  • Figure 1a is an architecture diagram of a radio frequency system commonly used in electronic equipment
  • Figure 1b is a schematic diagram of the framework of the current MMPA module
  • Figure 2 is a schematic structural diagram of a multi-mode multi-frequency power amplifier device according to an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of another multi-mode multi-frequency power amplifier device according to an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of yet another multi-mode multi-frequency power amplifier device according to an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of a multi-mode multi-frequency power amplifier device as an application example
  • Figure 6 is a schematic structural diagram of a radio frequency front-end device of an application example
  • FIG. 7 is a flow chart of a switching method of a multi-mode multi-frequency power amplifier device provided by an embodiment of the present disclosure.
  • the non-standalone (NSA, non-Standalone) mode may include any of the following architectures: EN-DC, NE-DC, NGEN-DC, etc.
  • DC stands for Dual Connectivity
  • E-UTRA 4G wireless access network
  • N stands for NR
  • NG stands for the next generation core network, 5G core network.
  • the core network is the 4G core network, the 4G base station is the main station, and the 5G base station is the auxiliary station.
  • EN-DC refers to the dual connection of the 4G wireless access network and 5G NR; under the NE-DC architecture, the core network It is the 5G core network, the 5G base station is the main station, and the 4G base station is the auxiliary station.
  • NE-DC refers to the dual connection of 5G NR and 4G wireless access network; under the NGEN-DC architecture, the core network is the 5G core network, and the 4G base station is The main station, the 5G base station is the auxiliary station, and NGEN-DC refers to the dual connection of the 4G wireless access network and 5G NR under the 5G core network.
  • non-independent networking mode in the embodiments of the present application will be described below by taking the EN-DC architecture as an example.
  • Other non-independent networking modes can be implemented by reference.
  • the architecture of a radio frequency system commonly used in electronic equipment such as mobile phones is shown in Figure 1a.
  • the radio frequency system includes a radio frequency transceiver 10, an MMPA module 20, a transmitting module 30 (the transmitting module is also called a TXM module) and an antenna module.
  • Group 40 in which the radio frequency transceiver 10 is connected to the MMPA module 20 and the transmitting module 30, and the MMPA module 20 and the transmitting module 30 are connected to the antenna module 40.
  • the radio frequency transceiver 10 is used to send or receive radio frequency signals through the signal paths of the MMPA module 20 and the antenna module 40, or the user sends or receives radio frequency signals through the transmitter module 30 and the antenna module 40.
  • the MMPA module 20 also It may be connected to the transmitting module 30 to form a signal processing path to transmit or receive radio frequency signals through the corresponding antenna.
  • the schematic diagram of the framework of an MMPA module is shown in Figure 1b.
  • the MMPA module is configured with a port HB TX IN for receiving high-frequency transmission signals, a port MB TX IN for receiving medium-frequency transmission signals, and a port MB TX IN for receiving low-frequency transmission signals.
  • Port LB TX IN multiple high-frequency output ports (port HB1 ⁇ port HB3 in the figure), multiple High-frequency receiving ports (port HB RX1 and port HB RX2 in the figure), multiple intermediate-frequency transmitting ports (ports MB1 to MB5 in the figure), multiple low-frequency transmitting ports (ports LB1 to LB5 in the figure), multiple power supply ports (Port LMHB_VCC1, Port HB_VCC2, Port LMB_VCC2 in the figure), multiple controllers, each controller is connected to multiple controller ports (Port SCLK1, Port SDA1, Port VIO1, Port SCLK2, Port SDA2, Port VIO2, Port VBATT).
  • the MMPA module includes a high-frequency amplifier circuit HB PA, a medium-frequency amplifier circuit MB PA and a low-frequency amplifier circuit LB PA.
  • the high-frequency amplifier circuit includes a cascaded high-frequency front-end PA (the PA close to the port HB TX IN in the figure), a high-frequency amplifier circuit
  • the frequency matching circuit and the high-frequency post-stage PA (the PA far away from the port HB TX IN in the figure)
  • the intermediate frequency amplification circuit includes the cascaded intermediate frequency pre-stage PA (the PA close to the port MB TX IN in the figure), the intermediate frequency matching circuit and the intermediate frequency post-stage PA level PA (the PA far away from the port MB TX IN in the figure).
  • the low-frequency amplification circuit includes a cascaded low-frequency front-stage PA (the PA close to the port LB TX IN in the figure), a low-frequency matching circuit and a low-frequency post-stage PA (far away from the port in the figure).
  • LB TX IN PA The power supply terminals of the high-frequency preamplifier PA, the medium-frequency preamplifier PA and the low-frequency preamplifier PA are connected to the power supply port LMHB_VCC1, the power supply end of the high-frequency post-amplifier PA is connected to the power supply port HB_VCC2, and the power supply terminals of the mid-frequency post-stage PA and low-frequency post-stage PA are connected to the power supply port.
  • Port LMB_VCC2 The power supply terminals of the high-frequency preamplifier PA, the medium-frequency preamplifier PA and the low-frequency preamplifier PA are connected to the power supply port.
  • the current MMPA module integrates PA that supports low frequency, medium frequency and high frequency, and the operating frequency range can be from 663MHz to 2690MHz.
  • two MMPAs need to be used.
  • HB+HB ENDC this will cause a waste of HB PA in one MMPA and cannot be optimal in terms of cost.
  • existing MMPA devices do not support power and RF input signal switching, and cannot flexibly select VCC power and PA input paths according to specific solutions when implementing different ENDC combinations.
  • the embodiment of the present disclosure provides a multi-mode multi-frequency power amplifier device, as shown in Figure 2.
  • the multi-mode multi-frequency power amplifier device n in the figure is the multi-mode multi-frequency power amplifier device described in this embodiment.
  • Figure The medium multi-mode multi-frequency power amplifier device n-1 and the multi-mode multi-frequency power amplifier device n+1 are multiple other multi-mode multi-frequency power amplifier devices connected to the radio frequency transceiver, and the other multi-mode multi-frequency power amplifier devices connected to the radio frequency transceiver are There can be one or two frequency power amplifier devices.
  • the multi-mode multi-frequency power amplifier device MMPA is configured to be connected to a radio frequency transceiver.
  • the multi-mode multi-frequency power amplifier device includes: an intermediate frequency signal transmission path and a low frequency signal transmission path.
  • the intermediate frequency signal transmission path is used to The intermediate frequency radio frequency signal input by the radio frequency transceiver is amplified and output, and the low frequency signal transmission path is used to amplify the low frequency radio frequency signal input by the radio frequency transceiver and then output, wherein:
  • the intermediate frequency signal transmission path includes a first switch, and the intermediate frequency signal transmission path is configured to be connected to the first intermediate frequency output channel and the second intermediate frequency output channel of the radio frequency transceiver through the first switch.
  • the first switch is used to switch the input of the intermediate frequency signal transmission path to the first intermediate frequency output channel when the radio frequency transceiver is connected to multiple other multi-mode multi-frequency power amplifier devices to implement non-independent networking.
  • the output or the output of the second intermediate frequency output channel so that the intermediate frequency output channel of the radio frequency transceiver connected to this multi-mode multi-frequency power amplifier device is different from the intermediate frequency output of the radio frequency transceiver connected to other multi-mode multi-frequency power amplifier devices aisle;
  • the low-frequency signal transmission path includes a second switch, and the low-frequency signal transmission path is configured to be connected to the first low-frequency output channel and the second low-frequency output channel of the radio frequency transceiver through the second switch.
  • the second switch is used to switch the input of the low-frequency signal transmission path to the output of the first low-frequency output channel or the output of the first low-frequency output channel when the radio frequency transceiver is connected to multiple other multi-mode multi-frequency power amplifier devices to implement non-independent networking.
  • the output of the second low-frequency output channel is such that the low-frequency output channel of the radio frequency transceiver connected to this multi-mode multi-frequency power amplifier device is different from the low-frequency output channels of the radio frequency transceiver connected to other multi-mode multi-frequency power amplifier devices.
  • the MMPA module provided by the embodiment of the present disclosure integrates a power amplifier PA that supports intermediate frequency and low frequency, and can be used in conjunction with other transmitting modules (such as existing MMPA modules) to support non-independent networking and avoid high-frequency power amplifiers. It can reduce waste, save costs (replacing existing MMPA modules with each MMPA module can save at least 0.2 US dollars), and reduce PCB occupation area (can save more than 10mm2).
  • the operating frequency range of the MMPA module in the embodiment of the present disclosure can be from 600MHz to 2000MHz.
  • the first switch may be an SPxT (single-pole x-throw, a multi-way selection switch) switch.
  • the full English name of the P port is Pole (polarization) port, which can be used to name the input or output port in a multi-way selection switch.
  • the full English name of the T port is Throw (throw, throw), which can be used in a multi-way selection switch.
  • the MMPA device can support intermediate frequency input signal switching, allowing the PA input path to be flexibly selected according to specific solutions when using different ENDC combinations.
  • the second switch may be an SPyT switch.
  • the P port of the SPyT switch is connected to the input end of the low-frequency amplification circuit.
  • the y T ports are respectively connected to multiple low-frequency input ports.
  • y is greater than or equal to 2.
  • the multi-mode multi-frequency power amplifier device may further include a plurality of power supply ports for connecting to a power supply and a third switch connected to the power supply port.
  • the third switch is It is used to switch and supply power when the radio frequency transceiver is connected to multiple other multi-mode multi-frequency power amplifier devices to achieve non-independent networking.
  • the power supply port of the source connection is such that the power supply connected to the multi-mode multi-frequency power amplifying device is different from the power supply connected to the other multi-mode multi-frequency power amplifying device.
  • the input end of the third switch is connected to a plurality of power supply ports, and each power supply port is connected to a power supply.
  • the output end of the third switch is connected to the intermediate frequency amplifier circuit and the low frequency amplifier circuit respectively.
  • the third switch is used for Select the power supply that supplies power to the intermediate frequency amplification circuit and the low frequency amplification circuit.
  • the MMPAn in the figure is a multi-mode multi-frequency power amplifier device described in this embodiment.
  • the power supply includes power supply 1 and power supply 2, where power supply 1 is connected to the first power supply port, and power supply 2 Connect to the second power supply port.
  • the third switch is connected to the second power supply port through switching, that is, the MMPAn is powered by power supply 2 , in order to realize that the two MMPAs are powered by different power supplies.
  • the third switch can be an SPzT switch.
  • the P port of the SPzT switch is connected to the power supply end of the intermediate frequency amplifier circuit and the power supply end of the low frequency amplifier circuit.
  • z T ports are respectively connected to multiple power supply ports, and z is greater than or equal to 2.
  • each signal transmission path in the multi-mode multi-frequency power amplifier device includes an amplification circuit;
  • the third switch includes a plurality of input ports, and the plurality of input ports are connected to the power supply port.
  • the output port of the third switch is connected to the amplification circuit in each signal transmission path.
  • the intermediate frequency signal transmission path further includes: an intermediate frequency amplification circuit, a first selection switch and a plurality of intermediate frequency output ports, wherein: the output port of the first switching switch and The input port of the intermediate frequency amplifier circuit is connected, the output port of the intermediate frequency amplifier circuit is connected to the input port of the first selection switch, the output port of the first selection switch is connected to a plurality of intermediate frequency output ports, and the The first selection switch is used to select an intermediate frequency output port for outputting intermediate frequency radio frequency signals.
  • the first selection switch can be a SPmT (single pole m throw, a multi-way selection switch) switch.
  • the P port of the SPmT switch is connected to the output end of the intermediate frequency amplifier circuit, and the m T ports are respectively connected to multiple intermediate frequency output ports.
  • the low-frequency signal transmission path further includes: a low-frequency amplification circuit, a second selection switch, and a plurality of low-frequency output ports, wherein: the output port of the second switching switch and The input port of the low-frequency amplifier circuit is connected, the output port of the low-frequency amplifier circuit is connected to the input port of the second selection switch, the output port of the second selection switch is connected to a plurality of low-frequency output ports respectively, and the The second selection switch is used to select a low-frequency output port for low-frequency radio frequency signal output.
  • the second selection switch may be an SPnT switch.
  • the P port of the SPnT switch is connected to the output end of the low-frequency amplifier circuit.
  • the n T ports are respectively connected to multiple low-frequency output ports.
  • n can be determined according to the number of low-frequency output ports.
  • the MMPA includes two intermediate frequency input ports RFIN_MB1 and RFIN_MB2, four intermediate frequency output ports MB1, MB2, MB3 and MB4, and two low frequency input ports.
  • RFIN_LB1 and RFIN_LB2 five low-frequency output ports LB1, LB2, LB3, LB4 and LB5, two power supply ports VCC1 and VCC2.
  • the MMPA includes an intermediate frequency transmitting path and a low frequency transmitting path.
  • the intermediate frequency transmitting path includes a switching switch 25, an intermediate frequency amplifier circuit MB, and a selection switch 23 connected in sequence.
  • the switching switch 25 is an SPDT, and its T port is connected to two intermediate frequencies. Input port connection, selector switch 23 is SP4T, and its T port is connected to four intermediate frequency output ports respectively.
  • the low-frequency transmitting path includes a switching switch 26, a low-frequency amplification circuit LB, and a selection switch 24 connected in sequence.
  • the switching switch 26 is an SPDT, and its T port is connected to two low-frequency input ports.
  • the selection switch 24 is an SP5T, and its T port is connected to 5T respectively. Connect to a low frequency output port.
  • the MMPA has two power supply ports VCC1 and VCC2.
  • a switch 27 is set.
  • the switch 27 is SPDT, and its T port is connected to the two power supply ports, and its S port is connected to The power supply end of each PA circuit.
  • MMPA includes a controller (MIPI 2.1 in the figure, where MIPI represents the mobile processor industrial interface and 2.1 represents the supported protocol version).
  • the controller is connected to the port SDATA, port SCLK, port VIO and port VBATT respectively for receiving The mobile processor industrial interface bus MIPI BUS control signal of port SCLK and port SDATA, the MIPI power supply signal of the receiving port VIO, and the bias voltage signal of the receiving port VBATT.
  • This example MMPA device integrates LB PA and MB PA to support the amplification of any radio frequency signal in 3G, 4G, and 5G.
  • the low-frequency band radio frequency signal enters the MMPA through the port RFIN_LB1 or the port RFIN_LB2.
  • the port RFIN_LB1 and the port RFIN_LB2 can respectively connect the radio frequency transceiver (transceiver) to two independent LB transmission channels (Tx chain), such as LB Tx chain0 and LB Tx chain1.
  • a selection switch is set on the input port side to achieve flexible selection of the input channel, so as to facilitate matching with other PAs.
  • the Tx chain can be flexibly selected according to needs.
  • the mid-band MB works similarly to the LB.
  • the mid-band RF signal enters the MMPA through the port RFIN_MB1 or the port RFIN_MB2.
  • the port RFIN_MB1 and the port RFIN_MB2 can respectively connect to the two independent MB transmission channels of the RF transceiver.
  • the mid-band RF signal passes through the SPDT. After switching 25, connect to MB PA for RF signal power amplification.
  • the amplified RF signal is output through one of the SP4T RF switch selection ports MB1 ⁇ MB4, and can be connected to an external MB filter.
  • the external power enters the MMPA through the port VCC1 or the port VCC2, and then supplies power to the LB PA and MB PA through the power switch (VCC SWITCH) 27.
  • the port VCC1 and the port VCC2 can be connected to two independent radio frequency power supplies PMIC (Power Management IC) respectively. , integrated power management circuit), such as PMIC#0 and PMIC#1, because the radio frequency transceiver requires that the power supply of the radio frequency signal power amplifier PA in the two frequency bands of the ENDC combination belong to different radio frequency power supply PMIC, so through Setting the selection switch 27 on the power supply port side enables flexible selection of the power supply, so that the radio frequency power supply PMIC can be flexibly selected according to needs when used in conjunction with other PAs to implement ENDC.
  • PMIC Power Management IC
  • the number of MMPA intermediate frequency output ports and the number of low frequency output ports are only examples. They may be different in other embodiments and may be determined based on the number of subsequently connected filters.
  • the MMPA module of this embodiment integrates the LB PA and MB PA and also supports power supply VCC switching and PA input signal switching. Function, when used with other PAs to implement ENDC, the PA power supply and RF input signal can be flexibly switched as needed. More ENDC combinations can be achieved with fewer external components, which is beneficial to reducing the cost of the entire solution. .
  • the multi-mode multi-frequency power amplifier device described in this embodiment can support any dual connection scenario, such as EN-DC, NE-DC or NGEN-DC or carrier aggregation (Carrier Aggregation, CA).
  • this embodiment takes 4G and 5G dual connectivity as an example for description, those skilled in the art will know that this embodiment can be applied to any possible dual or multi-connection scenarios.
  • this embodiment has no limit on the frequency band of the dual-transmission signal, and it can be any combination of frequency bands, for example, it can be in the form of P+Q, where the P frequency band includes B1, B3, B39, B41, B77, B78, N1, N3, Any one of N39, N41, N77, and N78.
  • the Q band includes any one of the following frequency bands that are different from the P band: B1, B3, B39, B41, B77, B78, N1, N3, N39, N41, N77 , N78.
  • Figure 6 shows a radio frequency front-end device, including a radio frequency transceiver and three multi-mode multi-frequency power amplifier devices (MMPA1, MMPA2 and MMPA3).
  • the radio frequency transceiver can output high-frequency signals, intermediate frequency signals and low-frequency signals. Each The signal has two output channels Tx0 and Tx1.
  • MMPA1 and MMPA3 in the figure are existing PAs.
  • MMPA2 is the PA in this embodiment.
  • MMPA1 and MMPA2 need to achieve dual connection of low frequency and high frequency, and MMPA1 is connected to the HB Tx0 channel of the radio frequency transceiver, MMPA2 needs to be switched through the internal switch so that the low frequency signal transmission path is connected to the radio frequency
  • the LB Tx1 channel of the transceiver meets the requirement that the RF signals in the two frequency bands transmitted belong to different channels.
  • MMPA2 and MMPA3 are required to achieve dual connections of low frequency and ultra-high frequency, since MMPA3 is connected to the HB Tx1 channel of the RF transceiver, MMPA2 needs to be switched through the internal switch so that the low-frequency signal transmission path is connected to the LB of the RF transceiver. Tx0 channel.
  • the above example is still used as an explanation.
  • the third switch in MMPA2 is switched to connect to the second power supply.
  • the third switch in MMPA2 is switched to connect to the first power supply to meet the requirement that the power supplies of the two RF signal PAs belong to Different RF power supplies.
  • the MMPA2 of the embodiment of the present disclosure not only can the high-frequency amplifier in the MMPA component be saved, but the configuration can also be made more flexible. Compared with existing solutions to meet the requirements of RF transceivers, fewer connecting lines can meet the needs.
  • the number of MMPAs connected to the radio frequency transceiver is not limited to this.
  • Embodiments of the present disclosure also provide a switching method of a multi-mode multi-frequency power amplifier device, which is suitable for the multi-mode multi-frequency power amplifier device described in any of the foregoing embodiments.
  • the multi-mode multi-frequency power amplifier device is connected to a radio frequency transceiver.
  • the radio frequency transceiver is also connected to other multi-mode multi-frequency power amplifier devices; the switching method is shown in Figure 7, including:
  • Step 10 In a non-independent networking scenario, the radio frequency transceiver outputs a first radio frequency signal to other multi-mode multi-frequency power amplifier devices and a second radio frequency signal to the multi-mode multi-frequency power amplifier device through multiple output channels. Radio frequency signals, wherein the first radio frequency signal and the second radio frequency signal are located in different frequency bands;
  • Step 20 The multi-mode multi-frequency power amplifier device determines whether to switch the device and the radio frequency transceiver according to the output channel of the first radio frequency signal output by the radio frequency transceiver to the other multi-mode multi-frequency power amplifier.
  • the connection is such that the output channel of the device for receiving the second radio frequency signal is different from the output channel of the other multi-mode multi-frequency power amplifier for receiving the first radio frequency signal.
  • the method further includes: the multi-mode multi-frequency power amplifier device determines based on the output channel through which the radio frequency transceiver outputs the first radio frequency signal to the other multi-mode multi-frequency power amplifier. Whether to switch the power supply connected to this device so that the power supply connected to this multi-mode multi-frequency power amplifier device is different from the power supply connected to the other multi-mode multi-frequency power amplifiers.
  • An embodiment of the present disclosure also provides a radio frequency front-end device, including a radio frequency transceiver, a first multi-mode multi-frequency power amplifier device and a second multi-mode multi-frequency power amplifier device connected to the radio frequency transceiver, wherein:
  • the radio frequency transceiver is used to send radio frequency signals to the first multi-mode multi-frequency power amplifier device and the second multi-mode multi-frequency power amplifier device respectively through the output channel.
  • the radio frequency signals sent to the first multi-mode multi-frequency power amplifier device are
  • the radio frequency signals sent to the second multi-mode multi-frequency power amplifier device have different frequency bands;
  • the second multi-mode multi-frequency amplifier device is used to switch the output channel of the radio frequency transceiver through which the device receives radio frequency signals according to the output channel through which the radio frequency transceiver sends radio frequency signals to the first multi-mode multi-frequency power amplifier device, Therefore, the output channel of the device for receiving radio frequency signals is different from the output channel of the first multi-mode multi-frequency power amplifier for receiving radio frequency signals.
  • the second multi-mode multi-frequency power amplifier device is also used to switch the power supply connected to the device according to the power supply connected to the first multi-mode multi-frequency power amplifier device, so that the power supply connected to the device is The power supply is different from the power supply connected to the first multi-mode multi-frequency power amplifier.
  • the second multi-mode multi-frequency power amplifier device is the MMPA module described in the embodiment of the present disclosure.
  • the MMPA module can support low-frequency signals and/or high-frequency signals.
  • the low-frequency signals are low-frequency signals of any network in the 3G network, 4G network, and 5G network.
  • the intermediate-frequency signals are the 3G network, the 4G network, and the MMPA module. network, the intermediate frequency signal of any network in the 5G network.
  • An embodiment of the present disclosure also provides a wireless communication device including the above radio frequency system.
  • the wireless communication devices involved in the embodiments of the present disclosure may include various handheld devices with radio frequency transceiver functions, vehicle-mounted devices, virtual reality/augmented reality devices, wireless headsets, smart home devices, wearable devices, computing devices or devices connected to wireless Other processing equipment of the modem, as well as various forms of user equipment (User Equipment, UE) (such as mobile phones), mobile stations (Mobile Station, MS), terminal equipment (terminal device), etc.
  • UE User Equipment
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

一种多模多频功率放大器件、射频前端装置和无线通信设备,所述MMPA包括:中频信号发射通路和低频信号发射通路,其中:中频信号发射通路包括第一切换开关,用于在射频收发器连接多个其他MMPA实现非独立组网时切换中频信号发射通路的输入,以使本MMPA连接的射频收发器的中频输出通道不同于其他MMPA连接的中频输出通道;低频信号发射通路包括第二切换开关,用于在射频收发器连接多个其他MMPA实现非独立组网时切换低频信号发射通路的输入,以使本MMPA连接的射频收发器的低频输出通道不同于其他MMPA连接的低频输出通道。本公开实施例方案可以节约成本,减少PCB占用面积。

Description

多模多频功率放大器件、切换方法、射频前端装置和设备
本申请要求于2022年09月01日提交中国专利局、申请号为202211066423.4、申请名称为“多模多频功率放大器件、切换方法、射频前端装置和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及但不限于无线射频技术领域,尤其涉及一种多模多频功率放大电路、射频系统和无线通信设备。
背景技术
随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。随着通信网络制式的增加,终端设备必须支持2G、3G、4G、5G各种网络制式下的通信要求。受限于终端设备对于尺寸的制约,主板PCB的空间并没有因需求的增多而得到大幅的增加,这将导致主板PCB的空间布局布线非常紧张。
为了支持ENDC,需要额外增加使用多模多频功率放大器(Multimode Multiband Power Amplifier),这样无疑使得本来就空间布局布线非常紧张的问题雪上加霜,而且还增大了PCB布局布线的复杂度,提高了成本。其中ENDC是EUTRA NR Dual-Connectivity的缩写,E表示E-UTRA,属于3GPP LTE的空中界面,是3GPP的第八版本,N表示New radio 5G,D表示LTE和5G双连接。ENDC可以理解为4G和5G双连接的相互兼容。
发明内容
本公开实施例提供了一种多模多频功率放大电路、射频系统和无线通信设备,能够在实现双连接时提高射频器件的集成度、节省面积,降低成本。
一方面,本公开实施例提供了一种多模多频功率放大器件,设置为与射频收发器连接,所述多模多频功率放大器件包括:中频信号发射通路和低频信号发射通路,所述中频信号发射通路用于对所述射频收发器输入的中频射频信号进行放大后输出,所述低频信号发射通路用于对所述射频收发器输入的低频射频信号进行放大后输出,其中:
所述中频信号发射通路包括第一切换开关,所述中频信号发射通路设置为通过所述第 一切换开关分别与所述射频收发器的第一中频输出通道和第二中频输出通道连接,所述第一切换开关用于在所述射频收发器连接多个其他多模多频功率放大器件实现非独立组网时切换所述中频信号发射通路的输入为所述第一中频输出通道的输出或所述第二中频输出通道的输出,以使所述多模多频功率放大器件连接的所述射频收发器的中频输出通道不同于所述其他多模多频功率放大器件连接的中频输出通道;
所述低频信号发射通路包括第二切换开关,所述低频信号发射通路设置为通过所述第二切换开关分别与所述射频收发器的第一低频输出通道和第二低频输出通道连接,所述第二切换开关用于在所述射频收发器连接多个其他多模多频功率放大器件实现非独立组网时切换所述低频信号发射通路的输入为所述第一低频输出通道的输出或所述第二低频输出通道的输出,以使所述多模多频功率放大器件连接的所述射频收发器的低频输出通道不同于所述其他多模多频功率放大器件连接的低频输出通道。
另一方面,本公开实施例还提供了一种多模多频功率放大器件的切换方法,适用于前述多模多频功率放大器件,所述多模多频功率放大器件与射频收发器连接,所述射频收发器还连接其他多模多频功率放大器件;
在非独立组网场景中,所述射频收发器通过多个输出通道分别向其他多模多频功率放大器件输出第一射频信号以及向所述多模多频功率放大器件输出第二射频信号,其中,所述第一射频信号与所述第二射频信号位于不同频段;
所述多模多频功率放大器件根据所述射频收发器向所述其他多模多频功率放大器输出所述第一射频信号的输出通道,判断是否切换本器件与所述射频收发器的连接,以使本器件接收第二射频信号的输出通道不同于所述其他多模多频功率放大器接收第一射频信号的输出通道。
再一方面,本公开实施例还提供了一种射频前端装置,包括射频收发器、与所述射频收发器连接的第一多模多频功率放大器件和第二多模多频功率放大器件,其中:
所述射频收发器用于通过输出通道分别向第一多模多频功率放大器件和第二多模多频放大器件发送射频信号,向所述第一多模多频功率放大器件发送的射频信号与向所述第二多模多频功率放大器件发送的射频信号的频段不同;
所述第二多模多频放大器件用于根据射频收发器向所述第一多模多频功率放大器件发送射频信号的输出通道切换本器件接收射频信号的所述射频收发器的输出通道,以使本器件接收射频信号的输出通道不同于所述第一多模多频功率放大器接收射频信号的输出通道。
再一方面,本公开实施例还提供了一种无线通信设备,包括前述射频前端装置。
本公开实施例提供的MMPA,集成了支持中频和低频的功率放大器,可以与现有MMPA搭配使用以支持非独立组网,避免高频放大模块的浪费,节约成本,减少PCB占用面积。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的其他优点可通过在说明书、权利要求书以及附图中所描述的方案来实现和获得。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1a为电子设备常用的射频系统的架构图;
图1b为目前的MMPA模组的框架示意图;
图2为本公开实施例一种多模多频功率放大器件结构示意图;
图3为本公开实施例另一种多模多频功率放大器件结构示意图;
图4为本公开实施例再一种多模多频功率放大器件结构示意图;
图5为一种应用示例的多模多频功率放大器件结构示意图;
图6为一种应用示例的射频前端装置的结构示意图;
图7为本公开实施例提供的多模多频功率放大器件的切换方法流程图。
具体实施方式
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说显而易见的是,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在具体实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
本公开包括并设想了与本领域普通技术人员已知的特征和元件的组合。本公开已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的独特的发明方案。任何实施例的任何特征或元件也可以与来自其它发明方案的特征或元件组合,以形成另一个由权利要求限定的独特的发明方案。因此,应当理解, 在本公开中示出和/或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。
此外,在描述具有代表性的实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本公开实施例的精神和范围内。
在本申请实施例中,非独立组网(NSA,non-Standalone)模式可以包括如下任一架构:EN-DC、NE-DC、NGEN-DC等。其中,DC表示Dual Connectivity即双连接,E代表E-UTRA,即4G无线接入网,N代表NR,即5G新无线,NG代表下一代核心网,即5G核心网。
在EN-DC架构下,核心网为4G核心网,4G基站为主站,5G基站为辅站,EN-DC指4G无线接入网与5G NR双连接;在NE-DC架构下,核心网为5G核心网,5G基站为主站,4G基站为辅站,NE-DC指5G NR与4G无线接入网的双连接;在NGEN-DC架构下,核心网为5G核心网,4G基站为主站,5G基站为辅站,NGEN-DC指在5G核心网下的4G无线接入网与5G NR的双连接。
为方便说明,以下本申请实施例中的非独立组网模式以EN-DC架构为例进行说明。其他非独立组网模式可以参照执行。
手机等电子设备常用的一种射频系统的架构如图1a所示,该射频系统包括射频收发器10、MMPA模组20、发射模组30(发射模组又称为TXM模组)和天线模组40,其中射频收发器10连接MMPA模组20和发射模组30,MMPA模组20和发射模组30连接天线模组40。射频收发器10用于通过MMPA模组20、天线模组40的信号通路发送或接收射频信号,或者用户通过发射模组30、天线模组40发送或接收射频信号,此外,MMPA模组20也可能和发射模组30连接,形成信号处理通路以实现通过对应的天线发送或者接收射频信号。
一种MMPA模组的框架示意图如图1b所示,该MMPA模组配置有用于接收高频发射信号的端口HB TX IN,用于接收中频发射信号的端口MB TX IN,用于接收低频发射信号的端口LB TX IN,多个高频输出端口(图中端口HB1~端口HB3),多个 高频接收端口(图中端口HB RX1和端口HB RX2),多个中频发射端口(图中端口MB1~端口MB5),多个低频发射端口(图中端口LB1~端口LB5),多个供电端口(图中端口LMHB_VCC1、端口HB_VCC2、端口LMB_VCC2)、多个控制器,每个控制器连接多个控制器端口(图中端口SCLK1、端口SDA1、端口VIO1、端口SCLK2、端口SDA2、端口VIO2、端口VBATT)。该MMPA模组包括高频放大电路HB PA、中频放大电路MB PA和低频放大电路LB PA,高频放大电路包括级联的高频前级PA(图中接近端口HB TX IN的PA)、高频匹配电路和高频后级PA(图中远离端口HB TX IN的PA),中频放大电路包括级联的中频前级PA(图中接近端口MB TX IN的PA)、中频匹配电路和中频后级PA(图中远离端口MB TX IN的PA),低频放大电路包括级联的低频前级PA(图中接近端口LB TX IN的PA)、低频匹配电路和低频后级PA(图中远离端口LB TX IN的PA)。高频前级PA、中频前级PA和低频前级PA的供电端连接供电端口LMHB_VCC1,高频后级PA的供电端连接供电端口HB_VCC2,中频后级PA和低频后级PA的供电端连接供电端口LMB_VCC2。
可见,目前的MMPA模组集成了支持低频、中频和高频的PA,工作频率范围可以从663MHz~2690MHz。在搭配使用以支持ENDC时需要使用两颗MMPA,但是由于没有HB+HB ENDC需求,这样会造成一颗MMPA中HB PA的浪费,成本上无法做到最优。同时现有MMPA器件不支持电源和射频输入信号切换,无法在实现不同ENDC组合时根据具体方案灵活的选择VCC的电源和PA输入路径。
例如,为了支持5G UHB N77(或N78)需要额外再搭配一颗支持N77的单PA,N77单PA的成本价格在1.5美金左右,同时会占据PCB面积15mm2左右,同时单颗PA模组没办法实现L+M、L+H之间的ENDC组合。
为此本公开实施例提供了一种多模多频功率放大器件,如图2所示,图中多模多频功率放大器件n为本实施例所述的多模多频功率放大器件,图中多模多频功率放大器件n-1和多模多频功率放大器件n+1为与射频收发器连接的多个其他多模多频功率放大器件,与射频收发器连接的其他多模多频功率放大器件可以是一个或者是两个。本实施例多模多频功率放大器件MMPA设置为与射频收发器连接,所述多模多频功率放大器件包括:中频信号发射通路和低频信号发射通路,所述中频信号发射通路用于对所述射频收发器输入的中频射频信号进行放大后输出,所述低频信号发射通路用于对所述射频收发器输入的低频射频信号进行放大后输出,其中:
所述中频信号发射通路包括第一切换开关,所述中频信号发射通路设置为通过所述第一切换开关分别与所述射频收发器的第一中频输出通道和第二中频输出通道连 接,所述第一切换开关用于在所述射频收发器连接多个其他多模多频功率放大器件实现非独立组网时切换所述中频信号发射通路的输入为所述第一中频输出通道的输出或所述第二中频输出通道的输出,以使本多模多频功率放大器件连接的射频收发器的中频输出通道不同于其他多模多频功率放大器件连接的射频收发器的中频输出通道;
所述低频信号发射通路包括第二切换开关,所述低频信号发射通路设置为通过所述第二切换开关分别与所述射频收发器的第一低频输出通道和第二低频输出通道连接,所述第二切换开关用于在所述射频收发器连接多个其他多模多频功率放大器件实现非独立组网时切换所述低频信号发射通路的输入为所述第一低频输出通道的输出或所述第二低频输出通道的输出,以使本多模多频功率放大器件连接的射频收发器的低频输出通道不同于其他多模多频功率放大器件连接的射频收发器的低频输出通道。
采用本公开实施例提供的MMPA模组,集成了支持中频和低频的功率放大器PA,可以与其他发射模组(例如现有MMPA模组)搭配使用以支持非独立组网,避免高频功率放大器的浪费,可以节约成本(每个MMPA模组替换现有MMPA模组至少可以节省0.2美金),减少PCB占用面积(可节省10mm2以上)。本公开实施例的MMPA模组工作频率范围可以从600MHz~2000MHz。
在示例性实施例中,该第一切换开关可以为SPxT(单刀x掷,一种多路选择开关)开关,该SPxT开关的P端口连接中频放大电路的输入端,x个T端口分别连接多个中频输入端口,x为大于或等于2的正整数,例如x=2,x可根据中频输入端口数量确定。本例中的P端口英文全称是Pole(极化)端口,可以用于多路选择开关中输入或输出端口的称谓,T端口英文全称是Throw(投、掷),可以用于多路选择开关中输出或输入端口的称谓,如SP4T开关,其中S表示Single。通过设置第一切换开关,可使得该MMPA器件支持中频输入信号切换,实现不同ENDC组合时根据具体方案灵活的选择PA输入路径。
在示例性实施例中,该第二切换开关可以为SPyT开关,该SPyT开关的P端口连接低频放大电路的输入端,y个T端口分别连接多个低频输入端口,y为大于或等于2的正整数,y可以与x相同或者可以不同,例如y=2,y可根据低频输入端口数量确定。通过设置第二切换开关,可使得该MMPA器件支持低频输入信号切换,实现不同ENDC组合时根据具体方案灵活的选择PA输入路径。
在一示例性实施例中,该多模多频功率放大器件还可包括多个用于与供电电源连接的供电端口以及与所述供电端口连接的第三切换开关,所述第三切换开关用于在所述射频收发器连接多个其他多模多频功率放大器件实现非独立组网时切换与供电电 源连接的供电端口,以使所述多模多频功率放大器件连接的供电电源不同于所述其他多模多频功率放大器件连接的供电电源。
所述第三切换开关的输入端与多个供电端口连接,每个供电端口与一个供电电源连接,第三切换开关的输出端分别与中频放大电路和低频放大电路连接,第三切换开关用于选择向中频放大电路和低频放大电路供电的供电电源。
如图3所示为例,图中MMPAn为本实施例所述多模多频功率放大器器件,供电电源包括供电电源1和供电电源2,其中供电电源1与第一供电端口连接,供电电源2与第二供电端口连接。当非独立组网时,如果MMPAn与MMPAn-1共同工作,MMPAn-1与供电电源1连接,则该第三切换开关通过切换实现与第二供电端口连接,即实现本MMPAn由供电电源2供电,以此实现两个MMPA分别由不同的供电电源供电。
例如,该第三切换开关可以为SPzT开关,该SPzT开关的P端口连接中频放大电路的供电端和低频放大电路的供电端,z个T端口分别连接多个供电端口,z为大于或等于2的正整数,例如z=2,z可根据供电端口数量确定。通过设置第三切换开关,可使得该MMPA器件支持电源切换,可以实现不同ENDC组合时根据具体方案灵活的选择放大电路的电源。
在一示例性实施例中,多模多频功率放大器件中的每个信号发射通路包括一个放大电路;所述第三切换开关包括多个输入端口,所述多个输入端口与所述供电端口一一连接,所述第三切换开关的输出端口与每个信号发射通路中的放大电路连接。
在一示例性实施例中,如图4所示,所述中频信号发射通路还包括:中频放大电路、第一选择开关以及多个中频输出端口,其中:所述第一切换开关的输出端口与所述中频放大电路的输入端口连接,所述中频放大电路的输出端口与所述第一选择开关的输入端口连接,所述第一选择开关的输出端口分别与多个中频输出端口连接,所述第一选择开关用于选择中频射频信号输出的中频输出端口。
该第一选择开关可以为SPmT(单刀m掷,一种多路选择开关)开关,该SPmT开关的P端口连接中频放大电路的输出端,m个T端口分别连接多个中频输出端口,m为大于或等于2的正整数,例如m=4,m可根据中频输出端口数量确定。
在一示例性实施例中,如图4所示,所述低频信号发射通路还包括:低频放大电路、第二选择开关以及多个低频输出端口,其中:所述第二切换开关的输出端口与所述低频放大电路的输入端口连接,所述低频放大电路的输出端口与所述第二选择开关的输入端口连接,所述第二选择开关的输出端口分别与多个低频输出端口连接,所述 第二选择开关用于选择低频射频信号输出的低频输出端口。
该第二选择开关可以为SPnT开关,该SPnT开关的P端口连接低频放大电路的输出端,n个T端口分别连接多个低频输出端口,n为大于或等于2的正整数,例如n=5,n可根据低频输出端口数量确定。
下面以一示例对本公开实施例进行具体说明,如图5所示,本例中MMPA包括两个中频输入端口RFIN_MB1和RFIN_MB2,四个中频输出端口MB1、MB2、MB3和MB4,两个低频输入端口RFIN_LB1和RFIN_LB2,五个低频输出端口LB1、LB2、LB3、LB4和LB5,两个供电端口VCC1和VCC2。
在本例的MMPA包括中频发射通路和低频发射通路,其中,中频发射通路包括依次连接的切换开关25、中频放大电路MB、选择开关23,其中切换开关25为SPDT,其T端口与两个中频输入端口连接,选择开关23为SP4T,其T端口分别与四个中频输出端口连接。低频发射通路包括依次连接的切换开关26、低频放大电路LB、选择开关24,其中切换开关26为SPDT,其T端口与两个低频输入端口连接,选择开关24为SP5T,其T端口分别与5个低频输出端口连接。
该MMPA具有两个供电端口VCC1和VCC2,为了实现电源模块的灵活选择,设置一切换开关27,在本例中,切换开关27为SPDT,其T端口分别与两个供电端口连接,S端口连接各PA电路的供电端。
在本例中MMPA包括控制器(图中MIPI 2.1,其中MIPI表示移动处理器工业接口,2.1表示支持的协议版本),控制器分别连接端口SDATA、端口SCLK,端口VIO和端口VBATT,用于接收端口SCLK和端口SDATA的移动处理器工业接口总线MIPI BUS控制信号,接收端口VIO的MIPI供电信号,以及接收端口VBATT的偏置电压信号。
本示例MMPA器件集成了LB PA以及MB PA可以支持对3G、4G、5G中任一种射频信号的放大。低频段LB工作时,低频段射频信号通过端口RFIN_LB1或者端口RFIN_LB2端口进入该MMPA,端口RFIN_LB1和端口RFIN_LB2可以分别连接射频收发机(transceiver)两个独立的LB发射通路(Tx chain),比如LB Tx chain0和LB Tx chain1。由于射频收发机要求ENDC组合中作为发射的两个频段的射频信号需分别属于不同的Tx chain,因此在输入端口侧设置选择开关,可以实现输入通道的灵活选择,以便于在与其他PA搭配实现ENDC时可以根据需要灵活的选择Tx chain,低频段射频信号通过该SPDT开关26后,连接到LB PA进行射频信号功率放大,被 放大后的射频信号通过SP5T射频开关选择端口LB1~LB5中的一个进行输出,可以连接到外部的LB滤波器。
中频段MB工作时与LB类似,中频段射频信号通过端口RFIN_MB1或者端口RFIN_MB2端口进入该MMPA,端口RFIN_MB1和端口RFIN_MB2可以分别连接射频收发机两个独立的MB发射通路,中频段射频信号通过该SPDT开关25后,连接到MB PA进行射频信号功率放大,被放大后的射频信号通过SP4T射频开关选择端口MB1~MB4中的一个进行输出,可以连接到外部的MB滤波器。
外部电源通过端口VCC1或者端口VCC2进入MMPA,然后经过电源切换开关(VCC SWITCH)27对LB PA和MB PA进行供电,端口VCC1和端口VCC2可以分别连接两个独立的射频供电电源PMIC(Power Management IC,集成电源管理电路),比如PMIC#0和PMIC#1,由于射频收发机会要求ENDC组合中作为发射的两个频段的射频信号功率放大器PA的供电电源分别属于不同的射频供电电源PMIC,因此通过在供电端口侧设置选择开关27,可以实现供电电源的灵活选择,以便于在与其他PA搭配实现ENDC时可以根据需要灵活的选择射频供电电源PMIC。
本例中MMPA中频输出端口的个数,以及低频输出端口的个数仅为示例,在其他实施例中可以有所不同,可根据后续连接的滤波器的个数决定。
基于ENDC实现过程中对两路发射信号的PA供电电源和发射通路需要彼此独立的要求,本实施例的MMPA模组集成LB PA和MB PA的同时,还支持电源VCC切换,以及PA输入信号切换功能,在搭配其他PA实现ENDC时可以灵活的根据需要进行PA供电电源和射频输入信号的切换,可以在搭配更少的外部器件的情况下实现更多的ENDC组合,有利于降低整个方案的成本。
本实施例所述多模多频功率放大器件可以支持任意双连接场景,例如EN-DC、NE-DC或NGEN-DC或载波聚合(Carrier Aggregation,CA)。本实施例虽以4G与5G双连接为例进行说明,但本领域技术人员可知,本实施例可以应用于任何可能存在的双连接或多连接场景。并且本实施例对双发的信号的频段无限制,可以是任何频段的组合,例如可以是P+Q的形式,其中P频段包括B1、B3、B39、B41、B77、B78、N1、N3、N39、N41、N77、N78中的任意一种,Q频段包括不同于P频段的以下频段中的任意一种:B1、B3、B39、B41、B77、B78、N1、N3、N39、N41、N77、N78。
图6所示为一种射频前端装置,包射频收发器和三个多模多频功率放大器件(MMPA1,MMPA2和MMPA3),射频收发器能够输出高频信号、中频信号和低频信号,每种信号有两个输出通道Tx0和Tx1,图中MMPA1和MMPA3为现有PA, MMPA2为本实施例PA,例如当需要MMPA1与MMPA2实现低频和高频双连接时,MMPA1连接射频收发器的HB Tx0通道,则MMPA2需要通过内部的切换开关进行切换,使低频信号发射通路连接射频收发器的LB Tx1通道,以满足发射的两个频段的射频信号分别属于不同的通道的要求。当需要MMPA2与MMPA3实现低频和超高频双连接时,由于MMPA3连接射频收发器的HB Tx1通道,则此时需要MMPA2通过内部的切换开关进行切换,使低频信号发射通路连接射频收发器的LB Tx0通道。
对于供电电源端口的切换,仍以上例为说明,当需要MMPA1和MMPA2实现双连接时,如果MMPA1连接了第一供电电源,则MMPA2中的第三切换开关通过切换,连接第二供电电源,当需要MMPA2和MMPA3实现双连接时,如果MMPA3连接了第二供电电源,则MMPA2中的第三切换开关通过切换,连接第一供电电源,以满足双连接时两个射频信号PA的供电电源分别属于不同的射频供电电源。
由此可见,由于采用本公开实施例的MMPA2,不但可以节约MMPA组件中的高频放大器,而且使得配置更为灵活。相比与已有的为满足射频收发机要求的方案,较少的连接线即可满足需求。
其他实施例中,该射频收发器连接的MMPA的数量不限于此。
本公开实施例还提供了一种多模多频功率放大器件的切换方法,适用于前述任意实施例所述的多模多频功率放大器件,该多模多频功率放大器件与射频收发器连接,该射频收发器还连接其他多模多频功率放大器件;所述切换方法如图7所示,包括:
步骤10,在非独立组网场景中,所述射频收发器通过多个输出通道分别向其他多模多频功率放大器件输出第一射频信号以及向所述多模多频功率放大器件输出第二射频信号,其中,所述第一射频信号与所述第二射频信号位于不同频段;
步骤20,所述多模多频功率放大器件根据所述射频收发器向所述其他多模多频功率放大器输出所述第一射频信号的输出通道,判断是否切换本器件与所述射频收发器的连接,以使本器件接收第二射频信号的输出通道不同于所述其他多模多频功率放大器接收第一射频信号的输出通道。
在示例性实施例中,所述方法还包括:所述多模多频功率放大器件根据所述射频收发器向所述其他多模多频功率放大器输出所述第一射频信号的输出通道,判断是否切换本器件连接的供电电源,以使本多模多频功率放大器件连接的供电电源不同于所述其他多模多频功率放大器连接的供电电源。
本公开实施例还提供了一种射频前端装置,包括射频收发器、与所述射频收发器连接的第一多模多频功率放大器件和第二多模多频功率放大器件,其中:
所述射频收发器用于通过输出通道分别向第一多模多频功率放大器件和第二多模多频放大器件发送射频信号,向所述第一多模多频功率放大器件发送的射频信号与向所述第二多模多频功率放大器件发送的射频信号的频段不同;
所述第二多模多频放大器件用于根据射频收发器向所述第一多模多频功率放大器件发送射频信号的输出通道切换本器件接收射频信号的所述射频收发器的输出通道,以使本器件接收射频信号的输出通道不同于所述第一多模多频功率放大器接收射频信号的输出通道。
在示例性实施例中,所述第二多模多频放大器件还用于根据所述第一多模多频功率放大器件连接的供电电源切换本器件连接的供电电源,以使本器件连接的供电电源不同于所述第一多模多频功率放大器连接的供电电源。
该第二多模多频功率放大器件为本公开实施例所述的MMPA模组。所述MMPA模组可以支持低频信号和/或高频信号,所述低频信号为3G网络、4G网络、5G网络中任一网络的低频信号,所述中频信号为所述3G网络、所述4G网络、所述5G网络中任一网络的中频信号。
本公开实施例还提供了一种包括上述射频系统的无线通信设备。本公开实施例所涉及到的无线通信设备可以包括各种具有射频收发功能的手持设备、车载设备、虚拟现实/增强现实设备、无线耳机、智能家居设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如手机),移动台(Mobile Station,MS),终端设备(terminal device)等等。
在本公开实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种多模多频功率放大器件,设置为与射频收发器连接,所述多模多频功率放大器件包括:中频信号发射通路和低频信号发射通路,所述中频信号发射通路用于对所述射频收发器输入的中频射频信号进行放大后输出,所述低频信号发射通路用于对所述射频收发器输入的低频射频信号进行放大后输出,其中:
    所述中频信号发射通路包括第一切换开关,所述中频信号发射通路设置为通过所述第一切换开关分别与所述射频收发器的第一中频输出通道和第二中频输出通道连接,所述第一切换开关用于在所述射频收发器连接多个其他多模多频功率放大器件实现非独立组网时切换所述中频信号发射通路的输入为所述第一中频输出通道的输出或所述第二中频输出通道的输出,以使所述多模多频功率放大器件连接的所述射频收发器的中频输出通道不同于所述其他多模多频功率放大器件连接的中频输出通道;
    所述低频信号发射通路包括第二切换开关,所述低频信号发射通路设置为通过所述第二切换开关分别与所述射频收发器的第一低频输出通道和第二低频输出通道连接,所述第二切换开关用于在所述射频收发器连接多个其他多模多频功率放大器件实现非独立组网时切换所述低频信号发射通路的输入为所述第一低频输出通道的输出或所述第二低频输出通道的输出,以使所述多模多频功率放大器件连接的所述射频收发器的低频输出通道不同于所述其他多模多频功率放大器件连接的低频输出通道。
  2. 根据权利要求1所述的多模多频功率放大器件,其特征在于,
    所述多模多频功率放大器件还包括多个用于与供电电源连接的供电端口以及与所述供电端口连接的第三切换开关,所述第三切换开关用于在所述射频收发器连接多个其他多模多频功率放大器件实现非独立组网时切换与供电电源连接的供电端口,以使所述多模多频功率放大器件连接的供电电源不同于所述其他多模多频功率放大器件连接的供电电源。
  3. 根据权利要求2所述的多模多频功率放大器件,其特征在于,
    多模多频功率放大器件中的每个信号发射通路包括一个放大电路;
    所述第三切换开关包括多个输入端口,所述多个输入端口与所述供电端口一一连接,所述第三切换开关的输出端口与每个信号发射通路中的放大电路连接。
  4. 根据权利要求1所述的多模多频功率放大器件,其特征在于,
    所述中频信号发射通路还包括:中频放大电路、第一选择开关以及多个中频输出端口,其中:所述第一切换开关的输出端口与所述中频放大电路的输入端口连接,所述中频放大电路的输出端口与所述第一选择开关的输入端口连接,所述第一选择开关的输出 端口分别与多个中频输出端口连接,所述第一选择开关用于选择中频射频信号输出的中频输出端口。
  5. 根据权利要求1所述的多模多频功率放大器件,其特征在于,
    所述低频信号发射通路还包括:低频放大电路、第二选择开关以及多个低频输出端口,其中:所述第二切换开关的输出端口与所述低频放大电路的输入端口连接,所述低频放大电路的输出端口与所述第二选择开关的输入端口连接,所述第二选择开关的输出端口分别与多个低频输出端口连接,所述第二选择开关用于选择低频射频信号输出的低频输出端口。
  6. 一种多模多频功率放大器件的切换方法,其特征在于,适用于如权利要求1-5中任一项所述的多模多频功率放大器件,所述多模多频功率放大器件与射频收发器连接,所述射频收发器还连接其他多模多频功率放大器件;所述切换方法包括:
    在非独立组网场景中,所述射频收发器通过多个输出通道分别向其他多模多频功率放大器件输出第一射频信号以及向所述多模多频功率放大器件输出第二射频信号,其中,所述第一射频信号与所述第二射频信号位于不同频段;
    所述多模多频功率放大器件根据所述射频收发器向所述其他多模多频功率放大器输出所述第一射频信号的输出通道,判断是否切换本器件与所述射频收发器的连接,以使本器件接收第二射频信号的输出通道不同于所述其他多模多频功率放大器接收第一射频信号的输出通道。
  7. 根据权利要求6所述的多模多频功率放大器件的切换方法,其特征在于,所述方法还包括:
    所述多模多频功率放大器件根据所述射频收发器向所述其他多模多频功率放大器输出所述第一射频信号的输出通道,判断是否切换本器件连接的供电电源,以使本多模多频功率放大器件连接的供电电源不同于所述其他多模多频功率放大器连接的供电电源。
  8. 一种射频前端装置,其特征在于,包括射频收发器、与所述射频收发器连接的第一多模多频功率放大器件和第二多模多频功率放大器件,其中:
    所述射频收发器用于通过输出通道分别向第一多模多频功率放大器件和第二多模多频放大器件发送射频信号,向所述第一多模多频功率放大器件发送的射频信号与向所述第二多模多频功率放大器件发送的射频信号的频段不同;
    所述第二多模多频放大器件用于根据射频收发器向所述第一多模多频功率放大器件发送射频信号的输出通道切换本器件接收射频信号的所述射频收发器的输出通道,以使本器件接收射频信号的输出通道不同于所述第一多模多频功率放大器接收射频信号的输 出通道。
  9. 根据权利要求8所述的射频前端装置,其特征在于,
    所述第二多模多频放大器件还用于根据所述第一多模多频功率放大器件连接的供电电源切换本器件连接的供电电源,以使本器件连接的供电电源不同于所述第一多模多频功率放大器连接的供电电源。
  10. 一种无线通信设备,其特征在于,包括如权利要求8或9所述的射频前端装置。
PCT/CN2023/100680 2022-09-01 2023-06-16 多模多频功率放大器件、切换方法、射频前端装置和设备 WO2024045774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211066423.4 2022-09-01
CN202211066423.4A CN115425993A (zh) 2022-09-01 2022-09-01 多模多频功率放大器件、切换方法、射频前端装置和设备

Publications (1)

Publication Number Publication Date
WO2024045774A1 true WO2024045774A1 (zh) 2024-03-07

Family

ID=84201824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100680 WO2024045774A1 (zh) 2022-09-01 2023-06-16 多模多频功率放大器件、切换方法、射频前端装置和设备

Country Status (2)

Country Link
CN (1) CN115425993A (zh)
WO (1) WO2024045774A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425993A (zh) * 2022-09-01 2022-12-02 Oppo广东移动通信有限公司 多模多频功率放大器件、切换方法、射频前端装置和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200403651A1 (en) * 2019-06-21 2020-12-24 Murata Manufacturing Co., Ltd. Radio frequency circuit and communication device
CN113472385A (zh) * 2021-08-09 2021-10-01 Oppo广东移动通信有限公司 射频电路、天线装置及电子设备
CN215682278U (zh) * 2021-06-22 2022-01-28 上海龙旗科技股份有限公司 一种射频装置及终端设备
CN215871405U (zh) * 2021-09-30 2022-02-18 Oppo广东移动通信有限公司 射频系统和通信设备
CN115425993A (zh) * 2022-09-01 2022-12-02 Oppo广东移动通信有限公司 多模多频功率放大器件、切换方法、射频前端装置和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753476B (zh) * 2013-12-30 2018-05-18 国民技术股份有限公司 多模多频功率放大器
WO2017092705A1 (zh) * 2015-12-01 2017-06-08 唯捷创芯(天津)电子技术股份有限公司 多模功率放大器模组、芯片及通信终端
CN111342859B (zh) * 2020-03-03 2021-10-01 Oppo广东移动通信有限公司 射频系统及电子设备
CN113676208B (zh) * 2021-08-12 2022-07-15 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN114039614B (zh) * 2021-12-07 2022-10-18 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200403651A1 (en) * 2019-06-21 2020-12-24 Murata Manufacturing Co., Ltd. Radio frequency circuit and communication device
CN215682278U (zh) * 2021-06-22 2022-01-28 上海龙旗科技股份有限公司 一种射频装置及终端设备
CN113472385A (zh) * 2021-08-09 2021-10-01 Oppo广东移动通信有限公司 射频电路、天线装置及电子设备
CN215871405U (zh) * 2021-09-30 2022-02-18 Oppo广东移动通信有限公司 射频系统和通信设备
CN115425993A (zh) * 2022-09-01 2022-12-02 Oppo广东移动通信有限公司 多模多频功率放大器件、切换方法、射频前端装置和设备

Also Published As

Publication number Publication date
CN115425993A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US11303318B2 (en) RF system and electronic device
WO2021143877A1 (zh) 射频电路和电子设备
WO2016109949A1 (zh) 射频前端系统、终端设备和基站
EP4254808A1 (en) Radio frequency l-pa mid device, radio frequency transceiving system and communication device
JP2021508982A (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
CN103475386A (zh) 一种射频前端模块和终端设备
WO2023016204A1 (zh) 放大器模组、射频系统及通信设备
WO2023016218A1 (zh) 放大器模组、射频系统及通信设备
WO2023016197A1 (zh) 放大器模组、射频系统及通信设备
TW201740701A (zh) 具有可切換雙工器的前端架構
CN102404021A (zh) 双工放大模块、射频前端模块和多模终端
WO2023016209A1 (zh) 发射模组、射频系统及通信设备
WO2023103687A1 (zh) 射频前端器件、射频收发系统和通信设备
WO2024045774A1 (zh) 多模多频功率放大器件、切换方法、射频前端装置和设备
CN114553250B (zh) 射频系统和通信设备
WO2023142657A1 (zh) 射频模组和通信设备、PAMiD模组及L PAMiD模组
WO2023197662A1 (zh) 一种双发射频电路及电子设备
CN113676191B (zh) 发射模组、射频系统及通信设备
WO2023016200A1 (zh) 放大器模组、射频系统及通信设备
US20140194072A1 (en) Duplex filter arrangements for use with tunable narrow band antennas having forward and backward compatibility
CN114124115B (zh) 射频收发系统和通信设备
WO2011157010A1 (zh) 多模移动终端天线匹配的实现方法及多模移动终端
CN113872619A (zh) 射频前端器件、射频收发系统和通信设备
WO2024001132A1 (zh) 一种射频前端器件及电子设备
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858813

Country of ref document: EP

Kind code of ref document: A1