WO2021258863A1 - 射频PA Mid器件、射频系统和通信设备 - Google Patents

射频PA Mid器件、射频系统和通信设备 Download PDF

Info

Publication number
WO2021258863A1
WO2021258863A1 PCT/CN2021/091904 CN2021091904W WO2021258863A1 WO 2021258863 A1 WO2021258863 A1 WO 2021258863A1 CN 2021091904 W CN2021091904 W CN 2021091904W WO 2021258863 A1 WO2021258863 A1 WO 2021258863A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
coupling
port
signal
antenna
Prior art date
Application number
PCT/CN2021/091904
Other languages
English (en)
French (fr)
Inventor
陈武
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021258863A1 publication Critical patent/WO2021258863A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • This application relates to the field of radio frequency technology, and in particular to a radio frequency PA Mid device, radio frequency system and communication equipment.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • the communication frequency of 5G mobile communication technology is higher than that of 4G mobile communication technology.
  • multiple couplers and multiple switches can be provided in the radio frequency system to support the coupling and switching control of multiple radio frequency signals, which has high cost and large package size.
  • a radio frequency PA Mid device radio frequency system and communication equipment are provided.
  • a radio frequency PA Mid device for transmitting radio frequency signals of multiple different working frequency bands.
  • the radio frequency PA Mid device is configured with a coupling output port and a plurality of antenna ports for connecting with an antenna.
  • the radio frequency PA Mid device includes :
  • the coupling module is arranged on a transmission path for transmitting a plurality of the radio frequency signals, the coupling module includes a plurality of coupling units, and the coupling unit includes:
  • the input port is used to receive any of the radio frequency signals
  • the output port is connected to the antenna port and is used to output the radio frequency signal to the antenna
  • the first coupling port is used to couple the radio frequency signal and output a forward coupling signal
  • the second coupling port is used to couple the reflected signal of the radio frequency signal and output a reverse coupling signal
  • a multiple-way selector switch is respectively connected to the first coupling port, the second coupling port, the coupling output port, and the ground terminal of each coupling unit, and the multiple-way selector switch is used to selectively switch any one of the coupling units The forward coupling signal or the backward coupling signal of is output through the coupling output port.
  • a radio frequency system including:
  • the radio frequency PA Mid device is configured with a first antenna port and a second antenna port; the radio frequency PA Mid device is also used to selectively conduct any output port of the coupling unit with the The transmission path between the first antenna port and the second antenna port;
  • the first antenna is connected to the first antenna port and is used to send and receive radio frequency signals of multiple different working frequency bands,
  • the second antenna is connected to the second antenna port and is used to transmit and receive radio frequency signals of multiple different working frequency bands.
  • a communication device including:
  • the above-mentioned radio frequency system is connected to the radio frequency transceiver.
  • the above-mentioned radio frequency PA Mid devices, radio frequency systems and communication equipment can select and output the forward coupling signal or the reverse coupling signal of any radio frequency signal among the multiple coupling units through only one multi-channel selection switch, thus realizing the radio frequency of multiple frequency bands.
  • the coupling and switching of the signal reduces the area occupied by the package and reduces the cost at the same time.
  • only one coupling output port is provided in the radio frequency PA Mid device. Since the radio frequency signals of multiple frequency bands are not transmitted at the same time, one coupling output port can also meet the communication needs, and it also reduces the radio frequency inside the radio frequency PA Mid device.
  • the line complexity can also improve the isolation performance of each trace of the radio frequency PA Mid device.
  • FIG. 1 is a schematic diagram of a structure of a radio frequency PA Mid device according to an embodiment
  • Fig. 2 is a second structural diagram of a radio frequency PA Mid device of an embodiment
  • FIG. 3 is a schematic structural diagram of a coupling unit according to an embodiment
  • Fig. 4 is a third structural diagram of a radio frequency PA Mid device according to an embodiment
  • Fig. 5 is a fourth structural diagram of a radio frequency PA Mid device according to an embodiment
  • Fig. 6 is a fifth structural diagram of a radio frequency PA Mid device of an embodiment
  • Fig. 7a is a schematic diagram of a pin configuration of a radio frequency PA Mid device according to an embodiment
  • Fig. 7b is a schematic diagram of the package of the radio frequency PA Mid device of Fig. 7a;
  • FIG. 8 is one of structural schematic diagrams of a radio frequency system according to an embodiment
  • FIG. 9 is a schematic diagram of SRS antenna transmission in an embodiment
  • FIG. 10 is a second structural diagram of a radio frequency system according to an embodiment
  • FIG. 11 is a sixth structural diagram of a radio frequency PA Mid device of an embodiment
  • Fig. 12a is a schematic diagram of a pin configuration of a radio frequency PA Mid device according to an embodiment
  • Fig. 12b is a schematic diagram of the package of the radio frequency PA Mid device of Fig. 12a;
  • FIG. 13 is a third structural diagram of a radio frequency system according to an embodiment
  • Fig. 14 is a schematic structural diagram of a communication device according to an embodiment.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • a plurality of means at least two, such as two, three, etc., unless specifically defined otherwise.
  • everal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the radio frequency system involved in the embodiments of this application can be applied to a communication device with wireless communication function.
  • the communication device can be a handheld device, a vehicle-mounted device, a wearable device, a computing device or other processing device connected to a wireless modem, and various forms User Equipment (UE) (for example, mobile phone), Mobile Station (MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • Network equipment may include base stations, access points, and so on.
  • an embodiment of the present application provides a radio frequency PA Mid device.
  • the radio frequency PA Mid device 10 is used to transmit radio frequency signals of multiple different working frequency bands, and it can couple each radio frequency signal transmitted to select the forward coupling signal and output signal of each radio frequency signal. Reverse coupling signal.
  • the radio frequency PA Mid device 10 is configured with a coupling output port CPLOUT and a plurality of antenna ports ANT for connecting with an antenna.
  • the radio frequency PA Mid device 10 includes a coupling module 110 and a multiplexer 120.
  • the radio frequency PA Mid device 10 can be understood as a packaged chip, and the coupling module 110 and the multiplexer 120 are integrated in the same packaged chip.
  • the coupling output port CPLOUT and the multiple antenna ports ANT can be understood as various radio frequency pins configured on the radio frequency PA Mid device 10 to connect with other modules.
  • the radio frequency PA Mid device 10 is provided with multiple transmitting circuits for transmitting radio frequency signals of different frequency bands to form a corresponding transmission path A.
  • the coupling module 110 includes a plurality of coupling units 111, and each coupling unit 111 is correspondingly arranged on a transmission path A to enable coupling and output of radio frequency signals, and the coupling signals of the coupling units 111 can be used to measure the coupling power of the radio frequency signals.
  • the coupling unit 111 includes an input port a, an output port b, a first coupling port c, and a second coupling port d.
  • the coupling unit 111 further includes a main line extending between the input port a and the output port b, and a secondary line extending between the first coupling port c and the second coupling.
  • the input port a is used to receive any radio frequency signal (for example, the first radio frequency signal), the output port b is connected to the antenna port ANT, and is used to output the radio frequency signal received to the antenna output port b, and the first coupling port c, It is used for coupling the radio frequency signal received by the input port a and outputting a forward coupling signal; the second coupling port d is used for coupling the reflection signal of the radio frequency signal received by the output port b and outputting a reverse coupling signal.
  • any radio frequency signal for example, the first radio frequency signal
  • the output port b is connected to the antenna port ANT, and is used to output the radio frequency signal received to the antenna output port b, and the first coupling port c, It is used for coupling the radio frequency signal received by the input port a and outputting a forward coupling signal
  • the second coupling port d is used for coupling the reflection signal of the radio frequency signal received by the output port b and outputting a reverse coupling signal.
  • the forward power information of the radio frequency signal can be detected; based on the reverse coupling signal output by the second coupling port d, the reverse power information of the radio frequency signal can be correspondingly detected , And define the detection mode as the reverse power detection mode.
  • the first coupling port c may be referred to as a forward power output port
  • the second coupling port d may be referred to as a reverse power output port
  • the multiplexer 120 is respectively connected to the first coupling port c, the second coupling port d, the coupling output port CPLOUT, and the ground terminal of each coupling unit 111.
  • the multiplex switch 120 is used to selectively transmit the forward coupling signal output by any coupling unit 111 to the coupling output port CPLOUT, and transmit the output reverse coupling signal to the ground, so as to realize the forward coupling of the radio frequency signal.
  • Power detection, and the detection mode is defined as the forward power detection mode.
  • the multiplex switch 120 is used to selectively transmit the forward coupling signal output by any coupling unit 111 to the ground, and transmit the output reverse coupling signal to the coupling output port CPLOUT, so as to realize the radio frequency signal Reverse power detection, and define the detection mode as reverse power detection mode. That is, the multiplexer 120 is used to switch between the forward power detection mode and the reverse power detection mode.
  • radio frequency PA Mid device 10 it is possible to select and output the forward coupling signal or the reverse coupling signal of any radio frequency signal among the multiple coupling units 111 through only one multiple selection switch 120, so as to realize the radio frequency signal of multiple frequency bands. Coupling switching reduces the footprint of the package and reduces the cost at the same time. At the same time, only one coupling output port CPLOUT is provided in the radio frequency PA Mid device 10. Since the radio frequency signals of multiple frequency bands are not transmitted at the same time, one coupling output port CPLOUT can also meet the communication needs, and it also reduces the radio frequency PA Mid device 10 The complexity of the internal RF routing can also improve the isolation performance of each routing of the RF PA Mid device 10.
  • the radio frequency PA Mid device 10 further includes a first resistor R1, and the first resistor R1 is respectively connected to a second terminal and a ground terminal of the multiplex switch 120 for use before release. Coupling the signal in the opposite direction or in the reverse direction.
  • the open circuit of the switch contact of the coupling switch in the traditional solution can avoid the leakage of the forward coupling signal or the reverse coupling signal.
  • the forward coupling signal leaked through the forward power output port can be grounded through the load, and it will not be coupled to the reverse power.
  • the output port therefore, will not cause interference to the reverse power output port; when in the forward power detection mode, the leaked reverse coupling signal can be grounded through the load to avoid interference to the reverse power output port.
  • the coupling unit 111 includes a first directional coupler 1112 and a second directional coupler 1114 connected in reverse series.
  • the coupler is a common microwave and millimeter wave component in microwave measurement and other microwave systems. It can be used for signal isolation, separation and mixing, such as power monitoring, source output power stabilization, signal source isolation, transmission and reflection scanning. Frequency test, etc.
  • Both the first directional coupler 1112 and the second directional coupler 1114 include two parts of a main line and a secondary line, which are coupled to each other through various forms such as small holes, slits, and gaps. After the radio frequency signal flows through the input port of the main line, it reaches the output port. A part of the power of the radio frequency signal passing through the main line will be coupled to the secondary line. Due to the interference or superposition of waves, the power will only be transmitted along the secondary line-one direction (called "forward"), and the other direction. There is almost no power transmission (called “reverse”).
  • the coupling degree of the directional coupler is 10dB
  • the power of the input port a is 0dBm
  • the power of the coupled output port CPLOUT is -10dBm.
  • Table 1 The main parameters of the directional coupler of general communication equipment are shown in Table 1.
  • the output power of the communication transmitter is 26dBm
  • a signal of 1dBm at the coupling end is sent to the communication feedback detection channel
  • the direct output of the directional coupler is 25.8dBm
  • the reverse coupling output power that leaks to the isolation end is affected by a load Absorbed.
  • the coupling unit 111 includes a first directional coupler 1112 and a second directional coupler 1114.
  • the first directional coupler 1112 can be used as a forward coupler
  • the second directional coupler 1114 can be used as a reverse coupler.
  • the first directional coupler 1112 and the second coupler are connected in reverse series, wherein the coupling end of the first directional coupler 1112 serves as the first coupling port c of the coupling unit 111, and the second directional coupler 1114
  • the coupling end serves as the second coupling port d of the coupling unit 111, and the isolated ends of the first directional coupler 1112 and the second directional coupler 1114 are grounded through the communication load.
  • the shunt resistor R2 may be used as the communication load of the first directional coupling and the second directional coupler 1114.
  • the size of the shunt resistance R2 can be set to 50 ohms.
  • the adjustable communication load may be realized by providing one or more tunable impedance elements such as tunable or variable capacitors, inductors, or resistors.
  • the specific form of the coupling unit 111 is not further limited.
  • the coupling unit 111 may also be composed of a bidirectional coupler or a directional coupler. Make further restrictions.
  • multiple radio frequency transmission paths can be provided in the radio frequency PA Mid device 10, and each radio frequency transmission path can be used to output a radio frequency signal, wherein the coupling unit 111 can be correspondingly provided on the radio frequency path, in this way,
  • the radio frequency PA Mid device 10 can realize the coupling of multiple radio frequency signals, so as to realize the detection of the forward power and reverse power of the multiple radio frequency signals.
  • the multiplex switch 120 includes a plurality of first ends and two second ends, wherein each first end of the multiplex switch 120 corresponds to any one of the multiple coupling units 111 respectively.
  • One coupling port c or any second coupling port d is connected, that is, the multiple first ends of the multiplexer 120 respectively correspond to the first coupling port c and the second coupling port d of the multiple coupling units 111 in one-to-one correspondence.
  • a second end of the multiplex switch 120 is connected to the coupling output port CPLOUT, and a second end of the multiplex switch 120 is grounded.
  • the number of multiple coupling units 111 included in the radio frequency PA Mid device 10 is M
  • the number of the first ends of the corresponding multiplexer 120 is 2*M
  • the 2*M first ends are one by one.
  • the first coupling port c and the second coupling port d of the M coupling units 111 where M ⁇ 2. That is, the first coupling port c and the second coupling port d of a coupling degree unit can be connected to the two first ends of the multiplexer 120 in a one-to-one correspondence.
  • the multiplexer 120 may be a radio frequency DP4T switch.
  • the two coupling units 111 can be respectively denoted as the first coupling unit 111a and the second coupling unit 111b.
  • the first coupling unit 111a is arranged on the first transmission path A for transmitting the first radio frequency signal
  • the first coupling unit 111a is used for receiving the first radio frequency signal and coupling the first radio frequency signal to output the first radio frequency signal.
  • the second coupling unit 111b is arranged on the second transmission path A'for transmitting the second radio frequency signal; the second coupling unit 111b is used for receiving the second radio frequency signal and
  • the two radio frequency signals are coupled to output a second forward coupling signal and a second reverse coupling signal.
  • the number of the first end of the multiplex switch 120 is four, which can be denoted as contact 1, contact 2, contact 3, and contact 4, respectively.
  • the number of the second end of the multiplex switch 120 is two. Marked as contact 5 and contact 6 respectively.
  • a first end (contact 2) is connected to the first coupling port c of the first coupling unit 111a, and a first end (contact 1) is connected to the second coupling port d of the first coupling unit 111a.
  • One end (contact 4) is connected to the first coupling port c of the second coupling unit 111b, and a first end (contact 3) is connected to the second coupling port d of the second coupling unit 111b.
  • a second end (contact 6) is connected to the coupling output port CPLOUT, and a second end (contact 5) is grounded.
  • both the first radio frequency signal and the second radio frequency signal may be 5G NR signals, but their respective operating frequency bands are different.
  • the first radio frequency signal may be a 5G signal with a working frequency band of N77 (78)
  • the second radio frequency signal may be a 5G signal with a working frequency band of N79.
  • the first radio frequency signal may be a 5G signal with a working frequency band of N79
  • the second radio frequency signal may be a 5G signal with a working frequency band of N77 (78).
  • the operating frequency band of N77 is 3.3 GHz-4.2 GHz
  • the operating frequency band of N78 is 3.3 GHz-3.8 GHz
  • the operating frequency of N79 is 4.4 GHz-5.0 GHz.
  • the forward power detection mode and the reverse power detection mode of the first coupling unit 111a are described by taking the first radio frequency signal being a 5G signal of N77 (78) and the multiplexer 120 being a radio frequency DP4T switch as an example.
  • a first end (contact 1) of the DP4T can be controlled to connect to the second end (contact 5), a first The terminal (contact 2) is connected to the second terminal (contact 6) to export the first forward coupling signal to the coupling output port CPLOUT.
  • the leaked first reverse coupling signal can be grounded through the load to avoid reverse Cause interference to the power output port.
  • a first end (contact 2) of the DP4T can be controlled to be connected to a second end (contact 5), one The first end (contact 1) is connected to the second end (contact 6) to export the first reverse coupling signal to the coupling output port CPLOUT.
  • the leaked first forward coupling signal can be grounded through the load to avoid Cause interference to the reverse power output port.
  • the working principles of the second coupling unit 111b and the first coupling unit 111a are the same, wherein the second coupling unit 111b is in the forward power detection mode, that is, when collecting the forward power of the second radio frequency signal, it can control the DP4T
  • a first end (contact 3) is connected to the second end (contact 5), and a first end (contact 4) is connected to the second end (contact 6) to export the second forward coupling signal to
  • a first end (contact 4) of the DP4T can be controlled to be connected to a second end (contact 5), one The first end (contact 3) is connected to the second end (contact 6) to export the second reverse coupling signal to the coupling output port CPLOUT.
  • the leaked first forward coupling signal can be grounded through the load to avoid Cause interference to the reverse power output port.
  • the radio frequency PA Mid device 10 is also configured with multiple transmitting ports (for example, RFIN1, RFIN2).
  • the radio frequency PA Mid device 10 further includes a plurality of transmitting circuits 130 for transmitting radio frequency signals.
  • the number of the transmitting circuit is two, which can respectively process the transmission of the first radio frequency signal and the second radio frequency signal.
  • each transmitting circuit 130 is used for transmitting radio frequency signals of different working frequency bands, and at the same time, it can also perform amplifying and filtering processing on the transmitted radio frequency signals.
  • the transmitting circuit 130 may constitute the transmitting path A involved in the foregoing embodiment.
  • each transmitting circuit 130 includes a power amplifier 131 and a filtering unit 132.
  • the input end of the power amplifier 131 is connected to the transmitting port (for example, RFIN1 or RFIN2), and the output end of the power amplifier 131 is connected to the input port a of the first coupling unit for receiving radio frequency signals and performing power amplification on the radio frequency signals ;
  • the filtering unit 132 is respectively connected to the output port b and the antenna port (for example, ANT1 or ANT2) for filtering the radio frequency signal and outputting the filtered radio frequency signal through the antenna port ANT.
  • the number of coupling units 111 can also be three, the number of first ends of the multiplex switch 120 is six, and the number of second ends of the multiplex switch 120 is two.
  • the multiplex switch 120 may be a radio frequency DP6T switch.
  • the six first ends are connected to the first coupling port c and the second coupling port d of the three coupling units 111 in a one-to-one correspondence. That is, the first coupling port c and the second coupling port d of a coupling degree unit can be connected to the two first ends of the multiplexer 120 in a one-to-one correspondence.
  • the radio frequency PA Mid device 10 can realize the coupling of the three radio frequency signals, so as to realize the switching of the forward power detection mode and the reverse power detection mode of the three radio frequency signals.
  • the radio frequency PA Mid device 10 is further configured with multiple receiving ports (RX1, RX2), and the radio frequency PA Mid device 10 further includes multiple receiving circuits for receiving radio frequency signals.
  • the number of the receiving circuit is two, which can respectively process the reception of the first radio frequency signal and the second radio frequency signal.
  • the receiving circuit can filter and amplify the radio frequency signal received via the antenna interface, and then output it to the radio frequency transceiver for processing.
  • each receiving circuit includes: a low noise amplifier 141 and a first switch unit 142.
  • the input end of the low noise amplifier 141 is connected to the first switch unit 142, and the output end of the low noise amplifier 141 is connected to the receiving port (RX1 or RX2); the first switch unit 142 is connected to the filter unit 132, the coupling unit 111, The low noise amplifier 141 is connected to select the transmitting circuit 130 where the coupling unit 111 is located or the receiving circuit where the low noise amplifier 141 is located.
  • the numbers of the transmitting circuit 130, the receiving circuit, and the coupling unit 111 are the same, and the coupling unit 111 is correspondingly disposed in the transmitting path A of the transmitting circuit 130.
  • the transmitting circuit 130 and the receiving circuit for processing the same radio frequency signal can constitute a transceiver circuit to realize the control of radio frequency signal transmission, coupling and reception.
  • the power amplifier 131 and the filter unit 132 included in each transmitting circuit 130 and the low noise amplifier 141 provided in the receiving circuit can all be used to support the radio frequency signal transmitted by the radio frequency circuit.
  • the power amplifier 131 and the filtering unit 132 can both support the transmission processing of the first radio frequency signal
  • the receiving circuit is used to receive the first radio frequency signal
  • the low noise amplifier 141 can support the receiving and processing of the first radio frequency signal.
  • the power amplifier 131, the low-noise amplifier 141, the coupling unit 111, and the filtering unit 132 can all support signals in the N77 frequency band, that is, signals in the N77 frequency band can be amplified and coupled.
  • the filtering unit 132 only allows signals in the N77 frequency band to pass, and can also filter spurious waves other than the signals in the N77 frequency band.
  • the filtering unit 132 may be a band-pass filtering unit or a low-pass filter.
  • the first switch unit 142 is a single-pole double-throw switch. Specifically, the first fixed end of the single-pole double-throw switch is connected to the coupling unit 111, the second fixed end of the single-pole double-throw switch is connected to the input end of the low noise amplifier 141, and the moving end of the single-pole double throw switch is connected to the filter unit 132. connect.
  • the first switch unit 142 is used for switching the transceiver working mode under the TDD standard. Specifically, when the fixed end of the single-pole double-throw switch is controlled to be conductively connected to the coupling unit 111, the transmission path A where the coupling unit 111 is located is turned on to realize the transmission control of the first radio frequency signal; When the fixed end of the throw switch is conductively connected to the low noise amplifier 141, the receiving path where the low noise amplifier is located is turned on to realize the receiving control of the first radio frequency signal.
  • the first switch unit 142 may also be an electronic switch tube, a mobile industry processor (MIPI) interface, and/or a general-purpose input/output (GPIO) interface.
  • the corresponding control unit can be a MIPI control unit and/or a GPIO control unit.
  • the MIPI control unit may correspondingly output clock and data signals to corresponding pins connected to the coupling unit 111 and the low noise amplifier 141.
  • the GPIO control unit can correspondingly output a high-level signal to the corresponding pins connected to the coupling unit 111 and the low noise amplifier 141.
  • the specific forms of the filter unit 132 and the switch unit are not further limited.
  • the radio frequency PA Mid device 10 further includes a second switch unit 150 respectively connected to the output port b of each coupling unit 111 and each antenna port ANT, and the second switch unit 150 It is used to select and conduct the transceiver path between the output port b of any coupling unit 111 and any antenna.
  • the second switch unit 150 may also include multiple first ends and multiple second ends, wherein the multiple first ends are respectively connected to the output port b of each coupling unit 111, and the multiple second ends may be respectively connected to the output port b of each coupling unit 111.
  • it is connected to the multiple antenna ports ANT of the radio frequency PA Mid device 10. That is, the number of the first end of the second switch unit 150 and the number of the coupling unit 111 may be the same, and the number of the second end of the second switch unit 150 may be matched according to the antenna port ANT configured in the radio frequency PA Mid device 10.
  • each transceiving circuit may include a transmitting circuit 130 and a receiving circuit to realize the control of transmitting and receiving radio frequency signals of dual bands (N77 and N79).
  • the radio frequency PA Mid device 10 can It is called a dual-band power radio frequency PA Mid device 10.
  • the radio frequency PA Mid device 10 may also be provided with multiple transceiver circuits correspondingly, so as to realize the control of the transmission and reception of multiple radio frequency signals of different frequency bands.
  • the radio frequency PA Mid device 10 further includes a first control unit 160 and a second control unit 170.
  • the first control unit 160 is respectively connected to the first switch unit 142, the second switch unit 150, and the power amplifier 131, and is used to control the on and off of the first switch unit 142 and the second switch unit 150, and is also used to control the power amplifier. 131 working status.
  • the second control unit 170 is respectively connected to the low noise amplifier 141 for adjusting the gain coefficient of the low noise amplifier 141.
  • the low noise amplifier 141 is an amplifier device with adjustable gain.
  • the low noise amplifier 141 has 8 gain levels.
  • the first control unit 160 and the second control unit 170 may be a Mobile Industry Processor Interface (MIPI)—RF Front End Control Interface (RFFE) control unit, and its control method It complies with the control protocol of the RFFE bus.
  • MIPI Mobile Industry Processor Interface
  • RFFE RF Front End Control Interface
  • the radio frequency PA Mid device 20 is also configured with the clock signal input pin CLK, the single/bidirectional data signal input or the bidirectional pin SDATAS , Reference voltage pin VIO and so on.
  • each device in the radio frequency PA Mid device 10 can be integrated into the same packaged chip.
  • the pin configuration diagram of the packaged chip is shown in Fig. 7a and the package diagram of the packaged chip is shown in Fig. 7b, which can improve The integration of each radio frequency PA Mid device 10 reduces the space occupied by the radio frequency PA Mid device.
  • the embodiment of the present application also provides a radio frequency system.
  • the radio frequency system may include the radio frequency PA Mid device 10, the first antenna Ant0, and the second antenna Ant1 as in any of the foregoing embodiments.
  • the radio frequency PA Mid device 10 is configured with a first antenna port ANT1 and a second antenna port ANT2; the radio frequency PA Mid device 10 is also used to selectively turn on the output port b of any coupling unit 111 with the first antenna port ANT1 and the first antenna port ANT1 and the second antenna port. Transmission path between two antenna ports ANT2.
  • the first antenna Ant0 is connected to the first antenna port ANT1 and is used to transmit and receive radio frequency signals of multiple different working frequency bands
  • the second antenna Ant1 is connected to the second antenna port ANT2 and is used to transmit and receive radio frequency signals of multiple different working frequency bands.
  • the first antenna Ant0 and the second antenna Ant1 are both antennas capable of supporting the 4G frequency band and the 5G NR frequency band.
  • the first antenna Ant0 and the second antenna Ant1 may be directional antennas or non-directional antennas.
  • the first antenna Ant0 and the second antenna Ant1 may be formed using any suitable type of antenna.
  • the first antenna Ant0 and the second antenna Ant1 may include antennas with resonant elements formed by the following antenna structures: array antenna structure, loop antenna structure, patch antenna structure, slot antenna structure, helical antenna structure, strip antenna , At least one of monopole antennas, dipole antennas, etc.
  • Different types of antennas can be used for different frequency band combinations of radio frequency signals.
  • the radio frequency PA Mid device 10 by providing multiple coupling units 111 and multiple selection switches 120 in the radio frequency PA Mid device 10, it is possible to select and output the forward coupling signal or reverse coupling of any radio frequency signal among the multiple coupling units 111.
  • the signal realizes the coupling and switching of radio frequency signals in multiple frequency bands, which reduces the occupied area of the package and also reduces the cost.
  • only one coupling output port CPLOUT is provided in the radio frequency PA Mid device 10. Since the radio frequency signals of multiple frequency bands are not transmitted at the same time, one coupling output port CPLOUT can also meet the communication needs, and it also reduces the radio frequency PA Mid device 10
  • the complexity of the internal RF routing can also improve the isolation performance of each routing of the RF PA Mid device 10.
  • the 5G network supports beamforming technology, which can be directed to the communication equipment. If a base station wants to transmit directionally, it must first detect the location of the communication device, the quality of the transmission path, etc., so that the resources of the base station can be more accurately allocated to each communication device.
  • the SRS information sent by the communication device is a way for the base station to detect the communication position and channel quality; among them, the SRS is Sounding Reference Signal (channel sounding reference signal).
  • Figure 9 is a schematic diagram of SRS antenna rotation, and the specific description is as follows:
  • 1T1R fixed on the first antenna Ant0 to feed back information to the base station, and does not support SRS round-robin transmission;
  • 1T4R Transmit SRS information from the first antenna Ant0 to the fourth antenna in turn, and only one antenna is selected for transmission at a time.
  • NSA non-standalone
  • 2T4R Transmit SRS information from the first antenna Ant0 to the fourth antenna in turn, and select two antennas to transmit at the same time each time.
  • independent networking Standalone, SA
  • SA independent networking
  • the number of radio frequency PA Mid devices 10 is two, which are a first radio frequency PA Mid device 11 and a second radio frequency PA Mid device 12 respectively.
  • both the first radio frequency PA Mid device 11 and the second radio frequency PA Mid device 12 may include two transceiver circuits, so as to realize the transceiver and coupling control of the dual-band radio frequency signal.
  • the radio frequency system also includes a feedback switch 20, a first radio frequency LNA device 30, a second radio frequency LNA device 40, a third antenna Ant2, and a fourth antenna Ant3.
  • the third antenna Ant2 and the fourth antenna Ant3 are both used to transmit and receive radio frequency signals of multiple different working frequency bands, and can be antennas capable of supporting 4G frequency bands and 5G NR frequency bands.
  • the third antenna Ant2 and the fourth antenna Ant3 may be directional antennas or non-directional antennas.
  • the third antenna Ant2 and the fourth antenna Ant3 may be formed using any suitable type of antenna.
  • the third antenna Ant2 and the fourth antenna Ant3 may include antennas with resonant elements formed by the following antenna structures: array antenna structure, loop antenna structure, patch antenna structure, slot antenna structure, helical antenna structure, strip antenna , At least one of monopole antennas, dipole antennas, etc. Different types of antennas can be used for different frequency band combinations of radio frequency signals.
  • first antenna Ant0, the second antenna Ant1, the third antenna Ant2, and the fourth antenna Ant3 can be selected according to the communication requirements of the radio frequency system to realize the transmission and reception of radio frequency signals of different working frequency bands.
  • the feedback switch 20 is respectively connected to the first radio frequency PA Mid device 11 and the second radio frequency PA Mid device 12, and is used to selectively input the output of the first radio frequency PA Mid device 11 or the second radio frequency PA Mid device 12 to the feedback channel. Forward coupled signal or reverse coupled signal.
  • the feedback switch 20 may be a single-pole double-throw switch to selectively couple the output signal of the coupling output terminal of the first radio frequency PA Mid device 11 or the coupling output port CPLOUT of the second radio frequency PA Mid device 12 (formerly Output to the feedback channel (such as the processor of the radio frequency system), the radio frequency system can analyze the power information of the sampled forward coupling signal or the reverse coupling signal to analyze each radio frequency The transmission power of the signal is adjusted, and information such as the standing wave ratio of the link is monitored.
  • the first radio frequency LNA device 30 is respectively connected to the first antenna port ANT1, the first antenna Ant0, and the second antenna Ant1 of the first radio frequency PA Mid device 11, and is used to receive multiple radio frequencies via the first antenna Ant0 and the second antenna Ant1. Signal, and perform filter amplifier processing on the received multiple radio frequency signals.
  • the second radio frequency LNA device 40 is respectively connected to the second antenna port ANT2 of the first radio frequency PA Mid device 11, the first antenna port ANT1 of the second radio frequency PA Mid device 12, the third antenna Ant2, and the fourth antenna Ant3 for The third antenna Ant2 and the fourth antenna Ant3 receive multiple radio frequency signals, and perform filter amplifier processing on the received multiple radio frequency signals.
  • the structure of the first radio frequency LNA device 30 and the second radio frequency LNA device 40 may be the same. Take the first radio frequency LNA device 30 as an example for description.
  • the first radio frequency LNA device 30 may be configured with a first radio frequency receiving port RX1 and a second radio frequency receiving port RX2 for connecting a radio frequency transceiver, and a first radio frequency antenna port ANT1 and a second radio frequency antenna port ANT2 for connecting an antenna.
  • the first radio frequency LNA device includes a dual-channel receiving and switching circuit.
  • the dual-channel receiving switching circuit is respectively connected to the first radio frequency receiving port RX1, the second radio frequency receiving port RX2, the first radio frequency antenna port ANT1, the second radio frequency antenna port ANT2, and the first radio frequency PA Mid device 11.
  • Used to receive a first radio frequency signal and a second radio frequency signal through the first antenna port ANT1 and the second antenna port ANT2, so as to perform filtering and amplifying processing on the received first radio frequency signal and then pass through the first radio frequency receiving port RX1 outputs or switches the received first radio frequency signal to the radio frequency PA Mid device 11, performs filtering and amplifying processing on the received second radio frequency signal, and outputs it through the second radio frequency receiving port RX2.
  • the dual-channel receiving switching circuit may include a radio frequency input switch, two low noise amplifiers, two filters, and a radio frequency output switch.
  • the first radio frequency LNA device 30 can simultaneously receive two first radio frequency signals and second radio frequency signals with different working frequency bands, and can realize simultaneous reception control of the first radio frequency signal and the second radio frequency signal, and can The received first radio frequency signal and second radio frequency signal are output to the radio frequency transceiver for processing, and the received first radio frequency signal and second radio frequency signal can also be transmitted to the antenna port ANT of the first radio frequency PA Mid device, so that the first radio frequency The PA Mid device 11 can realize the reception of the first radio frequency signal and the second radio frequency signal.
  • the radio frequency system based on this embodiment can support NSA mode, SA mode and SRS function.
  • the channel configuration of NSA and SA is shown in Table 2, and NSA, SA path configuration, and SRS path configuration are shown in Table 3, Table 4, and Table 5, respectively.
  • TXO&PRX represents the main transmission link and the main set receiving link
  • DRX stands for the diversity receiving link
  • TX1&MIMO PRX stands for the auxiliary transmission link and the MIMO main set receiving link
  • MIMO DRX stands for the MIMO diversity receiving link
  • Channel0, Channel1, Channel2, and Channel3 are the transmission links for antennas to transmit in turn.
  • the radio frequency system in the embodiment of the application can realize the function of supporting communication equipment in the frequency division multiplexing FDD standard to transmit 4-port SRS in turn between transmitting antennas through sounding reference signal SRS, and it can also support the simultaneous reception of data by 4 antennas.
  • NSA mode and SA mode can realize the function of supporting communication equipment in the frequency division multiplexing FDD standard to transmit 4-port SRS in turn between transmitting antennas through sounding reference signal SRS, and it can also support the simultaneous reception of data by 4 antennas.
  • the radio frequency PA Mid device 10 is also configured with a coupling input port CPLIN, a first end of the multiplexer 120 is connected to the coupling input port CPLIN, and the coupling input port CPLIN is used for Receive the external coupling signal, and output the coupling signal through the coupling output port CPLOUT.
  • the number of the first terminals of the multiplexer 120 when the coupling input port CPLIN is configured in the radio frequency PA Mid device 10, the number of the first terminals of the multiplexer 120 also needs to be increased by one correspondingly.
  • the number of the first ends of the multiplexer 120 is 2*M+1, and the 2*M first ends correspond to the M coupling units 111 in a one-to-one manner.
  • the first coupling port c and the second coupling port d are connected, and a first end is connected to the coupling input port CPLIN.
  • the coupling module 110 includes two coupling units 111, which can be respectively denoted as a first coupling unit 111a and a second coupling unit 111b.
  • the number of first ends of the multiplex switch 120 is five, and the number of second ends of the multiplex switch 120 is two.
  • the multiplex switch 120 may be a radio frequency DP5T switch.
  • the number of the first end of the multiplex switch 120 is five, which can be denoted as contact 1, contact 2, contact 3, contact 4, and contact 5, respectively.
  • the number of the second end of the multiplex switch 120 is Two can be marked as contact 6 and contact 7 respectively.
  • a first end (contact 2) is connected to the first coupling port c of the first coupling unit 111a, and a first end (contact 1) is connected to the second coupling port d of the first coupling unit 111a.
  • One end (contact 4) is connected to the first coupling port c of the second coupling unit 111b, a first end (contact 3) is connected to the second coupling port d of the second coupling unit 111b, and a first end (contact Point 5) Connect with the coupling input port CPLIN.
  • a second end (contact 7) is connected to the coupling output port CPLOUT, and a second end (contact 6) is grounded.
  • the radio frequency DP4T switch can be replaced with a radio frequency DP5T switch, and the number of the first end is increased to 5.
  • the second end (contact 7) is connected to the first end (contact 5), it can be formed
  • the external coupling signal forward coupling signal or reverse coupling signal
  • the coupling input port CPLIN and then output from the coupling output port CPLOUT.
  • each device in the radio frequency PA Mid device 10 can be integrated in the same packaged chip.
  • the pin configuration diagram of the packaged chip is shown in Figure 12a and the package diagram of the packaged chip is shown in Figure 12b, which can improve The integration of each radio frequency PA Mid device 10 reduces the space occupied by the radio frequency PA Mid device.
  • the number of radio frequency PA Mid devices 10 when the number of radio frequency PA Mid devices 10 is two, they can be recorded as the first radio frequency PA Mid device 11 and the second radio frequency PA Mid device 12 respectively.
  • the second radio frequency PA Mid device 12 The coupling output port CPLOUT can be connected to the coupling input port CPLIN of the first radio frequency PA Mid device 11, and can output the forward coupling signal or the reverse coupling signal of any radio frequency signal output by the second radio frequency PA Mid device 12 to the first radio frequency PA Mid device 11, so that the first radio frequency PA Mid device 11 directly outputs the forward coupling signal or reverse coupling signal of any radio frequency signal of the second radio frequency PA Mid device 12 to the feedback channel through the coupling output port CPLOUT.
  • the first radio frequency PA Mid device 11 as an example to illustrate the transmission and reception control principle of the first radio frequency signal (for example, the 5G signal in the N77 frequency band):
  • the first transmit signal enters through the transmit port RFIN of the first radio frequency PA Mid device 11, and is amplified by the power amplifier 131.
  • the amplified first radio frequency signal is sampled by the first coupling unit 111a.
  • the forward coupling signal and the reverse coupling of the first radio frequency signal to Xinhai, and the collected signal is switched to the coupling output port CPLOUT through the radio frequency DP5T switch; at the same time, the coupling signal of the second radio frequency PA Mid device 12 is from the second radio frequency PA
  • the output of the coupled T port of the Mid device 12 enters the coupling input port CPLIN of the first radio frequency PA Mid device 11 through the radio frequency routing, and finally outputs from the coupling port of the first radio frequency PA Mid device 11 to the feedback port for processing it.
  • the first radio frequency signal output through the output port b of the first coupling unit 111a is switched to the filter unit 132 by the first switch unit 142, filtered by the filter unit 132, and then switched to the antenna port ANT by the second switch unit 150.
  • the diversity radio frequency signal is output to the first antenna Ant0 or the second antenna Ant1.
  • the first radio frequency signal enters from the antenna port ANT through the first diversity radio frequency PA Mid device 10, is switched to the filter unit 132 through the second switch unit 150, and is switched by the first switch unit 142 after filtering. To the receiving path where the low noise amplifier 141 is located, it can then be output to the radio frequency transceiver through the receiving port RX.
  • the feedback switch 20 in the aforementioned embodiment shown in FIG. 10 can be omitted, and the radio frequency trace length can be shortened.
  • the complexity of the layout of the radio frequency system is reduced, and the PCB area occupied by the radio frequency system is also reduced, and the cost is reduced.
  • an embodiment of the present application also provides a communication device.
  • the communication device is provided with the radio frequency system in any of the foregoing embodiments and a radio frequency transceiver 90 connected to the radio frequency system.
  • the radio frequency system can select the forward coupling signal or the reverse coupling signal of any radio frequency signal among the multiple coupling units 111, realize the coupling switching of the radio frequency signal of multiple frequency bands, reduce the occupied area of the package, and also Reduced costs.
  • only one coupling output port CPLOUT is provided in the radio frequency PA Mid device 10.
  • one coupling output port CPLOUT can also meet the communication needs, and it also reduces the radio frequency PA Mid device 10
  • the complexity of the internal RF routing can also improve the isolation performance of each routing of the RF PA Mid device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种射频PA Mid器件,射频PA Mid器件包括:耦合模块(110),设置在用于发射多个射频信号的发射通路上,耦合模块包括多个耦合单元(111),耦合单元包括(111):输入端口(a),用于接收任一射频信号;输出端口(b),与天线端口(ANT)连接,用于向天线输出射频信号;第一耦合端口(c),用于对射频信号进行耦合并输出前向耦合信号;第二耦合端口(d),用于对射频信号的反射信号进行耦合并输出反向耦合信号;多路选择开关(120),分别与每一耦合单元(111)的第一耦合端口(c)、第二耦合端口(d)、耦合输出端口(CPLOUT)、地端连接,多路选择开关(120)用于选择性地将任一耦合单元(111)的前向耦合信号或后向耦合信号经耦合输出端口(CPLOUT)输出。

Description

射频PA Mid器件、射频系统和通信设备
相关申请的交叉引用
本申请要求于2020年6月23日提交中国专利局、申请号为202010580577X发明名称为“射频PA Mid器件、射频系统和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,特别是涉及一种射频PA Mid器件、射频系统和通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。5G移动通信技术通信频率相比于4G移动通信技术的频率更高。一般可在射频系统中设置多个耦合器和多个开关来支持多个射频信号之前的耦合切换控制,其成本高、封装尺寸大。
发明内容
根据本申请的各种实施例,提供一种射频PA Mid器件、射频系统和通信设备。
一种射频PA Mid器件,用于发射多个不同工作频段的射频信号,所述射频PA Mid器件被配置有耦合输出端口和多个用于与天线连接的天线端口,所述射频PA Mid器件包括:
耦合模块,设置在用于发射多个所述射频信号的发射通路上,所述耦合模块包括多个耦合单元,所述耦合单元包括:
输入端口,用于接收任一所述射频信号;
输出端口,与所述天线端口连接,用于向所述天线输出所述射频信号
第一耦合端口,用于对所述射频信号进行耦合并输出前向耦合信号;
第二耦合端口,用于对所述射频信号的反射信号进行耦合并输出反向耦合信号;
多路选择开关,分别与每一所述耦合单元的第一耦合端口、第二耦合端口、耦合输出端口、地端连接,所述多路选择开关用于选择性地将任一所述耦合单元的所述前向耦合信号或后向耦合信号经所述耦合输出端口输出。
一种射频系统,包括:
上述的射频PA Mid器件,所述射频PA Mid器件配置有第一天线端口和第二天线端口;所述射频PA Mid器件还用于选择导通任一所述耦合单元的输出端口分别与所述第一天线端口和第二天线端口之间的发射通路;
第一天线,与所述第一天线端口连接,用于收发多个不同工作频段的射频信号,
第二天线,与所述第二天线端口连接,用于收发多个不同工作频段的射频信号。
一种通信设备,包括:
射频收发器,
上述的射频系统,与所述射频收发器连接。
上述射频PA Mid器件、射频系统和通信设备仅通过一个多路选择开关就可以实现在多个耦合单元中选择输出任一射频信号的前向耦合信号或反向耦合信号,实现了多个频段射频信号的耦合切换,减小了占用封装的面积,同时也降低了成本。同时,在该射频PA Mid器件中仅设置一个耦合输出端口,由于多个频段的射频信号并不是同时发射的,一个耦合输出端口也可以满足通信需求,而且还减少射频PA Mid器件内部的射频走线复杂度,同时也可以提高射频PA Mid器件各走线的隔离度性能。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例的射频PA Mid器件的结构示意图之一;
图2为一实施例的射频PA Mid器件的结构示意图之二;
图3为一实施例的耦合单元的结构示意图;
图4为一实施例的射频PA Mid器件的结构示意图之三;
图5为一实施例的射频PA Mid器件的结构示意图之四;
图6为一实施例的射频PA Mid器件的结构示意图之五;
图7a为一实施例的射频PA Mid器件的引脚配置示意图;
图7b为图7a的射频PA Mid器件的封装示意图;
图8为一实施例的射频系统的结构示意图之一;
图9为一实施例的SRS天线轮发示意图;
图10为一实施例的射频系统的结构示意图之二;
图11为一实施例的射频PA Mid器件的结构示意图之六;
图12a为一实施例的射频PA Mid器件的引脚配置示意图;
图12b为图12a的射频PA Mid器件的封装示意图;
图13为一实施例的射频系统的结构示意图之三;
图14为一实施例的通信设备的结构示意图。
具体实施方式
为了便于理解本申请,为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请,附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。网络设备可以包括基站、接入点等。
如图1所示,本申请实施例提供一种射频PA Mid器件。在其中一实施例中,射频PA Mid器件10,用于发射多个不同工作频段的射频信号,其能够对发射的每个射频信号进行 耦合,以选择输出每个射频信号的正向耦合信号和反向耦合信号。其中,射频PA Mid器件10被配置有耦合输出端口CPLOUT和多个用于与天线连接的天线端口ANT。射频PA Mid器件10包括耦合模块110和多路选择开关120。具体地,该射频PA Mid器件10可以理解为一封装芯片,其耦合模块110和多路选择开关120均集成在同一封装芯片中。其耦合输出端口CPLOUT和多个天线端口ANT可以理解为配置在该射频PA Mid器件10与其他模块连接的各射频引脚。
在其中一个实施例中,射频PA Mid器件10中设置有多个用于发射不同频段射频信号的发射电路以形成对应的发射通路A。耦合模块110包括多个耦合单元111,每个耦合单元111对应设置在一个发射通路A上,以能够实现对射频信号耦合输出,其耦合输出的耦合信号可用于测量射频信号的耦合功率。具体地耦合单元111包括输入端口a、输出端口b、第一耦合端口c和第二耦合端口d。同时,耦合单元111还包括在输入端口a和输出端口b之间延伸的主线、以及在第一耦合端口c和第二耦合之间延伸的副线。
其中,输入端口a,用于接收任一射频信号(例如,第一射频信号),输出端口b,与天线端口ANT连接,用于向天线输出端口b接收的射频信号,第一耦合端口c,用于对输入端口a接收的射频信号进行耦合并输出前向耦合信号;第二耦合端口d,用于对输出端口b接收的射频信号的反射信号进行耦合并输出反向耦合信号。其中,基于第一耦合端口c输出的前向耦合信号,可以检测该射频信号的前向功率信息;基于第二耦合端口d输出的反向耦合信号,可以对应检测该射频信号的反向功率信息,并将该检测模式定义为反向功率检测模式。
需要说明的是,在本申请实施例中,可以将第一耦合端口c称之为前向功率输出端口,可以将第二耦合端口d称之为反向功率输出端口。
多路选择开关120,分别与每一耦合单元111的第一耦合端口c、第二耦合端口d、耦合输出端口CPLOUT、地端连接。多路选择开关120用于选择性地将任一耦合单元111输出的前向耦合信号传输至耦合输出端口CPLOUT,并将输出的反向耦合信号传输至地端,以实现对该射频信号前向功率的检测,并将该检测模式定义为前向功率检测模式。或,多路选择开关120用于选择性地将任一耦合单元111输出的前向耦合信号传输至地端,并将输出的反向耦合信号传输至耦合输出端口CPLOUT,以实现对该射频信号反向功率的检测,并将该检测模式定义为反向功率检测模式。也即,该多路选择开关120用于在前向功率检测模式和反向功率检测模式之间进行切换。
上述射频PA Mid器件10中仅通过一个多路选择开关120就可以实现在多个耦合单元111中选择输出任一射频信号的前向耦合信号或反向耦合信号,实现了多个频段射频信号的耦合切换,减小了占用封装的面积,同时也降低了成本。同时,在该射频PA Mid器件10中仅设置一个耦合输出端口CPLOUT,由于多个频段的射频信号并不是同时发射的,一个耦合输出端口CPLOUT也可以满足通信需求,而且还减少射频PA Mid器件10内部的射频走线复杂度,同时也可以提高射频PA Mid器件10各走线的隔离度性能。
如图2所示,在其中一个实施例中,射频PA Mid器件10还包括第一电阻R1,第一电阻R1分别与多路选择开关120的一第二端、地端连接,用于释放前向耦合信号或反向耦合信号。当多路选择开关120的一个第二端经第一电阻R1接地时,可以避免传统方案中的耦合切换开关的开关触点开路造成前向耦合信号或者反向耦合信号的泄露问题。示例性的,以任一耦合单元111为例进行说明,当处于反向功率检测模式时,可以将经前向功率输出端口泄露的前向耦合信号经负载接地,就不会耦合到反向功率输出端口,因此,不会对反向功率输出端口造成干扰;当处于前向功率检测模式时,可将泄露的反向耦合信号经负载接地,避免对反向功率输出端口造成干扰。
如图3所示,在其中一个实施例中,耦合单元111包括反向串联的第一定向耦合器1112和第二定向耦合器1114。
其中,耦合器是微波测量和其它微波系统中常见的微波和毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。第一定向耦合器1112和第二定向耦合器1114均包括主线和副线两部分,彼此之间通过小孔、缝、隙等各种形式进行耦合。信射频号流经主线的输入端口后,到达输出端口。从主线上经过的射频信号的功率,将有一部分耦合到副线中去,由于波的干涉或叠加,使功率仅沿副线-一个方向传输(称“正向”),而另一方向则几乎毫无功率传输(称“反向”)。
假设定向耦合器的耦合度是10dB,当输入端口a功率为0dBm时,耦合输出端口CPLOUT的功率是-10dBm。一般通信设备的定向耦合器的主要参数如表1所示。当通信发射机的输出功率为26dBm时,则耦合端有1dBm的信号送到通信反馈检测通道,定向耦合器的直通输出为25.8dBm,而泄漏到隔离端的反向耦合输出功率,则被一个负载吸收掉了。
表1耦合器主要指标
耦合度 反向耦合度 插入损耗 最大输入功率
25dB 25dB 0.2dB 33dBm
在本申请实施例中,耦合单元111包括第一定向耦合器1112和第二定向耦合器1114。其中,可将第一定向耦合器1112作为前向耦合器,可将第二定向耦合器1114作为反向耦合器。参见图3,第一定向耦合器1112和第二耦合器反向串联,其中,第一定向耦合器1112的耦合端作为耦合单元111的第一耦合端口c,第二定向耦合器1114的耦合端作为耦合单元111的第二耦合端口d,第一定向耦合器1112和第二定向耦合器1114的隔离端经通信负载接地。示例性的,分流电阻R2可以作为第一定向耦合和第二定向耦合器1114的通信负载。其分流电阻R2的大小可以设置为50欧姆。示例性的,可以通过提供诸如可调谐或可变电容器、电感器或电阻器的一个或多个可调谐阻抗元件来实现可调节通信负载。
需要说明的是,在本申请实施例中,对耦合单元111的具体形式不做进一步的限定,其耦合单元111还可以由双向耦合器、定向耦合器构成,其具体形式在本申请实例中不做进一步的限定。
在其中一个实施例中,射频PA Mid器件10中可设置多个射频发射通路,每个射频发射通路都可以用于输出一个射频信号,其中,耦合单元111可对应设置该射频通路上,这样,射频PA Mid器件10就可以实现对多个射频信号的耦合,以实现对多个射频信号的前向功率和反向功率的检测。
在其中一个实施例中,多路选择开关120包括多个第一端和两个第二端,其中,多路选择开关120的每一第一端分别对应与多个耦合单元111的任一第一耦合端口c或任一第二耦合端口d连接,也即,多路选择开关120的多个第一端分别与多个耦合单元111的第一耦合端口c、第二耦合端口d一一对应连接,多路选择开关120的一第二端与耦合输出端口CPLOUT连接,多路选择开关120的一第二端接地。
具体的,当射频PA Mid器件10包括的多个耦合单元111为M个时,其对应的多路选择开关120的第一端的数量为2*M个,2*M个第一端一一对应与M个耦合单元111的第一耦合端口c、第二耦合端口d连接,其中,M≥2。也即,一个耦合度单元的第一耦合端口c、第二耦合端口d可一一对应与多路选择开关120的两个第一端连接。
如图4所示,当耦合单元111的数量为两个时,其多路选择开关120的第一端的数量为四个,多路选择开关120的第二端的数量为两个。示例性的,该多路选择开关120可以为射频DP4T开关。
其中,两个耦合单元111可分别记为第一耦合单元111a和第二耦合单元111b。其中,第一耦合单元111a,设置在用于发射第一射频信号的第一发射通路A上,第一耦合单元111a用于接收第一射频信号并对第一射频信号进行耦合以输出第一前向耦合信号和第一 反向耦合信号;第二耦合单元111b,设置在用于发射第二射频信号的第二发射通路A’上;第二耦合单元111b用于接收第二射频信号并对第二射频信号进行耦合以输出第二前向耦合信号和第二反向耦合信号。
多路选择开关120的第一端的数量为四个,可分别记为触点1、触点2、触点3和触点4,多路选择开关120的第二端的数量为两个,可分别记为触点5、触点6。其中,一第一端(触点2)与第一耦合单元111a的第一耦合端口c连接,一第一端(触点1)与第一耦合单元111a的第二耦合端口d连接,一第一端(触点4)与第二耦合单元111b的第一耦合端口c连接,一第一端(触点3)与第二耦合单元111b的第二耦合端口d连接。一第二端(触点6)与耦合输出端口CPLOUT连接,一第二端(触点5)接地。
在其中一个实施例中,第一射频信号和第二射频信号均可以为5G NR信号,但各自的工作频段不同。示例性的,第一射频信号可以为工作频段为N77(78)的5G信号,第二射频信号可以为工作频段为N79的5G信号。相应的,第一射频信号可以为工作频段为N79的5G信号,第二射频信号可以为工作频段为N77(78)的5G信号。具体地,N77的工作频段为3.3GHz-4.2GHz,N78的工作频段为3.3GHz-3.8GHz,N79的工作频段为4.4GHz-5.0GHz。
以第一射频信号为N77(78)的5G信号、多路选择开关120为射频DP4T开关为例来对第一耦合单元111a的前向功率检测模式和反向功率检测模式进行说明。
在处于前向功率检测模式中,也即,采集第一射频信号的前向功率时,可控制DP4T的一第一端(触点1)连接到第二端(触点5),一第一端(触点2)连接到第二端(触点6)以将第一前向耦合信号导出到耦合输出端口CPLOUT,同时也可以将泄露的第一反向耦合信号经负载接地,避免对反向功率输出端口造成干扰。相应的,在反向功率检测模式中,也即,采集第一射频信号的反向功率时,可控制DP4T的一第一端(触点2)连接到第二端(触点5),一第一端(触点1)连接到第二端(触点6)以将第一反向耦合信号导出到耦合输出端口CPLOUT,同时也可以将泄露的第一前向耦合信号经负载接地,避免对反向功率输出端口造成干扰。
相应的,第二耦合单元111b和第一耦合单元111a的工作原理相同,其中第二耦合单元111b在前向功率检测模式中,也即,采集第二射频信号的前向功率时,可控制DP4T的一第一端(触点3)连接到第二端(触点5),一第一端(触点4)连接到第二端(触点6)以将第二前向耦合信号导出到耦合输出端口CPLOUT,同时也可以将泄露的第二反向耦合信号经负载接地,避免对反向功率输出端口=造成干扰。相应的,在反向功率检测模式中,也即,采集第二射频信号的反向功率时,可控制DP4T的一第一端(触点4)连接到第二端(触点5),一第一端(触点3)连接到第二端(触点6)以将第二反向耦合信号导出到耦合输出端口CPLOUT,同时也可以将泄露的第一前向耦合信号经负载接地,避免对反向功率输出端口造成干扰。
如图5所示,在其中一个实施例中,射频PA Mid器件10还被配置有多个发射端口(例如,RFIN1、RFIN2)。射频PA Mid器件10还包括多个用于发射射频信号的发射电路130。示例性的,该发射电路的数量为两个,分别可对第一射频信号、第二射频信号的发射进行处理。其中,每个发射电路130用于发射不同工作频段的射频信号,同时还可以对所发射的射频信号进行放大滤波处理。发射电路130可以构成前述实施例中涉及的发射通路A。具体的,每一发射电路130包括功率放大器131和滤波单元132。其中,功率放大器131的输入端与发射端口(例如,RFIN1或RFIN2)连接,功率放大器131的输出端与第一耦合单元的输入端口a连接,用于接收射频信号,并对射频信号进行功率放大;滤波单元132,分别与输出端口b、天线端口(例如,ANT1或ANT2)连接,用于对射频信号进行滤波处理,并将滤波处理后的射频信号经天线端口ANT输出。
在其中一个实施例中,参考图1,耦合单元111的数量还可以为三个,其多路选择开 关120的第一端的数量为六个,多路选择开关120的第二端的数量为两个。示例性的,该多路选择开关120可以为射频DP6T开关。六个第一端一一对应与3个耦合单元111的第一耦合端口c、第二耦合端口d连接。也即,一个耦合度单元的第一耦合端口c、第二耦合端口d可一一对应与多路选择开关120的两个第一端连接。射频PA Mid器件10就可以实现对三个射频信号的耦合,以实现对三个射频信号的前向功率检测模式与反向功率检测模式的切换。
在其中一个实施例中,如图6所示,射频PA Mid器件10还被配置有多个接收端口(RX1、RX2),射频PA Mid器件10还包括多个用于接收射频信号的接收电路。示例性的,该接收电路的数量为两个,分别可对第一射频信号、第二射频信号的接收进行处理。该接收电路可对经天线接口接收的射频信号进行滤波放大处理后,输出至射频收发器进行处理。其中,每一接收电路包括:低噪声放大器141和第一开关单元142。其中,低噪声放大器141的输入端与第一开关单元142连接,低噪声放大器141的输出端与接收端口(RX1或RX2)连接;第一开关单元142,分别与滤波单元132、耦合单元111、低噪声放大器141连接,用于选择导通耦合单元111所在的发射电路130或低噪声放大器141所在的接收电路。
需要说明的是,发射电路130、接收电路和耦合单元111的数量相同,且耦合单元111对应设置在发射电路130的发射通路A中。其中,用于处理同一射频信号的发射电路130和接收电路可构成一收发电路,以实现对射频信号的发射、耦合和接收控制。
每一发射电路130中所包括的功率功率放大器131和滤波单元132以及接收电路中设置的低噪声放大器141均可以用于支持该射频电路所发射的射频信号。示例性的,当以发射电路130用于发射第一射频信号时,其该功率放大器131、滤波单元132均可支持对第一射频信号的发射处理,当接收电路用于接收第一射频信号时,该低噪声放大器141可支持对第一射频信号的接收处理。
以第一射频信号为N77频段的5G信号为例进行说明。其中,功率放大器131、低噪声放大器141、耦合单元111、滤波单元132均能够支持N77频段的信号,也即,可以对N77频段的信号进行放大、耦合处理。其中,滤波单元132仅允许N77频段的信号通过,同时还可以滤波除N77频段的信号以外的杂散波。
在其中一个实施例中,滤波单元132可以为带通滤波单元或低通滤波器。
在其中一个实施例中,第一开关单元142为单刀双掷开关。具体地,单刀双掷开关的第一不动端与耦合单元111连接,单刀双掷开关的第二不动端与低噪声放大器141的输入端连接,单刀双掷开关的动端与滤波单元132连接。
第一开关单元142用于TDD制式下收发工作模式的切换。具体的,当控制单刀双掷开关的不动端与耦合单元111导通连接时,可是导通该耦合单元111所在的发射通路A以实现对第一射频信号的发射控制;当控制控制单刀双掷开关的不动端与低噪声放大器141导通连接时,可是导通该低噪声放大所在的接收通路以实现对第一射频信号的接收控制。
可选的,第一开关单元142还可以为电子开关管、移动产业处理器(Mobile Industry Processor Interface,MIPI)接口和/或通用输入/输出(General-purpose input/output,GPIO)接口。其对应的控制单元可为MIPI控制单元和/或GPIO控制单元。示例性的,当需要导通接收链路或发射链路时,MIPI控制单元可以对应输出时钟和数据信号至与耦合单元111、低噪声放大器141连接的对应引脚。GPIO控制单元可对应输出高电平信号至与耦合单元111、低噪声放大器141连接的对应引脚。
需要说明的是,在本申请实施例中,对滤波单元132、开关单元的具体形式不做进一步的限定。
请继续参考图6,在其中一个实施例中,射频PA Mid器件10还包括分别与每个耦合单元111的输出端口b、每一天线端口ANT连接的第二开关单元150,第二开关单元150 用于选择导通任一耦合单元111的输出端口b与任一天线之间的收发通路。具体的,第二开关单元150也可包括多个第一端和多个第二端,其中,多个第一端分别对应与各耦合单元111的输出端口b连接,多个第二端可分别对应与射频PA Mid器件10的多个天线端口ANT连接。也即,第二开关单元150的第一端的数量与耦合单元111的数量可相同,第二开关单元150的第二端的数量可根据射频PA Mid器件10配置的天线端口ANT相匹配。
本实施例中,通过在射频PA Mid器件10中集成第二开关单元150,可以提高射频PA Mid器件10的集成度。当射频PA Mid器件10包括两个收发电路时,每一收发电路可包括发射电路130和接收电路,以实现对双频段(N77和N79)的射频信号的收发控制,其射频PA Mid器件10可以称之为双频段功率射频PA Mid器件10。
需要说明的是,根据通讯需求,射频PA Mid器件10中还可以对应设置多个收发电路,以实现对多个不同频段的射频信号的收发控制。
在其中一个实施例中,参考图6射频PA Mid器件10还包括第一控制单元160和第二控制单元170。其中,第一控制单元160分别与第一开关单元142、第二开关单元150、功率放大器131连接,用于控制第一开关单元142、第二开关单元150的通断,还用于控制功率放大器131的工作状态。
第二控制单元170分别与低噪声放大器141连接,用于调节低噪声放大器141的增益系数。其中,低噪声放大器141为增益可调节的放大器件。示例性的,低噪声放大器141具有8个增益等级。
示例性的,第一控制单元160和第二控制单元170可以为移动行业处理器接口(Mobile Industry Processor Interface,MIPI)—射频前端控制接口(RF Front End Control Interface,RFFE)控制单元,其控制方式其符合RFFE总线的控制协议。当第一控制单元160和第二控制单元170为MIPI-RFFE控制单元时,其射频PA Mid器件20还被配置有时脉讯号的输入引脚CLK、单/双向数据讯号的输入或双向引脚SDATAS、参考电压引脚VIO等等。在其中一个实施例中,射频PA Mid器件10内的各个器件均可集成在同一封装芯片中,其封装芯片的引脚配置图如图7a和封装芯片的封装示意图如图7b所示,可以提高各个射频PA Mid器件10的集成度,缩小该射频PA Mid器件的占有空间。
在其中一个实例中,本申请实施例还提供一种射频系统。如图8所示,射频系统可包括如上述任一实施例中的射频PA Mid器件10、第一天线Ant0和第二天线Ant1。其中,射频PA Mid器件10配置有第一天线端口ANT1和第二天线端口ANT2;射频PA Mid器件10还用于选择导通任一耦合单元111的输出端口b分别与第一天线端口ANT1和第二天线端口ANT2之间的发射通路。
第一天线Ant0,与第一天线端口ANT1连接,用于收发多个不同工作频段的射频信号,第二天线Ant1,与第二天线端口ANT2连接,用于收发多个不同工作频段的射频信号。其中,第一天线Ant0、第二天线Ant1均为能够支持4G频段、5G NR频段的天线。在其中一个实施例中,第一天线Ant0、第二天线Ant1可以为定向天线,也可以为非定向天线。示例性的,第一天线Ant0和第二天线Ant1可以使用任何合适类型的天线形成。例如,第一天线Ant0和第二天线Ant1可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同射频信号的频段组合。
上述射频系统中,通过在射频PA Mid器件10设置了多个耦合单元111和多路选择开关120,可以实现在多个耦合单元111中选择输出任一射频信号的前向耦合信号或反向耦合信号,实现了多个频段射频信号的耦合切换,减小了占用封装的面积,同时也降低了成本。同时,在该射频PA Mid器件10中仅设置一个耦合输出端口CPLOUT,由于多个频段的射频信号并不是同时发射的,一个耦合输出端口CPLOUT也可以满足通信需求,而且还减少射频PA Mid器件10内部的射频走线复杂度,同时也可以提高射频PA Mid器件10 各走线的隔离度性能。
随着技术的发展和进步,5G移动通信技术逐渐开始应用于通信设备。5G网络支持波束赋形技术,可以向通信设备定向发射。而基站要想定向发射,首先得探测到通信设备的位置、传输通路的质量等,从而使基站的资源更加精准地分配给每一个通信设备。通信设备发送SRS信息即是用于基站探测通信位置和信道质量的方式;其中,SRS即为Sounding Reference Signal(信道探测参考信号)。图9为SRS天线轮发示意图,具体说明如下:
其一,1T1R:固定在第一天线Ant0向基站反馈信息,不支持SRS轮发;
其一,1T4R:在第一天线Ant0到第四天线轮流发射SRS信息,每次只选择一个天线发射,目前非独立组网(Non-standalone,NSA)采用这种模式;
其三,2T4R:在第一天线Ant0到第四天线轮流发射SRS信息,每次选择两个天线同时发射,目前独立组网(Standalone,SA)采用这种模式。
在其中一个实施例中,如图10所示,射频PA Mid器件10的数量为两个,分别为第一射频PA Mid器件11和第二射频PA Mid器件12。具体的,第一射频PA Mid器件11和第二射频PA Mid器件12均可包括两个收发电路,以实现对双频段的射频信号的收发、耦合控制。
射频系统还包括反馈切换开关20、第一射频LNA器件30、第二射频LNA器件40、第三天线Ant2和第四天线Ant3。
第三天线Ant2、第四天线Ant3均用于收发多个不同工作频段的射频信号,可为能够支持4G频段、5G NR频段的天线。在其中一个实施例中,第三天线Ant2、第四天线Ant3可以为定向天线,也可以为非定向天线。示例性的,第三天线Ant2、第四天线Ant3可以使用任何合适类型的天线形成。例如,第三天线Ant2、第四天线Ant3可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同射频信号的频段组合。
需要说明的是,可以根据射频系统的通信需求来选择第一天线Ant0、第二天线Ant1、第三天线Ant2、第四天线Ant3的类型,以实现对不同工作频段的射频信号的收发。
反馈切换开关20,分别与第一射频PA Mid器件11和第二射频PA Mid器件12连接,用于选择性地向反馈通道输入第一射频PA Mid器件11或第二射频PA Mid器件12输出的前向耦合信号或反向耦合信号。示例性的,该反馈切换开关20可以为单刀双掷开关,以选择性的将第一射频PA Mid器件11的耦合输出端或第二射频PA Mid器件12的耦合输出端口CPLOUT的输出信号(前向耦合信号或反向耦合信号)输出至反馈反馈通道(例如射频系统的处理器),该射频系统可依据采样的前向耦合信号或反向耦合信号的功率信息等进行分析,以对各个射频信号的发射功率进行调整,并监控链路的驻波比等信息。
第一射频LNA器件30,分别与第一射频PA Mid器件11的第一天线端口ANT1、第一天线Ant0、第二天线Ant1连接,用于经第一天线Ant0、第二天线Ant1接收多个射频信号,并对接收的多个射频信号进行滤波放大器处理。
第二射频LNA器件40,分别与第一射频PA Mid器件11的第二天线端口ANT2、第二射频PA Mid器件12的第一天线端口ANT1、第三天线Ant2、第四天线Ant3连接,用于经第三天线Ant2、第四天线Ant3接收多个射频信号,并对接收的多个射频信号进行滤波放大器处理。
在其中一个实施例中,第一射频LNA器件30和第二射频LNA器件40的结构可相同。以第一射频LNA器件30为例进行说明。其中,第一射频LNA器件30可被配置有用于连接射频收发器的第一射频接收端口RX1和第二射频接收端口RX2以及用于连接天线的第一射频天线端口ANT1和第二射频天线端口ANT2,所述第一射频LNA器件包括双通道接收切换电路。其中,所述双通道接收切换电路分别与所述第一射频接收端口RX1、第二 射频接收端口RX2、第一射频天线端口ANT1、第二射频天线端口ANT2、第一射频PA Mid器件11连接,用于经所述第一天线端口ANT1、第二天线端口ANT2接收第一射频信号、第二射频信号,以对接收的所述第一射频信号进行滤波放大处理后经所述第一射频接收端口RX1输出或将接收的所述第一射频信号切换至所述射频PA Mid器件11,并对接收的所述第二射频信号进行滤波放大处理后经所述第二射频接收端口RX2输出。
进一步的,双通道接收切换电路可包括射频输入开关、两个低噪声放大器、两个滤波器和射频输出开关。其中,该第一射频LNA器件30可同时接收两个具有不同工作频段的第一射频信号和第二射频信号,并可以实现同时对第一射频信号和第二射频信号的接收控制,并可将接收的第一射频信号、第二射频信号输出给射频收发器处理,还可以将接收的第一射频信号和第二射频信号传输至第一射频PA Mid器件的天线端口ANT,以使第一射频PA Mid器件11能够实现对第一射频信号和第二射频信号的接收。
基于本实施例的射频系统,可以支持NSA模式和SA模式以及SRS功能。NSA和SA的通道配置表2所示,NSA、SA路径配置、SRS路径配置分别如表3、表4和表5所示。
表2 NSA模式和SA模式通道数配置
  N77 N79
NSA 1T4R 1T4R
SA 2T4R 1T4R
表3 NSA模式详细路径配置表
  N77 N79
TXO&PRX 路径1->路径4 路径1->路径4
DRX 路径1->路径5 路径1->路径5
MIMO PRX 路径3->路径6 路径3->路径6
MIMO DRX 路径3->路径7 路径3->路径7
表4 SA模式详细路径配置表
  N77 N79
TXO&PRX 路径1->路径4 路径1->路径4
DRX 路径1->路径5 路径1->路径5
TX1&PRX 路径3->路径6 路径3->路径6
DRX 路径3->路径7 路径3->路径7
表3和表4中,TXO&PRX表示主发射链路和主集接收链路,DRX表示分集接收链路,TX1&MIMO PRX表示辅助发射链路和MIMO主集接收链路,MIMO DRX表示MIMO分集接收链路。
表5SRS详细路径配置表
  N77 N79
Channel0 路径1->路径4 路径1->路径4
Channel1 路径1->路径5 路径1->路径5
Channel2 路径2->路径6 路径2->路径6
Channel3 路径2->路径7 路径2->路径7
表5中,Channel0、Channel1、Channel2、Channel3分别为天线轮流发射的发射链路。
本申请实施例中的射频系统可以实现通信设备在频分复用FDD制式中的支持通过探测参考信号SRS在发射天线间轮发发送4端口SRS的功能,还可以支持4根天线同时接收数据的NSA模式和SA模式。
在其中一个实施例中,如图11所示,射频PA Mid器件10还被配置有耦合输入端口CPLIN,多路选择开关120的一第一端与耦合输入端口CPLIN连接,耦合输入端口CPLIN用于接收外部耦合信号,并将耦合信号经耦合输出端口CPLOUT输出。
在其中一个实施例中,当射频PA Mid器件10中配置了该耦合输入端口CPLIN时,其多路选择开关120的第一端的数量也需要对应增加一。示例性的,若多个耦合单元111为M个,多路选择开关120的第一端的数量为2*M+1个,2*M个第一端一一对应与M个耦合单元111的第一耦合端口c、第二耦合端口d连接,一第一端与耦合输入端口CPLIN连接。
在其中一个实施例中,耦合模块110包括包括两个耦合单元111,可分别记为第一耦合单元111a和第二耦合单元111b。多路选择开关120的第一端的数量为五个,多路选择开关120的第二端的数量为两个。示例性的,该多路选择开关120可以为射频DP5T开关。
多路选择开关120的第一端的数量为五个,可分别记为触点1、触点2、触点3、触点4和触点5,多路选择开关120的第二端的数量为两个,可分别记为触点6、触点7。
其中,一第一端(触点2)与第一耦合单元111a的第一耦合端口c连接,一第一端(触点1)与第一耦合单元111a的第二耦合端口d连接,一第一端(触点4)与第二耦合单元111b的第一耦合端口c连接,一第一端(触点3)与第二耦合单元111b的第二耦合端口d连接,一第一端(触点5)与耦合输入端口CPLIN连接。一第二端(触点7)与耦合输出端口CPLOUT连接,一第二端(触点6)接地。
在本实施例中,可将射频DP4T开关替换成射频DP5T开关,第一端的数量增加到5个,当第二端(触点7)与第一端(触点5)连接时,可形成一个通路,外部耦合信号(前向耦合信号或反向耦合信号)可以从耦合输入端口CPLIN进入,再由耦合输出端口CPLOUT输出。
在其中一个实施例中,射频PA Mid器件10内的各个器件均可集成在同一封装芯片中,其封装芯片的引脚配置图如图12a和封装芯片的封装示意图如图12b所示,可以提高各个射频PA Mid器件10的集成度,缩小该射频PA Mid器件的占有空间。
如图13所示,当射频PA Mid器件10的数量为两个时,可分别记为第一射频PA Mid器件11和第二射频PA Mid器件12,此时,第二射频PA Mid器件12的耦合输出端口CPLOUT可与第一射频PA Mid器件11的耦合输入端口CPLIN连接,可将第二射频PA Mid器件12输出的任一射频信号的前向耦合信号或反向耦合信号输出至第一射频PA Mid器件11,以使第一射频PA Mid器件11直接将第二射频PA Mid器件12的任一射频信号的前向耦合信号或反向耦合信号经耦合输出端口CPLOUT输出至反馈通道。
示例性的,以第一射频PA Mid器件11为例,阐述第一射频信号(例如,N77频段的 5G信号)的收发控制原理:
第一射频信号的发射流向:第一发射信号经第一射频PA Mid器件11的发射端口RFIN进入,经过功率放大器131进行功率放大,放大处理后的第一射频信号经第一耦合单元111a,采样第一射频信号的前向耦合信号和反向耦合鑫海,并将采集到的信号通过射频DP5T开关切换到耦合输出端口CPLOUT;同时,第二射频PA Mid器件12的耦合信号从第二射频PA Mid器件12的耦合T端口输出,再通过射频的走线进入第一射频PA Mid器件11的耦合输入端口CPLIN,最终从第一射频PA Mid器件11的耦合端口输出至处理其的反馈端口。经过第一耦合单元111a的输出端口b输出的第一射频信号经第一开关单元142切换至滤波单元132,由滤波单元132滤波处理后经第二开关单元150切换至天线端口ANT,经第一分集射频信号输出至第一天线Ant0或第二天线Ant1。
第一射频信号的接收流向:第一射频信号经第一分集射频PA Mid器件10从天线端口ANT进入,通过第二开关单元150切换至滤波单元132,经滤波处理后经过第一开关单元142切换至低噪声放大器141所在的接收通路,进而可经接收端口RX输出至射频收发器。
在本实施例中,通过在第一射频PA Mid器件11中增设一耦合输入端口CPLIN,可以省略前述如图10所示的实施例中的反馈切换开关20,可以缩短射频的走线长度,减小了射频系统布局的复杂度,同时还减少射频系统占用PCB的面积,降低了成本。
如图14所示,本申请实施例还提供一种通信设备,该通信设备上设置有上述任一实施例中的射频系统和与射频系统连接的射频收发器90,通过在通信设备上设置该射频系统,可以实现在多个耦合单元111中选择输出任一射频信号的前向耦合信号或反向耦合信号,实现了多个频段射频信号的耦合切换,减小了占用封装的面积,同时也降低了成本。同时,在该射频PA Mid器件10中仅设置一个耦合输出端口CPLOUT,由于多个频段的射频信号并不是同时发射的,一个耦合输出端口CPLOUT也可以满足通信需求,而且还减少射频PA Mid器件10内部的射频走线复杂度,同时也可以提高射频PA Mid器件10各走线的隔离度性能。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种射频PA Mid器件,用于发射多个不同工作频段的射频信号,所述射频PA Mid器件被配置有耦合输出端口和多个用于与天线连接的天线端口,所述射频PA Mid器件包括:
    耦合模块,设置在用于发射多个所述射频信号的发射通路上,所述耦合模块包括多个耦合单元,所述耦合单元包括:
    输入端口,用于接收任一所述射频信号;
    输出端口,与所述天线端口连接,用于向所述天线输出所述射频信号;
    第一耦合端口,用于对所述射频信号进行耦合并输出前向耦合信号;
    第二耦合端口,用于对所述射频信号的反射信号进行耦合并输出反向耦合信号;
    多路选择开关,分别与每一所述耦合单元的第一耦合端口、第二耦合端口、耦合输出端口、地端连接,所述多路选择开关用于选择性地将任一所述耦合单元的所述前向耦合信号或后向耦合信号经所述耦合输出端口输出。
  2. 根据权利要求1所述的射频PA Mid器件,其特征在于,所述多路选择开关包括多个第一端和两个第二端,其中,每一所述第一端分别对应与多个所述耦合单元的任一所述第一耦合端口或任一第二耦合端口连接,一所述第二端与所述耦合输出端口连接,另一所述第二端接地。
  3. 根据权利要求2所述的射频PA Mid器件,其特征在于,所述射频PA Mid器件还包括第一电阻,所述第一电阻分别与所述多路选择开关的一第二端、地端连接,用于释放所述前向耦合信号或所述反向耦合信号。
  4. 根据权利要求2所述的射频PA Mid器件,其特征在于,所述射频PA Mid器件还被配置有耦合输入端口,所述多路选择开关的再一所述第一端与所述耦合输入端口连接,所述耦合输入端口用于接收外部耦合信号,并将所述耦合信号经所述耦合输出端口输出。
  5. 根据权利要求1所述的射频PA Mid器件,其特征在于,所述耦合单元包括反向串联的第一定向耦合器和第二定向耦合器,其中,所述第一定向耦合器的耦合端作为所述耦合单元的所述第一耦合端口,所述第二定向耦合器的耦合端作为所述耦合单元的所述第二耦合端口,所述第一定向耦合器和第二定向耦合器的隔离端经分流电阻接地。
  6. 根据权利要求1所述的射频PA Mid器件,其特征在于,所述射频PA Mid器件还被配置有多个发射端口,所述射频PA Mid器件还包括:多个用于发射所述射频信号的发射电路,每一所述发射电路包括:
    功率放大器,所述功率放大器的输入端与所述发射端口连接,所述功率放大器的输出端与所述耦合单元的输入端口连接,用于接收所述射频信号,并对所述射频信号进行功率放大;
    滤波单元,分别与所述耦合单元的输出端口、天线端口连接,用于对所述射频信号进行滤波处理,并将所述滤波处理后的所述射频信号经所述天线端口输出。
  7. 根据权利要求6所述的射频PA Mid器件,其特征在于,所述射频PA Mid器件还被配置有多个接收端口,所述射频PA Mid器件还包括:多个用于接收所述射频信号的接收电路,每一所述接收电路包括:
    低噪声放大器,所述低噪声放大器的输出端与所述接收端口连接;
    第一开关单元,分别与所述滤波单元、耦合单元、低噪声放大器的输入端连接,用于选择导通所述耦合单元所在的发射电路或所述低噪声放大器所在的接收电路。
  8. 根据权利要求1所述的射频PA Mid器件,其特征在于,还包括分别与每个所述耦合单元的输出端口、每一所述天线端口连接的第二开关单元,所述第二开关单元用于选择导通任一所述耦合单元的输出端口与任一所述天线之间的收发通路。
  9. 根据权利要求2所述的射频PA Mid器件,其特征在于,所述耦合单元的数量为M 个,所述多路选择开关的第一端的数量为2*M个,2*M个所述第一端一一对应与M个所述耦合单元的第一耦合端口、第二耦合端口连接,其中,M≥2。
  10. 根据权利要求9所述的射频PA Mid器件,其特征在于,多个所述耦合单元包括:
    第一耦合单元,设置在用于发射第一射频信号的第一发射通路上,所述第一耦合单元用于接收第一射频信号并对所述第一射频信号进行耦合以输出第一前向耦合信号和第一反向耦合信号;
    第二耦合单元,设置在用于发射第二射频信号的第二发射通路上;所述第二耦合单元用于接收第二射频信号并对所述第二射频信号进行耦合以输出第二前向耦合信号和第二反向耦合信号;其中,
    所述多路选择开关的第一端的数量为四个,其中,一所述第一端与所述第一耦合单元的第一耦合端口连接,另一所述第一端与所述第一耦合单元的第二耦合端口连接,有一所述第一端与所述第二耦合单元的第一耦合端口连接,再一所述第一端与所述第二耦合单元的第二耦合端口连接。
  11. 根据权利要求4所述的射频PA Mid器件,其特征在于,所述耦合单元的数量为M个,所述多路选择开关的第一端的数量为2*M+1个,2*M个所述第一端一一对应与M个所述耦合单元的第一耦合端口、第二耦合端口连接,再一所述第一端与所述耦合输入端口连接。
  12. 根据权利要求11所述的射频PA Mid器件,其特征在于,多个所述耦合单元包括:
    第一耦合单元,设置在用于发射第一射频信号的第一发射通路上,所述第一耦合单元用于接收第一射频信号并对所述第一射频信号进行耦合以输出第一前向耦合信号和第一反向耦合信号;
    第二耦合单元,设置在用于发射第二射频信号的第二发射通路上;所述第一耦合单元用于接收第一射频信号并对所述第一射频信号进行耦合以输出第二前向耦合信号和第二反向耦合信号;其中,
    所述多路选择开关的第一端的数量为五个,其中,一所述第一端与所述第一耦合单元的第一耦合端口连接,另一所述第一端与所述第一耦合单元的第二耦合端口连接,又一所述第一端与所述第二耦合单元的第一耦合端口连接,再一所述第一端与所述第二耦合单元的第二耦合端口连接,还一所述第一端与所述耦合输入端口连接。
  13. 根据权利要求6所述的射频PA Mid器件,其特征在于,所述滤波单元包括低通滤波器或带通滤波器。
  14. 根据权利要求1所述的射频PA Mid器件,其特征在于,所述多路选择开关为射频DP4T开关或射频DP5T开关。
  15. 根据权利要求10或12所述的射频PA Mid器件,其特征在于,所述第一射频信号为N77频段的5G信号,所述第二射频信号为N79频段的5G信号。
  16. 一种射频系统,包括:
    如权利要求1-15任一项所述的射频PA Mid器件,所述射频PA Mid器件配置有第一天线端口和第二天线端口;所述射频PA Mid器件还用于选择导通任一所述耦合单元的输出端口分别与所述第一天线端口和第二天线端口之间的发射通路;
    第一天线,与所述第一天线端口连接,用于收发多个不同工作频段的射频信号,
    第二天线,与所述第二天线端口连接,用于收发多个不同工作频段的射频信号。
  17. 根据权利要求16所述的射频系统,其特征在于,所述射频PA Mid器件的数量为两个,分别为第一射频PA Mid器件和第二射频PA Mid器件,所述射频系统还包括:
    反馈切换开关,分别与所述第一射频PA Mid器件和第二射频PA Mid器件连接,用于选择性地向反馈通道输入所述第一射频PA Mid器件或所述第二射频PA Mid器件输出的前向耦合信号或反向耦合信号;
    第一射频LNA器件,分别与所述第一射频PA Mid器件的第一天线端口、第一天线、第二天线连接,用于经所述第一天线、第二天线接收多个所述射频信号,并对接收的多个射频信号进行滤波放大器处理;
    第三天线,用于收发多个不同工作频段的射频信号;
    第四天线,用于收发多个不同工作频段的射频信号;
    第二射频LNA器件,分别与所述第一射频PA Mid器件的第二天线端口、所述第二射频PA Mid器件的第一天线端口、第三天线、第四天线连接,用于经所述第三天线、第四天线接收多个所述射频信号,并对接收的多个射频信号进行滤波放大器处理。
  18. 根据权利要求17所述的射频系统,其特征在于,所述第一射频LNA器件和所述第二射频LNA器件相同。
  19. 根据权利要求18所述的射频系统,其特征在于,所述第一射频LNA器件被配置有用于连接射频收发器的第一射频接收端口和第二射频接收端口以及用于连接天线的第一射频天线端口和第二射频天线端口,所述第一射频LNA器件包括双通道接收切换电路,所述双通道接收切换电路分别与所述第一射频接收端口、第二射频接收端口、第一射频天线端口、第二射频天线端口、第一射频PA Mid器件连接,用于经所述第一天线端口、第二天线端口接收第一射频信号、第二射频信号,以对接收的所述第一射频信号进行滤波放大处理后经所述第一射频接收端口输出或将接收的所述第一射频信号切换至所述射频PA Mid器件,并对接收的所述第二射频信号进行滤波放大处理后经所述第二射频接收端口输出。
  20. 一种通信设备,包括:
    射频收发器,
    如权利要求16-19任一项所述的射频系统,与所述射频收发器连接。
PCT/CN2021/091904 2020-06-23 2021-05-06 射频PA Mid器件、射频系统和通信设备 WO2021258863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010580577.X 2020-06-23
CN202010580577.XA CN113839681B (zh) 2020-06-23 2020-06-23 射频PA Mid器件、射频系统和通信设备

Publications (1)

Publication Number Publication Date
WO2021258863A1 true WO2021258863A1 (zh) 2021-12-30

Family

ID=78964046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091904 WO2021258863A1 (zh) 2020-06-23 2021-05-06 射频PA Mid器件、射频系统和通信设备

Country Status (2)

Country Link
CN (1) CN113839681B (zh)
WO (1) WO2021258863A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337698A (zh) * 2022-01-13 2022-04-12 西安易朴通讯技术有限公司 一种射频接收方法及装置
CN114785359A (zh) * 2022-04-26 2022-07-22 Oppo广东移动通信有限公司 射频系统和通信设备
CN115065375A (zh) * 2022-05-20 2022-09-16 Oppo广东移动通信有限公司 射频功率放大电路、射频系统及无线通信设备
CN115882966A (zh) * 2022-12-01 2023-03-31 广电计量检测(深圳)有限公司 一种5g移动测试终端开关滤波单元

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992231B (zh) * 2021-12-28 2022-06-17 荣耀终端有限公司 射频收发模组及电子设备
CN115133951A (zh) * 2022-07-28 2022-09-30 Oppo广东移动通信有限公司 一种射频系统和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288271A (zh) * 1999-09-15 2001-03-21 摩托罗拉公司 适用于多频带无线通信装置中的射频耦合器装置
CN105428772A (zh) * 2014-09-12 2016-03-23 英飞凌科技股份有限公司 用于定向耦合器模块的系统和方法
CN107147424A (zh) * 2016-03-01 2017-09-08 英飞凌科技股份有限公司 包括开关单元的器件及其应用
CN207542372U (zh) * 2017-12-12 2018-06-26 江苏德是和通信科技有限公司 一种大功率波导链式合成器
US20180351530A1 (en) * 2017-06-06 2018-12-06 Skyworks Solutions, Inc. Switched multi-coupler apparatus and modules and devices using same
CN109565292A (zh) * 2016-06-22 2019-04-02 天工方案公司 用于多频功率检测的电磁耦合器装置和包含其的设备
CN208754290U (zh) * 2017-10-06 2019-04-16 株式会社村田制作所 双向耦合器
CN110166146A (zh) * 2019-04-25 2019-08-23 维沃移动通信有限公司 一种功率检测电路及终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288271A (zh) * 1999-09-15 2001-03-21 摩托罗拉公司 适用于多频带无线通信装置中的射频耦合器装置
CN105428772A (zh) * 2014-09-12 2016-03-23 英飞凌科技股份有限公司 用于定向耦合器模块的系统和方法
CN107147424A (zh) * 2016-03-01 2017-09-08 英飞凌科技股份有限公司 包括开关单元的器件及其应用
CN109565292A (zh) * 2016-06-22 2019-04-02 天工方案公司 用于多频功率检测的电磁耦合器装置和包含其的设备
US20180351530A1 (en) * 2017-06-06 2018-12-06 Skyworks Solutions, Inc. Switched multi-coupler apparatus and modules and devices using same
CN208754290U (zh) * 2017-10-06 2019-04-16 株式会社村田制作所 双向耦合器
CN207542372U (zh) * 2017-12-12 2018-06-26 江苏德是和通信科技有限公司 一种大功率波导链式合成器
CN110166146A (zh) * 2019-04-25 2019-08-23 维沃移动通信有限公司 一种功率检测电路及终端

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337698A (zh) * 2022-01-13 2022-04-12 西安易朴通讯技术有限公司 一种射频接收方法及装置
CN114337698B (zh) * 2022-01-13 2023-12-22 西安易朴通讯技术有限公司 一种射频接收方法及装置
CN114785359A (zh) * 2022-04-26 2022-07-22 Oppo广东移动通信有限公司 射频系统和通信设备
CN114785359B (zh) * 2022-04-26 2024-01-02 Oppo广东移动通信有限公司 射频系统和通信设备
CN115065375A (zh) * 2022-05-20 2022-09-16 Oppo广东移动通信有限公司 射频功率放大电路、射频系统及无线通信设备
CN115882966A (zh) * 2022-12-01 2023-03-31 广电计量检测(深圳)有限公司 一种5g移动测试终端开关滤波单元

Also Published As

Publication number Publication date
CN113839681B (zh) 2022-11-04
CN113839681A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2021258863A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2022062585A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN212588326U (zh) 射频PA Mid器件、射频系统和通信设备
WO2022062575A1 (zh) 射频系统和通信设备
WO2021238453A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2021238536A1 (zh) 射频PA Mid器件、射频收发装置和通信设备
CN212588327U (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2021258855A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2022127402A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
CN114039614B (zh) 射频前端器件、射频收发系统和通信设备
WO2023098201A1 (zh) 射频系统及通信设备
CN212811690U (zh) 射频l-drx器件、射频收发系统和通信设备
US20230093847A1 (en) Radio frequency pa mid device, radio frequency transceiving system, and communication apparatus
WO2022143453A1 (zh) 射频电路及电子设备
WO2022062586A1 (zh) 射频drx器件、射频系统和通信设备
CN113726357A (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN113726358A (zh) 射频PA Mid器件、射频系统和通信设备
WO2021238430A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023098244A1 (zh) 射频前端器件和射频系统
CN213661596U (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN115842564A (zh) 射频前端模块、射频系统及电子设备
WO2021238538A1 (zh) 射频l-drx器件、射频收发系统和通信设备
WO2022127399A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
CN115250130B (zh) 射频PA Mid器件、射频收发系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828703

Country of ref document: EP

Kind code of ref document: A1