WO2024001132A1 - 一种射频前端器件及电子设备 - Google Patents

一种射频前端器件及电子设备 Download PDF

Info

Publication number
WO2024001132A1
WO2024001132A1 PCT/CN2022/142922 CN2022142922W WO2024001132A1 WO 2024001132 A1 WO2024001132 A1 WO 2024001132A1 CN 2022142922 W CN2022142922 W CN 2022142922W WO 2024001132 A1 WO2024001132 A1 WO 2024001132A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
frequency
low
circuit
frequency band
Prior art date
Application number
PCT/CN2022/142922
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024001132A1 publication Critical patent/WO2024001132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges

Definitions

  • This application relates to but is not limited to electronic technology, especially a radio frequency front-end device and electronic equipment.
  • This application provides a radio frequency front-end device and electronic equipment, which can better save the area occupied by the PCB board and reduce the cost.
  • Embodiments of the present application provide a radio frequency front-end device, which is provided with a high-frequency transmitting port, an intermediate-frequency transmitting port, a low-frequency transmitting port, an auxiliary low-frequency transmitting port, at least six receiving ports, a low-frequency antenna port, a medium- and high-frequency antenna port, and a high-frequency antenna port.
  • the radio frequency front-end device includes:
  • a transmitting circuit connected to the high-frequency transmitting port, the intermediate-frequency transmitting port, the low-frequency transmitting port, and the auxiliary low-frequency transmitting port connected to the output end of an external low-frequency power amplifier, for transmitting data from the high-frequency
  • the high-frequency band signal of the port, the intermediate-frequency band signal from the intermediate-frequency transmitting port, the low-frequency band signal from the low-frequency transmitting port, and the low-frequency band signal from the auxiliary low-frequency transmitting port are power amplified and output to the filter circuit; and
  • the receiving circuit connection is used to select and conduct the radio frequency path of the preset frequency band between the filter circuit and the receiving circuit;
  • the filter circuit is used to filter the received high-frequency band signals, mid-frequency band signals, and low-frequency band signals and output them to the switching circuit;
  • the switch circuit is used to selectively conduct radio frequency paths between the filter circuit and the high-frequency antenna port, the medium-high frequency antenna port, and the low-frequency antenna port; and, the switch circuit is connected to at least one The low-frequency auxiliary receiving and transmitting port connection is used to selectively conduct the radio frequency path between the first external circuit and the low-frequency antenna port;
  • the receiving circuit is connected to the receiving port, the low frequency auxiliary receiving port, the medium and high frequency auxiliary receiving port, the first port of the preset frequency band of the first switching circuit and the filter circuit, and is used for
  • the MIMO signals received from the low-frequency auxiliary receiving port and the mid- and high-frequency auxiliary receiving port are subjected to low-noise amplification processing and output to one of the receiving ports, and the radio frequency signal from the filter circuit is amplified and outputted. to one of the receiving ports.
  • the radio frequency front-end device provided by the embodiment of this application integrates LB PA, MB PA, HB PA, filters, LNA and switches, achieving simultaneous support for low, medium and high frequency bands (LMH band), and supports M+H dual-transmission functions. Moreover, by reusing the internal or external duplexer of the RF front-end device, the L+M dual-transmit function and the L+H dual-transmit function are realized, which better saves the occupied area of the PCB board and reduces the cost.
  • An embodiment of the present application also provides an electronic device, including the radio frequency front-end device described in any one of the above.
  • Figure 1 is a schematic structural diagram of the first embodiment of the radio frequency front-end device in the embodiment of the present application
  • Figure 2 is a schematic structural diagram of a second embodiment of a radio frequency front-end device in the embodiment of the present application
  • Figure 3 is a schematic structural diagram of an embodiment of the L-PA Mid device in the embodiment of the present application.
  • first and second used in this application are only used for descriptive purposes and cannot be understood to indicate or imply the relative importance or implicitly indicate the number of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of this application, “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection”, etc. if the connected circuits, modules, units, etc. have the transmission of electrical signals or data between each other.
  • L-PA Mid devices can be understood as power amplifiers with built-in low-noise amplifiers. Modules (L-PA Mid Power Amplifier Modules including Duplexers With LNA), which take up less space than discrete solutions.
  • L-PA Mid Power Amplifier Modules including Duplexers With LNA which take up less space than discrete solutions.
  • NSA non-standalone networking
  • MHB mid-high frequency band
  • ENDC power amplifier
  • MB mid-frequency band
  • HB high-frequency band
  • E E-UTRA
  • N N radio 5G
  • D LTE and 5G dual connection.
  • ENDC can be understood as the mutual compatibility of 4G and 5G dual connections.
  • embodiments of the present application provide a radio frequency front-end device that supports both low, mid and high frequency bands (LMH band).
  • LMW band low, mid and high frequency bands
  • FIG. 1 is a schematic structural diagram of a radio frequency front-end device in an embodiment of the present application.
  • the radio frequency front-end device is provided with at least a high-frequency transmit port HB_IN, an intermediate frequency transmit port MB_IN, a low-frequency transmit port LB_IN, and an auxiliary low-frequency transmit port LB_TX_IN.
  • At least six receiving ports LNA_OUT (receiving port LNA_OUT1, receiving port LNA_OUT2, receiving port LNA_OUT3, receiving port LNA_OUT4, receiving port LNA_OUT5, receiving port LNA_OUT6 shown in Figure 1), low-frequency antenna port LB_ANT, medium and high-frequency antenna port MHB_ANT , the high-frequency antenna port HB_ANT, and at least one low-frequency auxiliary transmit port LB_TX for external low-frequency band extension (low-frequency auxiliary transmit port LB_TX1 and/or low-frequency auxiliary transmit port LB_TX2 and/or low-frequency auxiliary transmit port as shown in Figure 1 Transmit port LB_TX3 and/or low frequency auxiliary transmit port LB_TX4), at least one low frequency auxiliary transceiver port LB_TRX (low frequency auxiliary transceiver port LB_TRX1 and/or low frequency auxiliary transceiver port LB_TRX2 and/or low frequency auxiliary transceiver port LB_TR
  • the transmitting circuit 10 is connected to the high-frequency transmitting port HB_IN, the intermediate frequency transmitting port MB_IN, the low-frequency transmitting port LB_IN, and the auxiliary low-frequency transmitting port LB_TX_IN connected to the output end of the external low-frequency power amplifier; the transmitting circuit 10 is used to transmit signals from the high-frequency transmitting port
  • the high-frequency band signal of HB_IN, the mid-frequency band signal from the mid-frequency transmit port MB_IN, the low-frequency band signal from the low-frequency transmit port LB_IN, and the low-frequency band signal from the auxiliary low-frequency transmit port LB_TX_IN are power amplified and output to the filter circuit 140; and, the transmit circuit 10 is connected to the receiving circuit 150 for selecting the radio frequency path of the preset frequency band between the conduction filter circuit 140 and the receiving circuit 150;
  • the filter circuit 140 is used to filter the received high-frequency band signal, mid-frequency band signal, and low-frequency band signal and output them to the switch circuit 20;
  • the switch circuit 20 is used to select the radio frequency path between the conduction filter circuit 140 and the high-frequency antenna port HB_ANT, the medium-high frequency antenna port MHB_ANT, and the low-frequency antenna port LB_ANT; and, the switch circuit 20 communicates with at least one low-frequency auxiliary device through the first external circuit.
  • the receiving and transmitting port LB_TX is connected to selectively conduct the radio frequency path between the first external circuit and the low-frequency antenna port LB_ANT;
  • the receiving circuit 150 is connected to the receiving port LNA_OUT, the low-frequency auxiliary receiving port LB_AUX, the medium and high-frequency auxiliary receiving port MHB_AUX, the transmitting circuit 10, and the filter circuit 140, and is used to process the received low-frequency auxiliary receiving port LB_AUX, which is connected to an external circuit.
  • the MIMO signal of the mid-to-high frequency auxiliary receiving port MHB_AUX is subjected to low-noise amplification processing and output to a receiving port LNA OUT, and the radio frequency signal from the filter circuit 140 and the radio frequency signal of the preset frequency band is amplified and output to a receiving port LNA OUT.
  • the transmitting circuit 10 may include: a high frequency power amplifier (HB PA) 110, a medium frequency power amplifier (MB PA) 120, a low frequency power amplifier (LB PA) 130, a first switching circuit 160, a second Switch circuit 170; wherein,
  • a high-frequency power amplifier (HB PA) 110 is connected to the high-frequency transmit port HB_IN, and is used to power amplify the high-frequency band signal from the high-frequency transmit port HB_IN and output it to the first switch circuit 160;
  • the intermediate frequency power amplifier (MB PA) 120 is connected to the intermediate frequency transmission port MB_IN, and is used to power amplify the intermediate frequency band signal from the intermediate frequency transmission port MB_IN and output it to the first switch circuit 160;
  • a low-frequency power amplifier (LB PA) 130 is connected to the low-frequency transmit port LB_IN, and is used to power amplify the low-frequency band signal from the low-frequency transmit port LB_IN and output it to the second switch circuit 170;
  • the first switch circuit 160 has a plurality of second ports connected to the filter circuit 140 respectively.
  • a first port of the first switch circuit 160 is connected to the output end of the high-frequency power amplifier 110 for selective conduction.
  • the other first port of the first switch circuit 160 is connected to the output end of the intermediate-frequency power amplifier 120 for selectively turning on the intermediate-frequency power amplifier 120 and the filter circuit 140.
  • the remaining first port of the first switch circuit 160 is connected to the receiving circuit 150 for selecting the radio frequency path of the preset frequency band between the conductive filter circuit 140 and the receiving circuit 150; in one embodiment,
  • the preset frequency band is the ENDC frequency band.
  • the preset frequency band includes the B39 frequency band, N40/N41 frequency band, etc.
  • the second switch circuit 170 has a plurality of second ports connected to the filter circuit 140 respectively.
  • a first port of the second switch circuit 170 is connected to the output end of the low-frequency power amplifier 130 for selectively turning on the low-frequency power.
  • the radio frequency path between the amplifier 130 and the filter circuit 140 or the low-frequency auxiliary transmission port LB_TX; the other first port of the second switch circuit 170 is connected to the auxiliary low-frequency transmission port LB_TX_IN connected to the output end of the external low-frequency power amplifier, and the second switch
  • At least one second port of the circuit 170 is connected to the low-frequency auxiliary transmit port LB_TX, and is used to selectively conduct the radio frequency path between the external low-frequency power amplifier or filter circuit 140 and the first external circuit.
  • the switch circuit 20 may include: a third switch circuit 180 and a fourth switch circuit 190; wherein,
  • the filter circuit 140 is used to filter the received high-frequency band signals and mid-frequency band signals and output them to the third switch circuit 180, and to filter the received low-frequency band signals and output them to the fourth switch circuit 190;
  • the third switch circuit 180 has a plurality of second ports connected to the filter circuit 140 respectively.
  • a first port of the third switch circuit 180 is connected to the high-frequency antenna port HB_ANT for selectively turning on the filter circuit 140
  • the other first port of the third switch circuit 180 is connected to the mid-to-high frequency antenna port MHB_ANT for selecting the radio frequency passage between the conduction filter circuit 140 and the mid-to-high frequency antenna port MHB_ANT. ;
  • the fourth switch circuit 190 and a plurality of second ports of the fourth switch circuit 190 are respectively connected to the filter circuit 140.
  • a first port of the fourth switch circuit 190 is connected to the low-frequency antenna port LB_ANT for selectively conducting the filter circuit 140 and the low-frequency antenna port LB_ANT.
  • the radio frequency path between the antenna ports LB_ANT; at least one second port of the fourth switch circuit 190 is connected to at least one low-frequency auxiliary receiving and transmitting port LB_TRX, and is used to selectively conduct the radio frequency path between the first external circuit and the low-frequency antenna port LB_ANT. .
  • the radio frequency front-end device provided by the embodiment shown in Figure 1 of this application integrates LB PA, MB PA, HB PA, filters, LNA and switches, achieving simultaneous support for low, medium and high frequency bands (LMH band), and supports M+H Dual-transmission function, and the L+M dual-transmission function and L+H dual-transmission function are realized by reusing the internal or external duplexer of the RF front-end device, which better saves the PCB board area and reduces the cost.
  • LMH band low, medium and high frequency bands
  • M+H Dual-transmission function and the L+M dual-transmission function and L+H dual-transmission function are realized by reusing the internal or external duplexer of the RF front-end device, which better saves the PCB board area and reduces the cost.
  • the radio frequency front-end device provided by the embodiment of the present application supports at least WCDMA B1/B5/B8 frequency bands, LTE B1/B3/B5/B7/B8/B25/B26/B28/B29/B38/B39/ B40/B41/B66 frequency band, N1/N3/N5/N7/N8/N28/N38/N40N41/N66 frequency band.
  • the radio frequency front-end device provided by the embodiment of the present application at least supports LTE under B1+N41 ENDC combination, B3+N41 ENDC combination, B39+N41 ENDC combination, B1+N40 ENDC combination, and B3+N40 ENDC combination.
  • the radio frequency front-end device supports at least the following carrier (CA) combinations: 1-3-7, 1-3-40, 1-3-41, 39-41, 66-7 , LB+MB, LB+HB, etc.
  • CA carrier
  • the HB PA 110 and the MB PA 120 adopt independent power supplies. That is to say, the HB PA 110 and the MB PA 120 are powered independently.
  • the VCC power supply of MB PA 120 is physically independent.
  • the radio frequency front-end device provided by the embodiment of the present application supports three antenna ports (ANT ports), namely, the low-frequency antenna port LB_ANT, the medium- and high-frequency antenna port MHB_ANT, and the high-frequency antenna port HB_ANT, respectively supporting LB, MHB and Transmitting and receiving radio frequency signals in the HB band.
  • the high-frequency antenna port HB_ANT can be used for high-frequency band transmission (HB Tx) when M+H ENDC is dual-transmitted, such as when used for B3/39+N41 ENDC combination, N41 Tx is used.
  • the high-frequency antenna port HB_ANT may only support the B7, B40 and B41 frequency bands, as shown in Figure 3.
  • the medium and high frequency auxiliary receiving port MHB_AUX includes six: medium and high frequency auxiliary receiving port MHB_AUX1, medium and high frequency auxiliary receiving port MHB_AUX2 and medium and high frequency auxiliary receiving port MHB_AUX3, medium and high frequency auxiliary receiving port MHB_AUX4, medium and high frequency auxiliary receiving port MHB_AUX5, medium and high frequency auxiliary receiving port MHB_AUX6.
  • the radio frequency front-end device shown in Figure 1 is also provided with: at least two intermediate frequency auxiliary transmission ports MB_TX for external intermediate frequency band and high frequency band extension (the intermediate frequency auxiliary transmission port in Figure 1 Port MB_TX1, medium frequency auxiliary transmit port MB_TX2), one high frequency auxiliary transmit port HB_TX (high frequency auxiliary transmit port HB_TX1 as shown in Figure 1), at least two medium and high frequency auxiliary transceiver ports MHB_TRX (medium and high frequency as shown in Figure 1 Auxiliary transceiver port MHB_TRX1, medium and high frequency auxiliary transceiver port MHB_TRX2).
  • the mid-frequency auxiliary transmit port MB_TX and the high-frequency auxiliary transmit port HB_TX are respectively connected to the mid-frequency auxiliary transceiver port MHB_TRX through an external circuit in a one-to-one correspondence.
  • the medium frequency auxiliary transmit port MB_TX1 is correspondingly connected to one of the medium and high frequency auxiliary transceiver ports MHB_TRX1 through a second external circuit; the high frequency auxiliary transmit port HB_TX1 is corresponding to the other medium and high frequency auxiliary transceiver port MHB_TRX2 through an external circuit. connect.
  • a second external circuit such as a B25 duplexer is plugged into the intermediate frequency auxiliary transmit port MB TX1 and the high frequency auxiliary transmit port HB TX1, so that the radio frequency front-end device provided in the embodiment of the present application realizes the B25 frequency band.
  • Support, and implement MIMO receiving channels for corresponding frequency bands such as B1 frequency band, B3 frequency band, B7 frequency band, N40 frequency band, and N41 frequency band.
  • the radio frequency front-end device shown in Figure 1 is also provided with: 2G high-frequency transmission port 2G_HB_IN; the radio frequency front-end device shown in Figure 1 also includes: 2G high-frequency power amplifier (2G HB PA) 200, 2G
  • the high-frequency power amplifier 200 is connected to the 2G high-frequency transmission port 2G_HB_IN, and is used to power amplify the 2G high-frequency band signal from the 2G high-frequency transmission port 2G_HB_IN and output it to the filter circuit 140 .
  • the filter circuit 140 is also used to filter the received 2G high-frequency band signal and output it to the third switch circuit 180 .
  • the radio frequency front-end device shown in Figure 1 is also provided with: 2G low-frequency transmission port 2G_LB_IN; the radio frequency front-end device shown in Figure 1 also includes: 2G low-frequency power amplifier (2G LB PA) 210, 2G low-frequency power
  • the amplifier 210 is connected to the 2G low-frequency transmission port 2G_LB_IN, and is used to power amplify the 2G low-frequency band signal from the 2G low-frequency transmission port 2G_LB_IN and output it to the filter circuit 140 .
  • the filter circuit 140 is also used to filter the received 2G low-frequency band signal and output it to the fourth switch circuit 190 .
  • the radio frequency front-end device provided by the embodiment of the present application supports the GSM850/900/1800/1900 frequency band.
  • a power coupling circuit 220 is provided between the fourth switch circuit 190 and the low-frequency antenna port LB_ANT for collecting transmit power-related information, and the SPDT switch on the power feedback path is used to Power feedback circuit for cascading other PA devices.
  • the first power coupling circuit 220 is disposed in the radio frequency path between the fourth switch circuit 190 and the low-frequency antenna port LB_ANT for coupling the low-frequency band in the radio frequency path. signal to output the coupled signal through the first coupling output port CPLOUT1.
  • the coupled signal can be used to measure the forward coupling power and reverse coupling power of the mid-frequency band signal.
  • the first coupling input port CPLIN1 can be used to connect to other external RF front-end devices with coupling output ports, and is used to receive coupling signals output by other external RF front-end devices, and pass the received coupling signals through the RF to which the first coupling input port CPLIN1 belongs.
  • the first coupling output port CPLOUT1 of the front-end device is output to realize the transmission of other external coupling signals.
  • a power coupling circuit 230 is provided between the third switch circuit 180 and the medium and high frequency antenna port MHB_ANT for collecting transmit power-related information.
  • the SPDT switch on the power feedback path is used for For the power feedback circuit of cascading other PA devices.
  • the second power coupling circuit 230 is disposed in the radio frequency path between the third switch circuit 180 and the mid-to-high frequency antenna port MHB_ANT, for coupling the mid-to-high frequency in the radio frequency path. frequency band signal to output the coupled signal through the second coupling output port CPLOUT2.
  • the coupled signal can be used to measure the forward coupling power and reverse coupling power of the mid-to-high frequency band signal.
  • the second coupling input port CPLIN2 can be used to connect to other external RF front-end devices with coupling output ports, and is used to receive coupling signals output by other external RF front-end devices, and pass the received coupling signals through the RF to which the second coupling input port CPLIN2 belongs.
  • the second coupling output port CPLOUT2 of the front-end device is output to realize the transmission of other external coupling signals.
  • a power coupling circuit 240 is provided between the third switch circuit 180 and the high-frequency antenna port HB_ANT for collecting transmit power-related information.
  • the SPDT switch on the power feedback path is used to For the power feedback circuit of cascading other PA devices.
  • the third power coupling circuit 240 is disposed in the radio frequency path between the third switch circuit 180 and the high-frequency antenna port HB_ANT for coupling the high frequency in the radio frequency path. frequency band signal to output the coupled signal through the third coupling output port CPLOUT3.
  • the coupled signal can be used to measure the forward coupling power and reverse coupling power of the mid-frequency band signal.
  • the third coupling input port CPLIN3 can be used to connect to other external RF front-end devices with coupling output ports, and is used to receive coupling signals output by other external RF front-end devices, and pass the received coupling signals through the RF to which the third coupling input port CPLIN3 belongs.
  • the third coupling output port CPLOUT3 of the front-end device is output to realize the transmission of other external coupling signals.
  • the radio frequency front-end device may also include: three sets of Mobile Industry Processor Interface (MIPI, Mobile Industry Processor Interface) control signals (not shown in Figure 1), respectively for Control HB Tx related circuits such as PA and switches, LB and MB Tx related circuits such as PA and switches, and receive related circuits such as switches and LNA.
  • MIPI Mobile Industry Processor Interface
  • MIPI Mobile Industry Processor Interface
  • the radio frequency front-end device provided by the embodiment of the present application is an L-PA Mid device.
  • the RF front-end device shown in Figure 1 can be understood as a packaging structure, as shown in Figure 3.
  • the L-PA Mid device is provided with a high-frequency transmit port HB_IN and a medium-frequency transmit port MB_IN for connecting to the RF transceiver.
  • low-frequency transmit port LB_IN low-frequency transmit port LB_IN
  • auxiliary low-frequency transmit port LB_TX_IN at least six receive ports LNA_OUT (receive port LNA_OUT1, receive port LNA_OUT2, receive port LNA_OUT3, receive port LNA_OUT4, receive port LNA_OUT5, receive port LNA_OUT6 as shown in Figure 3)
  • the low-frequency antenna port LB_ANT the mid- and high-frequency antenna port MHB_ANT and the high-frequency antenna port HB_ANT for connecting the antenna
  • at least one low-frequency auxiliary transceiver port LB_TRX low-frequency auxiliary transceiver port LB_TRX (low-frequency auxiliary transceiver port LB_TRX1 and/or low-frequency auxiliary transceiver port LB_TRX2 and/or low-frequency
  • the receiving port LNA OUT, the high-frequency transmitting port HB_IN, the intermediate-frequency transmitting port MB_IN, the low-frequency transmitting port LB_IN, the auxiliary low-frequency transmitting port LB_TX_IN, the low-frequency antenna port LB_ANT, the medium- and high-frequency antenna port MHB_ANT, the high-frequency antenna port HB_ANT, and the low-frequency auxiliary transmitting port LB_TX, low-frequency auxiliary transceiver port LB_TRX, low-frequency auxiliary receive port LB_AUX and mid- and high-frequency auxiliary receive port MHB_AUX can be understood as the radio frequency pin terminals of the L-PA Mid device and are used to connect to various external devices.
  • the low-frequency auxiliary transmit port LB_TX, the low-frequency auxiliary transceiver port LB_TRX, the low-frequency auxiliary receive port LB_AUX, and the mid- and high-frequency auxiliary receive port MHB_AUX are all connected to external circuits to achieve the transmission and reception of radio frequency signals in corresponding frequency bands.
  • the external circuitry may be a transmit and receive band duplexer.
  • the filter circuit 140 may include a first filter circuit such as a duplexer or a multiplexer, and a second filter circuit such as a filter.
  • a first filter circuit such as a duplexer or a multiplexer
  • a second filter circuit such as a filter.
  • the duplexer 1411 of the corresponding frequency band is used for filtering.
  • the filter 1412 of the corresponding frequency band is used for filtering.
  • the B1 frequency band signal is an FDD standard signal.
  • the B1 frequency band signal is filtered by a B1 duplexer 1411.
  • a second port of the first switch circuit 160 is connected to the B1 duplexer.
  • the Tx port of the B1 duplexer 1411 is connected, and the common port of the B1 duplexer 1411 is connected to the medium and high frequency antenna port MHB_ANT through the third switch circuit 180 .
  • the N41/B41 frequency band signal is a TDD standard signal
  • an N41/B41 filter 1412 is used to filter the N41/B41 frequency band signal.
  • a second port of the first switch circuit 160 It is connected to the input end of the N41/B41 filter 1412, and the output end of the N41/B41 filter 1412 is connected to the high-frequency antenna port HB_ANT through the third switch circuit 180.
  • a filter dedicated to B41/N41 frequency band signal reception is also provided for the B41/N41 frequency band, as shown in the B41 RX SAW in Figure 3, the B41/N41 frequency band signal
  • One end of the receiving filter is connected to the receiving circuit 150, and the other end is connected to the third switch circuit 180, which can conduct the medium and high frequency antenna port MHB_ANT or the high frequency antenna port HB_ANT. That is to say, the L-PA Mid device provided by the embodiment of the present application can Supports reception of two B41/N41 frequency band signals.
  • the third switch circuit 180 can further simultaneously conduct the N41 receiving path and the B3 or B39 path in a multi-on manner, thereby realizing the ENDC combination of B1/B3/B39+N41.
  • a filter dedicated to B40/N40 band signal reception is also provided for the B40/N40 band.
  • the B40/N40 band signal One end of the receiving filter is connected to the receiving circuit 150, and the other end is connected to the third switch circuit 180, which can conduct the medium and high frequency antenna port MHB_ANT or the high frequency antenna port HB_ANT. That is to say, the L-PA Mid device provided by the embodiment of the present application can Supports reception of two B40/N40 frequency band signals.
  • the third switch circuit 180 can further achieve simultaneous conduction of the N40 receiving path and the B3 or B39 path in a multi-on manner, thereby realizing the ENDC combination of B1/B3/B39+N40.
  • the input end of the HB PA 110 is connected to the high-frequency emission port HB_IN
  • the output end of the HB PA 110 is connected to a first port of the first switch circuit 160
  • the HB PA 110 It is used to power amplify the high-frequency band signal from the high-frequency transmission port HB_IN and output it to the first switch circuit 160 .
  • the high-frequency band signals may include at least B7, B40/N40, B41/N41, etc.
  • the input end of the MB PA 120 is connected to the intermediate frequency transmitting port MB_IN, and the output end of the MB PA 120 is connected to a first port of the first switch circuit 160.
  • the MB PA 120 uses The intermediate frequency band signal from the intermediate frequency transmission port MB_IN is power amplified and output to the first switch circuit 160 .
  • the mid-frequency band signal may include at least B39, B3, B1, etc.
  • HB PA 110 is powered by HB Vcc1, HB Vcc2, and MB PA 120 and LB PA 130 are powered by L/M Vcc1, L/M Vcc2.
  • the input end of the LB PA 130 is connected to the low-frequency transmit port LB_IN
  • the output end of the LB PA 130 is connected to a first port of the second switch circuit 170
  • the LB PA 130 is connected to a first port of the second switch circuit 170.
  • the low-frequency band signal from the low-frequency transmitting port LB_IN is power amplified and output to the second switch circuit 170 .
  • the low-frequency band signals may include at least B5, B26, B8, B28A, B28B, B29, etc.
  • the input end of the 2G HB PA 200 is connected to the 2G high-frequency transmit port 2G_HB_IN, and the output end of the 2G HB PA 200 is connected to the GSM HB filter in the filter circuit 140, using The filter circuit 140 performs power amplification on the 2G high-frequency band signal from the 2G high-frequency transmission port 2G_HB_IN and outputs it.
  • the input end of the 2G LB PA 210 is connected to the 2G low-frequency transmit port 2G_LB_IN, and the output end of the 2G LB PA 210 is connected to the GSM LB filter in the filter circuit 140 for
  • the 2G low-frequency band signal from the 2G low-frequency transmission port 2G_LB_IN is power amplified and output to the filter circuit 140.
  • the 2G signal may include signals in the GSM850/900/1800/1900 frequency band.
  • the first switch circuit 160 may be a 4P9T switch. As shown in Figure 3, the four first ports of the first switch circuit 160 are respectively connected to the output terminal of the HB PA 110, the output terminal of the MB PA 120, and the input port of the receiving circuit 150 corresponding to the two preset frequency bands.
  • the preset frequency bands may include but are not limited to B39 frequency band and N41/N40 frequency band.
  • six second ports are respectively connected to the filter circuit 140.
  • they can be respectively connected to the B41/N41 filter, B40/ The N40 filter, the TX end of the B7 duplexer, the B39 filter, the TX end of the B1 duplexer, and the TX end of the B3 duplexer are connected; the other three second ports of the first switch circuit 160 are respectively connected to the high-frequency auxiliary The transmit port HB_TX1, the intermediate frequency auxiliary transmit port MB_TX1 and the intermediate frequency auxiliary transmit port MB_TX2 are connected.
  • the intermediate frequency auxiliary transmit port MB_TX1, the high frequency auxiliary transmit port HB_TX1 and the intermediate frequency auxiliary transmit port MB_TX2 can be connected to the medium and high frequency auxiliary transceiver port MHB_TRX through external circuits according to needs. .
  • an external circuit such as a B25 duplexer is plugged in, so that the L-PA Mid device provided in the embodiment of the present application It has achieved support for the B25 frequency band and implemented MIMO receiving channels for corresponding frequency bands such as B1 frequency band, B3 frequency band, B7 frequency band, N40 frequency band, and N41 frequency band.
  • the L-PA Mid device provided by the embodiment of the present application supports three ANT ports, namely the low-frequency antenna port LB_ANT, the mid- and high-frequency antenna port MHB_ANT, and the high-frequency antenna port HB_ANT, respectively supporting LB, MHB and HB band radio frequencies. Transmitting and receiving signals.
  • the high-frequency antenna port HB_ANT can be used for high-frequency band transmission (HB Tx) when M+H ENDC is dual-transmitted, as shown in Figure 3.
  • HB Tx high-frequency band transmission
  • N41 Tx In one embodiment, in order to reduce switching insertion loss, the high-frequency antenna port HB_ANT may only support the B7/B40 and B41 frequency bands.
  • the second switch circuit 170 may be a DP8T switch. As shown in Figure 3, a first port of the second switch circuit 170 is connected to the output terminal of the LB PA 130, and the other first port of the second switch circuit 170 is connected to the auxiliary low-frequency transmitting port connected to the output terminal of the external LB PA. LB_TX_IN is connected. Among the eight second ports of the second switch circuit 170, four second ports are respectively connected to the filter circuit 140. In one embodiment, they can be respectively connected to the B26 duplexer in the filter circuit 140.
  • the TX end, the TX end of the B8 duplexer, the TX end of the B28A duplexer and the TX end of the B28B duplexer are connected, and the other four second ports of the first switch circuit 160 are respectively connected to the low-frequency auxiliary transmit port LB_TX1, the low-frequency auxiliary The transmit port LB_TX2, the low-frequency auxiliary transmit port LB_TX3, and the low-frequency auxiliary transmit port LB_TX4 are connected.
  • the low-frequency auxiliary transmit port LB_TX1 and the low-frequency auxiliary transceiver port LB_TRX1 are connected correspondingly through an external circuit.
  • the low-frequency auxiliary transmit port LB_TX1 is used to select the connection between the external low-frequency power amplifier and the external RF paths between circuits.
  • the low-frequency band signals transmitted through the low-frequency auxiliary transmission port LB_TX1 may include, for example, B5 band signals.
  • the external LB PA output port is connected to the outside through the auxiliary low-frequency transmit port LB_TX_IN, and the LB duplexer path inside the L-PA Mid device provided by the embodiment of the present application is connected internally or through the low-frequency auxiliary transmit port LB_TX.
  • the duplexer channel connected to the port realizes the simultaneous transmission of two LTE and NR channels under LB+MH ENDC combination and LB+HB ENDC by multiplexing the LB duplexer, which greatly reduces the number of duplexers and achieves the reduction of Small area and cost savings.
  • the auxiliary low-frequency transmission port LB_TX_IN may include multiple auxiliary low-frequency transmission ports.
  • a multiplex switch that is, an SPDT switch, may also be included between the second switch circuit 170 and the filter circuit 140.
  • the first port of the SPDT switch is connected to the TX end of the B28A duplexer in the filter circuit 140.
  • a second port of the SPDT switch is connected to a second port of the second switch circuit, and a second port of the SPDT switch is a B29 frequency band signal receiving port (B29 RX end).
  • B29 RX end B29 frequency band signal receiving port
  • the third switch circuit 180 may be a DP10T switch.
  • the two first ports of the third switch circuit 180 are respectively connected to the high-frequency antenna port HB_ANT and the mid-to-high-frequency antenna port MHB_ANT.
  • eight second ports are respectively connected to the filter circuit 140. In one embodiment, they can be respectively connected to the B41/N41 filter, B40/ N40 filter, B39 filter, B41/N41 band signal receiving filter, B40/N40 band signal receiving filter, common end of B7 duplexer, common end of B1 duplexer/common end of B3 duplexer, GSM HB filter connection.
  • the other two second ports of the third switch circuit 180 are respectively connected to the mid-to-high frequency auxiliary transceiver port MHB_TRX1 and the mid-to-high frequency auxiliary transceiver port MHB_TRX2.
  • the mid-to-high frequency auxiliary transceiver port MHB_TRX1 and the mid-to-high frequency auxiliary transceiver port MHB_TRX2 can be connected to the mid-frequency auxiliary transmit port MB_TX and the high-frequency auxiliary transmit port HB_TX respectively through external circuits according to requirements.
  • the fourth switch circuit 190 may be an SP9T switch. As shown in FIG. 3 , the first port of the fourth switch circuit 190 is connected to the low-frequency antenna port LB_ANT. Among the nine second ports of the fourth switch circuit 190, five second ports are respectively connected to the filter circuit 140, and the four second ports are respectively connected to the four low-frequency auxiliary transceiver ports LB_TRX of the radio frequency front-end device. In one embodiment, the five second ports may be respectively connected to the common end of the B26 duplexer, the common end of the B8 duplexer, the common end of the B28A duplexer and the common end of the B28B duplexer in the filter circuit 140.
  • low-frequency auxiliary transceiver ports LB_TRX (low-frequency auxiliary transceiver port LB_TRX1, low-frequency auxiliary transceiver port LB_TRX2, low-frequency auxiliary transceiver port LB_TRX3 and low-frequency auxiliary transceiver port LB_TRX4) are respectively connected with four low-frequency auxiliary transmit ports LB_TX (low-frequency auxiliary transmit port LB_TX1, low-frequency auxiliary The transmit port LB_TX2, the low-frequency auxiliary transmit port LB_TX3 and the low-frequency auxiliary transmit port LB_TX4) are connected correspondingly through the external circuit and are used to select and conduct the radio frequency path between the LB PA 130 and the external circuit.
  • the low-frequency band signals transmitted and received through the low-frequency auxiliary transceiver port LB_TRX1 may include, for example, B12 band signals.
  • the receiving circuit 150 may include: at least six low-noise amplifiers 1514, at least one first switching unit 1511, at least two second switching units 1512, at least five third switching units 1513, a Four switch units 1515 and a fifth switch unit 1516; wherein,
  • the low noise amplifier 1514 included in the receiving circuit 150 includes at least four MHB LNAs, such as LNA1, LNA2, LNA3, and LNA4 in the embodiment shown in FIG. 3 .
  • the input end of LNA1 is connected to the first port of the third switch unit 1513 (the third switch unit SP4T#1 in the embodiment shown in Figure 3), and a port of the third switch unit SP4T#1
  • the second port is connected to a port of the filter circuit 140 (the B7 RX port in the embodiment shown in Figure 3), and the other second port of the third switch unit SP4T#1 is connected to a first port of the first switch circuit 160.
  • B40/41 RX port in the embodiment shown in Figure 3 is connected, and another second port of the third switch unit SP4T#1 is connected to the second switch unit 1512 (the second switch in the embodiment shown in Figure 3 A second port of the unit SPDT#1) is connected, a first port of the second switch unit SPDT#1 is connected to the mid-to-high frequency auxiliary port MHB_AUX1, and a second port of the third switch unit SP4T#1 is left floating (as a reserved port ), the output end of LNA1 is connected to a second port of the fourth switch unit 1515 (the fourth switch unit 4P4T in the embodiment shown in Figure 3), and LNA1 is used to amplify the received mid- and high-frequency band signals.
  • the fourth switch unit 1515 It is output to a receiving port LNA OUT through the fourth switch unit 1515 (any one of the receiving ports LNA OUT1 to LNA OUT4 in the embodiment shown in Figure 3).
  • the third switch unit 1513 may also be a single pole three throw SP3T switch, or other switches.
  • the switch in the embodiment of the present application is only an example and does not limit the scope of the present application.
  • the input end of LNA2 is connected to the first port of a third switch unit 1513 (the third switch unit SP4T#2 in the embodiment shown in Figure 3), and the third switch unit SP4T#2
  • the two second ports are connected to the mid-to-high frequency auxiliary port MHB_AUX2 and the mid-to-high frequency auxiliary port MHB_AUX3 respectively.
  • the other second port of the third switch unit SP4T#2 is connected to the RX end of the B1 duplexer in the filter circuit (as shown in Figure 3 B1 RX port in the embodiment shown), another second port of the third switch unit SP4T#2 and another second port of the second switch unit 1512 (the second switch unit SPDT#1 in the embodiment shown in Figure 3)
  • a second port is connected, the first port of the second switch unit SPDT#1 is connected to the medium and high frequency auxiliary port MHB_AUX1, and the output end of LNA2 is connected to the fourth switch unit 1515 (the fourth switch unit 4P4T in the embodiment shown in Figure 3 ) is connected to a second port of ⁇ Any receiving port in the receiving port LNA OUT4);
  • the input end of LNA3 is connected to the first port of the third switch unit 1513 (the third switch unit SP4T#3 in the embodiment shown in Figure 3), and one of the third switch unit SP4T#3
  • the second port is connected to the mid-to-high frequency auxiliary port MHB_AUX4, and the other second port of the third switch unit SP4T#3 is connected to a first port of the first switch circuit 160 (the B39 RX port in the embodiment shown in Figure 3).
  • a second port of the third switch unit SP4T#3 is connected to the RX end of the B3 duplexer in the filter circuit 140, and a second port of the third switch unit SP4T#3 is connected to the second switch unit 1512 (such as A second port of the second switch unit SPDT#2) in the embodiment shown in Figure 3 is connected, the first port of the second switch unit SPDT#2 is connected to the mid-to-high frequency auxiliary port MHB_AUX5, and the output end of LNA3 is connected to the fourth switch A second port of the unit 1515 (the fourth switch unit 4P4T in the embodiment shown in Figure 3) is connected.
  • the LNA3 is used to amplify the received mid-to-high frequency band signal and then output it to a receiver through the fourth switch unit 1515.
  • Port LNA OUT any receiving port among the receiving port LNA OUT1 to the receiving port LNA OUT4 in the embodiment shown in Figure 3).
  • the input end of LNA4 is connected to the first port of the third switch unit 1513 (the third switch unit SP4T#4 in the embodiment shown in Figure 3), and one of the third switch unit SP4T#4
  • the second port is connected to the medium and high frequency auxiliary port MHB_AUX6, and the other two second ports of the third switch unit SP4T#4 are respectively connected to the B40/N40 receiving filter in the filter circuit 140, the B40 MRX end of the B41/N41 receiving filter, The MRX terminal of B41 is connected, and the second port of the third switch unit SP4T#4 is connected to the other second port of the second switch unit 1512 (the second switch unit SPDT#2 in the embodiment shown in Figure 3),
  • the first port of the second switch unit SPDT#2 is connected to the medium and high frequency auxiliary port MHB_AUX5, and the output end of the LNA4 is connected to a second port of the fourth switch unit 1515 (the fourth switch unit 4P4T in the embodiment shown in Figure 3).
  • LNA4 is used to amplify the received mid-to-high frequency band signal and then output it to a receiving port LNA OUT through the fourth switch unit 1515 (as shown in Figure 3, the receiving port LNA OUT1 ⁇ the receiving port LNA OUT4 in the embodiment any receiving port).
  • the L-PA Mid device supports at least two mid-frequency auxiliary transmit ports MB TX, at least one high-frequency auxiliary transmit port HB TX, and at least two mid-frequency auxiliary transceiver ports MHB TRX port, and 6 mid-to-high frequency auxiliary receiving ports MHB AUX1, mid-to-high frequency auxiliary receiving port MHB AUX2, mid-to-high frequency auxiliary receiving port MHB_AUX3, mid-to-high frequency auxiliary receiving port MHB_AUX4, mid-to-high frequency auxiliary receiving port MHB_AUX5 and mid-to-high frequency auxiliary receiving connected to the LNA Port MHB AUX6, through these auxiliary transmit/receive/receive ports, plug in duplexers of corresponding frequency bands to support the transmission and reception of signals in this frequency band, such as B25 frequency band signals, and implement MIMO reception channels in corresponding frequency bands, such as B1 frequency band signals, B3 frequency band signal, B7 band signal, B40 band signal
  • the low noise amplifier 1514 included in the receiving circuit 150 includes at least two LB LNAs, such as LNA5 and LNA6 in the embodiment shown in FIG. 3 .
  • the input end of LNA5 is connected to the first port of a third switch unit 1513 (the third switch unit SP4T#4 in the embodiment shown in Figure 3), and the third switch unit SP4T#4
  • the four second ports are respectively connected to the RX end of the B26 duplexer, the RX end of the B8 duplexer, the RX end of the B28A duplexer and the RX end of the B28B duplexer in the filter circuit 140.
  • the output end of LNA5 is connected to A second port of the fifth switch unit 1516 (the fourth switch unit DPDT in the embodiment shown in Figure 3) is connected, and the LNA5 is used to amplify the received low-frequency band signal and then output it to a receiving port LNA OUT ( As shown in the embodiment shown in Figure 3, the receiving port LNA OUT5 or the receiving port LNA OUT6).
  • the input end of the LNA6 is connected to the first port of a first switch unit 1511 (the first switch unit SP5T in the embodiment shown in Figure 3), and the five second switches of the first switch unit SP5T
  • the ports are respectively connected to a second end of the multiplexing switch (ie, the SPDT switch between the second switch circuit 170 and the filter circuit 140) and four low-frequency auxiliary receiving ports LB_AUX (the low-frequency auxiliary receiving port in the embodiment shown in Figure 3 LB_AUX1, low frequency auxiliary receiving port LB_AUX2, low frequency auxiliary receiving port LB_AUX3 and/or low frequency auxiliary receiving port LB_AUX4) are connected, and the output end of LNA6 is connected to the fifth switching unit 1516 (the fourth switching unit DPDT in the embodiment shown in Figure 3)
  • the other second port is connected, and LNA6 is used to amplify the received low-frequency band signal and output it to a receiving port LNA OUT (the receiving port LNA OUT5 or the receiving port L
  • the L-PA Mid device supports at least one low-frequency auxiliary transmit port LB TX, one low-frequency auxiliary transceiver port LB TRX and one low-frequency auxiliary receive port LB AUX1 connected to the LB LNA (LNA6 in Figure 3).
  • Ports such as the low-frequency auxiliary transmit port LB TX1, the low-frequency auxiliary transceiver port LB TRX1, and the low-frequency auxiliary receive port LB AUX1 shown in Figure 3, can be used to support the transmission and reception of signals in this frequency band by plugging in a duplexer of the corresponding frequency band.
  • the fourth switch unit 1515 and the fifth switch unit 1516 can be full-function multi-P multi-T switches, and conduction can be set arbitrarily as needed.
  • the fourth switch unit 1515 is a 4P4T full-function switch.
  • the four first ports of the fourth switch unit 4P4T are respectively connected to the output terminals of LNA1, LNA2, LNA3 and LNA4, and the four second ports of the fourth switch unit 4P4T are respectively connected to the receiving port LNA OUT1, the receiving port LNA OUT2 and the receiving port LNA OUT3 is connected to the receiving port LNA OUT4.
  • the fifth switch unit 1516 is a DPDT full-function switch.
  • the two first ports of the fifth switching unit DPDT are connected to the output terminals of LNA5 and LNA6 respectively, and the two second ports of the fifth switching unit DPDT are connected to the receiving port LNA OUT5 and the receiving port LNA OUT6 respectively.
  • the L-PA Mid device provided by the embodiment of the present application supports at least the following CA combinations: 1-3-7, 1-3-40, 1-3-41, 39-41, 66-7, LB+MB, LB+HB, etc. It should be noted that the receiving signals of several channels under the CA combination also need to use different LNAs and different receiving ports LNA OUT. As shown in Figure 3, it is only an exemplary allocation of the frequency bands connected to each LNA. In order to meet the CA combination and MIMO frequency band that need to be supported, however, the example shown in Figure 3 is not used to limit the scope of protection of this application.
  • the L-PA Mid device provided by the embodiment of this application that supports LMH band at the same time integrates LB PA, MB PA, HB PA, filters, LNA and switches to achieve simultaneous support for low, mid and high frequency bands (LMH band).
  • LMH band low, mid and high frequency bands
  • the L-PA Mid device provided by the embodiment of the present application saves about 80 square millimeters (mm 2 ) in area compared with the 5G version solution in related technologies, and the cost is also due to the elimination of an ENDC PA reduces the cost by about $0.8, and at the same time reduces the circuit complexity of the LB+MB ENDC, LB+HB ENDC, and MB+HB ENDC combinations.
  • the signal workflow of the L-PA Mid device provided by the embodiment of the present application is described below by taking the internal path, external filter path and ENDC combination of the radio frequency signal in the L-PA Mid device provided by the embodiment of the present application.
  • the GSM900 frequency band signal transmitted from the radio frequency transceiver enters the L-PA Mid device through the 2G_LB_IN port, and then amplifies the GSM900 radio frequency signal through the 2G LB PA 210.
  • the final GSM900 signal enters the GSM LB filter in the filter circuit 140 for filtering and then enters the fourth switch circuit 190 to selectively conduct to the low-frequency antenna port LB ANT to connect to an external antenna.
  • the transmission process of the B1 frequency band signal includes: the B1 frequency band signal transmitted from the transceiver enters the L-PA Mid device through the intermediate frequency transmission port MB_IN port, and then amplifies the B1 frequency band signal through the MB PA 120, and then passes through the frequency band
  • the selection switch as shown in Figure 3, is the first switch circuit 160, which is connected to the TX end of the B1 duplexer for filtering, and finally connected to the third switch circuit 180 through the common end of the B1 duplexer to select the medium and high frequency antenna port.
  • MHB ANT can connect to an external antenna to transmit B1 band signals.
  • the B1 frequency band signal before the B1 frequency band signal reaches the medium and high frequency antenna port MHB ANT, the B1 frequency band signal will be collected through the power coupler 230 and connected to the transceiver through the CPLOUT2 port.
  • the receiving process of the B1 frequency band main set reception signal includes: after the B1 frequency band main set signal enters the medium and high frequency antenna port MHB ANT, it enters the B1 duplexer from the common end of the B1 duplexer through the third switch circuit 180 for filtering processing. Then the RX end of the B1 duplexer is connected to the receiving circuit 150 for signal amplification, as shown in Figure 3.
  • the RX end of the B1 duplexer is connected to a second port of the third switch unit SP4T#2.
  • the filtered B1 frequency band main set signal is output to LNA2 through the first port of the third switch unit SP4T#2, and is amplified by LNA2 and then passes through the fourth switch unit 1515 from one of the receiving ports LNA OUT1 to LNA OUT4
  • the receive port outputs to the receive port of the transceiver.
  • the B1 frequency band MIMO signal from the external receiving path can pass through the mid-to-high frequency auxiliary receiving port MHB
  • a certain port in AUX1 ⁇ MHB AUX6 is connected to the L-PA Mid device, as shown in Figure 3.
  • the B1 frequency band MIMO signal passes through the external circuit B1 duplexer and then enters through the mid-to-high frequency auxiliary receiving port MHB AUX5.
  • the receiving circuit 150 of the L-PA Mid device is shown in Figure 3.
  • the medium and high frequency auxiliary receiving port MHB AUX5 is connected to the first port of the second switch unit SPDT#2 through internal wiring, and the B1 frequency band MIMO signal
  • the second port of the second switch unit SPDT#2 is output to LNA3 or LNA4 through the third switch unit SP4T#3 or the third switch unit SP4T#4. After being amplified by LNA3 or LNA4, it is then received from the fourth switch unit 1515.
  • a receiving port among the ports LNA OUT1 ⁇ LNA OUT4 is output to the receiving port of the transceiver.
  • the transmission process of the B12 frequency band signal includes: the B12 frequency band signal transmitted from the transceiver enters the L-PA Mid device through the low-frequency transmission port LB_IN, and then amplifies the B12 frequency band signal through the LB PA 130, and then passes the frequency band
  • the selection switch, the second switch circuit 170 in Figure 3 is turned on to the output of one of the low-frequency auxiliary transmission ports LB_TX1 to LB_TX4 to connect to an external filter such as a B12 duplexer (not shown in Figure 3 ) for filtering, and finally connects to the low-frequency auxiliary transceiver port LB_TRX1 ⁇ low-frequency auxiliary transceiver port LB_TRX4 through the common end of the external B12 duplexer and enters the fourth switch circuit 190 to select and conduct to the low-frequency antenna port LB ANT to connect to the external antenna Transmits B12 band signals.
  • the B12 frequency band signal before the B12 frequency band signal reaches the low-frequency antenna port LB ANT, the B12 frequency band signal is collected through the power coupler 220 and connected to the transceiver through the CPLOUT1 port.
  • the reception process of the B12 frequency band main set reception signal includes: after the B12 frequency band main set signal enters from the low frequency antenna port LB ANT, it is used to transmit B12 from the low frequency auxiliary transceiver port LB TRX1 to the low frequency auxiliary transceiver port LB TRX4 through the fourth switch circuit 190
  • the port of the frequency band signal is output to the common end of the external B12 duplexer.
  • the B12 duplexer After being filtered by the B12 duplexer, it is connected from the RX end of the B12 duplexer to one of the low-frequency auxiliary receiving ports LB MUX1 ⁇ low-frequency auxiliary receiving port LB MUX4. port to enter the receiving circuit 150, as shown in Figure 3.
  • the RX end of the external B12 duplexer is connected to a second port of the first switch unit SP5T through a low-frequency auxiliary receiving port LB MUX.
  • the B12 band main signal is output to LNA6 through the first end of the first switch unit SP5T. After being amplified by LNA6, it is then output to the receiving port of the transceiver through the receiving port LNA OUT5 or the receiving port LNA OUT6.
  • the transmission process of the N41 band signal can include: the N41 band signal transmitted from the transceiver enters the L-PA Mid device through the high-frequency transmission port HB_IN, and then amplifies the N41 RF signal through the HB PA 110, and then passes the frequency band selection switch as shown in Figure 3
  • the first switch circuit 160 in the filter circuit 140 is turned on to the B41/N41 filter in the filter circuit 140 for filtering.
  • the third switch circuit 180 is selectively turned on to the high-frequency antenna port HB ANT to connect the external antenna to transmit the N41 frequency band. Signal.
  • the N41 frequency band signal will be collected through the power coupler 240 and connected to the transceiver through the CPLOUT3 port.
  • the receiving process of the N41 frequency band main set receiving signal may include: after the N41 frequency band main set signal enters from the high-frequency antenna port HB ANT, it enters the N41 filter through the third switch circuit 180 for filtering, and is connected to the first switch through the N41 receiving filter.
  • a second end of the circuit 160 is connected to a first end, namely the B49/41RX end, through the selection of the first switch circuit 160.
  • the filtered N41 frequency band main set signal Connected to a second end of the third switch unit SP4T#1 of the receiving circuit 150, the filtered N41 frequency band main signal is output to LNA1 through the first end of the third switch unit SP4T#1, and is amplified by LNA1. Output to the receiving port of the transceiver through one of the receiving ports LNA OUT1 ⁇ LNA OUT4.
  • the receiving process of the N41 frequency band MIMO signal includes: after the N41 frequency band MIMO signal enters the medium and high frequency antenna port MHB ANT, it is selectively connected to the N41 receiving filter in the filter circuit 140 through the third switch circuit 180 for filtering.
  • the N41 receiving filter can be turned on in a multi-on manner while keeping the B3 band signal channel turned on.
  • the B41 MRX end of the N41 receiving filter is connected to the receiving circuit 150.
  • the B41 MRX end of the N41 receiving filter is connected to a second end of the third switch unit SP4T#4, and the filtered N41 frequency band main signal passes through the third switch unit SP4T#
  • the first end of 4 is output to LNA4, and after amplification processing, it is output to the receiving port of the transceiver through one of the receiving ports LNA OUT1 ⁇ LNA OUT4.
  • the transmission path of the N41 radio frequency signal can be in two ways: the first way is the same as the N41 frequency band signal transmission and reception method under the above B3+N41 combination, here No need to go into details; in the second way, the transmission process of the N41 frequency band signal can include: the N41 frequency band signal enters the L-PA Mid device through the high-frequency transmission port HB_IN, and then amplifies the N41 frequency band signal through the HB PA 110, and then passes the first The switch circuit 160 performs frequency band selection and conduction and enters the B41/N41 filter for filtering.
  • the third switch circuit 180 selects and conducts the connection to the medium and high frequency antenna port MHB ANT to connect an external antenna.
  • the N41 frequency band signal will be collected through the power coupler 230 and connected to the transceiver through the CPLOUT2 port.
  • the receiving process of the N41 frequency band main set signal may include: the N41 frequency band main set signal enters the medium and high frequency antenna port MHB ANT and then enters the N41 filter through the selection of the third switch circuit 180 for filtering, and then passes through the first switch circuit 160.
  • the second terminal is connected to a first terminal, namely the B49/41RX terminal, through the selection of the first switch circuit 160.
  • the filtered N41 frequency band main set signal is connected to the receiving circuit.
  • a second end of the third switch unit SP4T#1 of 150, the filtered N41 frequency band main set signal is output to LNA1 through the first end of the third switch unit SP4T#1, and is amplified by LNA1 and then passes through the receiving port LNA
  • a receiving port among OUT1 ⁇ LNA OUT4 is output to the receiving port of the transceiver.
  • the receiving process of the N41 frequency band MIMO signal may include: after the N41 frequency band MIMO signal enters from the high frequency antenna port HB ANT, it is selectively conducted through the third switch circuit 180 to the N41 receiving filter in the filter circuit 140 for filtering, and then passes through the receiving circuit 150
  • the third switch unit SP4T#4 is connected to LNA4 for signal amplification, and finally connected to the transceiver receiving port through one of the receiving ports LNA OUT1 ⁇ LNA OUT4.
  • N1 transmitting signal and N1 main set receiving signal is the same as that of the above-mentioned B1 frequency band signal, and will not be repeated here.
  • the N1 MIMO receiving path multiplexes the LNA in the L-PA Mid device, then the N1 MIMO receiving process is the same as the above-mentioned B1 frequency band signal, and will not be described again here.
  • the transmission process of the B5 frequency band signal may include: the B5 frequency band signal can be amplified through the external LB PA and then enter the L-PA Mid device through the auxiliary low frequency transmission port LB TX_IN port, and then pass through the frequency band of the second switch circuit 170 Select conduction to enter the B26 duplexer for filtering (because the B26 frequency band includes the B5 frequency band, the B26 duplexer in the L-PA Mid device can be reused here to filter the B5 RF signal), and then pass the antenna selection switch as shown in Figure 3
  • the fourth switch circuit 190 shown in is connected to the low-frequency antenna port LB ANT to connect an external antenna to transmit the B5 band signal.
  • the B5 radio frequency signal is collected through the power coupler 220 and connected to the transceiver through the CPLOUT1 port.
  • the receiving process of the B5 frequency band main set receiving signal includes: after the B5 frequency band main set receiving signal enters from the low frequency antenna port LB ANT, it enters the B26 duplexer for filtering through the fourth switch circuit 190, and then is received from the B26RX port of the B26 duplexer. Enter the receiving circuit 150, as shown in Figure 3.
  • the B5 frequency band main set receiving signal filtered by the B26 duplexer enters the LNA5 through the third switch unit SP4T#5 for signal amplification, and is amplified by the LNA5. Output to the receiving port of the transceiver through the receiving port LNA OUT5 or the receiving port LNA OUT6.
  • the frequency band described in the form of Bx in this application also refers to the 5G NR frequency band.
  • the B41 frequency band described also refers to the N41 frequency band.
  • the B41 frequency band receiving filter described which also refers to the 5G NR frequency band. Generation N41 band receiving filter.
  • Embodiments of the present application also provide an electronic device, which is provided with the radio frequency front-end device described in any of the above embodiments.
  • the radio frequency front-end device By providing the radio frequency front-end device on the electronic device, the occupation of the PCB board is better saved. area, reducing costs.
  • WCDMA B1/B5/B8 frequency band LTE B1/B3/B5/B7/B8/B25/B26/B28/B29/B38/B39/B40/B41/B66 frequency band, N1/N3/N5/N7/N8/N28 /N38/N40N41/N66 frequency band.
  • the radio frequency front-end device provided by the embodiment of the present application at least supports LTE under B1+N41 ENDC combination, B3+N41 ENDC combination, B39+N41 ENDC combination, B1+N40 ENDC combination, and B3+N40 ENDC combination. Simultaneous transmission of two channels of LTE and NR, as well as simultaneous transmission of two channels of LTE and NR in LB+MB combination and LB+HB ENDC combination.
  • the radio frequency front-end device provided by the embodiment of the present application supports at least the following carrier (CA) combinations: 1-3-7, 1-3-40, 1-3-41, 39-41, 66-7 , LB+MB, LB+HB, etc.
  • CA carrier
  • the electronic devices provided by the embodiments of the present application are various electronic devices with wireless communication functions, including but not limited to: mobile phones, tablet computers, wearable devices, vehicle-mounted devices, augmented reality (AR) Reality)/virtual reality (VR, Virtual Reality) equipment, notebook computers, ultra-mobile personal computers (UMPC, Ultra-Mobile Personal Computer), netbooks, personal digital assistants (PDA, Personal Digital Assistant), etc.
  • AR Augment reality
  • VR Virtual Reality
  • notebook computers notebook computers
  • ultra-mobile personal computers Ultra-Mobile Personal Computer
  • netbooks personal digital assistants
  • PDA Personal Digital Assistant

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请公开了一种射频前端器件及电子设备,射频前端器件集成了LB PA、MB PA、HB PA,滤波器、LNA和开关,实现了同时对低中高频段(LMH band)的支持,支持M+H双发功能,而且,通过复用射频前端器件内部或者外挂的双工器实现L+M双发功能及L+H双发功能,更好地节省了对PCB板的占用面积,降低了电子设备的成本。

Description

一种射频前端器件及电子设备 技术领域
本申请涉及但不限于电子技术,尤指一种射频前端器件及电子设备。
背景技术
随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。随着通信网络制式的增加,电子设备必须支持2G、3G、4G、5G各种网络制式下的通信要求;受限于电子设备对于尺寸的制约,主板PCB的空间并没有因需求的增多而得到大幅的增加,这将导致主板PCB的空间布局布线非常紧张。
随着电子设备如手机ID和功能不断演进,比如双扬声器(speaker),大电池,多摄像头模组等功能都极大的压缩了手机PCB板可用空间,这样,对射频方案也就提出了更高的要求。
发明概述
本申请提供一种射频前端器件及电子设备,能够更好地节省对PCB板的占用面积,降低成本。
本申请实施例提供一种射频前端器件,设置有高频发射端口、中频发射端口、低频发射端口、辅助低频发射端口、至少六个接收端口、低频天线端口、中高频天线端口、高频天线端口,以及,用于外置低频频段扩展的至少一个低频辅助发射端口、至少一个低频辅助收发端口和至少一个低频辅助接收端口,用于外置中高频频段扩展的至少一中高频辅助接收端口;其中,低频辅助发射端口与低频辅助收发端口通过第一外部电路一一对应连接;所述射频前端器件包括:
发射电路,与所述高频发射端口、所述中频发射端口、所述低频发射端口、与外挂低频功率放大器的输出端连接的所述辅助低频发射端口连接,用于对来自所述高频发射端口的高频段信号、来自所述中频发射端口的中频段信号、来自所述低频发射端口的低频段信号、来自所述辅助低频发射端口的低频段信号进行功率放大并输出给滤波电路;以及与接收电路连接,用于选择导通所述滤波电路与所述接收电路之间的预设频段的射频通路;
所述滤波电路,用于对接收到的高频段信号、中频段信号、低频段信号进行滤波处理并输出给开关电路;
所述开关电路,用于选择导通所述滤波电路与所述高频天线端口、所述中高频天线端口、所述低频天线端口之间的射频通路;以及,所述开关电路与至少一所述低频辅助收发射端口连接,用于选择导通所述第一外部电路与所述低频天线端口之间的射频通路;
所述接收电路,与所述接收端口、所述低频辅助接收端口、所述中高频辅助接收端口、所述第一开关电路的预设频段的第一端口和所述滤波电路连接,用于对接收到的来自所述低频辅助接收端口、所述中高频辅助接收端口的MIMO信号进行低噪声放大处理并输出至一所述接收端口,以及对来自所述滤波电路的射频信号进行放大处理并输出至一所述接收端口。
本申请实施例提供的射频前端器件集成了LB PA、MB PA、HB PA,滤波器、LNA和开关,实现了同时对低中高频段(LMH band)的支持,支持M+H双发功能,而且,通过复用射频前端器件内部或者外挂的双工器实现L+M双发功能及L+H双发功能,更好地节省了对PCB板的占用面积,降低了成本。
本申请实施例还提供一种电子设备,包括上述任一项所述的射频前端器件。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本申请实施例中射频前端器件的第一实施例的组成结构示意图;
图2为本申请实施例中射频前端器件的第二实施例的组成结构示意图;
图3为本申请实施例中L-PA Mid器件的一实施例的组成结构示意图。
详述
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
可以理解,以下实施例中的“连接”,如果被连接的电路、模块、单元等相互之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
通常,PCB板可用空间比较紧凑的电子设备如手机在射频方案上往往采用射频前端器件如射频L-PA Mid集成模组方案,其中,L-PA Mid器件可以理解为内置低噪声放大器的功率放大器模块(L-PA Mid Power Amplifier Modules including Duplexers With LNA),其相对于分立方案占用空间更小。对于支持非独立组网(NSA,Non-Standalone)的5G手机现有方案下,需要搭配一颗支持低频频段(LB)的L-PA Mid器件,一颗支持中高频频段(MHB)的L-PA Mid器件以及一颗至少支持中频频段(MB)或者高频频段(HB)的ENDC功率放大器(PA)。相关技术中虽然已经采用了L-PA Mid器件这类高集成器件,但是,由于器件数量较多,需要的面积还是不小。同时为了实现M+H、M+H而搭配的ENDC PA也会带来成本上的增加。其中,ENDC是EUTRA NR Dual-Connectivity的缩写,E表示E-UTRA,属于3GPP LTE的空中界面,是3GPP的第八版本;N表示N radio 5G;D表示LTE和5G双连接。ENDC可以理解为4G和5G双连接的相互兼容。
为了更好地节省对PCB板的占用面积,本申请实施例提供一种同时支持低中高频频段(LMH band)的射频前端器件。
图1为本申请实施例中射频前端器件的组成结构示意图,如图1所示,该射频前端器件至少设置有高频发射端口HB_IN、中频发射端口MB_IN、低频发射端口LB_IN、辅助低频发射端口LB_TX_IN、至少六个接收端口LNA_OUT(如图1中所示的接收端口LNA_OUT1、接收端口LNA_OUT2、接收端口LNA_OUT3、接收端口LNA_OUT4、接收端口LNA_OUT5、接收端口LNA_OUT6)、低频天线端口LB_ANT、中高频天线端口MHB_ANT、高频天线端口HB_ANT,以及,用于外置低频频段扩展的至少一个低频辅助发射端口LB_TX(如图1中所示的低频辅助发射端口LB_TX1和/或低频辅助发射端口LB_TX2和/或低频辅助发射端口LB_TX3和/或低频辅助发射端口LB_TX4)、至少一个低频辅助收发端口LB_TRX(如图1中所示的低频辅助收发端口LB_TRX1和/或低频辅助收发端口LB_TRX2和/或低频辅助收发端口LB_TRX3和/或低频辅助收发端口LB_TRX4)和至少一个低频辅助接收端口LB_AUX(如图1中的低频辅助接收端口LB_AUX1和/或低频辅助接收端口LB_AUX2和/ 或低频辅助接收端口LB_AUX3和/或低频辅助接收端口LB_AUX4),用于外置中高频频段扩展的至少一中高频辅助接收端口MHB_AUX(如图1中的中高频辅助接收端口MHB_AUX1和/或中高频辅助接收端口MHB_AUX2和/或中高频辅助接收端口MHB_AUX3和/或中高频辅助接收端口MHB_AUX4和/或中高频辅助接收端口MHB_AUX5和/或中高频辅助接收端口MHB_AUX6);其中,低频辅助发射端口LB_TX与低频辅助收发端口LB_TRX通过第一外部电路(图1中未示出)一一对应连接;图1所示射频前端器件至少包括:
发射电路10,与高频发射端口HB_IN、中频发射端口MB_IN、低频发射端口LB_IN、以及与外挂低频功率放大器的输出端连接的辅助低频发射端口LB_TX_IN连接;发射电路10用于对来自高频发射端口HB_IN的高频段信号、来自中频发射端口MB_IN的中频段信号、来自低频发射端口LB_IN的低频段信号、来自辅助低频发射端口LB_TX_IN的低频段信号进行功率放大并输出给滤波电路140;以及,发射电路10与接收电路150连接,用于选择导通滤波电路140与接收电路150之间的预设频段的射频通路;
滤波电路140,用于对接收到的高频段信号、中频段信号、低频段信号进行滤波处理并输出给开关电路20;
开关电路20,用于选择导通滤波电路140与高频天线端口HB_ANT、中高频天线端口MHB_ANT、低频天线端口LB_ANT之间的射频通路;以及,开关电路20通过第一外部电路与至少一低频辅助收发射端口LB_TX连接,用于选择导通所述第一外部电路与低频天线端口LB_ANT之间的射频通路;
接收电路150,与接收端口LNA_OUT、低频辅助接收端口LB_AUX、中高频辅助接收端口MHB_AUX、发射电路10、以及滤波电路140连接,用于对接收到的来自与外部电路连接的低频辅助接收端口LB_AUX、中高频辅助接收端口MHB_AUX的MIMO信号进行低噪声放大处理并输出至一接收端口LNA OUT,以及对来自滤波电路140的射频信号及预设频段的射频信号进行放大处理并输出至一接收端口LNA OUT。
在一种示例性实例中,发射电路10可以包括:高频功率放大器(HB PA)110、中频功率放大器(MB PA)120、低频功率放大器(LB PA)130、第一开关电路160、第二开关电路170;其中,
高频功率放大器(HB PA)110,与高频发射端口HB_IN连接,用于对来自高频发射端口HB_IN的高频段信号进行功率放大并输出至第一开关电路160;
中频功率放大器(MB PA)120,与中频发射端口MB_IN连接,用于对来自中频发射端口MB_IN的中频段信号进行功率放大并输出至第一开关电路160;
低频功率放大器(LB PA)130,与低频发射端口LB_IN连接,用于对来自低频发射端口LB_IN的低频段信号进行功率放大并输出至第二开关电路170;
第一开关电路160,第一开关电路160的多个第二端口分别与滤波电路140连接,第一开关电路160的一第一端口与高频功率放大器110的输出端连接,用于选择导通高频功率放大器110与滤波电路140之间的射频通路,第一开关电路160的另一第一端口与中频功率放大器120的输出端连接,用于选择导通中频功率放大器120与滤波电路140之间的射频通路,第一开关电路160的剩余第一端口与接收电路150连接,用于选择导通滤波电路140与接收电路150之间的预设频段的射频通路;在一种实施例中,预设频段为ENDC的频段,在一种实施例中,预设频段包括B39频段、N40/N41频段等。
第二开关电路170,第二开关电路170的多个第二端口分别与滤波电路140,第二开关电路170的一第一端口与低频功率放大器130的输出端连接,用于选择导通低频功率放大器130与滤波电路140或低频辅助发射端口LB_TX之间的射频通路;第二开关电路170的另一第一端口与与外挂低频功率放大器的输出端连接的辅助低频发射端口LB_TX_IN连接,第二开关电路170的至少一第二端口与低频辅助发射端口LB_TX连接,用于选择导通外挂低频功率放大器或滤波电路140与第一外部电路之间的射频通路。
在一种示例性实例中,开关电路20可以包括:第三开关电路180、第四开关电路190;其中,
滤波电路140,用于对接收到的高频段信号、中频段信号进行滤波处理并输出给第三开关电路180,对接收到低频段信号进行滤波处理并输出给第四开关电路190;
第三开关电路180,第三开关电路180的多个第二端口分别与滤波电路140连接,第三开关电路180的一第一端口与高频天线端口HB_ANT连接,用于选择导通滤波电路140与高频天线端口 HB_ANT之间的射频通路,第三开关电路180的另一第一端口与中高频天线端口MHB_ANT连接,用于选择导通滤波电路140与中高频天线端口MHB_ANT之间的射频通路;
第四开关电路190,第四开关电路190的多个第二端口分别与滤波电路140,第四开关电路190的一第一端口与低频天线端口LB_ANT连接,用于选择导通滤波电路140与低频天线端口LB_ANT之间的射频通路;第四开关电路190的至少一第二端口与至少一低频辅助收发射端口LB_TRX连接,用于选择导通第一外部电路与低频天线端口LB_ANT之间的射频通路。
本申请图1所示实施例提供的射频前端器件集成了LB PA、MB PA、HB PA,滤波器、LNA和开关,实现了同时对低中高频段(LMH band)的支持,支持M+H双发功能,而且,通过复用射频前端器件内部或者外挂的双工器实现L+M双发功能及L+H双发功能,更好地节省了对PCB板的占用面积,降低了成本。在一种实施例中,本申请实施例提供的射频前端器件至少支持如WCDMA B1/B5/B8频段、LTE B1/B3/B5/B7/B8/B25/B26/B28/B29/B38/B39/B40/B41/B66频段、N1/N3/N5/N7/N8/N28/N38/N40N41/N66频段。在一种实施例中,本申请实施例提供的射频前端器件至少支持如B1+N41 ENDC组合、B3+N41 ENDC组合、B39+N41 ENDC组合、B1+N40 ENDC组合、B3+N40 ENDC组合下LTE和NR两路同时发射,以及LB+MB组合、LB+HB ENDC组合下LTE和NR两路同时发射。在一种实施例中,本申请实施例提供的射频前端器件至少支持以下载波(CA)组合:1-3-7,1-3-40,1-3-41,39-41,66-7,LB+MB,LB+HB等。
在一种示例性实例中,为了满足ENDC两路电源需要独立分开的需求,本申请实施例提供的射频前端器件中,HB PA 110和MB PA 120采用独立供电,也就是说,HB PA 110和MB PA 120的VCC供电物理上是独立的。
在一种示例性实例中,本申请实施例提供的射频前端器件支持3个天线端口(ANT port)即低频天线端口LB_ANT、中高频天线端口MHB_ANT、高频天线端口HB_ANT,分别支持LB、MHB及HB频段射频信号的收发。在一种实施例中,高频天线端口HB_ANT可以用于M+H ENDC双发时高频段发射(HB Tx)使用,比如用于B3/39+N41 ENDC组合时,N41 Tx使用。在一种实施例中,为了减少开关插损,高频天线端口HB_ANT可以仅支持导通B7、B40和B41频段,如图3所示。
在一种示例性实例中,如图1所示,中高频辅助接收端口MHB_AUX包括六个:中高频辅助接收端口MHB_AUX1、中高频辅助接收端口MHB_AUX2和中高频辅助接收端口MHB_AUX3、中高频辅助接收端口MHB_AUX4、中高频辅助接收端口MHB_AUX5、中高频辅助接收端口MHB_AUX6。
在一种示例性实例中,图1所示的射频前端器件还设置有:用于外置中频频段和高频频段扩展的至少两个中频辅助发射端口MB_TX(如图1中的中频辅助发射端口MB_TX1、中频辅助发射端口MB_TX2)、一个高频辅助发射端口HB_TX(如图1中所示的高频辅助发射端口HB_TX1)、至少两个中高频辅助收发端口MHB_TRX(如图1中的中高频辅助收发端口MHB_TRX1、中高频辅助收发端口MHB_TRX2)。中频辅助发射端口MB_TX、高频辅助发射端口HB_TX分别与中高频辅助收发端口MHB_TRX通过一外部电路一一对应连接。在一种实施例中,中频辅助发射端口MB_TX1与其中一中高频辅助收发端口MHB_TRX1通过第二外部电路对应连接;高频辅助发射端口HB_TX1与其中另一中高频辅助收发端口MHB_TRX2通过一外部电路对应连接。在一种实施例中,通过中频辅助发射端口MB TX1和高频辅助发射端口HB TX1端口外挂的第二外部电路如B25双工器,使得本申请实施例提供的射频前端器件实现对B25频段的支持,以及实现相应频段的MIMO接收通路如B1频段、B3频段、B7频段、N40频段、N41频段。
在一种示例性实例中,图1所示的射频前端器件还设置有:2G高频发射端口2G_HB_IN;图1所示射频前端器件还包括:2G高频功率放大器(2G HB PA)200,2G高频功率放大器200与2G高频发射端口2G_HB_IN连接,用于对来自2G高频发射端口2G_HB_IN的2G高频段信号进行功率放大并输出至滤波电路140。滤波电路140还用于:对接收到2G高频段信号进行滤波处理并输出给第三开关电路180。在一种示例性实例中,图1所示的射频前端器件还设置有:2G低频发射端口2G_LB_IN;图1所示射频前端器件还包括:2G低频功率放大器(2G LB PA)210,2G低频功率放大器210与2G低频发射端口2G_LB_IN连接,用于对来自2G低频发射端口2G_LB_IN的2G低频段信号进行功率放大并输出至滤波电路140。滤波电路140还用于:对接收到2G低频段信号进行滤波处理并输出给第四开关电路190。在一种实施例中,本申请实施例提供的射频前端器件实现了对GSM850/900/1800/1900频段的支持。
在一种示例性实例中,如图2所示,第四开关电路190到低频天线端口LB_ANT之间设置有一功率耦合电路220,用于采集发射功率相关信息,功率反馈路径上的SPDT开关用于级联其他PA器件的功率反馈电路。在一种实施例中,如图2所示实施例中,第一功率耦合电路220设置在第四开关电路190和低频天线端口LB_ANT之间的射频通路中,用于耦合射频通路中的低频段信号,以经第一耦合输出端口CPLOUT1输出耦合信号。其中,耦合信号可用于测量该中频段信号的前向耦合功率和反向耦合功率。第一耦合输入端口CPLIN1可以用于与其他具有耦合输出端口的外部射频前端器件连接,用于接收其他外部射频前端器件输出的耦合信号,将该接收的耦合信号经第一耦合输入端口CPLIN1所属射频前端器件的第一耦合输出端口CPLOUT1输出,以实现对其他外部耦合信号的传输。
在一种示例性实例中,如图2所示,第三开关电路180到中高频天线端口MHB_ANT之间设置有一功率耦合电路230,用于采集发射功率相关信息,功率反馈路径上的SPDT开关用于级联其他PA器件的功率反馈电路。在一种实施例中,如图2所示实施例中,第二功率耦合电路230设置在第三开关电路180和中高频天线端口MHB_ANT之间的射频通路中,用于耦合射频通路中的中高频段信号,以经第二耦合输出端口CPLOUT2输出耦合信号。其中,耦合信号可用于测量该中高频段信号的前向耦合功率和反向耦合功率。第二耦合输入端口CPLIN2可以用于与其他具有耦合输出端口的外部射频前端器件连接,用于接收其他外部射频前端器件输出的耦合信号,将该接收的耦合信号经第二耦合输入端口CPLIN2所属射频前端器件的第二耦合输出端口CPLOUT2输出,以实现对其他外部耦合信号的传输。
在一种示例性实例中,如图2所示,第三开关电路180到高频天线端口HB_ANT之间设置有一功率耦合电路240,用于采集发射功率相关信息,功率反馈路径上的SPDT开关用于级联其他PA器件的功率反馈电路。在一种实施例中,如图2所示实施例中,第三功率耦合电路240设置在第三开关电路180和高频天线端口HB_ANT之间的射频通路中,用于耦合射频通路中的高频段信号,以经第三耦合输出端口CPLOUT3输出耦合信号。其中,耦合信号可用于测量该中频段信号的前向耦合功率和反向耦合功率。第三耦合输入端口CPLIN3可以用于与其他具有耦合输出端口的外部射频前端器件连接,用于接收其他外部射频前端器件输出的耦合信号,将该接收的耦合信号经第三耦合输入端口CPLIN3所属射频前端器件的第三耦合输出端口CPLOUT3输出,以实现对其他外部耦合信号的传输。
在一种示例性实例中,本申请实施例提供的射频前端器件还可以包括:三组移动行业处理器接口(MIPI,Mobile Industry Processor Interface)控制信号(图1中未示出),分别用于控制HB Tx相关电路如PA和开关等、LB和MB Tx相关电路如包括PA和开关等,以及接收相关电路如包括开关和LNA等。
在一种示例性实例中,本申请实施例提供的射频前端器件为L-PA Mid器件。图1所示的射频前端器件可以理解为封装结构,如图3所示,在一种实施例中,L-PA Mid器件设置有用于连接射频收发器的高频发射端口HB_IN、中频发射端口MB_IN、低频发射端口LB_IN、辅助低频发射端口LB_TX_IN和至少六个接收端口LNA_OUT(如图3中所示的接收端口LNA_OUT1、接收端口LNA_OUT2、接收端口LNA_OUT3、接收端口LNA_OUT4、接收端口LNA_OUT5、接收端口LNA_OUT6),用于连接天线的低频天线端口LB_ANT、中高频天线端口MHB_ANT和高频天线端口HB_ANT,以及用于外置低频频段扩展的至少一个低频辅助发射端口LB_TX(如图1中所示的低频辅助发射端口LB_TX1)、至少一个低频辅助收发端口LB_TRX(如图3中所示的低频辅助收发端口LB_TRX1和/或低频辅助收发端口LB_TRX2和/或低频辅助收发端口LB_TRX3和/或低频辅助收发端口LB_TRX4)和至少一个低频辅助接收端口LB_AUX(如图3中的低频辅助接收端口LB_AUX1和/或低频辅助接收端口LB_AUX2和/或低频辅助接收端口LB_AUX3和/或低频辅助接收端口LB_AUX4),用于外置中高频频段扩展的至少一中高频辅助接收端口MHB_AUX(如图1中的中高频辅助接收端口MHB_AUX1和/或中高频辅助接收端口MHB_AUX2和/或中高频辅助接收端口MHB_AUX3和/或中高频辅助接收端口MHB_AUX4和/或中高频辅助接收端口MHB_AUX5和/或中高频辅助接收端口MHB_AUX6)。其中,接收端口LNA OUT、高频发射端口HB_IN、中频发射端口MB_IN、低频发射端口LB_IN、辅助低频发射端口LB_TX_IN、低频天线端口LB_ANT、中高频天线端口MHB_ANT和高频天线端口HB_ANT、低频辅助发射端口LB_TX、低频辅助收发端口LB_TRX、低频辅助接收端口LB_AUX和中高频辅助接收端口MHB_AUX可以理解为L-PA Mid器件的射频引脚端子,用于与各外部器件进行连接。在一种实施例中,低频辅助发射端口LB_TX、低频辅助收发端口LB_TRX、低频辅助接收端口LB_AUX和中高频辅助接收端口MHB_AUX均与外部电路连接,以实现对相应频段射频信号的发射 和接收。
在一种示例性实例中,外部电路可以为所发射和接收频段双工器。
结合图1和图3所示,在一种示例性实例中,滤波电路140可以包括第一滤波电路如双工器或多工器,和第二滤波电路如滤波器,对于频分双工(FDD)制式信号,采用相应频段的双工器1411进行滤波,对于时分双工(TDD)制式信号,采用相应频段的滤波器1412进行滤波。在一种实施例中,如图3所示,B1频段信号为FDD制式信号,采用B1双工器1411对B1频段信号进行滤波处理,第一开关电路160的一第二端口与B1双工器1411的Tx端口相连,B1双工器1411的公共端口通过第三开关电路180连接中高频天线端口MHB_ANT。在一种实施例中,如图3所示,N41/B41频段信号为TDD制式信号,采用N41/B41滤波器1412对N41/B41频段信号进行滤波处理,第一开关电路160的一第二端口与N41/B41滤波器1412的输入端连接,N41/B41滤波器1412的输出端通过第三开关电路180连接高频天线端口HB_ANT。
在一种示例性实例中,如图3所示,针对B41/N41频段还设置有专用于B41/N41频段信号接收的滤波器,如图3中的B41 RX SAW所示,B41/N41频段信号接收滤波器的一端连接接收电路150,另一端连接第三开关电路180,可导通中高频天线端口MHB_ANT或者高频天线端口HB_ANT,也就是说,本申请实施例提供的L-PA Mid器件可以支持两路B41/N41频段信号的接收。在一种实施例中,第三开关电路180还可以进一步通过multi on方式同时导通N41接收通路和B3或B39通路,实现了B1/B3/B39+N41的ENDC组合。
在一种示例性实例中,如图3所示,针对B40/N40频段还设置有专用于B40/N40频段信号接收的滤波器,如图3中的B40 RX SAW所示,B40/N40频段信号接收滤波器的一端连接接收电路150,另一端连接第三开关电路180,可导通中高频天线端口MHB_ANT或者高频天线端口HB_ANT,也就是说,本申请实施例提供的L-PA Mid器件可以支持两路B40/N40频段信号的接收。在一种实施例中,第三开关电路180还可以进一步通过multi on方式实现同时导通N40接收通路和B3或B39通路,实现了B1/B3/B39+N40的ENDC组合。
在一种示例性实例中,如图3所示,HB PA 110的输入端与高频发射端口HB_IN连接,HB PA 110的输出端与第一开关电路160的一第一端口连接,HB PA 110用于对来自高频发射端口HB_IN的高频段信号进行功率放大并输出至第一开关电路160。在一种实施例中,高频段信号至少可以包括如B7、B40/N40、B41/N41等。
在一种示例性实例中,如图3所示,MB PA 120的输入端与中频发射端口MB_IN连接,MB PA 120的输出端与第一开关电路160的一第一端口连接,MB PA 120用于对来自中频发射端口MB_IN的中频段信号进行功率放大并输出至第一开关电路160。在一种实施例中,中频段信号至少可以包括如B39、B3、B1等。
在一种示例性实例中,如图3所示,HB PA 110和MB PA 120的VCC供电物理上是独立的。在一种实施例中,HB PA 110通过HB Vcc1、HB Vcc2供电,MB PA 120和LB PA 130通过L/M Vcc1、L/M Vcc2供电。
在一种示例性实例中,如图3所示,LB PA 130的输入端与低频发射端口LB_IN连接,LB PA 130的输出端与第二开关电路170的一第一端口连接,LB PA 130用于对来自低频发射端口LB_IN的低频段信号进行功率放大并输出至第二开关电路170。在一种实施例中,低频段信号至少可以包括如B5、B26、B8、B28A、B28B、B29等。
在一种示例性实例中,如图3所示,2G HB PA 200的输入端与2G高频发射端口2G_HB_IN连接,2G HB PA 200的输出端与滤波电路140中的GSM HB滤波器连接,用于对来自2G高频发射端口2G_HB_IN的2G高频段信号进行功率放大并输出滤波电路140。在一种示例性实例中,如图3所示,2G LB PA 210的输入端与2G低频发射端口2G_LB_IN连接,2G LB PA 210的输出端与滤波电路140中的GSM LB滤波器连接,用于对来自2G低频发射端口2G_LB_IN的2G低频段信号进行功率放大并输出滤波电路140。在一种实施例中,2G信号可以包括如GSM850/900/1800/1900频段的信号。
在一种示例性实例中,如图3所示,第一开关电路160可以为一4P9T开关。如图3所示,第一开关电路160的四个第一端口分别与HB PA 110的输出端、MB PA 120的输出端、以及接收电路150的与两个预设频段对应的输入端口连接。在一种实施例中,预设频段可以包括但不限于如B39频段、N41/N40频段。第一开关电路160的九个第二端口中,其中的六个第二端口分别与滤波电路140连接, 在一种实施例中,可以分别与滤波电路140中的B41/N41滤波器、B40/N40滤波器、B7双工器的TX端、B39滤波器、B1双工器的TX端、B3双工器的TX端连接;第一开关电路160的另外三个第二端口分别与高频辅助发射端口HB_TX1、中频辅助发射端口MB_TX1和中频辅助发射端口MB_TX2连接,中频辅助发射端口MB_TX1、高频辅助发射端口HB_TX1、中频辅助发射端口MB_TX2可以与中高频辅助收发端口MHB_TRX通过外部电路按需求对应连接。在一种实施例中,通过中频辅助发射端口MB_TX1、中频辅助发射端口MB_TX2和高频辅助发射端口HB TX1端口外挂的外部电路如B25双工器,使得本申请实施例提供的L-PA Mid器件实现了对B25频段的支持,以及实现相应频段的MIMO接收通路如B1频段、B3频段、B7频段、N40频段、N41频段。
在一种实施例中,本申请实施例提供的L-PA Mid器件支持3个ANT port即低频天线端口LB_ANT、中高频天线端口MHB_ANT、高频天线端口HB_ANT,分别支持LB、MHB及HB频段射频信号的收发。在一种实施例中,高频天线端口HB_ANT可以用于M+H ENDC双发时高频段发射(HB Tx)使用,如图3所示,比如用于B3/39+N41ENDC组合时,N41 Tx使用,在一种实施例中,为了减少开关插损,高频天线端口HB_ANT可以仅支持导通B7/B40和B41频段。
在一种示例性实例中,如图3所示,第二开关电路170可以为一DP8T开关。如图3所示,第二开关电路170的一第一端口与LB PA 130的输出端连接,第二开关电路170的另一第一端口与与外挂LB PA的输出端连接的辅助低频发射端口LB_TX_IN连接,第二开关电路170的八个第二端口中,其中的四个第二端口分别与滤波电路140连接,在一种实施例中,可以分别与滤波电路140中的B26双工器的TX端、B8双工器的TX端、B28A双工器的TX端和B28B双工器的TX端连接,第一开关电路160的另外四个第二端口分别与低频辅助发射端口LB_TX1、低频辅助发射端口LB_TX2、低频辅助发射端口LB_TX3、低频辅助发射端口LB_TX4连接,低频辅助发射端口LB_TX1与低频辅助收发端口LB_TRX1通过外部电路对应连接,低频辅助发射端口LB_TX1用于选择导通外挂低频功率放大器与外部电路之间的射频通路。在一种实施例中,通过低频辅助发射端口LB_TX1发射的低频段信号可以包括如B5频段信号。
在一种实施例中,通过辅助低频发射端口LB_TX_IN对外连接外挂LB PA输出端口,对内导通本申请实施例提供的L-PA Mid器件内部的LB双工器通路或者通过低频辅助发射端口LB_TX端口外接的双工器通路,达到了通过复用LB双工器来实现LB+MH ENDC组合、LB+HB ENDC下LTE和NR两路同时发射,极大减少了双工器数量,达到了减小面积和成本的节省。需要说明的是,辅助低频发射端口LB_TX_IN可以包括多个。
在一种实施例中,第二开关电路170与滤波电路140之间还可以包括一复用开关即SPDT开关,该SPDT开关的第一端口连接滤波电路140中的B28A双工器的TX端,该SPDT开关的一第二端口连接第二开关开关电路的一第二端口,该SPDT开关的一第二端口为B29频段信号接收端口(B29 RX端)。本实施例中,利用B29频段仅有接收且被B28A频段覆盖的特点,在本申请实施例提供的L-PA Mid器件内部复用了B28A双工器实现了B29频段信号的接收,进一步提升了集成度,且降低了成本。
在一种示例性实例中,如图3所示,第三开关电路180可以为一DP10T开关。如图3所示,第三开关电路180的两个第一端口分别与高频天线端口HB_ANT、中高频天线端口MHB_ANT连接。第三开关电路180的十个第二端口中,其中的八个第二端口分别与滤波电路140连接,在一种实施例中,可以分别与滤波电路140中的B41/N41滤波器、B40/N40滤波器、B39滤波器、B41/N41频段信号接收滤波器、B40/N40频段信号接收滤波器、B7双工器的公共端、B1双工器的公共端/B3双工器的公共端、GSM HB滤波器连接。第三开关电路180的另外两个第二端口分别与中高频辅助收发端口MHB_TRX1、中高频辅助收发端口MHB_TRX2连接。中高频辅助收发端口MHB_TRX1、中高频辅助收发端口MHB_TRX2可以按照需求分别与中频辅助发射端口MB_TX、高频辅助发射端口HB_TX通过外部电路一一对应连接。
在一种示例性实例中,如图3所示,第四开关电路190可以为一SP9T开关。如图3所示,第四开关电路190的第一端口与低频天线端口LB_ANT连接。第四开关电路190的九个第二端口中,五个第二端口分别与滤波电路140连接,四个第二端口分别与射频前端器件的四个低频辅助收发端口LB_TRX连接。在一种实施例中,五个第二端口可以分别与滤波电路140中的B26双工器的公共端、B8双工器的公共端、B28A双工器的公共端和B28B双工器的公共端、GSM LB滤波器连接。四个低频辅助收发端口LB_TRX(低频辅助收发端口LB_TRX1、低频辅助收发端口LB_TRX2、低频辅助收发端口LB_TRX3和低频辅助收发端口LB_TRX4)分别与四个低频辅助发射端口LB_TX(低频辅助 发射端口LB_TX1、低频辅助发射端口LB_TX2、低频辅助发射端口LB_TX3和低频辅助发射端口LB_TX4)通过外部电路对应连接,用于选择导通LB PA 130与外部电路之间的射频通路。在一种实施例中,通过低频辅助收发端口LB_TRX1收发的低频段信号可以包括如B12频段信号。
在一种示例性实例中,接收电路150可以包括:至少六个低噪声放大器1514、至少一个第一开关单元1511、至少两个第二开关单元1512、至少五个第三开关单元1513,一第四开关单元1515及一第五开关单元1516;其中,
接收电路150包括的低噪声放大器1514中至少包括四个MHB LNA,如图3所示实施例中的LNA1、LNA2、LNA3、LNA4。
在一种实施例中,LNA1的输入端与第三开关单元1513(如图3所示实施例中的第三开关单元SP4T#1)的第一端口连接,第三开关单元SP4T#1的一第二端口与滤波电路140的一端口(如图3所示实施例中的B7 RX端口)连接,第三开关单元SP4T#1的另一第二端口与第一开关电路160的一第一端口(如图3所示实施例中的B40/41 RX端口)连接,第三开关单元SP4T#1的又一第二端口与第二开关单元1512(如图3所示实施例中的第二开关单元SPDT#1)的一第二端口连接,第二开关单元SPDT#1的第一端口与中高频辅助端口MHB_AUX1连接,第三开关单元SP4T#1的再一第二端口悬空(作为预留端口),LNA1的输出端与第四开关单元1515(如图3所示实施例中的第四开关单元4P4T)的一第二端口连接,LNA1用于对接收到的中高频段信号进行放大处理后经第四开关单元1515输出给一接收端口LNA OUT(如图3所示实施例中的接收端口LNA OUT1~接收端口LNA OUT4中的任一接收端口)。需要说明的是,第三开关单元1513也可以是单刀三掷SP3T开关,或者其他开关。本申请实施例中的开关仅仅是一示例,并不用限定本申请的保护范围。
在一种实施例中,LNA2的输入端与一第三开关单元1513(如图3所示实施例中的第三开关单元SP4T#2)的第一端口连接,第三开关单元SP4T#2的两个第二端口分别与中高频辅助端口MHB_AUX2和中高频辅助端口MHB_AUX3连接,第三开关单元SP4T#2的另外一个第二端口与滤波电路中的B1双工器的RX端连接(如图3所示实施例中的B1 RX端口),第三开关单元SP4T#2的又一第二端口与第二开关单元1512(如图3所示实施例中的第二开关单元SPDT#1)的另一第二端口连接,第二开关单元SPDT#1的第一端口与中高频辅助端口MHB_AUX1连接,LNA2的输出端与第四开关单元1515(如图3所示实施例中的第四开关单元4P4T)的一第二端口连接,LNA2用于对接收到的中高频段信号进行放大处理后经第四开关单元1515输出给一接收端口LNA OUT(如图3所示实施例中的接收端口LNA OUT1~接收端口LNA OUT4中的任一接收端口);
在一种实施例中,LNA3的输入端与第三开关单元1513(如图3所示实施例中的第三开关单元SP4T#3)的第一端口连接,第三开关单元SP4T#3的一个第二端口与中高频辅助端口MHB_AUX4连接,第三开关单元SP4T#3的另一个第二端口与第一开关电路160的一第一端口(如图3所示实施例中的B39 RX端口)连接,第三开关单元SP4T#3的又一个第二端口与滤波电路140中的B3双工器的RX端连接,第三开关单元SP4T#3的再一第二端口与第二开关单元1512(如图3所示实施例中的第二开关单元SPDT#2)的一第二端口连接,第二开关单元SPDT#2的第一端口与中高频辅助端口MHB_AUX5连接,LNA3的输出端与第四开关单元1515(如图3所示实施例中的第四开关单元4P4T)的一第二端口连接,LNA3用于对接收到的中高频段信号进行放大处理后经第四开关单元1515输出给一接收端口LNA OUT(如图3所示实施例中的接收端口LNA OUT1~接收端口LNA OUT4中的任一接收端口)。
在一种实施例中,LNA4的输入端与第三开关单元1513(如图3所示实施例中的第三开关单元SP4T#4)的第一端口连接,第三开关单元SP4T#4的一个第二端口与中高频辅助端口MHB_AUX6连接,第三开关单元SP4T#4的另两个第二端口分别与滤波电路140中的B40/N40接收滤波器、B41/N41接收滤波器的B40 MRX端、B41 MRX端连接,第三开关单元SP4T#4的再一第二端口与第二开关单元1512(如图3所示实施例中的第二开关单元SPDT#2)的另一第二端口连接,第二开关单元SPDT#2的第一端口与中高频辅助端口MHB_AUX5连接,LNA4的输出端与第四开关单元1515(如图3所示实施例中的第四开关单元4P4T)的一第二端口连接,LNA4用于对接收到的中高频段信号进行放大处理后经第四开关单元1515输出给一接收端口LNA OUT(如图3所示实施例中的接收端口LNA OUT1~接收端口LNA OUT4中的任一接收端口)。
本申请实施例提供的L-PA Mid器件,在一种实施例中,至少支持两个中频辅助发射端口MB TX、至少一个高频辅助发射端口HB TX、至少两个中高频辅助收发端口MHB TRX端口,以及6个连接到LNA的中高频辅助接收端口MHB AUX1、中高频辅助接收端口MHB AUX2、中高频辅助接收端口 MHB_AUX3、中高频辅助接收端口MHB_AUX4、中高频辅助接收端口MHB_AUX5和中高频辅助接收端口MHB AUX6,通过这些辅助发射/收发/接收端口外挂相应频段的双工器来实现支持该频段信号的收发,比如B25频段信号,以及实现相应频段的MIMO接收通路,比如B1频段信号,B3频段信号,B7频段信号,B40频段信号,B41频段信号。
接收电路150包括的低噪声放大器1514中至少包括两个LB LNA,如图3所示实施例中的LNA5和LNA6。
在一种实施例中,LNA5的输入端与一第三开关单元1513(如图3所示实施例中的第三开关单元SP4T#4)的第一端口连接,第三开关单元SP4T#4的四个第二端口分别与滤波电路140中的B26双工器的RX端、B8双工器的RX端、B28A双工器的RX端和B28B双工器的RX端连接,LNA5的输出端与第五开关单元1516(如图3所示实施例中的第四开关单元DPDT)的一第二端口连接,LNA5用于对接收到的低频段信号进行放大处理后输出给一接收端口LNA OUT(如图3所示实施例中的接收端口LNA OUT5或接收端口LNA OUT6)。
在一种实施例中,LNA6的输入端与一第一开关单元1511(如图3所示实施例中的第一开关单元SP5T)的第一端口连接,第一开关单元SP5T的五个第二端口分别与复用开关(即第二开关电路170与滤波电路140之间的SPDT开关)的一第二端以及四个低频辅助接收端口LB_AUX(如图3所示实施例中的低频辅助接收端口LB_AUX1、低频辅助接收端口LB_AUX2、低频辅助接收端口LB_AUX3和/或低频辅助接收端口LB_AUX4)连接,LNA6的输出端与第五开关单元1516(如图3所示实施例中的第四开关单元DPDT)的另一第二端口连接,LNA6用于对接收到的低频段信号进行放大处理后输出给一接收端口LNA OUT(如图3所示实施例中的接收端口LNA OUT5或接收端口LNA OUT6)。
本申请实施例体提供的L-PA Mid器件,至少支持一个低频辅助发射端口LB TX,一个低频辅助收发端口LB TRX以及一个连接LB LNA(如图3中的LNA6)的低频辅助接收端口LB AUX1端口,如图3中所示的低频辅助发射端口LB TX1、低频辅助收发端口LB TRX1、低频辅助接收端口LB AUX1可以用于通过外挂相应频段的双工器来实现支持该频段信号的收发。
在一种示例性实例中,第四开关单元1515、第五开关单元1516可以为全功能多P多T开关,可根据需要任意设置导通。如图3所示,第四开关单元1515为一4P4T全功能开关。第四开关单元4P4T的四个第一端口分别与LNA1、LNA2、LNA3和LNA4的输出端连接,第四开关单元4P4T的四个第二端口分别与接收端口LNA OUT1、接收端口LNA OUT2、接收端口LNA OUT3和接收端口LNA OUT4连接。如图3所示,第五开关单元1516为一DPDT全功能开关。第五开关单元DPDT的两个第一端口分别与LNA5和LNA6的输出端连接,第五开关单元DPDT的两个第二端口分别与接收端口LNA OUT5和接收端口LNA OUT6连接。
在一种示例性实例中,同一频段的两路接收信号需要使用不同的LNA和不同的接收端口LNA OUT。在一种实施例中,本申请实施例提供的L-PA Mid器件至少支持以下CA组合:1-3-7,1-3-40,1-3-41,39-41,66-7,LB+MB,LB+HB等。需要说明的是,CA组合下几路的接收信号也需要使用不同的LNA和不同的接收端口LNA OUT,如图3所示,仅是对各LNA上连接的频段进行了一个示例性的分配,以满足需要支持的CA组合和MIMO频段,但是,图3所示示例并不用于局限本申请的保护范围。
本申请实施例提供的同时支持LMH band的L-PA Mid器件,集成了LB PA、MB PA、HB PA、滤波器、LNA和开关,实现了同时对低中高频段(LMH band)的支持,支持M+H双发功能,而且,通过复用射频前端器件内部或者外挂的双工器实现L+M双发功能及L+H双发功能,更好地节省了对PCB板的占用面积,降低了成本。通过实际应用比较,本申请实施例提供的L-PA Mid器件在面积上相比于相关技术中的5G版本方案节省了80平方毫米(mm 2)左右,成本上也因为省去了一颗ENDC PA而降低了0.8美元左右,同时降低了LB+MB ENDC,LB+HB ENDC,MB+HB ENDC组合的电路复杂度。
下面分别以射频信号在本申请实施例提供的L-PA Mid器件内部的通路、外挂滤波器通路以及ENDC组合,举例描述本申请实施例提供的L-PA Mid器件的信号工作流程。
以GSM900频段为例,从射频收发器(transceiver)(图中未示出)传输过来的GSM900频段信号通过2G_LB_IN端口进入L-PA Mid器件,然后通过2G LB PA 210对GSM900射频信号进行放大,放大后的GSM900信号进入滤波器电路140中的GSM LB滤波器进行滤波后进入第四开关电路190选 择导通至低频天线端口LB ANT以连接外部天线。
以B1频段为例,B1频段信号的发射过程包括:从transceiver传输过来的B1频段信号通过中频发射端口MB_IN端口进入L-PA Mid器件,然后通过MB PA 120对B1频段信号进行放大,再通过频段选择开关如图3中的第一开关电路160,导通进入B1双工器的TX端进行滤波,最后通过B1双工器的公共端连接到第三开关电路180选择导通至中高频天线端口MHB ANT以连接外部天线发射B1频段信号。在本实施例中,如图3所示,在B1频段信号到达中高频天线端口MHB ANT之前,会通过功率耦合器230对B1频段信号进行采集,通过CPLOUT2端口连接到transceiver。B1频段主集接收信号的接收过程包括:B1频段主集信号从中高频天线端口MHB ANT进入后,通过第三开关电路180从B1双工器的公共端进入B1双工器以进行滤波处理,然后再通过B1双工器的RX端连接到接收电路150进行信号放大,如图3所示,本实施例中,B1双工器的RX端与第三开关单元SP4T#2的一第二端口连接,经过滤波后的B1频段主集信号通过第三开关单元SP4T#2的第一端口输出至LNA2,经过LNA2放大处理后再通过第四开关单元1515从接收端口LNA OUT1~LNA OUT4中的某个接收端口输出至transceiver的接收端口。本实施例中,假设复用L-PA Mid器件中的LNA来实现B1 MIMO接收,那么,来至外部接收通路如外部电路B1双工器的B1频段MIMO信号,可以通过中高频辅助接收端口MHB AUX1~MHB AUX6中的某个端口连接进入L-PA Mid器件,如图3所示,本实施例中,B1频段MIMO信号经外部电路B1双工器后通过中高频辅助接收端口MHB AUX5连接进入L-PA Mid器件的接收电路150,如图3所示,本实施例中,中高频辅助接收端口MHB AUX5通过内部走线与第二开关单元SPDT#2的第一端口连接,B1频段MIMO信号通过第二开关单元SPDT#2的第二端口经第三开关单元SP4T#3或第三开关单元SP4T#4输出至LNA3或LNA4,经过LNA3或LNA4放大处理后再通过第四开关单元1515从接收端口LNA OUT1~LNA OUT4中的某个接收端口输出至transceiver的接收端口。
以外挂B12频段为例,B12频段信号的发射过程包括:从transceiver传输过来的B12频段信号通过低频发射端口LB_IN进入L-PA Mid器件,然后通过LB PA 130对B12频段信号进行放大,再通过频段选择开关如图3中的第二开关电路170导通至低频辅助发射端口LB_TX1~低频辅助发射端口LB_TX4中的一个端口输出,以连接到外挂滤波器如B12双工器(图3中未示出)进行滤波,最后通过外挂B12双工器的公共端连接到低频辅助收发端口LB_TRX1~低频辅助收发端口LB_TRX4中的一个端口进入第四开关电路190选择导通至低频天线端口LB ANT以连接外部天线发射B12频段信号。在本实施例中,如图3所示,在B12频段信号到达低频天线端口LB ANT之前,会通过功率耦合器220对B12频段信号进行采集,通过CPLOUT1端口连接到transceiver。B12频段主集接收信号的接收过程包括:B12频段主集信号从低频天线端口LB ANT进入后,通过第四开关电路190从低频辅助收发端口LB TRX1~低频辅助收发端口LB TRX4中用于发射B12频段信号的那个端口输出至外挂B12双工器的公共端,经过B12双工器的过滤后从B12双工器的RX端连接至低频辅助接收端口LB MUX1~低频辅助接收端口LB MUX4中的一个端口以进入接收电路150,如图3所示,本实施例中,外挂B12双工器的RX端经某低频辅助接收端口LB MUX与第一开关单元SP5T的一第二端口连接,经过滤波后的B12频段主集信号通过第一开关单元SP5T的第一端输出至LNA6,经过LNA6放大处理后再通过接收端口LNA OUT5或接收端口LNA OUT6输出至transceiver的接收端口。
以B3+N41组合为例,B3频段信号的发射过程和B3主集接收信号的过程与上述B1频段信号的相同,这里不再赘述。N41频段信号的发射过程可以包括:从transceiver传输过来的N41频段信号通过高频发射端口HB_IN进入L-PA Mid器件,然后通过HB PA 110对N41射频信号进行放大,再通过频段选择开关如图3中的第一开关电路160,导通进入滤波电路140-中的B41/N41滤波器进行滤波,滤波后通过第三开关电路180选择导通至高频天线端口HB ANT以连接外部天线发射N41频段信号。在本实施例中,如图3所示,在N41频段信号到达高频天线端口HB ANT之前,会通过功率耦合器240对N41频段信号进行采集,通过CPLOUT3端口连接到transceiver。N41频段主集接收信号的接收过程可以包括:N41频段主集信号从高频天线端口HB ANT进入后,通过第三开关电路180进入N41滤波器进行滤波,经过N41接收滤波器连接至第一开关电路160的一第二端,并通过第一开关电路160的选择导通至一第一端即B49/41RX端,如图3所示,本实施例中,经过滤波后的N41频段主集信号连接至接收电路150的第三开关单元SP4T#1的一第二端,经过滤波后的N41频段主集信号通过第三开关单元SP4T#1的第一端输出至LNA1,经过LNA1放大处理后再通过接收端口LNA OUT1~LNA OUT4中的某个接收端口输出至transceiver的接收端口。N41频段MIMO信号的接收过程包括:N41频段MIMO信号从中高频天线端口MHB ANT进入之后通过第三开关电路180选择连接至滤波电路 140中的N41接收滤波器进行滤波,本实施例中,由于需要与B3频段信号实现ENDC组合,因此,此时可以以multi on的方式在保持B3频段信号通道导通的同时导通N41接收滤波器,经过N41接收滤波器的B41 MRX端连接至接收电路150,如图3所示,本实施例中,N41接收滤波器的B41 MRX端连接至第三开关单元SP4T#4的一第二端,经过滤波后的N41频段主集信号通过第三开关单元SP4T#4的第一端输出至LNA4,经过放大处理后再通过接收端口LNA OUT1~LNA OUT4中的某个接收端口输出至transceiver的接收端口。
N41频段纯独立组网(SA only,Standalone only)工作的情况,N41射频信号的传输路径可以有两种方式:第一种方式与上述B3+N41组合下的N41频段信号的收发方式相同,这里不再赘述;第二种方式,N41频段信号的发射过程可以包括:N41频段信号通过高频发射端口HB_IN进入L-PA Mid器件,然后通过HB PA 110对N41频段信号进行放大,再通过第一开关电路160进行频段选择导通进入B41/N41滤波器进行滤波,最后通过第三开关电路180选择导通连接至中高频天线端口MHB ANT以连接外部天线。在本实施例中,如图3所示,在N41频段信号到达中高频天线端口MHB ANT之前,会通过功率耦合器230对N41频段信号进行采集,通过CPLOUT2端口连接到transceiver。N41频段主集信号的接收过程可以包括:N41频段主集信号从中高频天线端口MHB ANT进入后通过第三开关电路180的选择进入N41滤波器进行滤波,然后再经过第一开关电路160的一第二端,并通过第一开关电路160的选择导通至一第一端即B49/41RX端,如图3所示,本实施例中,经过滤波后的N41频段主集信号连接至接收电路150的第三开关单元SP4T#1的一第二端,经过滤波后的N41频段主集信号通过第三开关单元SP4T#1的第一端输出至LNA1,经过LNA1放大处理后再通过接收端口LNA OUT1~LNA OUT4中的某个接收端口输出至transceiver的接收端口。N41频段MIMO信号的接收过程可以包括:N41频段MIMO信号从高频天线端口HB ANT进入之后通过第三开关电路180选择导通至滤波电路140中的N41接收滤波器进行滤波,再经接收电路150中的第三开关单元SP4T#4连接至LNA4进行信号放大,最后通过接收端口LNA OUT1~LNA OUT4中的某个端口输出连接到transceiver接收端口。
以B5+N1组合为例介绍复用LB双工器来实现LB+MB ENDC的情况,N1发射信号和N1主集接收信号的收发过程与上述B1频段信号的相同,这里不再赘述。在本实施例中,如果N1 MIMO接收通路复用L-PA Mid器件中的LNA,那么,N1 MIMO接收过程与上述B1频段信号的相同,这里不再赘述。对于B5频段信号,B5频段信号的发射过程可以包括:B5频段信号可以通过外挂LB PA进行放大后再通过辅助低频发射端口LB TX_IN端口进入L-PA Mid器件,然后通过第二开关电路170的频段选择导通进入B26双工器进行滤波(因为B26频段包含B5频段,因此这里可以复用L-PA Mid器件中的B26双工器对B5射频信号进行滤波),再通过天线选择开关如图3中所示的第四开关电路190导通至低频天线端口LB ANT以连接外部天线发射B5频段信号。本实施例中,如图3所示,在B5频段信号到达低频天线端口LB ANT之前通,会过功率耦合器220对B5射频信号进行采集,通过CPLOUT1端口连接到transceiver。B5频段主集接收信号的接收过程包括:B5频段主集接收信号从低频天线端口LB ANT进入后,通过第四开关电路190进入B26双工器进行滤波,之后从B26双工器的B26RX端口接入接收电路150,如图3所示,本实施例中,经过B26双工器滤波后的B5频段主集接收信号通过第三开关单元SP4T#5进入LNA5进行信号放大,经过LNA5放大处理后再通过接收端口LNA OUT5或接收端口LNA OUT6输出至transceiver的接收端口。
需要说明的是,本申请中以Bx的形式描述的频段,同时也指代5G NR频段,比如描述的B41频段,同时也指代N41频段,再如描述的B41频段接收滤波器,同时也指代N41频段接收滤波器。
本申请实施例还提供一种电子设备,该电子设备上设置有上述任一实施例所述的射频前端器件,通过在电子设备上设置该射频前端器件,更好地节省了对PCB板的占用面积,降低了成本。如WCDMA B1/B5/B8频段、LTE B1/B3/B5/B7/B8/B25/B26/B28/B29/B38/B39/B40/B41/B66频段、N1/N3/N5/N7/N8/N28/N38/N40N41/N66频段。在一种实施例中,本申请实施例提供的射频前端器件至少支持如B1+N41 ENDC组合、B3+N41 ENDC组合、B39+N41 ENDC组合、B1+N40 ENDC组合、B3+N40 ENDC组合下LTE和NR两路同时发射,以及LB+MB组合、LB+HB ENDC组合下LTE和NR两路同时发射。在一种实施例中,本申请实施例提供的射频前端器件至少支持以下载波(CA)组合:1-3-7,1-3-40,1-3-41,39-41,66-7,LB+MB,LB+HB等。在一种示例性实例中,本申请实施例提供的电子设备为各种具有无线通信功能的电子设备,包括但不限于:手机、平板电脑、可穿戴设备、车载设备、增强现实(AR,Augmented Reality)/虚拟现实(VR,Virtual Reality)设备、笔记本电脑、超级移动个人计算 机(UMPC,Ultra-Mobile Personal Computer)、上网本、个人数字助理(PDA,Personal Digital Assistant)等,本申请实施例对电子设备的具体类型不作任何限制。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (31)

  1. 一种射频前端器件,其特征在于,设置有高频发射端口、中频发射端口、低频发射端口、辅助低频发射端口、至少六个接收端口、低频天线端口、中高频天线端口、高频天线端口,以及,用于外置低频频段扩展的至少一个低频辅助发射端口、至少一个低频辅助收发端口和至少一个低频辅助接收端口,用于外置中高频频段扩展的至少一中高频辅助接收端口;其中,低频辅助发射端口与低频辅助收发端口通过第一外部电路一一对应连接;所述射频前端器件包括:
    发射电路,与所述高频发射端口、所述中频发射端口、所述低频发射端口、以及与外挂低频功率放大器的输出端连接的所述辅助低频发射端口连接;所述发射电路用于对来自所述高频发射端口的高频段信号、来自所述中频发射端口的中频段信号、来自所述低频发射端口的低频段信号、来自所述辅助低频发射端口的低频段信号进行功率放大并输出给滤波电路;以及,所述发射电路与接收电路连接,用于选择导通所述滤波电路与所述接收电路之间的预设频段的射频通路;
    所述滤波电路,用于对接收到的高频段信号、中频段信号、低频段信号进行滤波处理并输出给开关电路;
    所述开关电路,用于选择导通所述滤波电路与所述高频天线端口、所述中高频天线端口、所述低频天线端口之间的射频通路;以及,所述开关电路与至少一所述低频辅助收发射端口连接,用于选择导通所述第一外部电路与所述低频天线端口之间的射频通路;
    所述接收电路,与所述接收端口、所述低频辅助接收端口、所述中高频辅助接收端口、所述发射电路和所述滤波电路连接,用于对接收到的来自所述低频辅助接收端口、所述中高频辅助接收端口的MIMO信号进行低噪声放大处理并输出至一所述接收端口,以及对来自所述滤波电路的射频信号及预设频段的射频信号进行放大处理并输出至一所述接收端口。
  2. 根据权利要求1所述的射频前端器件,其中,所述发射电路包括:高频功率放大器、中频功率放大器、低频功率放大器、第一开关电路、第二开关电路;其中,
    所述高频功率放大器,与所述高频发射端口连接,用于对来自所述高频发射端口的高频段信号进行功率放大并输出至所述第一开关电路;
    所述中频功率放大器,与所述中频发射端口连接,用于对来自所述中频发射端口的中频段信号进行功率放大并输出至所述第一开关电路;
    所述低频功率放大器,与所述低频发射端口连接,用于对来自所述低频发射端口的低频段信号进行功率放大并输出至所述第二开关电路;
    所述第一开关电路,所述第一开关电路的多个第二端口分别与滤波电路连接,所述第一开关电路的一第一端口与所述高频功率放大器的输出端连接,用于选择导通所述高频功率放大器与所述滤波电路之间的射频通路,所述第一开关电路的另一第一端口与所述中频功率放大器的输出端连接,用于选择导通所述中频功率放大器与所述滤波电路之间的射频通路,所述第一开关电路的剩余第一端口与接收电路连接,用于选择导通所述滤波电路与所述接收电路之间的预设频段的射频通路;
    所述第二开关电路,所述第二开关电路的多个第二端口分别与所述滤波电路,所述第二开关电路的一第一端口与所述低频功率放大器的输出端连接,用于选择导通所述低频功率放大器与所述滤波电路或所述低频辅助发射端口之间的射频通路;所述第二开关电路的另一第一端口与外挂低频功率放大器的输出端连接的所述辅助低频发射端口连接;所述第二开关电路的至少一第二端口与所述低频辅助发射端口连接,用于选择导通所述外挂低频功率放大器或所述滤波电路与所述第一外部电路之间的射频通路。
  3. 根据权利要求2所述的射频前端器件,其中,所述开关电路包括第三开关电路、第四开关电路;其中,
    所述滤波电路,用于对接收到的高频段信号、中频段信号进行滤波处理并输出给第三开关电路,对接收到低频段信号进行滤波处理并输出给第四开关电路;
    所述第三开关电路,所述第三开关电路的多个第二端口分别与所述滤波电路连接,所述第三开关电路的一第一端口与所述高频天线端口连接,用于选择导通所述滤波电路与所述高频天线端口之间 的射频通路,所述第三开关电路的另一第一端口与所述中高频天线端口连接,用于选择导通所述滤波电路与所述中高频天线端口之间的射频通路;
    所述第四开关电路,所述第四开关电路的多个第二端口分别与所述滤波电路,所述第四开关电路的一第一端口与所述低频天线端口连接,用于选择导通所述滤波电路与所述低频天线端口之间的射频通路;所述第四开关电路的至少一第二端口与至少一所述低频辅助收发射端口连接,用于选择导通所述第一外部电路与所述低频天线端口之间的射频通路。
  4. 根据权利要求2所述的射频前端器件,其中,所述高频功率放大器和所述中频功率放大器采用独立供电。
  5. 根据权利要求3所述的射频前端器件,还设置有:用于外置中频频段和高频频段扩展的至少两个中频辅助发射端口、一个高频辅助发射端口、至少两个中高频辅助收发端口;
    所述中频辅助发射端口、所述高频辅助发射端口分别与所述中高频辅助收发端口通过第二外部电路一一对应连接。
  6. 根据权利要求5所述的射频前端器件,其中,所述第二外部电路包括B25双工器。
  7. 根据权利要求3所述的射频前端器件,还设置有:2G高频发射端口;
    所述射频前端器件还包括:2G高频功率放大器,所述2G高频功率放大器与所述2G高频发射端口连接,用于对来自所述2G高频发射端口的2G高频段信号进行功率放大并输出至所述滤波电路;
    所述滤波电路还用于:对接收到的2G高频段信号进行滤波处理并输出给所述第三开关电路;
    和/或,
    所述射频前端器件还设置有:2G低频发射端口;
    所述射频前端器件还包括:2G低频功率放大器,所述2G低频功率放大器与所述2G低频发射端口连接,用于对来自所述2G低频发射端口的2G低频段信号进行功率放大并输出至所述滤波电路;
    所述滤波电路还用于:对接收到2G低频段信号进行滤波处理并输出给所述第四开关电路。
  8. 根据权利要求3所述的射频前端器件,还设置有第一耦合输出端口;所述射频前端器件还包括第一功率耦合电路,设置在所述第四开关电路和所述低频天线端口之间的射频通路中,用于耦合射频通路中的低频段信号,以经所述第一耦合输出端口输出耦合信号;
    和/或,还设置有第二耦合输出端口;所述射频前端器件还包括第二功率耦合电路,设置在所述第三开关电路和所述中高频天线端口之间的射频通路中,用于耦合射频通路中的中高频段信号,以经所述第二耦合输出端口输出耦合信号;
    和/或,还设置有第三耦合输出端口;所述射频前端器件还包括第三功率耦合电路,设置在所述第三开关电路和所述高频天线端口之间的射频通路中,用于耦合射频通路中的高频段信号,以经所述第三耦合输出端口输出耦合信号。
  9. 根据权利要求1~8任一项所述的射频前端器件,其中,所述射频前端器件为L-PA Mid器件。
  10. 根据权利要求9所述的射频前端器件,其中,所述滤波电路包括双工器和/或多工器,和滤波器。
  11. 根据权利要求10所述的射频前端器件,其中,所述滤波器包括N41/B41滤波器和B41/N41频段信号接收的滤波器,均用于对N41/B41频段信号进行滤波处理;
    所述N41/B41滤波器的输入端与所述第一开关电路的一第二端口连接,所述N41/B41滤波器的输出端通过所述第三开关电路连接所述高频天线端口或所述中高频天线端口;
    所述B41/N41频段信号接收滤波器的一端连接所述接收电路,另一端连接所述第三开关电路,用于导通所述中高频天线端口或者所述高频天线端口。
  12. 根据权利要求10所述的射频前端器件,其中,所述滤波器包括N40/B40滤波器和B40/N40频段信号接收的滤波器,均用于对N40/B40频段信号进行滤波处理;
    所述N40/B40滤波器的输入端与所述第一开关电路的一第二端口连接,所述N40/B40滤波器的输出端通过所述第三开关电路连接所述高频天线端口或所述中高频天线端口;
    所述B40/N40频段信号接收滤波器的一端连接所述接收电路,另一端连接所述第三开关电路,用于导通所述中高频天线端口或者所述高频天线端口。
  13. 根据权利要求9所述的射频前端器件,其中,所述高频段信号包括以下之一或任意组合:B40/N40、B41/N41频段、B7频段;
    所述中频段信号包括以下之一或任意组合:B39、B3、B1频段;
    所述低频段信号包括以下之一或任意组合:B5、B26、B8、B28A、B28B、B29频段。
  14. 根据权利要求9所述的射频前端器件,其中,所述第一开关电路的四个第一端口分别与所述高频功率放大器的输出端、所述中频功率放大器的输出端、以及所述接收电路的与两个预设频段对应的输入端口连接;
    所述第一开关电路的九个第二端口中,其中的六个所述第二端口分别与所述滤波电路连接,另外三个所述第二端口分别与所述射频前端器件的高频辅助发射端口、中频辅助发射端口和中频辅助发射端口连接,所述中频辅助发射端口、所述高频辅助发射端口和所述中频辅助发射端口分别与所述中高频辅助收发端口通过外部电路按需求对应连接。
  15. 根据权利要求14所述的射频前端器件,其中,所述预设频段包括B39频段、N40/N41频段;
    所述六个所述第二端口分别与所述滤波电路中的B41/N41滤波器、B40/N40滤波器、B7双工器的TX端、B39滤波器、B1双工器的TX端、B3双工器的TX端连接。
  16. 根据权利要求9所述的射频前端器件,其中,所述第二开关电路的一第一端口与所述低频功率放大器的输出端连接,所述第二开关电路的另一第一端口与与外挂低频功率放大器的输出端连接的所述辅助低频发射端口LB_TX_IN连接,所述第二开关电路的八个第二端口中,其中的四个所述第二端口分别与所述滤波电路连接,另外四个所述第二端口与所述低频辅助发射端口连接。
  17. 根据权利要求16所述的射频前端器件,其中,所述四个所述第二端口分别与所述滤波电路中的B26双工器的TX端、B8双工器的TX端、B28A双工器的TX端和B28B双工器的TX端连接。
  18. 根据权利要求16所述的射频前端器件,所述第二开关电路与所述滤波电路之间还包括一复用开关;
    所述复用开关为SPDT开关,所述SPDT开关的第一端口连接所述滤波电路中的B28A双工器的TX端,所述SPDT开关的一第二端口连接所述第二开关电路的一第二端口,所述SPDT开关的一第二端口为B29频段信号接收端口。
  19. 根据权利要求9所述的射频前端器件,其中,所述第三开关电路的两个第一端口分别与所述高频天线端口、所述中高频天线端口连接;所述第三开关电路的十个第二端口中,其中的八个所述第二端口分别与所述滤波电路连接,另外两个所述第二端口分别与所述射频前端器件的两个中高频辅助收发端口连接;所述两个中高频辅助收发端口分别与所述射频前端器件的中频辅助发射端口、高频辅助发射端口通过外部电路一一对应连接。
  20. 根据权利要求19所述的射频前端器件,其中,所述八个所述第二端口分别与所述滤波电路中的B41/N41滤波器、B40/N40滤波器、B39滤波器、B41/N41频段信号接收滤波器、B40/N40频段信号接收滤波器、B7双工器的公共端、B1双工器的公共端/B3双工器的公共端、GSM HB滤波器连接。
  21. 根据权利要求9所述的射频前端器件,其中,所述第四开关电路的第一端口与所述低频天线端口;所述第四开关电路的九个第二端口中,五个所述第二端口分别与所述滤波电路连接,四个所述第二端口分别与所述射频前端器件的四个低频辅助收发端口连接。
  22. 根据权利要求21所述的射频前端器件,其中,所述五个第二端口分别与所述滤波电路中的B26双工器的公共端、B8双工器的公共端、B28A双工器的公共端和B28B双工器的公共端、GSM LB滤波器连接。
  23. 根据权利要求9所述的射频前端器件,其中,所述接收电路包括:至少六个低噪声放大器,至少一个第一开关单元、至少两个第二开关单元、至少五个第三开关单元、一第四开关单元及一第五开关单元;其中,
    所述低噪声放大器中包括至少四个中高频段低噪声放大器,用于对接收到的中高频段信号进行放 大处理后经所述第四开关单元输出给一所述接收端口;
    所述低噪声放大器中包括至少两个低频段低噪声放大器,用于对接收到的低频段信号进行放大处理后输出给一所述接收端口。
  24. 根据权利要求23所述的射频前端器件,其中,所述四个中高频段低噪声放大器中的中高频段低噪声放大器LNA1的输入端与所述第三开关单元中的第三开关单元SP4T#1的第一端口连接,所述第三开关单元SP4T#1的一第二端口与所述滤波电路的B7 RX端口连接,所述第三开关单元SP4T#1的另一第二端口与所述第一开关电路的B40/41 RX端口连接,所述第三开关单元SP4T#1的又一第二端口与所述第二开关单元中第二开关单元SPDT#1的一第二端口连接,所述第二开关单元SPDT#1的第一端口与所述中高频辅助端口中的中高频辅助端口MHB_AUX1连接,所述第三开关单元SP4T#1的再一第二端口悬空,所述中高频段低噪声放大器LNA1的输出端与所述第四开关单元的一第二端口连接,所述中高频段低噪声放大器LNA1用于对接收到的中高频段信号进行放大处理后经所述第四开关单元输出给所述接收端口LNA OUT1~接收端口LNA OUT4中的任一接收端口。
  25. 根据权利要求23所述的射频前端器件,其中,所述四个中高频段低噪声放大器中的中高频段低噪声放大器LNA2的输入端与所述第三开关单元中的第三开关单元SP4T#2的第一端口连接,所述第三开关单元SP4T#2的两个第二端口分别与所述中高频辅助端口中的中高频辅助端口MHB_AUX2和中高频辅助端口MHB_AUX3连接,所述第三开关单元SP4T#2的另外一个第二端口与所述滤波电路中的B1双工器的RX端连接,所述第三开关单元SP4T#2的又一第二端口与所述第二开关单元中的第二开关单元SPDT#1的另一第二端口连接,所述第二开关单元SPDT#1的第一端口与所述中高频辅助端口MHB_AUX1连接,所述中高频段低噪声放大器LNA2的输出端与所述第四开关单元的一第二端口连接,所述中高频段低噪声放大器LNA2用于对接收到的中高频段信号进行放大处理后经所述第四开关单元输出给所述接收端口LNA OUT1~接收端口LNA OUT4中的任一接收端口。
  26. 根据权利要求23所述的射频前端器件,其中,所述四个中高频段低噪声放大器中的中高频段低噪声放大器LNA3的输入端与所述第三开关单元中的第三开关单元SP4T#3的第一端口连接,所述第三开关单元SP4T#3的一个第二端口与所述中高频辅助端口中的中高频辅助端口MHB_AUX4连接,所述第三开关单元SP4T#3的另一个第二端口与所述第一开关电路的第一端口中的B39 RX端口连接,所述第三开关单元SP4T#3的又一个第二端口与所述滤波电路中的B3双工器的RX端连接,所述第三开关单元SP4T#3的再一第二端口与所述第二开关单元中的第二开关单元SPDT#2的一第二端口连接,所述第二开关单元SPDT#2的第一端口与所述中高频辅助端口中的中高频辅助端口MHB_AUX5连接,所述中高频段低噪声放大器LNA3的输出端与所述第四开关单元的一第二端口连接,所述中高频段低噪声放大器LNA3用于对接收到的中高频段信号进行放大处理后经所述第四开关单元输出给所述接收端口LNA OUT1~接收端口LNA OUT4中的任一接收端口。
  27. 根据权利要求23所述的射频前端器件,其中,所述四个中高频段低噪声放大器中的中高频段低噪声放大器LNA4的输入端与所述第三开关单元中的第三开关单元SP4T#4的第一端口连接,所述第三开关单元SP4T#4的一个第二端口与所述中高频辅助端口中的中高频辅助端口MHB_AUX6连接,所述第三开关单元SP4T#4的另两个第二端口分别与所述滤波电路中的B40/N40接收滤波器、B41/N41接收滤波器的B40 MRX端、B41 MRX端连接,所述第三开关单元SP4T#4的再一第二端口与所述第二开关单元中的第二开关单元SPDT#2的另一第二端口连接,所述第二开关单元SPDT#2的第一端口与所述中高频辅助端口中的中高频辅助端口MHB_AUX5连接,所述中高频段低噪声放大器LNA4的输出端与所述第四开关单元的一第二端口连接,所述中高频段低噪声放大器LNA4用于对接收到的中高频段信号进行放大处理后经所述第四开关单元输出给所述接收端口LNA OUT1~接收端口LNA OUT4中的任一接收端口。
  28. 根据权利要求23所述的射频前端器件,其中,所述两个低频段低噪声放大器中的低频段低噪声放大器LNA5的输入端与一所述第三开关单元中的第三开关单元SP4T#4的第一端口连接,所述第三开关单元SP4T#4的四个第二端口分别与所述滤波电路中的B26双工器的RX端、B8双工器的RX端、B28A双工器的RX端和B28B双工器的RX端连接,所述低频段低噪声放大器LNA5的输出端与所述第五开关单元的一第二端口连接,所述低频段低噪声放大器LNA5用于对接收到的低频段信号进行放大处理后输出给所述接收端口LNA OUT5或接收端口LNA OUT6。
  29. 根据权利要求23所述的射频前端器件,其中,所述两个低频段低噪声放大器中的低频段低噪声放大器LNA6的输入端与所述第一开关单元SP5T的第一端口连接,所述第一开关单元SP5T的五 个第二端口分别与设置在所述第二开关电路与所述滤波电路之间的复用开关SPDT的一第二端以及四个所述低频辅助接收端口LB_AUX连接,所述低频段低噪声放大器LNA6的输出端与所述第五开关单元的另一第二端口连接,所述低频段低噪声放大器LNA6用于对接收到的低频段信号进行放大处理后输出给所述接收端口LNA OUT5或接收端口LNA OUT6。
  30. 根据权利要求23~27任一项所述的射频前端器件,其中,所述第四开关单元以为全功能4P4T开关。
  31. 一种电子设备,其特征在于,包括权利要求1~30任一项所述的射频前端器件。
PCT/CN2022/142922 2022-06-29 2022-12-28 一种射频前端器件及电子设备 WO2024001132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210760286.8A CN115173880B (zh) 2022-06-29 2022-06-29 一种射频前端器件及电子设备
CN202210760286.8 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024001132A1 true WO2024001132A1 (zh) 2024-01-04

Family

ID=83489473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142922 WO2024001132A1 (zh) 2022-06-29 2022-12-28 一种射频前端器件及电子设备

Country Status (2)

Country Link
CN (1) CN115173880B (zh)
WO (1) WO2024001132A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173880B (zh) * 2022-06-29 2024-09-10 Oppo广东移动通信有限公司 一种射频前端器件及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200014429A1 (en) * 2018-02-06 2020-01-09 Skyworks Solutions, Inc. Radio-frequency front-end systems
CN113872619A (zh) * 2021-10-08 2021-12-31 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114039614A (zh) * 2021-12-07 2022-02-11 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114124115A (zh) * 2021-12-07 2022-03-01 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN115173880A (zh) * 2022-06-29 2022-10-11 Oppo广东移动通信有限公司 一种射频前端器件及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259058B (zh) * 2016-12-27 2020-10-30 珠海全志科技股份有限公司 一种射频前端电路
CN111277296B (zh) * 2020-02-25 2021-07-02 Oppo广东移动通信有限公司 射频电路、射频芯片和电子设备
CN213661598U (zh) * 2020-12-02 2021-07-09 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN115173878A (zh) * 2022-06-29 2022-10-11 Oppo广东移动通信有限公司 一种射频前端器件及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200014429A1 (en) * 2018-02-06 2020-01-09 Skyworks Solutions, Inc. Radio-frequency front-end systems
CN113872619A (zh) * 2021-10-08 2021-12-31 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114039614A (zh) * 2021-12-07 2022-02-11 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114124115A (zh) * 2021-12-07 2022-03-01 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN115173880A (zh) * 2022-06-29 2022-10-11 Oppo广东移动通信有限公司 一种射频前端器件及电子设备

Also Published As

Publication number Publication date
CN115173880B (zh) 2024-09-10
CN115173880A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN112436845B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN112187297B (zh) 射频收发系统和通信设备
CN112436847B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN112436846B (zh) 射频L-PA Mid器件、射频收发系统及通信设备
WO2022116728A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2022062575A1 (zh) 射频系统和通信设备
WO2023103687A1 (zh) 射频前端器件、射频收发系统和通信设备
CN114124115B (zh) 射频收发系统和通信设备
WO2021258863A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023016197A1 (zh) 放大器模组、射频系统及通信设备
WO2023016204A1 (zh) 放大器模组、射频系统及通信设备
CN114553250B (zh) 射频系统和通信设备
WO2023016209A1 (zh) 发射模组、射频系统及通信设备
WO2022062584A1 (zh) 射频drx器件、射频收发系统和通信设备
WO2022143453A1 (zh) 射频电路及电子设备
WO2023056817A1 (zh) 射频前端器件、射频收发系统和通信设备
CN213879813U (zh) 集成低噪声放大器和双工器的前端模组及射频电路
WO2024001132A1 (zh) 一种射频前端器件及电子设备
WO2023197662A1 (zh) 一种双发射频电路及电子设备
WO2024045774A1 (zh) 多模多频功率放大器件、切换方法、射频前端装置和设备
CN115173878A (zh) 一种射频前端器件及电子设备
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023065863A1 (zh) 一种接收器件、射频系统及通信设备
CN114337694B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2022127399A1 (zh) 射频PA Mid器件、射频收发系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949207

Country of ref document: EP

Kind code of ref document: A1