WO2021238453A1 - 射频PA Mid器件、射频系统和通信设备 - Google Patents

射频PA Mid器件、射频系统和通信设备 Download PDF

Info

Publication number
WO2021238453A1
WO2021238453A1 PCT/CN2021/086480 CN2021086480W WO2021238453A1 WO 2021238453 A1 WO2021238453 A1 WO 2021238453A1 CN 2021086480 W CN2021086480 W CN 2021086480W WO 2021238453 A1 WO2021238453 A1 WO 2021238453A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
frequency signal
antenna
port
coupling
Prior art date
Application number
PCT/CN2021/086480
Other languages
English (en)
French (fr)
Inventor
陈武
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021238453A1 publication Critical patent/WO2021238453A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of radio frequency technology, and in particular to a radio frequency PA Mid device, radio frequency system and communication equipment.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • the communication frequency of 5G mobile communication technology is higher than that of 4G mobile communication technology.
  • a 5G radio frequency system needs to include both radio frequency PA Mid devices and radio frequency LNA devices to realize the transmission control of the two radio frequency signals.
  • the insertion loss of the transmission link is large, and the index of the adjacent channel leakage ratio is low.
  • a radio frequency PA Mid device radio frequency system and communication equipment are provided.
  • a radio frequency PA Mid device is configured with a first antenna port, a second antenna port, a first transmitting port, a first receiving port, and a second receiving port.
  • the radio frequency PA Mid device includes:
  • the first transceiver circuit is respectively connected to the first transmitting port, the first receiving port, and the first antenna port, and is used for amplifying and filtering the first radio frequency signal received by the first transmitting port and outputting it through the first antenna port; Receiving the first radio frequency signal through the first antenna port, and filtering and amplifying the received first radio frequency signal, so as to realize the control of receiving and sending the first radio frequency signal;
  • the second transceiver circuit is respectively connected to the second receiving port and the second antenna port, and is used to receive the second radio frequency signal through the second antenna port, and perform filtering and amplifying processing on the received second radio frequency signal to realize the second radio frequency Signal reception control; wherein, the working frequency bands of the first radio frequency signal and the second radio frequency signal are different.
  • a radio frequency system including:
  • the antenna group includes a first antenna and a second antenna
  • the switch module includes a plurality of first ends and two second ends. A first end is connected to the first antenna port, a first end is connected to the second antenna port; a second end is connected to the first antenna, and a second end is connected to the first antenna. The two ends are connected with the second antenna, and the switch module is used to select and turn on the radio frequency path between the first antenna and the second antenna of the radio frequency PA Mid device respectively, so that the radio frequency PA Mid device can send and receive the first radio frequency signal and receive the second radio frequency signal .
  • a communication device including:
  • the above-mentioned radio frequency system is connected to the radio frequency transceiver.
  • radio frequency PA Mid devices radio frequency systems and communication equipment, radio frequency PA Mid devices include radio frequency PA Mid devices, antenna groups and switch modules. Among them, the radio frequency receiving end and radio frequency output end of the radio frequency PA Mid device do not integrate switching devices. Only one switch module is provided between the PA Mid device and the antenna group to enable the radio frequency PA Mid device to realize the control of the first radio frequency signal receiving and sending and the second radio frequency signal reception control, which can reduce the insertion loss of the transmission link and improve the phase. Adjacent channel leakage ratio, thereby improving communication performance.
  • Figure 1 is one of the structural block diagrams of a radio frequency system in an embodiment
  • Figure 2 is one of the structural block diagrams of a radio frequency PA Mid device in an embodiment
  • Fig. 3 is a second structural block diagram of a radio frequency PA Mid device in an embodiment
  • Fig. 4 is the third structural diagram of a radio frequency PA Mid device in an embodiment
  • Fig. 5 is a fourth structural block diagram of a radio frequency PA Mid device in an embodiment
  • Fig. 6 is a fifth structural block diagram of a radio frequency PA Mid device in an embodiment
  • Fig. 7a is a schematic diagram of the pin distribution of the radio frequency PA Mid device in an embodiment
  • FIG. 7b is a schematic diagram of the packaging structure layout of the radio frequency PA Mid device in FIG. 7a;
  • Figure 8a is a schematic diagram of the pin distribution of a radio frequency PA Mid device in another embodiment
  • Fig. 8b is a schematic diagram of the packaging structure layout of the radio frequency PA Mid device in Fig. 8a;
  • Fig. 9 is the second structural block diagram of the radio frequency system in an embodiment
  • FIG. 10 is a schematic diagram of SRS antenna transmission in one embodiment
  • Figure 11 is the third structural block diagram of the radio frequency system in an embodiment
  • Fig. 12 is a fourth structural block diagram of the radio frequency system in an embodiment
  • Fig. 13 is a structural block diagram of a communication device in an embodiment.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • a plurality of means at least two, such as two, three, etc., unless specifically defined otherwise.
  • everal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the radio frequency system involved in the embodiments of this application can be applied to a communication device with wireless communication function.
  • the communication device can be a handheld device, a vehicle-mounted device, a wearable device, a computing device or other processing device connected to a wireless modem, and various forms User Equipment (UE) (for example, mobile phone), Mobile Station (MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • Network equipment may include base stations, access points, and so on.
  • the radio frequency system includes an antenna group 10, a radio frequency PA Mid (Power Amplifier Modules including Duplexers) device 20, and a switch module 30.
  • the first transceiver circuit 210 and the second transceiver circuit 220 are set inside the radio frequency PA Mid device 20, it is possible to realize the reception control of the dual-band radio frequency signal (the first radio frequency signal and the second radio frequency signal), and at least one The single-band radio frequency signal transmission control can reduce the insertion loss of the transmission link, increase the adjacent channel leakage ratio, and thereby improve the communication performance of the radio frequency system.
  • both the first radio frequency signal and the second radio frequency signal may be 5G NR signals, but their respective operating frequency bands are different.
  • the first radio frequency signal may be a 5G signal whose working frequency band is the N77 frequency band or/and the N78 frequency band
  • the second radio frequency signal may be a 5G signal whose working frequency band is the N79 frequency band.
  • the first radio frequency signal may be a 5G signal with a working frequency band of N79
  • the second radio frequency signal may be a 5G signal with a working frequency band of N77 frequency band or/and N78 frequency band.
  • the operating frequency band of N77 is 3.3 GHz-4.2 GHz
  • the operating frequency band of N78 is 3.3 GHz-3.8 GHz
  • the operating frequency of N79 is 4.4 GHz-5.0 GHz. It should be noted that since the working frequency band of N77 covers the working frequency band of N78, that is, when the radio frequency PA Mid device 20 supports the control of the transmission and reception of 5G signals in the N77 frequency band, it can also correspondingly support the control of the transmission and reception of 5G signals in the N78 frequency band.
  • the radio frequency PA Mid device 20 is configured with a first antenna port ANT1, a second antenna port ANT2, a first transmitting port RFIN1, a first receiving port RX1, and a second receiving port RX2.
  • the first antenna port ANT1 and the second antenna port ANT2 can be understood as the radio frequency pins configured in the radio frequency PA Mid device 20 and connected to the antennas in the antenna group 10.
  • the first transmitting port RFIN1, the first receiving port RX1 and the second receiving port RX2 can be understood as radio frequency terminals configured in the radio frequency PA Mid device 20 for connection with a radio frequency transceiver.
  • the radio frequency PA Mid device 20 includes a first transceiver circuit 210 and a second transceiver circuit 220.
  • the first transceiver circuit 210 is respectively connected to the first transmitting port RFIN1, the first receiving port RX1, and the first antenna port ANT1, and is used for amplifying and filtering the first radio frequency signal received by the first transmitting port RFIN1 and passing it through the first antenna port.
  • ANT1 output to realize the transmission control of the first radio frequency signal; also used to receive the first radio frequency signal through the first antenna port ANT1, filter and amplify the received first radio frequency signal, and output to the radio frequency transceiver through the first receiving port RX1 In order to realize the receiving control of the first radio frequency signal, and then realize the control of receiving and sending the radio frequency signal.
  • the second transceiver circuit 220 is respectively connected to the second receiving port RX2 and the second antenna port ANT2, and is used to receive the second radio frequency signal through the second antenna port ANT2, and filter and amplify the received second radio frequency signal after the first
  • the second receiving port RX2 is output to the radio frequency transceiver to realize the control of receiving the second radio frequency signal.
  • the radio frequency PA Mid device 20 can receive the second radio frequency signal received by the antenna group 10 through the second antenna port ANT2, filter and amplify the second radio frequency signal, and then transmit it to the radio frequency processor via the second receiving port RX2. Receiving control of the second radio frequency signal.
  • the first transceiver circuit 210 includes a first power amplifier 211 and a first low-noise amplifier 212 for amplifying the first radio frequency signal, and a first switch unit 213 for supporting the passage of the first radio frequency signal. And the first filter 215.
  • the first transmitting port RFIN1 is connected to the first selection terminal of the first switch unit 213 via the first power amplifier 211, the second selection terminal of the first switch unit 213 is connected to the input terminal of the first low noise amplifier 212, and the first The output terminal of the low noise amplifier 212 is connected to the first receiving port RX1; the control terminal of the first switch unit 213 is connected to the first antenna port ANT1 via the first filter 215.
  • the first switch unit 213 is used to select and turn on the receiving link where the first receiving port RX1 is located or the transmitting link where the first transmitting port RFIN1 is located.
  • both the first power amplifier 211 and the first low-noise amplifier 212 can support signals in the N77 frequency band, that is, signals in the N77 frequency band can be amplified.
  • the first filter 215 only allows the radio frequency signal of the N77 frequency band to pass, and can also filter spurious waves other than the signal of the N77 frequency band.
  • the first filter 215 may be a band pass filter.
  • the first switch unit 213 is a single-pole double-throw (SPDT) switch, where the fixed end of the SPDT switch can be understood as the selection end of the first switch unit 213, and the moving end of the SPDT switch can be understood as the first switch unit 213.
  • the first stationary terminal of the SPDT switch is connected to the output terminal of the first power amplifier 211
  • the second stationary terminal of the SPDT switch is connected to the input terminal of the first low-noise amplifier 212
  • the moving terminal of the SPDT switch is connected to the output terminal of the first low-noise amplifier 212.
  • the filter 215 is connected.
  • the first switch unit 213 is used to switch the transceiver working mode under the TDD standard. Specifically, when the fixed end of the SPDT switch is controlled to be connected to the first power amplifier 211, the transmission link where the first power amplifier 211 is located can be turned on so that the antenna group 10 transmits the first radio frequency signal to achieve the A radio frequency signal transmission control; when the fixed end of the control SPDT switch is connected to the first low noise amplifier 212, the receiving link where the first low noise amplifier is located is turned on to realize the reception of the first radio frequency signal control.
  • the first switch unit 213 may also be an electronic switch tube, a mobile industry processor (MIPI) interface and/or a general-purpose input/output (GPIO) interface.
  • the corresponding control unit can be a MIPI control unit and/or a GPIO control unit.
  • the MIPI control unit may correspondingly output clock and data signals to corresponding pins connected to the first power amplifier 211 and the first low noise amplifier 212.
  • the GPIO control unit can correspondingly output high-level signals to corresponding pins connected to the first coupler 214 and the first low noise amplifier 212.
  • first filter 215 and the first switch unit 213 are not further limited.
  • the second transceiver circuit 220 includes a second filter 221 and a second low noise amplifier 222.
  • the second filter 221 is connected to the second antenna port ANT2, and is used to receive the second radio frequency signal through the second antenna port ANT2 and filter the received second radio frequency signal; the input end of the second low noise amplifier 222 is connected to The second filter 221 is connected, and the output terminal of the second low noise amplifier 222 is connected to the second receiving port RX2 for amplifying the second radio frequency signal and outputting it through the second receiving port RX2.
  • the second transceiver circuit 220 forms a second radio frequency signal receiving link by setting the second filter 221 and the second low noise amplifier 222, and can perform filtering and amplifying processing on the second radio frequency signal received via the second antenna port ANT2, and then Realize the receiving control of the second radio frequency signal.
  • the radio frequency PA Mid device 20 is also configured with a second transmitting port RFIN2, and the second transceiver circuit 220 further includes a second power amplifier 223 for amplifying the second radio frequency signal. , And used to support the second radio frequency signal to pass through the second switch unit 225.
  • the second transmitting port RFIN2 is connected to the first selection terminal of the second switch unit 225 via the second power amplifier 223, the second selection terminal of the second switch unit 225 is connected to the input terminal of the second low noise amplifier 222, and the second The output terminal of the low noise amplifier 222 is connected to the second receiving port RX2; the control terminal of the second switch unit 225 is connected to the second antenna port ANT2 via the second filter 221.
  • the second switch unit 225 is used to select and turn on the receiving link where the second receiving port RX2 is located or the transmitting link where the second transmitting port RFIN2 is located, so as to realize the control of receiving and sending the second radio frequency signal.
  • the second switch unit 225 is used to implement switching control of the transceiver working mode under the TDD standard.
  • the transmission link where the second receiving port RX2 is located may be turned on so that the antenna group 10 transmits the second radio frequency signal In turn, the transmission control of the second radio frequency signal is realized; when the second selection terminal of the second switch unit 225 is controlled to be connected to the second low noise amplifier 222, the receiving link where the second transmission port RFIN2 is located can be turned on to achieve Receiving control of the second radio frequency signal.
  • the second radio frequency signal Take the second radio frequency signal as a 5G signal in the N79 frequency band as an example for description.
  • the second power amplifier 223 and the second low noise amplifier 222 can both support the 5G signal in the N79 frequency band, that is, it can amplify and couple the 5G signal in the N79 frequency band.
  • the second filter 222 only allows 5G signals in the N79 frequency band to pass, and can also filter spurious waves other than the 5G signals in the N79 frequency band.
  • the second filter 222 may be a band pass filter.
  • the types of the second switch unit 225 and the first switch unit 213 may be the same or different.
  • the specific forms of the second filter 221 and the second switch unit 225 are not further limited.
  • the second transceiver circuit 220 when the second transceiver circuit 220 includes a second low noise amplifier 222, a second filter 221, a second power amplifier 223, and a second switch unit 225, it can also receive the second radio frequency signal. Control and launch control.
  • the first transceiver circuit 210 in the radio frequency PA Mid device 20 can realize the transceiver control of the first radio frequency signal, and the second transceiver circuit 220 can also realize the transceiver control of the second radio frequency signal, it can make the radio frequency PA Mid device 20 has dual-band radio frequency signal transceiving capabilities and power amplifying functions for radio frequency signals in each frequency band, and can further realize the control of power amplifying radio frequency signals in N77 and N79 frequency bands.
  • the radio frequency PA Mid device 20 is also configured with a coupling output port CPLOUT.
  • the radio frequency PA Mid device 20 further includes: a first coupling circuit 230 provided in the transmission link of the first transceiver circuit 210, for coupling the first radio frequency signal to output the coupled signal through the coupling output port CPLOUT.
  • the first coupling circuit 230 includes a coupling unit 231 and a coupling switch 233.
  • the coupling unit 231 is used to couple the first radio frequency signal in the transmission link to enable coupling and output of the first radio frequency signal, and the output coupling signal can be used to measure the forward coupling power and the reverse coupling power of the first radio frequency signal .
  • the coupling unit 231 includes an input terminal a, an output terminal b, a first coupling terminal c, and a second coupling terminal d.
  • the coupling unit 231 also includes a main line extending between the input terminal a and the output terminal b, and a secondary line extending between the first coupling terminal c and the second coupling terminal d.
  • the input terminal a of the coupling unit 231 is connected to the output terminal of the first power amplifier 221, the output terminal b of the coupling unit 231 is connected to the first switch unit 213, and the first coupling terminal c is used for receiving the radio frequency signal from the input terminal a. Perform coupling and output a forward coupling signal; the second coupling terminal d is used to couple the reflected signal of the first radio frequency signal and output a reverse coupling signal.
  • the forward power information of the first radio frequency signal can be detected; based on the reverse coupling signal output by the second coupling terminal d, the forward power information of the second radio frequency signal can be detected correspondingly Reverse power information, and define the detection mode as a reverse power detection mode.
  • the coupling switch 233 is respectively connected to the first coupling end c, the second coupling end d, and the coupling output port CPLOUT, and is used to selectively turn on the first coupling path between the first coupling end c and the coupling output port CPLOUT to realize the radio frequency Signal forward power detection, and define the detection mode as a reverse power detection mode, or turn on the second coupling path between the second coupling end d and the coupling output port CPLOUT to realize the detection of the reverse power of the radio frequency signal , And define the detection mode as the reverse power detection mode. That is, the coupling switch 233 is used to switch between the forward power detection mode and the reverse power detection mode.
  • the coupling unit 231 includes two directional couplers connected in reverse series.
  • the radio frequency PA Mid device is configured with a coupling output port CPLOUT
  • the radio frequency PA Mid device 20 further includes a second coupling circuit
  • the second coupling circuit includes:
  • the first coupling unit 241 is arranged in the transmission link of the first transceiver circuit 210 and is used for coupling the first radio frequency signal to output the first coupling signal.
  • the first coupling signal includes a first forward coupling signal and a first reverse coupling signal.
  • the second coupling unit 243 is respectively used for coupling the second radio frequency signal in the transmission link of the second transceiver circuit 220 to output the second coupling signal through the coupling output port; wherein, the second coupling signal includes the second forward direction The coupled signal and the second reverse coupled signal.
  • first coupling unit 241 and the second coupling unit 243 in this embodiment are the same as the foregoing embodiment, that is, the structure of the coupling unit 231 shown in FIG. 4, and will not be repeated here.
  • the coupling switch unit 245 is respectively connected to the first coupling unit 241 and the second coupling unit 243, and is used to output the first coupling signal or the second coupling signal to CPLOUT through the coupling output port, that is, to select and switch the first coupling unit 241 And the second coupling unit 243 to output the first coupling signal or the second coupling signal, so as to detect the power information of the first coupling signal and the second coupling signal.
  • the power information includes forward power and reverse power.
  • the coupling switch unit 245 includes four first contacts (1, 2, 3, 4) and two second contacts (5, 6). Among them, a first contact 1 is connected to the second coupling end of the first coupling unit 241, a first contact 2 is connected to the first coupling end of the first coupling unit 241, and a first contact 4 is connected to the second coupling unit.
  • the first coupling end of 243 is connected, a first contact 3 is connected to the second coupling end of the second coupling unit 243; a second contact 6 is connected to the coupling output port CPLOUT, and a second contact 5 is grounded.
  • the transmission and reception control of the first radio frequency signal is described by taking as an example the power information of the first radio frequency signal output by the transmission link where the first coupling unit 241 is collected, and the coupling switch unit 245 is a radio frequency DP4T switch.
  • the first radio frequency signal enters from the first transmitting port RFIN1 port, passes through the first power amplifier 211, the first switch unit 213, and the first filter 215, and then reaches the first antenna port ANT1 and then is transmitted out through the antenna group 10;
  • the signal enters from the first antenna port ANT1 through the antenna group 10, passes through the first filter 215, the first switch unit 213, and the first low-noise amplifier 212, reaches the first receiving port RX1, and is output to the radio frequency transceiver.
  • the contact 5 of the radio frequency DP4T switch When the first reverse coupling signal of the first coupling unit 241 needs to be collected, the contact 5 of the radio frequency DP4T switch is connected to the contact 1, and the leaked first forward coupling signal is grounded through the load to avoid the second coupling end ( The reverse power output port) causes interference.
  • the contact 6 of the radio frequency DP4T switch is connected to the contact 2, and the first reverse coupling signal is derived to the coupling output port CPLOUT.
  • the contact 5 of the radio frequency DP4T switch When sampling the first forward coupling signal of the first coupling unit 241, the contact 5 of the radio frequency DP4T switch is connected to the contact 2, and the contact 6 is connected to the contact 1, and the leaked first reverse coupling signal is grounded through the load. Avoid interference to the second coupling end (reverse power output port).
  • the working principle of the second radio frequency signal transceiving control is the same as the working principle of the first radio frequency signal transceiving control; the working principle of the second coupling unit 243 is the same as the working principle of the first coupling unit 241, which is implemented in this application The examples are not repeated here.
  • only one coupling switch unit 245 (such as a radio frequency DP4T switch) can be provided to switch between the first coupling unit 241 and the second coupling unit 243, which reduces the footprint of the package and also reduces the cost. . Since the first coupling unit 241 and the second coupling unit 243 will not work at the same time, only one coupling output port CPLOUT can meet the demand; the complexity of the RF wiring inside the device is reduced, and the isolation of the internal wiring can also be improved. Degree performance.
  • the radio frequency PA Mid device 20 further includes a resistor R, and a second contact 5 is grounded through the resistor R.
  • the resistance of the resistor R can be set to 50 ohms to ground the leaked forward coupling signal or reverse coupling signal, which solves the problem of the positive coupling signal output of the first coupling unit 241 or the second coupling unit 243. Interference of the reverse coupling signal to the reverse output port.
  • the number of coupling output ports CPLOUT of the radio frequency PA Mid device configuration is two, which are respectively denoted as the first coupling output port CPLOUT1 and the second coupling output port CPLOUT2, wherein the coupling switch unit 245 includes three switches, namely SPDT1, SPDT2 and DPDT.
  • first end of SPDT1 is respectively connected to the first coupling end and the second coupling end of the first coupling unit 241, and the first end of SPDT2 is respectively connected to the first coupling end and the second coupling end of the second coupling unit 243;
  • the second end of SPDT1 and the second end of SPDT2 are respectively connected to the first end of DPDT, and the second end of DPDT is respectively connected to the first coupling-out port CPLOUT1 and the second coupling-out port CPLOUT2.
  • the first coupling signal output by the first coupling unit 241 or the first coupling signal output by the second coupling unit 243 can be controlled by switching the three switches (SPDT1, SPDT2, and DPDT) in the coupling switch unit 245.
  • the first coupling-out port CPLOUT1 or the second coupling-out port CPLOUT2 is used to detect the power information of the first coupling signal and the power information of the second coupling signal.
  • the radio frequency PA Mid device 20 further includes a first control unit 410 and a second control unit 420.
  • the first control unit 410 is respectively connected with the first switch unit 213, the second switch unit 225, the first power amplifier 211, and the second power amplifier 223, and is used to control the communication of the first switch unit 213 and the second switch unit 225. It is also used to control the working status of the first power amplifier 211 and the second power amplifier 223.
  • the second control unit 420 is respectively connected to the first low noise amplifier 212 and the second low noise amplifier 222 for adjusting the gain coefficient of the first low noise amplifier 212 and the second low noise amplifier 222.
  • the first low noise amplifier 212 and the second low noise amplifier 222 are amplifier devices with adjustable gains.
  • the first low noise amplifier 212 and the second low noise amplifier 222 have 8 gain levels.
  • the first control unit 410 and the second control unit 420 may be a Mobile Industry Processor Interface (MIPI)—RF Front End Control Interface (RFFE) control unit, and its control method It complies with the control protocol of the RFFE bus.
  • MIPI Mobile Industry Processor Interface
  • RFFE RF Front End Control Interface
  • the radio frequency PA Mid device 20 is also configured with the clock signal input pin CLK, the single/bidirectional data signal input or the bidirectional pin SDATAS , Reference voltage pin VIO and so on.
  • each device in the radio frequency PA Mid device 20 can be integrated and packaged in the same package chip, and the package structure is shown in Fig. 7a. That is, the first transceiving circuit 210, the second transceiving circuit 220, the first coupling circuit 230, the first control unit 240, and the second control unit 250 are all integrated and packaged in the same module to form a packaged chip.
  • the packaged chip can be configured with multiple pins. As shown in Figure 7b, the multiple pins can include antenna port pins, transmitting port pins, receiving port pins, ground pins, and reset enable input pins. , RFFE bus clock input pin, RFFE bus data input/output pin, coupled output pin, etc.
  • each device in the radio frequency PA Mid device 20 is packaged in the same chip, which can improve the integration degree, reduce the space occupied by each device, and facilitate the miniaturization of the device.
  • each device in the radio frequency PA Mid device 20 can be integrated and packaged in the same package chip, and the package structure is shown in FIG. 8a. That is, the first transceiving circuit 210, the second transceiving circuit 220, the first coupling unit 241, the second coupling unit 243, the coupling switch unit 245, the first control unit 240, and the second control unit 250 are all integrated and packaged in the same module In order to form a packaged chip.
  • the packaged chip can be configured with multiple pins. As shown in Figure 8b, the multiple pins can include antenna port pins, transmitting port pins, receiving port pins, ground pins, and reset enable input pins.
  • each device in the radio frequency PA Mid device 20 is packaged in the same chip, which can improve the integration degree, reduce the space occupied by each device, and facilitate the miniaturization of the device.
  • the embodiment of the present application also provides a radio frequency system.
  • the radio frequency system includes the radio frequency PA Mid device 20, the antenna group 10, and the switch module 30 in any of the foregoing embodiments.
  • the antenna group 10 includes at least a first antenna Ant0 and a second antenna Ant1. Both the first antenna Ant0 and the second antenna Ant1 are antennas capable of supporting the 5G NR frequency band.
  • the first antenna Ant0 can be used to receive and transmit (referred to as transceiving) the first radio frequency signal and/or the second radio frequency signal
  • the second antenna Ant1 can be used to transmit and receive the first radio frequency signal and/or the second radio frequency signal.
  • the first antenna Ant0 and the second antenna Ant1 may be directional antennas or non-directional antennas.
  • the first antenna Ant0 and the second antenna Ant1 may be formed using any suitable type of antenna.
  • the first antenna Ant0 and the second antenna Ant1 may include antennas with resonant elements formed by the following antenna structures: array antenna structure, loop antenna structure, patch antenna structure, slot antenna structure, helical antenna structure, strip antenna , At least one of monopole antennas, dipole antennas, etc. Different types of antennas can be used for different frequency band combinations of radio frequency signals.
  • the antenna group 10 may also include a third antenna and a fourth antenna. In the embodiment of the present application, the number and types of antennas included in the antenna group 10 are not further limited, and can be set according to actual needs.
  • the switch module 30 includes a plurality of first ends and two second ends.
  • a first end P1 is connected to the first antenna port ANT1, a first end P2 is connected to the second antenna port ANT2, and a second end T1 is connected to the second antenna port ANT2.
  • An antenna Ant0 is connected, and a second end T2 is connected to the second antenna Ant1.
  • the switch module 30 may be a radio frequency DP3T switch or a radio frequency DP4T switch.
  • the switch module 30 can be used to select and turn on the radio frequency path between the first antenna Ant0 and the second antenna Ant1 of the radio frequency PA Mid device 20 respectively, so that the radio frequency PA Mid device 20 transmits and receives the first radio frequency signal and receives the second radio frequency signal through the radio frequency channel. .
  • the switch module 30 when the switch module 30 conducts the radio frequency path between the first antenna port ANT1 and the first antenna Ant0 or the second antenna Ant1, it can form a transceiver link between the radio frequency PA Mid device 20 and the antenna group 10, so that the radio frequency The PA Mid device 20 transmits and receives the first radio frequency signal through the transceiver link; when the switch module 30 conducts the radio frequency path between the second antenna port ANT2 and the first antenna Ant0 or the second antenna Ant1, it can form a radio frequency PA Mid device 20 and antenna
  • the receiving link of the group 10 allows the radio frequency PA Mid device 20 to receive the second radio frequency signal via the receiving link.
  • the above radio frequency system includes a radio frequency PA Mid device 20, an antenna group 10, and a switch module 30. Neither the radio frequency receiving end nor the radio frequency output end of the radio frequency PA Mid device 20 has integrated switching devices.
  • the radio frequency PA Mid device 20 and the antenna group 10 Only one switch module 30 is provided between the radio frequency PA Mid device 20 to realize the control of receiving and sending of the first radio frequency signal and the receiving control of the second radio frequency signal, which can reduce the insertion loss of the transmission link and increase the adjacent channel leakage ratio. , And then improve communication performance.
  • the radio frequency system includes the radio frequency PA Mid device 20, the antenna group 10, the switch module 30, and the radio frequency LNA device 40 in any of the foregoing embodiments.
  • the radio frequency LNA device 40 is configured with a third antenna port ANT3 and a fourth antenna port ANT4.
  • a first end P3 of the switch module 30 is connected to the third antenna port ANT3, and a first end P4 of the switch module 30 is connected to the third antenna port ANT3.
  • the fourth antenna port ANT4 is connected; the radio frequency LNA device 40 is used to receive the first radio frequency signal through the third antenna port ANT3, filter and amplify the first radio frequency signal, and is also used to receive the second radio frequency signal through the fourth antenna port ANT4 , And filter and amplify the second radio frequency signal.
  • the radio frequency LNA device 40 is further configured with a third receiving port RX3 and a fourth receiving port RX4, and the radio frequency LNA device 40 includes a third filter 410, a third low noise amplifier 420, and a fourth filter 430. And the fourth low noise amplifier 440.
  • the third filter 410 is connected to the third antenna port ANT3, and is used for filtering the received first radio frequency signal.
  • the input end of the third low noise amplifier 420 is connected to the third filter 410, and the output end of the third low noise amplifier 420 is connected to the third receiving port RX3 for amplifying the first radio frequency signal.
  • the fourth filter 430 is connected to the fourth antenna port ANT4, and is used for filtering the received second radio frequency signal.
  • the input end of the fourth low noise amplifier 440 is connected to the fourth filter 430, and the output end of the fourth low noise amplifier 440 is connected to the fourth receiving port RX4 for amplifying the second radio frequency signal. That is, the third antenna port ANT3, the third filter 410, the third low-noise amplifier 420, and the third receiving port RX3 can form a receiving link for receiving and controlling the first radio frequency signal; correspondingly, the fourth antenna port The ANT4, the fourth filter 430, the fourth low-noise amplifier 440, and the fourth receiving port RX4 can form another receiving link for receiving and controlling the second radio frequency signal.
  • the third filter 410 can be the same as the first filter 215 in the foregoing embodiment, allowing only the first radio frequency signal to pass through, and can also filter spurious waves other than the first radio frequency signal; the fourth filter 430 is the same as the foregoing
  • the second filter 221 can be the same, allowing only the second radio frequency signal to pass through, and can also filter spurious waves other than the second radio frequency signal.
  • the type of each filter is not further limited.
  • neither the receiving port nor the output port of the radio frequency LNA device 40 is provided with a switch, which reduces the insertion loss of the receiving link.
  • a receiving link for receiving the first radio frequency signal can be added, and a receiving link for receiving the second radio frequency signal can also be added correspondingly, so that The radio frequency system realizes dual-channel reception of the first radio frequency signal and the second radio frequency signal.
  • High Power UE can be defined as a high-power signal output by the antenna of the transmission link of the communication device, corresponding to the power class PC2 (Power Class 2); currently, many operators require the communication device to have the ability to support PC2.
  • PC2 Power Class 2
  • PC2 Power Class 2
  • China Unicom recommends that 5G industry communications support PC2 in its "China Unicom 5G Industry Communication General Technical Requirements White Paper”. The specific information is shown in Table 1.
  • the 5G network supports beamforming technology, which can be directed to the communication equipment. If the base station wants to transmit directionally, it must first detect the location of the communication device, the quality of the transmission path, etc., so that the resources of the base station can be more accurately allocated to each communication device.
  • the communication device sending channel sounding reference signal (Sounding Reference Signal, SRS) information is a way for the base station to detect the communication position and channel quality.
  • SRS Sounding Reference Signal
  • 1T1R fixed on the first antenna Ant0 to feed back information to the base station, and does not support SRS round-robin transmission;
  • 1T4R Transmit SRS information in turns from the first antenna Ant0 to the fourth antenna Ant3, and only one antenna is selected for transmission at a time.
  • NSA non-standalone
  • 2T4R Transmit SRS information in turns from the first antenna Ant0 to the fourth antenna Ant3, and select two antennas to transmit at the same time each time.
  • independent networking Standalone, SA
  • SA independent networking
  • the radio frequency system includes a radio frequency PA Mid device, an antenna group and a switch module.
  • the number of radio frequency PA Mid devices is two, namely the first radio frequency PA Mid device 21 and the second radio frequency PA Mid device 22;
  • the number of radio frequency LNA devices is two, namely the first radio frequency LNA device 41 and the second radio frequency LNA device 41.
  • the number of switch modules is two, namely the first switch module 31 and the second switch module 32,
  • the antenna group 10 includes a first antenna Ant0, a second antenna Ant1, a third antenna Ant2, and a fourth antenna Ant3 .
  • the multiple first ends (P1, P2, P3, P4) of the first switch module 31 are respectively connected to the first radio frequency PA Mid device 21 and the first radio frequency LNA device 41, and the multiple second ends ( T1, T2) are respectively connected to the first antenna Ant0, the second antenna Ant1, and the first end P1 of the second switch module 32; the multiple first ends (P2, P3, P4) of the second switch module 32 and the second The radio frequency PA Mid device 22 and the second radio frequency LNA device 42 are connected, a second end T1 of the second switch module 32 is connected to the third antenna Ant2, and a second end T2 of the second switch module 32 is connected to the fourth antenna Ant3.
  • the first switch module 31 is a radio frequency 3P4T switch
  • the second switch module 32 is a radio frequency DP4T switch.
  • the first radio frequency PA Mid device 21 and the second radio frequency PA Mid device 22 are both used to control the transmission and reception of the first radio frequency signal and the second radio frequency signal to enable the radio frequency system to support the dual transmission of the first radio frequency signal.
  • Channel transmission and four-channel reception can also be that the system supports dual-channel transmission and four-channel reception of the second radio frequency signal at the same time.
  • the radio frequency system further includes a first SPDT switch 51 and a second SPDT switch 52, where the first SPDT switch 51 is connected to the first switch module 31, the second switch module 32, and the The second antenna Ant1 is connected to select and turn on the transceiver link between the first radio frequency PA Mid device 21 and the second antenna Ant1 and the third antenna Ant2 respectively; the second SPDT switch 52 is connected to the second switch module 32 and the third antenna respectively.
  • the three antenna ports ANT3 and the fourth antenna port ANT4 are connected to select and conduct the receiving links between the third antenna port ANT3 and the fourth antenna port ANT4 and the fourth antenna Ant3 respectively.
  • the first switch module 31 is a radio frequency DP4T switch
  • the second switch module 32 is a radio frequency DP4T switch.
  • the radio frequency system based on the embodiment can support the NSA mode, the SA mode, and the SRS function.
  • the channel configuration of NSA and SA is shown in Table 2, and the path configuration of NSA and SA, and the SRS path configuration are shown in Table 3 and Table 4, respectively.
  • TXO&PRX means the main transmission link and the main set receiving link
  • DRX means the diversity receiving link
  • TX1&MIMO PRX means the auxiliary transmitting link and the MIMO main set receiving link
  • MIMO DRX means the MIMO diversity receiving link .
  • Channel0, Channel1, Channel2, and Channel3 are the transmission links for antennas to transmit in turn.
  • the radio frequency system in the embodiment of this application can realize the function of supporting communication equipment in the frequency division multiplexing FDD system to transmit 4-port SRS in turn between transmitting antennas through sounding reference signal SRS, and it can also support the simultaneous reception of data by 4 antennas.
  • NSA mode and SA mode can realize the function of supporting communication equipment in the frequency division multiplexing FDD system to transmit 4-port SRS in turn between transmitting antennas through sounding reference signal SRS, and it can also support the simultaneous reception of data by 4 antennas.
  • the transmission link of the first radio frequency signal and the transmission link of the second radio frequency signal only need to pass through a switch, and the first radio frequency signal can be output to the antenna group 10 correspondingly.
  • the traditional In the technical solution there is no need to provide switches at both the radio frequency input end and the radio frequency output end of the radio frequency PA Mid device 20 and the radio frequency LNA device 40, which reduces the number of switches used, thereby reducing the insertion loss of the transmission link.
  • the switch insertion loss values in the typical frequency band are given as shown in Table 6.
  • the output power of the radio frequency system provided in this application can be calculated, as shown in Table 7.
  • test power value is digitally backed by 1dB, which is 25.5dBm.
  • specific test values of the second radio frequency signal (Band N79) are shown in Table 9.
  • the radio frequency system provided by the embodiment of this application has only one radio frequency DP4T switch in its transmission link.
  • the transmission performance of the transmission link meets the requirements of research and development and is higher than the 3GPP standard. Channel leakage ratio performance.
  • the operator's channel requirement for Band N79 is 1T4R, and only one transmission channel is needed. That is, only one transmission link needs to be configured in the first radio frequency PA Mid device 21 and the second radio frequency PA Mid device 22, which can save costs.
  • the first radio frequency PA Mid device 21 is used to control the transmission and reception of the first radio frequency signal and the second radio frequency signal;
  • the second radio frequency PA Mid device 22 is used to control the first radio frequency signal Perform receiving and sending control and receiving control of the second radio frequency signal, so that the radio frequency system supports single-channel transmission and four-channel reception of the first radio frequency signal, and supports four-channel reception of the second radio frequency signal. That is, the second power amplifier 223, the second coupling unit 243, and the second switch unit 225 can be removed from the transmission path in the second radio frequency PA Mid device 22.
  • the structural block diagram of the radio frequency system is shown in FIG. 12. Based on this radio frequency system, the transmission link of the first radio frequency signal only needs to pass through a radio frequency DP4T switch, and then the first radio frequency signal can be output to the antenna group 10 correspondingly. Compared with the traditional technical solution, the radio frequency PA Mid device is not required.
  • the radio frequency input end and the radio frequency output end of 20 and the radio frequency LNA device 40 are both provided with switches, which reduces the number of switches used, thereby reducing the insertion loss of the transmission link.
  • an embodiment of the present application also provides a communication device.
  • the communication device includes a radio frequency transceiver 90 and the radio frequency system in any of the foregoing embodiments.
  • the radio frequency in any of the foregoing embodiments is set on the communication device.
  • the system can improve the adjacent channel leakage ratio of the transmission link of the communication device, and then improve the wireless communication performance of the communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种射频PA Mid器件,射频PA Mid器件被配置有第一天线端口(ANT1)、第二天线端口(ANT2)、第一发射端口(RFIN1)、第一接收端口(RX1)和第二接收端口(RX2),射频PA Mid器件包括:第一收发电路(210),用于对第一发射端口(RFIN1)接收的第一射频信号进行放大滤波处理并经第一天线端口(ANT1)输出;还用于经第一天线端口(ANT1)接收第一射频信号,并对接收的第一射频信号进行滤波放大处理,以实现对第一射频信号的收发控制;第二收发电路(220),用于经第二天线端口(ANT2)接收第二射频信号,并对接收的第二射频信号进行滤波放大处理,以实现对第二射频信号的接收控制。

Description

射频PA Mid器件、射频系统和通信设备
相关申请的交叉引用
本申请要求于2020年5月26日提交中国专利局、申请号为2020104574142发明名称为“射频PA Mid器件、射频系统和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,特别是涉及一种射频PA Mid器件、射频系统和通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。5G移动通信技术通信频率相比于4G移动通信技术的频率更高。一般5G射频系统中需同时包括射频PA Mid器件和射频LNA器件才能实现对两种射频信号的发射控制,同时,需要在射频PA Mid器件和射频LNA器件的射频输入或输出端口处集成的开关以实现对两种不同射频信号的切换控制,其发射链路的插损大,相邻信道泄漏比的指标低。
发明内容
根据本申请的各种实施例,提供一种射频PA Mid器件、射频系统和通信设备。
一种射频PA Mid器件,被配置有第一天线端口、第二天线端口第一发射端口、第一接收端口和第二接收端口,射频PA Mid器件包括:
第一收发电路,分别与第一发射端口、第一接收端口、第一天线端口连接,用于对第一发射端口接收的第一射频信号进行放大滤波处理并经第一天线端口输出;还用于经第一天线端口接收第一射频信号,并对接收的第一射频信号进行滤波放大处理,以实现对第一射频信号的收发控制;
第二收发电路,分别与第二接收端口,第二天线端口连接,用于经第二天线端口接收第二射频信号,并对接收的第二射频信号进行滤波放大处理,以实现对第二射频信号的接收控制;其中,第一射频信号和第二射频信号的工作频段不同。
一种射频系统,包括:
上述射频PA Mid器件;
天线组,包括第一天线和第二天线;
开关模块,包括多个第一端和两个第二端,一第一端与第一天线端口连接,一第一端与第二天线端口连接;一第二端与第一天线连接,一第二端与第二天线连接,开关模块用于选择导通射频PA Mid器件分别第一天线、第二天线之间的射频通路,以使射频PA Mid器件收发第一射频信号和接收第二射频信号。
一种通信设备,包括:
射频收发器,
上述的射频系统,与射频收发器连接。
上述射频PA Mid器件、射频系统和通信设备,射频PA Mid器件包括射频PA Mid器件、天线组和开关模块,其中,射频PA Mid器件的射频接收端和射频输出端均未集成开关器件,在射频PA Mid器件与天线组之间仅设置一个开关模块就可以使射频PA Mid器件实现对第一射频信号的收发控制和对第二射频信号的接收控制,可以降低发射链路的插损,提高相邻信道泄漏比,进而提升通信性能。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中射频系统的结构框图之一;
图2为一个实施例中射频PA Mid器件的结构框图之一;
图3为一个实施例中射频PA Mid器件的结构框图之二;
图4为一个实施例中射频PA Mid器件的结构示意图之三;
图5为一个实施例中射频PA Mid器件的结构框图之四;
图6为一个实施例中射频PA Mid器件的结构框图之五;
图7a为一个实施例中射频PA Mid器件的引脚分布示意图;
图7b为图7a中射频PA Mid器件的封装结构布示意图;
图8a为另个实施例中射频PA Mid器件的引脚分布示意图;
图8b为图8a中射频PA Mid器件的封装结构布示意图;
图9为一个实施例中射频系统的结构框图之二;
图10为一个实施例中SRS天线轮发示意图;
图11为一个实施例中射频系统的结构框图之三;
图12为一个实施例中射频系统的结构框图之四;
图13为一个实施例中通信设备的结构框图。
具体实施方式
为了便于理解本申请,为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请,附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。网络设备可以包括基站、接入点等。
如图1所示,本申请实施例提供一种射频系统。在其中一实施例中,射频系统包括天线组10、射频PA Mid(Power Amplifier Modules including Duplexers,功率放大器模块)器件20和开关模块30。其中,在该射频PA Mid器件20的内部通过设置第一收发电路210 和第二收发电路220,可以实现对双频段射频信号(第一射频信号和第二射频信号)的接收控制,以及至少一单频段射频信号的发射控制,可以降低发射链路的插损,提高相邻信道泄漏比,进而提升射频系统的通信性能。
在其中一个实施例中,第一射频信号和第二射频信号均可以为5G NR信号,但各自的工作频段不同。示例性的,第一射频信号可以为工作频段为N77频段或/和N78频段的5G信号,第二射频信号可以为工作频段为N79频段的5G信号。相应的,第一射频信号可以为工作频段为N79的5G信号,第二射频信号可以为工作频段为N77频段或/和N78频段的5G信号。具体地,N77的工作频段为3.3GHz-4.2GHz,N78的工作频段为3.3GHz-3.8GHz,N79的工作频段为4.4GHz-5.0GHz。需要说明的是,由于N77的工作频段覆盖N78的工作频段,也即,射频PA Mid器件20支持对N77频段的5G信号的收发控制时,也可以对应支持对N78频段的5G信号的收发控制。
在其中一个实施例中,射频PA Mid器件20,被配置有第一天线端口ANT1、第二天线端口ANT2、第一发射端口RFIN1、第一接收端口RX1和第二接收端口RX2。
第一天线端口ANT1、第二天线端口ANT2可以理解为配置在该射频PA Mid器件20中与天线组10内各天线连接的各射频引脚。第一发射端口RFIN1、第一接收端口RX1、第二接收端口RX2可以理解为配置在射频PA Mid器件20用于与射频收发器连接的射频端子。
其中,射频PA Mid器件20包括第一收发电路210和第二收发电路220。第一收发电路210分别与第一发射端口RFIN1、第一接收端口RX1、第一天线端口ANT1连接,用于对第一发射端口RFIN1接收的第一射频信号进行放大滤波处理并经第一天线端口ANT1输出以实现对第一射频信号的发射控制;还用于经第一天线端口ANT1接收第一射频信号,并对接收的第一射频信号进行滤波放大处理经第一接收端口RX1输出至射频收发器,以实现对第一射频信号的接收控制,进而实现对射频信号的收发控制。
第二收发电路220,分别与第二接收端口RX2,第二天线端口ANT2连接,用于经第二天线端口ANT2接收第二射频信号,并对接收的第二射频信号进行滤波放大处理后经第二接收端口RX2输出至射频收发器,以实现对第二射频信号的接收控制。具体的,射频PA Mid器件20可以通过第二天线端口ANT2接收天线组10接收的第二射频信号,并对第二射频信号进行滤波放大处理后经第二接收端口RX2传输至射频处理器以实现对第二射频信号的接收控制。
如图2所示,第一收发电路210包括用于对第一射频信号进行放大的第一功率放大器211和第一低噪声放大器212,及用于支持第一射频信号通过的第一开关单元213和第一滤波器215。其中,第一发射端口RFIN1经第一功率放大器211与第一开关单元213的第一选择端连接,第一开关单元213的第二选择端与第一低噪声放大器212的输入端连接,第一低噪声放大器212的输出端与第一接收端口RX1连接;第一开关单元213的控制端经第一滤波器215与第一天线端口ANT1连接。其中,第一开关单元213用于选择导通第一接收端口RX1所在的接收链路或第一发射端口RFIN1所在的发射链路。
以第一射频信号为N77频段的信号,第二射频信号为N79频段的信号为例进行说明。其中,第一功率放大器211、第一低噪声放大器212均能够支持N77频段的信号,也即,可以对N77频段的信号进行放大处理。其中,第一滤波器215仅允许N77频段的射频信号通过,同时还可以滤波除N77频段的信号以外的杂散波。
在其中一个实施例中,第一滤波器215可以为带通滤波器。
在其中一个实施例中,第一开关单元213为单刀双掷(SPDT)开关,其中,SPDT开关的不动端可以理解为第一开关单元213的选择端,SPDT开关的动端可以理解为第一开关单元213的控制端。具体地,SPDT开关的第一不动端与第一功率放大器211的输出端连接,SPDT开关的第二不动端与第一低噪声放大器212的输入端连接,SPDT开关的动 端与第一滤波器215连接。
第一开关单元213用于在TDD制式下实现收发工作模式的切换。具体的,当控制SPDT开关的不动端与第一功率放大器211导通连接时,可是导通该第一功率放大器211所在的发射链路以使天线组10发射第一射频信号进而实现对第一射频信号的发射控制;当控制SPDT开关的不动端与第一低噪声放大器212导通连接时,可是导通该第一低噪声放大所在的接收链路以实现对第一射频信号的接收控制。
可选的,第一开关单元213还可以为电子开关管、移动产业处理器(Mobile Industry Processor Interface,MIPI)接口和/或通用输入/输出(General-purpose input/output,GPIO)接口。其对应的控制单元可为MIPI控制单元和/或GPIO控制单元。示例性的,当需要导通接收链路或发射链路时,MIPI控制单元可以对应输出时钟和数据信号至与第一功率放大器211、第一低噪声放大器212连接的对应引脚。GPIO控制单元可对应输出高电平信号至与第一耦合器214、第一低噪声放大器212连接的对应引脚。
需要说明的是,在本申请实施例中,对第一滤波器215、第一开关单元213的具体形式不做进一步的限定。
在其中一个实施例中,第二收发电路220包括第二滤波器221和第二低噪声放大器222。其中,第二滤波器221与第二天线端口ANT2连接,用于经第二天线端口ANT2接收第二射频信号,并对接收的第二射频信号进行滤波;第二低噪声放大器222的输入端与第二滤波器221连接,第二低噪声放大器222的输出端与第二接收端口RX2连接,用于第二射频信号进行放大,并经第二接收端口RX2输出。第二收发电路220通过设置第二滤波器221和第二低噪声放大器222以构成第二射频信号的接收链路,可对经第二天线端口ANT2接收的第二射频信号进行滤波放大处理,进而实现对第二射频信号的接收控制。
如图3所示,在其中一个实施例中,射频PA Mid器件20还被配置有第二发射端口RFIN2,第二收发电路220还包括用于对第二射频信号进行放大的第二功率放大器223,及用于支持第二射频信号通过第二开关单元225。其中,第二发射端口RFIN2经第二功率放大器223与第二开关单元225的第一选择端连接,第二开关单元225的第二选择端与第二低噪声放大器222的输入端连接,第二低噪声放大器222的输出端与第二接收端口RX2连接;第二开关单元225的控制端经第二滤波器221与第二天线端口ANT2连接。
第二开关单元225用于选择导通第二接收端口RX2所在的接收链路或第二发射端口RFIN2所在的发射链路以实现对第二射频信号的收发控制。第二开关单元225用于在TDD制式下实现对收发工作模式的切换控制。具体的,当控制第二开关单元225的第一选择端与第二功率放大器223导通连接时,可是导通该第二接收端口RX2所在的发射链路以使天线组10发射第二射频信号进而实现对第二射频信号的发射控制;当控制第二开关单元225的第二选择端与第二低噪声放大器222导通连接时,可是导通第二发射端口RFIN2所在的接收链路以实现对第二射频信号的接收控制。
以第二射频信号为N79频段的5G信号为例进行说明。其中,第二功率放大器223、第二低噪声放大器222均能够支持N79频段的5G信号,也即,可以对N79频段的5G信号进行放大、耦合处理。其中,第二滤波器222仅允许N79频段的5G信号通过,同时还可以滤波除N79频段的5G信号以外的杂散波。
在其中一个实施例中,第二滤波器222可以为带通滤波器。
需要说明的是,在本申请实施例中,第二开关单元225与第一开关单元213的类型可以相同,也可以不同。对第二滤波器221、第二开关单元225的具体形式不做进一步的限定。
在本实施例中,当第二收发电路220包括第二低噪声放大器222、第二滤波器221、第二功率放大器223和第二开关单元225时,其也可以实现对第二射频信号的接收控制和发射控制。同时,当射频PA Mid器件20中的第一收发电路210能够实现对第一射频信号的 收发控制,且第二收发电路220也能够实现对第二射频信号的收发控制,可以使射频PA Mid器件20具有双频段射频信号的收发能力和对各频段射频信号的功率放大功能,进而能够实现对N77和N79两个频段的射频信号的功率放大的收发控制。
如图4所示,在其中一个实施例中,射频PA Mid器件20还被配置有耦合输出端口CPLOUT。其中,射频PA Mid器件20还包括:设置在第一收发电路210的发射链路中的第一耦合电路230,用于耦合第一射频信号,以经耦合输出端口CPLOUT输出耦合信号。
示例性的,第一耦合电路230包括耦合单元231和耦合开关233。耦合单元231用于耦合发射链路中的第一射频信号,以能够实现对第一射频信号耦合输出,其输出的耦合信号可用于测量该第一射频信号的前向耦合功率和反向耦合功率。具体地,耦合单元231包括输入端a、输出端b、第一耦合端c和第二耦合端d。同时,耦合单元231还包括在输入端a和输出端b之间延伸的主线、以及在第一耦合端c和第二耦合端d之间延伸的副线。
其中,耦合单元231的输入端a与第一功率放大器221的输出端连接,耦合单元231的输出端b与第一开关单元213连接,第一耦合端c用于对输入端a接收的射频信号进行耦合并输出前向耦合信号;第二耦合端d,用于对第一射频信号的反射信号进行耦合并输出反向耦合信号。其中,基于第一耦合端c输出的前向耦合信号,可以检测该第一射频信号的前向功率信息;基于第二耦合端d输出的反向耦合信号,可以对应检测该第二射频信号的反向功率信息,并将该检测模式定义为反向功率检测模式。
耦合开关233分别与第一耦合端c、第二耦合端d和耦合输出端口CPLOUT连接,用于选择性的导通第一耦合端c与耦合输出端口CPLOUT的第一耦合通路以实现对该射频信号前向功率的检测,并将该检测模式定义为反向功率检测模式,或,导通第二耦合端d与耦合输出端口CPLOUT的第二耦合通路以实现对该射频信号反向功率的检测,并将该检测模式定义为反向功率检测模式。也即,该耦合开关233用于在前向功率检测模式和反向功率检测模式之间进行切换。具体的,耦合单元231包括两个反向串联的定向耦合器。
如图5所示,射频PA Mid器件被配置有耦合输出端口CPLOUT,射频PA Mid器件20还包括第二耦合电路,第二耦合电路包括:
第一耦合单元241,设置在第一收发电路210的发射链路中,用于耦合第一射频信号,以输出第一耦合信号。其中,第一耦合信号包括第一前向耦合信号和第一反向耦合信号。第二耦合单元243,分别与在第二收发电路220的发射链路中,用于耦合第二射频信号,以经耦合输出端口输出第二耦合信号;其中,第二耦合信号包括第二前向耦合信号和第二反向耦合信号。
需要说明的是,本实施例中的第一耦合单元241、第二耦合单元243的结构与前述实施例,即如图4所示的耦合单元231的结构相同,在此不在赘述。
耦合开关单元245,分别与第一耦合单元241、第二耦合单元243连接,用于将第一耦合信号或第二耦合信号通过耦合输出端口输出CPLOUT,也即用于选择切换第一耦合单元241和第二耦合单元243,以输出第一耦合信号或第二耦合信号,进而实现检测第一耦合信号和第二耦合信号的功率信息。其中,功率信息包括向前功率和反向功率。
在其中一个实施例中,耦合开关单元245包括:四个第一触点(1,2,3,4)和两个第二触点(5,6)。其中,一第一触1与第一耦合单元241的第二耦合端连接,一第一触点2与第一耦合单元241的第一耦合端连接,一第一触点4与第二耦合单元243的第一耦合端连接,一第一触点3与第二耦合单元243的第二耦合端连接;一第二触点6与耦合输出端口CPLOUT连接,一第二触点5接地。
示例性的,以采集第一耦合单元241所在发射链路输出第一射频信号的功率信息、耦合开关单元245为射频DP4T开关为例对第一射频信号的收发控制进行说明。
第一射频信号从第一发射端口RFIN1端口进入,经第一功率放大器211、第一开关单元213、第一滤波器215后,到第一天线端口ANT1后经天线组10发射出去;第一射频信 号经天线组10从第一天线端口ANT1进入,经第一滤波器215、第一开关单元213、第一低噪声放大器212后,到第一接收端口RX1,并输出至射频收发器。当需要采集第一耦合单元241的第一反向耦合信号时,射频DP4T开关的触点5连接到触点1,将泄露的第一前向耦合信号经负载接地,避免对第二耦合端(反向功率输出端口)造成干扰,射频DP4T开关的触点6连接到触点2,将第一反向耦合信号导出到耦合输出端口CPLOUT。采样第一耦合单元241的第一前向耦合信号时,射频DP4T开关的触点5连接到触点2,触点6连到触点1,将泄露的第一反向耦合信号经负载接地,避免对第二耦合端(反向功率输出端口)造成干扰。
需要说明的是,第二射频信号的收发控制的工作原理与第一射频信号的收发控制的工作原理相同;第二耦合单元243的工作原理与第一耦合单元241的工作原理相同,本申请实施例在此不再赘述。
在本申请实施例中,仅设置一个耦合开关单元245(例如射频DP4T开关),就可以实现第一耦合单元241和第二耦合单元243的切换,减小占用封装的面积,同时也降低了成本。由于第一耦合单元241和第二耦合单元243不会同时工作,仅设置一个耦合输出端口CPLOUT,就可以满足需求;减少器件内部的射频走线复杂度,同时也可以提高内部各走线的隔离度性能。
在其中一个实施例中,射频PA Mid器件20还包括电阻R,一第二触点5经电阻R接地。具体的,该电阻R的阻值可以设为50欧姆,使泄露的前向耦合信号或者反向耦合信号接地,解决了第一耦合单元241或第二耦合单元243反向耦合信号输出时,正向耦合信号对于反向输出端口的干扰。
如图6所示,在其中一个实施例中,射频PA Mid器件配置的耦合输出端口CPLOUT的数量为两个,分别记为第一耦合输出端口CPLOUT1和第二耦合输出端口CPLOUT2,其中耦合开关单元245包括三个开关,分别为SPDT1、SPDT2和DPDT。其中,SPDT1的第一端分别与第一耦合单元241的第一耦合端、第二耦合端连接,SPDT2的第一端分别与第二耦合单元243的第一耦合端、第二耦合端连接;SPDT1的第二端、SPDT2的第二端分别与DPDT的第一端连接,DPDT的第二端分别与第一耦合输出端口CPLOUT1、第二耦合输出端口CPLOUT2连接。
具体地,可以通过对耦合开关单元245中三个开关(SPDT1、SPDT2和DPDT)的切换控制,可以将第一耦合单元241输出的第一耦合信号或第二耦合单元243输出的第一耦合信号经第一耦合输出端口CPLOUT1或第二耦合输出端口CPLOUT2,以检测第一耦合信号的功率信息和第二耦合信号的功率信息。
在其中一个实施例中,参考图5和图6射频PA Mid器件20还包括第一控制单元410和第二控制单元420。其中,第一控制单元410分别与第一开关单元213、第二开关单元225、第一功率放大器211、第二功率放大器223连接,用于控制第一开关单元213、第二开关单元225的通断,还用于控制第一功率放大器211、第二功率放大器223的工作状态。
第二控制单元420分别与第一低噪声放大器212、第二低噪声放大器222连接,用于调节第一低噪声放大器212、第二低噪声放大器222的增益系数。其中,第一低噪声放大器212、第二低噪声放大器222为增益可调节的放大器件。示例性的,第一低噪声放大器212、第二低噪声放大器222具有8个增益等级。
示例性的,第一控制单元410和第二控制单元420可以为移动行业处理器接口(Mobile Industry Processor Interface,MIPI)—射频前端控制接口(RF Front End Control Interface,RFFE)控制单元,其控制方式其符合RFFE总线的控制协议。当第一控制单元410和第二控制单元420为MIPI-RFFE控制单元时,其射频PA Mid器件20还被配置有时脉讯号的输入引脚CLK、单/双向数据讯号的输入或双向引脚SDATAS、参考电压引脚VIO等等。
在其中一个实施例中,射频PA Mid器件20中的各个器件均可集成封装在同一封装芯 片中,其封装结构如图7a所示。也即,第一收发电路210、第二收发电路220、第一耦合电路230、第一控制单元240、第二控制单元250均集成封装在同一模组中,以构成一个封装芯片。具体的,该封装芯片可配置多个引脚,如图7b所示,多个引脚可包括天线端口引脚、发射端口引脚、接收端口引脚、接地引脚、复位使能输入引脚、RFFE总线时钟输入引脚、RFFE总线数据输入/输出引脚、耦合输出引脚等等。其中,天线端口引脚与天线端口ANT对应,发射端口引脚与发射端口RFIN对应、接收端口引脚与接收端口RXOUT对应等等。在本申请实施例中,将射频PA Mid器件20中的各个器件封装在同一芯片中,可以提高集成度、减小各器件所占用的空间,便于器件的小型化。
在其中一个实施例中,射频PA Mid器件20中的各个器件均可集成封装在同一封装芯片中,其封装结构如图8a所示。也即,第一收发电路210、第二收发电路220、第一耦合单元241、第二耦合单元243、耦合开关单元245、第一控制单元240、第二控制单元250均集成封装在同一模组中,以构成一个封装芯片。具体的,该封装芯片可配置多个引脚,如图8b所示,多个引脚可包括天线端口引脚、发射端口引脚、接收端口引脚、接地引脚、复位使能输入引脚、RFFE总线时钟输入引脚、RFFE总线数据输入/输出引脚、耦合输出引脚等等。其中,天线端口引脚与天线端口ANT对应,发射端口引脚与发射端口RFIN对应、接收端口引脚与接收端口RXOUT对应等等。在本申请实施例中,将射频PA Mid器件20中的各个器件封装在同一芯片中,可以提高集成度、减小各器件所占用的空间,便于器件的小型化。本申请实施例还提供一种射频系统。
在其中一个实施例中,参考图1,射频系统包括上述任一实施例中的射频PA Mid器件20、天线组10和开关模块30。
天线组10至少包括第一天线Ant0和第二天线Ant1。第一天线Ant0、第二天线Ant1均为能够支持5G NR频段的天线。其中,第一天线Ant0可以用于接收和发射(简称为收发)第一射频信号和/或第二射频信号,第二天线Ant1可以用于收发第一射频信号和/或第二射频信号。
在其中一个实施例中,第一天线Ant0、第二天线Ant1可以为定向天线,也可以为非定向天线。示例性的,第一天线Ant0和第二天线Ant1可以使用任何合适类型的天线形成。例如,第一天线Ant0和第二天线Ant1可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同射频信号的频段组合。天线组10还可以包括第三天线、第四天线,在本申请实施例中,对天线组10包括的天线的数量、类型不做进一步的限定,可以根据实际需要来设定。
开关模块30,包括多个第一端和两个第二端,一第一端P1与第一天线端口ANT1连接,一第一端P2与第二天线端口ANT2连接;一第二端T1与第一天线Ant0连接,一第二端T2与第二天线Ant1连接。需要说明的是,分别与第一天线端口ANT1、第二天线端口ANT2连接的第一端互不相同,分别与第一天线Ant0、第二天线Ant1连接的第二端互不相同。示例性的,开关模块30可以为射频DP3T开关、也可以为射频DP4T开关。
开关模块30可用于选择导通射频PA Mid器件20分别第一天线Ant0、第二天线Ant1之间的射频通路,以使射频PA Mid器件20经射频通路收发第一射频信号和接收第二射频信号。示例性的,当开关模块30导通第一天线端口ANT1与第一天线Ant0或第二天线Ant1之间射频通路时,可构成射频PA Mid器件20与天线组10的收发链路,以使射频PA Mid器件20经收发链路收发第一射频信号;当开关模块30导通第二天线端口ANT2与第一天线Ant0或第二天线Ant1之间射频通路时,可构成射频PA Mid器件20与天线组10的接收链路以使射频PA Mid器件20经接收链路接收第二射频信号。
上述射频系统,包括射频PA Mid器件20、天线组10和开关模块30,其中,射频PA Mid器件20的射频接收端和射频输出端均未集成开关器件,在射频PA Mid器件20与天线组 10之间仅设置一个开关模块30就可以使射频PA Mid器件20实现对第一射频信号的收发控制和对第二射频信号的接收控制,可以降低发射链路的插损,提高相邻信道泄漏比,进而提升通信性能。
如图9所示,在其中一个实施例中,射频系统包括上述任一实施例中的射频PA Mid器件20、天线组10、开关模块30和射频LNA器件40。其中,射频LNA器件40被配置有第三天线端口ANT3、第四天线端口ANT4,其中,开关模块30的一第一端P3与第三天线端口ANT3连接,开关模块30的一第一端P4与第四天线端口ANT4连接;射频LNA器件40用于经第三天线端口ANT3接收第一射频信号,并对第一射频信号进行滤波放大处理,还用于经第四天线端口ANT4接收第二射频信号,并对第二射频信号进行滤波放大处理。
在其中一个实施例中,射频LNA器件40还被配置有第三接收端口RX3和第四接收端口RX4,射频LNA器件40包括第三滤波器410、第三低噪声放大器420、第四滤波器430和第四低噪声放大器440。其中,第三滤波器410,与第三天线端口ANT3连接,用于对接收的第一射频信号进行滤波处理。第三低噪声放大器420的输入端与第三滤波器410连接,第三低噪声放大器420的输出端与第三接收端口RX3连接,用于第一射频信号进行放大处理。第四滤波器430,与第四天线端口ANT4连接,用于对接收的第二射频信号进行滤波处理。第四低噪声放大器440的输入端与第四滤波器430连接,第四低噪声放大器440的输出端与第四接收端口RX4连接,用于第二射频信号进行放大处理。也即,第三天线端口ANT3、第三滤波器410、第三低噪声放大器420、第三接收端口RX3即可构成对第一射频信号进行接收控制的接收链路;相应的,第四天线端口ANT4、第四滤波器430、第四低噪声放大器440、第四接收端口RX4即可构成对第二射频信号进行接收控制的另一接收链路。
其中,第三滤波器410与前述实施例中第一滤波器215可以相同,仅允许第一射频信号通过,同时还可以滤波除第一射频信号以外的杂散波;第四滤波器430与前述实施例中第二滤波器221可以相同,仅允许第二射频信号通过,同时还可以滤波除第二射频信号以外的杂散波。在本申请实施例中,对各滤波器的类型不做进一步的限定。
在本申请实施例中,射频LNA器件40的接收端口和输出端口均未设置开关,其减少了接收链路的插损。
本实施例中,其射频系统上通过设置射频LNA器件40时,可以增加一路用于接收第一射频信号的接收链路,也对应增加一路用于接收第二射频信号的接收链路,进而使射频系统实现对第一射频信号和第二射频信号的双通路接收。
随着技术的发展和进步,5G移动通信技术逐渐开始应用于通信设备。高功率通信(High Power UE,HPUE)可以定义为通信设备的发射链路的天线输出高功率信号,对应功率等级PC2(Power Class 2);目前很多运营商要求通信设备具有支持PC2的能力。例如,中国联通在其发布的《中国联通5G行业通信总体技术要求白皮书》中,推荐5G行业通信支持PC2,具体信息如表1所示。
表1 中国联通功率等级要求
功率等级 最大输出功率 容差 要求
Power Class2 +26dBm +2dB/-3dB 推荐
Power Class3 +23dBm +2dB/-3dB 必选
此外,中国移动在其发布的《中国移动5G通信产品白皮书》明确提出,必选支持N41/N79频段的通信,其最大总发射功率为26dBm,即N41/N79发射天线口功率必须支持PC2。
5G网络支持波束赋形技术,可以向通信设备定向发射。而基站要想定向发射,首先得探测到通信设备的位置、传输通路的质量等,从而使基站的资源更加精准地分配给每一个 通信设备。通信设备发送信道探测参考信号(Sounding Reference Signal,SRS)信息即是用于基站探测通信位置和信道质量的方式。如图10所示为SRS天线轮发示意图,具体说明如下:
其一,1T1R:固定在第一天线Ant0向基站反馈信息,不支持SRS轮发;
其一,1T4R:在第一天线Ant0到第四天线Ant3轮流发射SRS信息,每次只选择一个天线发射,目前非独立组网(Non-standalone,NSA)采用这种模式;
其三,2T4R:在第一天线Ant0到第四天线Ant3轮流发射SRS信息,每次选择两个天线同时发射,目前独立组网(Standalone,SA)采用这种模式。
在其中一个实施例中,射频系统包括射频PA Mid器件、天线组和开关模块。其中,射频PA Mid器件的数量为两个,分别为第一射频PA Mid器件21、第二射频PA Mid器件22;射频LNA器件的数量为两个,分别为第一射频LNA器件41、第二射频LNA器件42;开关模块的数量为两个,分别为第一开关模块31和第二开关模块32,天线组10包括第一天线Ant0、第二天线Ant1、第三天线Ant2和第四天线Ant3。
第一开关模块31的多个第一端(P1、P2、P3、P4)分别与第一射频PA Mid器件21、第一射频LNA器件41连接,第一开关模块31的多个第二端(T1、T2)分别与第一天线Ant0、第二天线Ant1、第二开关模块32的第一端P1连接;第二开关模块32的多个第一端分别(P2、P3、P4)与第二射频PA Mid器件22、第二射频LNA器件42连接,第二开关模块32的一第二端T1与第三天线Ant2连接,第二开关模块32的一第二端T2与第四天线Ant3连接。具体的,第一开关模块31为射频3P4T开关,第二开关模块32为射频DP4T开关。
在其中一个实施例中,第一射频PA Mid器件21与第二射频PA Mid器件22均用于对第一射频信号和第二射频信号进行收发控制以使射频系统支持对第一射频信号的双通道发射和四通道接收,也可以是系统同时支持对第二射频信号的双通道发射和四通道接收。
如图11所示,在其中一个实施例中,射频系统还包括第一SPDT开关51和第二SPDT开关52,其中,第一SPDT开关51分别与第一开关模块31、第二开关模块32、第二天线Ant1连接,用于选择导通第一射频PA Mid器件21分别与第二天线Ant1、第三天线Ant2之间的收发链路;第二SPDT开关52分别与第二开关模块32、第三天线端口ANT3、第四天线端口ANT4连接,用于选择导通第三天线端口ANT3、第四天线端口ANT4分别与第四天线Ant3的接收链路。具体的,第一开关模块31为射频DP4T开关,第二开关模块32为射频DP4T开关。
基于实施例的射频系统,可以支持NSA模式和SA模式以及SRS功能。NSA和SA的通道配置表2所示,NSA和SA路径配置、SRS路径配置分别如表3和表4所示。
表2 NSA模式和SA模式通道数配置
  N77 N79
NSA 1T4R 1T4R
SA 2T4R 1T4R
表3 NSA模式详细路径配置表
  N77 N79
TXO&PRX 路径1->路径10 路径2->路径10
DRX 路径3->路径11->路径12 路径4->路径11->路径12
MIMO PRX 路径5->路径14 路径6->路径14
MIMO DRX 路径7->路径9->路径15 路径8->路径9->路径15
表4 SA模式详细路径配置表
  N77 N79
TXO&PRX 路径1->路径10 路径2->路径10
DRX 路径3->路径11->路径12 路径4->路径11->路径12
TX1&PRX 路径5->路径14 路径6->路径14
DRX 路径7->路径9->路径15 路径8->路径9->路径15
表3和表4中,TXO&PRX表示主发射链路和主集接收链路,DRX表示分集接收链路,TX1&MIMO PRX表示辅助发射链路和MIMO主集接收链路,MIMO DRX表示MIMO分集接收链路。
表5 SRS详细路径配置表
  N77 N79
Channel0 路径1->路径10 路径2->路径10
Channel1 路径1->路径11->路径12 路径2->路径11->路径12
Channel2 路径1->路径13->路径14 路径2->路径13->路径14
Channel3 路径1->路径13->路径15 路径2->路径13->路径15
表5中,Channel0、Channel1、Channel2、Channel3分别为天线轮流发射的发射链路。
本申请实施例中的射频系统可以实现通信设备在频分复用FDD制式中的支持通过探测参考信号SRS在发射天线间轮发发送4端口SRS的功能,还可以支持4根天线同时接收数据的NSA模式和SA模式。
基于本申请实施例的射频系统,第一射频信号的发射链路和第二射频信号的发射链路均只需要经过一个开关,就可以对应将第一射频信号输出至天线组10,相对于传统技术方案中,不需要在射频PA Mid器件20和射频LNA器件40的射频输入端和射频输出端均设置开关,降低了开关的使用数量,进而降低了发射链路的插损。
以第一开关模块31和第二开关模块30均为射频DP4T开关为例进行,给出其在典型频段的开关插损值如表6所示。
表6 射频DP4T开关插损
频段(GHz) 3.30 3.50 3.80 4.40 4.70 5.00
插损(dB) 0.7 0.7 0.7 0.9 0.9 0.9
结合发射链路插损和表6的射频DP4T开关的插损,可以推算本申请所提供的射频系统的输出功率,如表7所示。
表7 射频系统输出功率
频段(GHz) 3.30 3.50 3.80 4.40 4.70 5.00
天线口功率(dBm) 26.3 26.4 26.4 26.6 26.8 26.6
从数据可以看出,在3.3~5.0GHz频段内,射频系统的输出功率达到研发要求的26.5dBm。
在实际应用中,考虑到通信设备间的差异性,对相邻信道泄漏比(Adjacent Channel Leakage Ratio,ACLR)的性能指标预留余量,如表8所示。
表8 相邻信道泄漏比指标预留余量
  发射功率PC2 ACLR
3GPP 26dBm 31dBc
预设指标 26.5dBm 33dBc
基于表8中的预设指标要求,测试功率值数字回退1dB,即为25.5dBm。基于本申请实施例提供的射频系统,以测试模式为DFT-QPSK-270为例,第二射频信号(Band N79)的具体测试数值如表9所示。
表9 发射性能
Figure PCTCN2021086480-appb-000001
基于表9的数据可知,本申请实施例提供的射频系统,其发射链路仅设置一个射频DP4T开关,该发射链路的发射性能满足研发要求,更高于3GPP标准,同时也提高了相邻信道泄漏比性能。
目前运营商对于Band N79的通道要求是1T4R,仅需一个发射通道。也即,第一射频PA Mid器件21和第二射频PA Mid器件22中仅需要配置一个发射链路,可以节约成本。如图12所示,在其中一个实施例中,第一射频PA Mid器件21用于对第一射频信号和第二射频信号进行收发控制;第二射频PA Mid器件22用于对第一射频信号进行收发控制和对第二射频信号进行接收控制,以使射频系统支持对第一射频信号的单通道发射和四通道接收,并支持对第二射频信号的四通道接收。也即,第二射频PA Mid器件22中的发射通路中可以去除第二功率放大器223、第二耦合单元243和第二开关单元225。
当第二射频PA Mid器件22用于对第一射频信号(N77频段)进行收发控制和对第二射频信号(N79频段)进行接收控制时,其射频系统的结构框图如图12所示。基于此射频系统,其第一射频信号的发射链路只需要经过一个射频DP4T开关,就可以对应将第一射频信号输出至天线组10,相对于传统技术方案中,不需要在射频PA Mid器件20和射频LNA器件40的射频输入端和射频输出端均设置开关,降低了开关的使用数量,进而降低了发射链路的插损。
如图13所示,本申请实施例还提供一种通信设备,该通信设备包括射频收发器90和上述任一实施例中的射频系统,通过在通信设备上设置上述任一实施例中的射频系统,可以提升通信设备的发射链路的相邻信道泄漏比,继而提升通信设备的无线通信性能。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种射频PA Mid器件,被配置有第一天线端口、第二天线端口、第一发射端口、第一接收端口和第二接收端口,所述射频PA Mid器件包括:
    第一收发电路,分别与所述第一发射端口、第一接收端口、第一天线端口连接,用于对所述第一发射端口接收的第一射频信号进行放大滤波处理并经所述第一天线端口输出;还用于经所述第一天线端口接收所述第一射频信号,并对接收的所述第一射频信号进行滤波放大处理,以实现对所述第一射频信号的收发控制;
    第二收发电路,分别与所述第二接收端口,第二天线端口连接,用于经所述第二天线端口接收第二射频信号,并对接收的所述第二射频信号进行滤波放大处理,以实现对所述第二射频信号的接收控制;其中,所述第一射频信号和第二射频信号的工作频段不同。
  2. 根据权利要求1所述的射频PA Mid器件,其特征在于,所述第一收发电路包括:
    第一功率放大器,所述第一功率放大器的输入端与所述第一发射端口连接,用于对所述第一射频信号进行放大处理;
    第一低噪声放大器,所述第一低噪声放大器的输出端与所述第一接收端口连接,用于接收的所述第一射频信号进行放大处理;
    第一开关单元,分别与所述第一功率放大器的输出端、所述第一低噪声放大器的输入端连接,用于选择导通所述第一接收端口所在的接收链路或所述第一发射端口所在的发射链路;
    第一滤波器,分别与所述第一开关单元、第一天线端口连接,用于对接收的所述第一射频信号进行滤波处理。
  3. 根据权利要求1所述的射频PA Mid器件,其特征在于,所述第二收发电路还包括:
    第二滤波器,与所述第二天线端口连接,用于经所述第二天线端口接收所述第二射频信号,并对接收的所述第二射频信号进行滤波;
    第二低噪声放大器,分别与所述第二滤波器、第二接收端口连接,用于所述第二射频信号进行放大,并经所述第二接收端口输出。
  4. 根据权利要求3所述的射频PA Mid器件,其特征在于,所述射频PA Mid器件还被配置有第二发射端口,所述第二收发电路还包括:
    第二功率放大器,所述第二功率放大器的输入端与所述第二发射端口连接,用于对所述第二射频信号进行放大处理;
    第二开关单元,分别与所述第二功率放大器的输出端、第二低噪声放大器的输入端、第二滤波单元连接,用于选择导通所述第二接收端口所在的接收链路或所述第二发射端口所在的发射链路以实现对所述第二射频信号的收发控制。
  5. 根据权利要求2所述的射频PA Mid器件,其特征在于,射频PA Mid器件被配置有耦合输出端口,所述射频PA Mid器件还包括:
    第一耦合电路,设置在所述第一收发电路的发射链路中,用于耦合所述第一射频信号,以经所述耦合输出端口输出第一耦合功率信号。
  6. 根据权利要求4所述的射频PA Mid器件,其特征在于,射频PA Mid器件被配置有耦合输出端口,所述射频PA Mid器件还包括第二耦合电路,所述第二耦合电路包括:
    第一耦合单元,设置在所述第一收发电路的发射链路中,用于耦合所述第一射频信号,以输出第一耦合功率信号;
    第二耦合单元,分别与在所述第二收发电路的发射链路中,用于耦合所述第二射频信号,以经所述耦合输出端口输出第二耦合功率信号;
    耦合开关单元,分别与所述第一耦合单元、第二耦合单元连接,用于将第一耦合功率信号或第二耦合功率信号通过所述第二耦合输出端口输出。
  7. 根据权利要求6所述的射频PA Mid器件射频系统,其特征在于,所述耦合开关单元 包括:
    至少四个第一触点,一所述第一触点与所述第一耦合单元的第二耦合端连接,另一所述第一触点与所述第一耦合单元的第二耦合端连接,又一所述第一触点与所述第二耦合单元的第一耦合端连接,再一所述第一触点与所述第二耦合器的第二耦合端连接;
    两个第二触点,一所述第二触点与所述耦合输出端口连接,另一所述第二触点接地。
  8. 根据权利要求7所述的射频PA Mid器件,其特征在于,所述射频PA Mid器件还包括电阻,一所述第二触点经所述电阻接地。
  9. 根据权利要求1所述的射频PA Mid器件,其特征在于,所述第一射频信号为N77频段的5G信号,所述第二射频信号为N79频段的5G信号。
  10. 根据权利要求2所述的射频PA Mid器件,其特征在于,所述第一滤波器为带通滤波器。
  11. 一种射频系统,包括:
    如权利要求1-10任一项所述的射频PA Mid器件;
    天线组,至少包括第一天线和第二天线;
    开关模块,包括多个第一端和两个第二端,一所述第一端与所述射频PA Mid器件的第一天线端口连接,另一所述第一端与所述射频PA Mid器件的第二天线端口连接;一所述第二端与所述第一天线连接,另一所述第二端与所述第二天线连接,所述开关模块用于选择导通所述射频PA Mid器件分别所述第一天线、第二天线之间的射频通路,以使所述射频PA Mid器件收发所述第一射频信号和接收所述第二射频信号。
  12. 根据权利要求11所述的射频系统,其特征在于,所述射频系统还包括:
    射频LNA器件,被配置有第三天线端口、第四天线端口,其中,所述第三天线端口与所述开关模块的又一第一端连接,所述第四天线端口与所述开关模块的再一第一端连接;所述射频LNA器件用于经所述第三天线端口接收所述第一射频信号,并对所述第一射频信号进行滤波放大处理,还用于经所述第四天线端口接收所述第二射频信号,并对所述第二射频信号进行滤波放大处理。
  13. 根据权利要求12所述的射频系统,其特征在于,所述射频LNA器件还被配置有第三接收端口和第四接收端口,所述射频LNA器件,包括:
    第三滤波器,与所述第三天线端口连接,用于对接收的所述第一射频信号进行滤波处理;
    第三低噪声放大器,所述第三低噪声放大器的输入端与所述第三滤波器连接,所述第三低噪声放大器的输入端与所述第三接收端口连接,用于对滤波处理后的所述第一射频信号进行放大处理;
    第四滤波器,与所述第四天线端口连接,用于对接收的所述第二射频信号进行滤波处理;
    第四低噪声放大器,所述第四低噪声放大器的输入端与所述第四滤波器连接,所述第四低噪声放大器的输入端与所述第四接收端口连接,用于对滤波处理后的所述第二射频信号进行放大处理。
  14. 根据权利要求13所述的射频系统,其特征在于,所述第三滤波器和所述第四滤波器均为带通滤波器。
  15. 根据权利要求13所述的射频系统,其特征在于,所述射频PA Mid器件的数量为两个,分别为第一射频PA Mid器件、第二射频PA Mid器件;所述射频LNA器件的数量为两个,分别为第一射频LNA器件、第二射频LNA器件;所述开关模块的数量为两个,分别为第一开关模块和第二开关模块,所述天线组还包括第三天线和第四天线;
    所述第一开关模块的多个第一端分别与所述第一射频PA Mid器件、第一射频LNA器件连接,所述第一开关模块的多个第二端分别与第一天线、第二天线、第二开关模块的第 一端连接;
    所述第二开关模块的多个第一端分别与所述第二射频PA Mid器件、第二射频LNA器件连接,所述第二开关模块的一第二端与所述第三天线连接,所述第二开关模块的另一第二端与所述第四天线连接。
  16. 根据权利要求15所述的射频系统,其特征在于,所述射频系统还包括第一SPDT开关和第二SPDT开关,其中,
    所述第一SPDT开关分别与所述第一开关模块、第二开关模块、第二天线连接,用于选择导通所述第一射频PA Mid器件分别与所述第二天线、第三天线之间的收发链路;
    所述第二SPDT开关分别与所述第二开关模块、第三天线端口、第四天线端口连接,用于选择导通所述第三天线端口、第四天线端口分别与所述第四天线的接收链路。
  17. 根据权利要求16所述的射频系统,其特征在于,所述第一开关模块和第二开关模块均包括射频DP4T开关。
  18. 根据权利要求15所述的射频系统,其特征在于,所述第一射频PA Mid器件与所述第二射频PA Mid器件均用于对所述第一射频信号和第二射频信号的收发进行控制以使所述射频系统支持对所述第一射频信号和第二射频信号的双通道发射和四通道接收。
  19. 根据权利要求15所述的射频系统,其特征在于,所述第一射频PA Mid器件用于对所述第一射频信号和第二射频信号的收发进行控制;所述第二射频PA Mid器件用于对第一射频信号的收发进行控制和对第二射频信号的发射进行控制,以使所述射频系统支持对所述第一射频信号的双通道发射和四通道接收和支持对所述第二射频信号的单通道发射和四通道接收。
  20. 一种通信设备,包括:
    射频收发器,
    如权利要求12-19任一项所述的射频系统,与所述射频收发器连接。
PCT/CN2021/086480 2020-05-26 2021-04-12 射频PA Mid器件、射频系统和通信设备 WO2021238453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010457414.2 2020-05-26
CN202010457414.2A CN113726359B (zh) 2020-05-26 2020-05-26 射频PA Mid器件、射频系统和通信设备

Publications (1)

Publication Number Publication Date
WO2021238453A1 true WO2021238453A1 (zh) 2021-12-02

Family

ID=78672132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086480 WO2021238453A1 (zh) 2020-05-26 2021-04-12 射频PA Mid器件、射频系统和通信设备

Country Status (2)

Country Link
CN (1) CN113726359B (zh)
WO (1) WO2021238453A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039614A (zh) * 2021-12-07 2022-02-11 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114124115A (zh) * 2021-12-07 2022-03-01 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114285432A (zh) * 2021-12-31 2022-04-05 Oppo广东移动通信有限公司 通信控制方法、装置、射频系统、通信设备和存储介质
CN115065375A (zh) * 2022-05-20 2022-09-16 Oppo广东移动通信有限公司 射频功率放大电路、射频系统及无线通信设备
CN115987320A (zh) * 2022-11-23 2023-04-18 中国人民解放军63921部队 小型化北斗短报文终端射频电路
WO2023098244A1 (zh) * 2021-11-30 2023-06-08 Oppo广东移动通信有限公司 射频前端器件和射频系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759963B (zh) * 2022-06-16 2022-09-09 龙旗电子(惠州)有限公司 Srs轮询方法、射频电路及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140227982A1 (en) * 2013-02-08 2014-08-14 Rf Micro Devices, Inc. Front end circuitry for carrier aggregation configurations
CN108199726A (zh) * 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108199728A (zh) * 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关、射频系统和无线通信设备
CN108462497A (zh) * 2018-03-16 2018-08-28 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108494413A (zh) * 2018-03-16 2018-09-04 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108599780A (zh) * 2018-03-16 2018-09-28 广东欧珀移动通信有限公司 多路选择开关和无线通信设备
CN108880602A (zh) * 2018-06-29 2018-11-23 Oppo广东移动通信有限公司 多路选择开关以及相关产品
US20200037383A1 (en) * 2018-07-30 2020-01-30 Qualcomm Incorporated Carrier switching and antenna switching for long term evolution and new radio dual connectivity
US10643962B1 (en) * 2013-02-20 2020-05-05 Micro Mobio Corporation World band radio frequency front end module, system and method of power sensing thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212788B2 (en) * 2002-08-13 2007-05-01 Atheros Communications, Inc. Method and apparatus for signal power loss reduction in RF communication systems
CN105099493B (zh) * 2014-04-25 2018-05-18 华为技术有限公司 射频电路和移动终端
CN110943757B (zh) * 2019-11-29 2021-08-27 维沃移动通信有限公司 射频电路及电子设备
CN110890900A (zh) * 2019-11-29 2020-03-17 维沃移动通信有限公司 射频电路及电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140227982A1 (en) * 2013-02-08 2014-08-14 Rf Micro Devices, Inc. Front end circuitry for carrier aggregation configurations
US10643962B1 (en) * 2013-02-20 2020-05-05 Micro Mobio Corporation World band radio frequency front end module, system and method of power sensing thereof
CN108199726A (zh) * 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108199728A (zh) * 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关、射频系统和无线通信设备
CN108462497A (zh) * 2018-03-16 2018-08-28 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108494413A (zh) * 2018-03-16 2018-09-04 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108599780A (zh) * 2018-03-16 2018-09-28 广东欧珀移动通信有限公司 多路选择开关和无线通信设备
CN108880602A (zh) * 2018-06-29 2018-11-23 Oppo广东移动通信有限公司 多路选择开关以及相关产品
US20200037383A1 (en) * 2018-07-30 2020-01-30 Qualcomm Incorporated Carrier switching and antenna switching for long term evolution and new radio dual connectivity

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098244A1 (zh) * 2021-11-30 2023-06-08 Oppo广东移动通信有限公司 射频前端器件和射频系统
CN114039614A (zh) * 2021-12-07 2022-02-11 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114124115A (zh) * 2021-12-07 2022-03-01 Oppo广东移动通信有限公司 射频前端器件、射频收发系统和通信设备
CN114124115B (zh) * 2021-12-07 2023-03-10 Oppo广东移动通信有限公司 射频收发系统和通信设备
CN114285432A (zh) * 2021-12-31 2022-04-05 Oppo广东移动通信有限公司 通信控制方法、装置、射频系统、通信设备和存储介质
CN115065375A (zh) * 2022-05-20 2022-09-16 Oppo广东移动通信有限公司 射频功率放大电路、射频系统及无线通信设备
CN115987320A (zh) * 2022-11-23 2023-04-18 中国人民解放军63921部队 小型化北斗短报文终端射频电路

Also Published As

Publication number Publication date
CN113726359B (zh) 2023-08-15
CN113726359A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2022062585A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2021238453A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN212588326U (zh) 射频PA Mid器件、射频系统和通信设备
WO2022116728A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2022062575A1 (zh) 射频系统和通信设备
WO2021258863A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN213661597U (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN212588327U (zh) 射频PA Mid器件、射频收发系统和通信设备
CN113726360B (zh) 射频PA Mid器件、射频收发装置和通信设备
WO2023103687A1 (zh) 射频前端器件、射频收发系统和通信设备
WO2021258855A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN212811690U (zh) 射频l-drx器件、射频收发系统和通信设备
WO2022127402A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
US20230093847A1 (en) Radio frequency pa mid device, radio frequency transceiving system, and communication apparatus
CN113726357A (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2022127404A1 (zh) 射频收发系统及通信设备
WO2022062586A1 (zh) 射频drx器件、射频系统和通信设备
CN213661596U (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN113726358A (zh) 射频PA Mid器件、射频系统和通信设备
WO2021238430A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2022127399A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2021238538A1 (zh) 射频l-drx器件、射频收发系统和通信设备
CN115250130B (zh) 射频PA Mid器件、射频收发系统和通信设备
CN114124141B (zh) 射频系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813987

Country of ref document: EP

Kind code of ref document: A1