WO2021147519A1 - 射频系统和电子设备 - Google Patents

射频系统和电子设备 Download PDF

Info

Publication number
WO2021147519A1
WO2021147519A1 PCT/CN2020/133122 CN2020133122W WO2021147519A1 WO 2021147519 A1 WO2021147519 A1 WO 2021147519A1 CN 2020133122 W CN2020133122 W CN 2020133122W WO 2021147519 A1 WO2021147519 A1 WO 2021147519A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
switch
frequency band
module
frequency
Prior art date
Application number
PCT/CN2020/133122
Other languages
English (en)
French (fr)
Inventor
陈宪龙
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20915824.5A priority Critical patent/EP4087143A4/en
Publication of WO2021147519A1 publication Critical patent/WO2021147519A1/zh
Priority to US17/814,027 priority patent/US20220368357A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the technical field of electronic equipment, and in particular to a radio frequency system and electronic equipment.
  • Electronic devices in the 4th Generation (4G) mobile communication system generally adopt a single-antenna or dual-antenna radio frequency system architecture.
  • the radio frequency framework of 4G scheme is relatively simple, including transmitting device, receiving device, switch and antenna.
  • the transmitting device may include a low-band (LB) transmitting module and a middle-high-band (MHB) transmitting module
  • the receiving device may include a primary receive (PRX) module and a diversity receive (DRX) module. ) Module.
  • the receiving path between the main receiver module, the switch and the antenna is the master receiver path, and the receiver path between the diversity receiver module, the switch and the antenna is the diversity receiver path.
  • the switch can intelligently switch between the main receiver path and the diversity receiver path.
  • the current 4G radio frequency framework can only transmit and receive a single low-frequency band.
  • the embodiment of the application provides a radio frequency system and electronic equipment.
  • Four antennas are used to support dual connection of the first low frequency band and the second low frequency band.
  • the uplink signal can be distributed on the two antennas with better antenna efficiency. The reliability of the uplink signal.
  • an embodiment of the present application provides a radio frequency system.
  • the radio frequency system includes a radio frequency transceiver, a radio frequency processing circuit, a switch module, a first antenna, a second antenna, a third antenna, and a fourth antenna.
  • a radio frequency transceiver is connected to the radio frequency processing circuit; the antenna efficiencies of the first antenna and the second antenna are higher than those of the third antenna and the fourth antenna;
  • the radio frequency processing circuit includes a first transmitting module, a second transmitting module, a first receiving module, a second receiving module, a first duplexer, a second duplexer, a first selection switch, and a first filter Module
  • the first transmitting module is connected to the first antenna through the first duplexer and the switch module, and the first transmitting module is connected to the first antenna through the first selector switch and the second duplexer. Connected to the first antenna with the switch module;
  • the second transmitting module is connected to the second antenna through the switch module;
  • the first receiving port of the first receiving module is connected to the first antenna through the first duplexer and the switch module, and the second receiving port of the first receiving module passes through the first antenna.
  • the second duplexer, the first selector switch, the second transmitting module, and the switch module are connected to the first antenna, and the second receiving port of the first receiving module passes through the second
  • the duplexer and the switch switching module are connected to the second antenna, and the third receiving port of the first receiving module is connected to the second antenna through the second transmitting module and the switching switch module ;
  • the first receiving port of the second receiving module is connected to the fourth antenna through the first filter module, and the second receiving port of the second receiving module is connected through the switch module or the selection filter module The third antenna;
  • the first antenna is used for the transmission of the first low-frequency band and the main set of reception of the first low-frequency band
  • the second antenna is used for the second low-frequency band Transmission and main set reception of the second low-frequency band
  • the third antenna is used for diversity reception of the second low-frequency band
  • the fourth antenna is used for diversity reception of the first low-frequency band
  • the second A filtering module is used to filter out frequency bands other than the first low frequency frequency band.
  • an embodiment of the present application provides an electronic device, including the radio frequency system described in any one of the first aspect.
  • the radio frequency system works in a non-independent networking mode, the radio frequency system is used to implement the first The transmission and reception of the low frequency frequency band and the transmission and reception of the second low frequency frequency band.
  • 4 antennas are used to support dual connections of the first low-frequency band and the second low-frequency band, which can realize the simultaneous transmission and reception of the first low-frequency band and the second low-frequency band, and can distribute the uplink signal On the two antennas with better antenna efficiency, the reliability of the uplink signal can be guaranteed.
  • FIG. 1 is a schematic structural diagram of a radio frequency system provided by an embodiment of the present application
  • Fig. 2a is a schematic structural diagram of a second filtering module provided by an embodiment of the present application.
  • FIG. 2b is a schematic structural diagram of a first filtering module provided by an embodiment of the present application.
  • 3a is a schematic structural diagram of a radio frequency system including a DP3T switch in a switch module provided by an embodiment of the present application;
  • FIG. 3b is a schematic structural diagram of a radio frequency system including a 3P3T switch provided by an embodiment of the present application;
  • Fig. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic devices involved in the embodiments of this application may include various handheld devices with wireless communication functions (such as mobile phones, tablet computers, etc.), vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems, and Various forms of user equipment (User Equipment, UE) (for example, mobile phones), mobile stations (Mobile Station, MS), terminal devices (terminal devices), and so on.
  • UE User Equipment
  • UE mobile phones
  • MS mobile stations
  • terminal devices terminal devices
  • FIG. 1 is a schematic structural diagram of a radio frequency system provided by an embodiment of the present application.
  • the radio frequency system 100 includes a radio frequency transceiver 11, a radio frequency processing circuit 12, a switch module 13, a first antenna 141, and a second antenna.
  • the antenna 142, the third antenna 143 and the fourth antenna 144, the radio frequency transceiver 11 is connected to the radio frequency processing circuit 12; the antenna efficiency of the first antenna 141 and the second antenna 142 is higher than that of the third antenna 143 and the antenna efficiency of the fourth antenna 144;
  • the radio frequency processing circuit 12 includes a first transmitting module 121, a second transmitting module 122, a first receiving module 123, a second receiving module 124, a first duplexer 151, a second duplexer 152, and a A selection switch 191 and the first filtering module 16;
  • the first transmitting module 121 is connected to the first antenna 141 through the first duplexer 151 and the switch module, and the first transmitting module 121 is connected to the first antenna 141 through the first selector switch 191,
  • the second duplexer 152 and the switch module 13 are connected to the first antenna 141;
  • the second transmitting module 122 is connected to the second antenna 142 through the switch module 13;
  • the first receiving port 1231 of the first receiving module 123 is connected to the first antenna 141 through the first duplexer 151 and the switch module 13, and the second receiving module 123 is connected to the first antenna 141.
  • the receiving port 1232 is connected to the first antenna 141 through the second duplexer 152, the first selector switch 191, the second transmitting module 122 and the switch module 13, and the first receiving
  • the second receiving port 1232 of the module 123 is connected to the second antenna 142 through the second duplexer 152 and the switch module 13, and the third receiving port 1233 of the first receiving module 123 passes through all
  • the second transmitting module 122 and the switch module 13 are connected to the second antenna 142;
  • the first receiving port 1241 of the second receiving module 124 is connected to the fourth antenna 144 through the first filter module 16, and the second receiving port 1242 of the second receiving module 124 is connected to the fourth antenna 144 through the switch module.
  • the group 13 is connected to the third antenna 143 or is connected to the third antenna 143 through the selection filter module 17;
  • the first antenna 141 is used for the transmission of the first low-frequency band and the main set of reception of the first low-frequency band
  • the second antenna 142 is used for the second Low frequency frequency band transmission and main set reception of the second low frequency frequency band
  • the third antenna 143 is used for diversity reception of the second low frequency frequency band
  • the fourth antenna 144 is used for diversity reception of the first low frequency frequency band
  • the first filtering module is used to filter out frequency bands other than the first low frequency frequency band.
  • the non-standalone (NSA) mode includes any one of the EN-DC, NE-DC, and NGEN-DC architectures.
  • the electronic equipment is connected to the 4G core network, the 4G base station is the main station, and the 5G base station is the auxiliary station;
  • 5G core network is introduced, 5G base station is the primary station, and 4G base station is the secondary station;
  • a 5G core network is introduced, with 4G base stations as the primary station and 5G base stations as the secondary station.
  • DC Dual Connectivity
  • E Universal Mobile Telecommunications System
  • E-UTRA Universal Mobile Telecommunications System
  • N represents (new radio, NR), that is, 5G new radio
  • NG represents (next generation, NG) next-generation core network, that is, 5G core network.
  • EN-DC refers to the dual connection of 4G wireless access network and 5G NR
  • NE-DC refers to the dual connection of 5G NR and 4G wireless access network
  • NGEN-DC refers to the 4G wireless access network under the 5G core network and 5G NR dual connection.
  • the following non-independent networking mode takes the EN-DC architecture as an example.
  • the radio frequency system in the embodiments of this application supports low-band LB + LB NSA
  • LB + LB NSA refers to LB long term evolution (LTE) + LB NR working together, which requires two Two power amplifiers (PA) work at the same time to transmit signals, and both LB LTE and NR require two antennas, one antenna for transmit (TX) or primary receive (PRX), and the other The antenna performs diversity receive (diversity receive, DRX). Therefore, to realize LB+LB NSA, 4 antennas are required.
  • the clearance area left for the LB antenna is small, and it is difficult to meet the clearance area requirements of 4 LB antennas at the same time. Therefore, the efficiency of 4 antennas All good LB antennas are more difficult, in order to ensure the reliability of the uplink signal.
  • the two antennas with better antenna efficiency among the four antennas can be used for the transmission of LB LTE signals and LB NR signals.
  • the first low-frequency frequency band may include a 4G frequency band, for example, the B20 frequency band (uplink: 832-862MHz, downlink: 791-821MHz) or the B28 frequency band (uplink: 703-748MHz, downlink: 758-803MHz).
  • Two low-frequency frequency bands can include 5G frequency bands, for example, N5 frequency band (uplink: 824-849MHz, downlink: 869-894MHz) or N8 frequency band (uplink: 880-915MHz, downlink: 925-960MHz) or N28 frequency band (uplink: 703-748MHz) , Downlink: 758-803MHz).
  • the frequency range of B5 in the 4G frequency band is the same as that of N5 in the 5G frequency band
  • the frequency band range of B8 in the 4G frequency band is the same as that of N8 in the 5G frequency band
  • the frequency band range of B28 in the 4G frequency band is the same as that of N28 in the 5G frequency band.
  • the first antenna 141 is used for the transmission of the first low-frequency band and the main set of reception of the first low-frequency band
  • the second antenna 142 is used for the transmission of the second low-frequency band and the main set of reception of the second low-frequency band.
  • the third antenna 143 is used for diversity reception in the second low frequency band
  • the fourth antenna 144 is used for diversity reception in the first low frequency band.
  • the first antenna 141 is used for the transmission and main set reception of the B20 or B28 frequency band
  • the second antenna 142 is used for the transmission and main set reception of the N5 or N8 or N28 frequency band
  • the third antenna 143 is used for the N5 or N8 or N28 frequency band.
  • the fourth antenna 144 is used for diversity reception in the B20 or B28 frequency band.
  • the transmit (TX) path of the first low-frequency band includes:
  • the PRX channel of the first low-frequency band includes:
  • the diversity reception (DRX) path of the first low-frequency band includes: the fourth antenna 144 ⁇ the first filter module 16 ⁇ the second receiving module 124 ⁇ the radio frequency transceiver 11; or the third antenna 143 ⁇ the switch module 13 ⁇ the third antenna The second receiving module 124 ⁇ the radio frequency transceiver 11; or the third antenna 143 ⁇ the selection filter module 17 ⁇ the second receiving module 124 ⁇ the radio frequency transceiver 11;
  • the transmission (TX) path of the second low-frequency band includes: radio frequency transceiver 11 ⁇ first transmission module 121 ⁇ first selector switch 191 ⁇ second duplexer 152 ⁇ switch module 13 ⁇ second antenna 142; or, Radio frequency transceiver 11 ⁇ second transmitting module 122 ⁇ switch module 13 ⁇ second antenna 142; or, radio frequency transceiver 11 ⁇ second transmitting module 122 ⁇ first selector switch 191 ⁇ second duplexer 152 ⁇ Switch module 13 ⁇ second antenna 142;
  • the PRX path of the second low frequency band includes: second antenna 142 ⁇ switch module 13 ⁇ second duplexer 152 ⁇ first receiving module 123 ⁇ RF transceiver 11; or, second antenna 142 ⁇ Switch module 13 ⁇ Second transmitting module 122 ⁇ First selector switch 191 ⁇ Second duplexer 152 ⁇ First receiving module 123 ⁇ RF transceiver 11;
  • the second antenna 142 ⁇ the switch module 13 ⁇ the second transmitting module 122 ⁇ the first receiving module 123 ⁇ the radio frequency transceiver 11;
  • the diversity reception (DRX) path of the second low frequency band includes: third antenna 143 ⁇ switch module 13 ⁇ second receiving module 124 ⁇ RF transceiver 11; or, third antenna 143 ⁇ selection filter module 17 ⁇ second Receiving module 124 ⁇ RF transceiver 11.
  • the radio frequency path of the first low-frequency band includes: a transmitting path of the first low-frequency band, a main receiving path of the first low-frequency band, and a diversity receiving path of the first low-frequency band.
  • the radio frequency path of the second low frequency frequency band includes: a transmitting path of the second low frequency frequency band, a main receiving path of the second low frequency frequency band, and a diversity receiving path of the second low frequency frequency band.
  • the radio frequency path of the first low-frequency frequency band (for example, LB LTE frequency band) only needs TX (transmission signal), PRX (primary reception signal), and DRX (diversity reception signal).
  • the radio frequency path of the second low frequency band (LB NR band) requires TX (transmission signal), PRX (main receiver signal), DRX (diversity receiver signal), and Multiple-Input Multiple-Out-put (MIMO) PRX, MIMO DRX signal.
  • the first low-frequency band includes a first sub-band or a second sub-band
  • the second low-frequency band includes a third sub-band, a fourth sub-band or a fifth sub-band.
  • the first sub-band is the B20 frequency band (uplink: 832-862MHz, downlink: 791-821MHz)
  • the second sub-band is the B28 frequency band (uplink: 703-748MHz, downlink: 758-803MHz)
  • the third sub-band is N5 Frequency band (uplink: 824-849MHz, downlink: 869-894MHz) or B5 frequency band
  • the fourth sub-band is N8 frequency band (uplink: 880-915MHz, downlink: 925-960MHz) or B8 frequency band
  • the fifth sub-band is N28 frequency band ( Uplink: 703-748MHz, Downlink: 758-803MHz) or B28 frequency band.
  • the first sub-band is the B20 frequency band
  • the second sub-band is the B28 frequency band
  • the third sub-frequency band is the N5 frequency band
  • the fourth sub-frequency band is the N8 frequency band
  • the fifth sub-band is the N28 frequency band
  • the first sub-band is the B20 frequency band
  • the second sub-band is the B28 frequency band
  • the third sub-band is the B5 frequency band
  • the fourth sub-band is the B8 frequency band
  • the fifth sub-band is the B28 frequency band.
  • the first duplexer 151 may allow the transmission of the first low frequency band (for example, the B20 frequency band) and the main set of reception of the first low frequency band to work simultaneously.
  • the second duplexer 152 may allow the transmission of the second low frequency frequency band (for example, the B28A frequency band) and the main set reception of the second low frequency frequency band to work simultaneously.
  • the first transmitting module 121 in the embodiment of the present application may include a multi-mode multi-band power amplifier (MMPA), and a PA and a switch may be integrated inside the MMPA.
  • MMPA multi-mode multi-band power amplifier
  • the second transmitting module 122 in the embodiment of the present application may include PAMID, which is a radio frequency integrated module integrating PA, duplexer, filter, and switch, or the second transmitting module 122 may be a Phase7lite device, or the first The second transmitting module 122 may be an MMPA supporting NR.
  • PAMID is a radio frequency integrated module integrating PA, duplexer, filter, and switch
  • the second transmitting module 122 may be a Phase7lite device, or the first
  • the second transmitting module 122 may be an MMPA supporting NR.
  • the first receiving module 123 in the embodiment of the present application may include a micro low noise amplifier (MLNA), and a low noise amplifier (LNA) may be integrated inside the MLNA to achieve RX signal amplification, or, Alternatively, the first receiving module 123 may be a Phase7lite device, or the first receiving module 123 may be an MMPA supporting NR.
  • MLNA micro low noise amplifier
  • LNA low noise amplifier
  • the second receiving module 124 in the embodiment of the present application may include L-DRX.
  • L-DRX is a receiving module that integrates a surface acoustic wave filter (SAW) and LNA, and is used to filter and amplify RX signals.
  • the L-DRX may be a Phase7lite device, or the second receiving module 124 may be implemented by DFEM and MLNA, or the second receiving module 124 may be implemented by a switch, SAW and MLNA.
  • the first selection switch 191 in the embodiment of the present application may include an SPDT switch.
  • the switch module 13 of the embodiment of the present application may include at least one of a DP3T switch and a 3P3T switch. Among them, the DP3T switch and the 3P3T switch may both be fully connected switches.
  • the DP3T switch can include 3 In ports and 2 OUT ports, and the 3P3T switch can include 3 In ports and 3 OUT ports. In-OUT can realize 3-3 arbitrary connection switching.
  • 4 antennas are used to support dual connection of the first low-frequency band and the second low-frequency band, which can realize the simultaneous transmission and reception of the first low-frequency band and the second low-frequency band, and can distribute the uplink signal to the antenna more efficiently. With two good antennas, the reliability of the uplink signal can be guaranteed.
  • the first antenna 141 when the radio frequency system 100 is operating in 4G mode, the first antenna 141 is used for the transmission of the first low-frequency band and the main set of reception of the first low-frequency band, The first antenna 141 is also used for the transmission of the second low-frequency band and the main set of reception of the second low-frequency band, and the second antenna 142 is used for the first low-frequency band or the second low-frequency band Diversity reception.
  • the first low-frequency frequency band may include a 4G frequency band, for example, the B20 frequency band (uplink: 832-862MHz, downlink: 791-821MHz) or the B28 frequency band (uplink: 703-748MHz, downlink: 758-803MHz).
  • Two low-frequency frequency bands can include 4G frequency bands, for example, B5 frequency band (uplink: 824-849MHz, downlink: 869-894MHz) or B8 frequency band (uplink: 880-915MHz, downlink: 925-960MHz) or B28 frequency band (uplink: 703-748MHz) , Downlink: 758-803MHz).
  • the third antenna 143 and the fourth antenna 144 in the radio frequency system 100 in the embodiment of the present application are not used or only used for low frequency (LB) reception (RX) to achieve 4RX/4 ⁇ 4 MIMO function .
  • the transmit (TX) path of the first low frequency band may include: radio frequency transceiver 11 ⁇ second transmitting module 122 ⁇ switch module 13 ⁇ first antenna 141; or, radio frequency transceiver 11 ⁇ second antenna
  • the radio frequency path of the first low-frequency band includes: a transmitting path of the first low-frequency band, a main receiving path of the first low-frequency band, and a diversity receiving path of the first low-frequency band.
  • the radio frequency path of the second low frequency frequency band includes: a transmitting path of the second low frequency frequency band, a main receiving path of the second low frequency frequency band, and a diversity receiving path of the second low frequency frequency band.
  • the switch module 13 may include a switch.
  • the switch module 13 includes a switch
  • the switch includes one of a double-pole, three-throw DP3T switch or a 3P3T switch.
  • the switch module includes a DP3T switch
  • the second receiving port of the second receiving module is connected to the third antenna through the switch module or the selection filter module, specifically :
  • the second receiving port of the second receiving module is connected to the third antenna through the selection filtering module.
  • the radio frequency processing circuit further includes a second selection switch and a third selection switch
  • the first transmitting module is connected to the first antenna through the first duplexer and the switch module, specifically:
  • the first transmitting module is connected to the first antenna through the first duplexer, the second selector switch, and the switch module;
  • the first transmitting module is connected to the first antenna through the first selector switch, the second duplexer and the switch module, specifically:
  • the first transmitting module is connected to the first antenna through the first selection switch, the second duplexer, the third selection switch, the second selection switch, and the switch module.
  • both the second selection switch and the third selection switch may include SPDT switches.
  • the second receiving port of the second receiving module is connected to the third antenna through the switch module or the selection filtering module includes:
  • the second receiving port of the second receiving module is connected to the third antenna through the switch module.
  • the selection filter module includes a first filter, a second filter, a third filter, a first single-pole three-throw SP3T switch and a second SP3T switch, and the P port of the first SP3T switch Connect the second receiving port of the second receiving module, the first T port of the first SP3T switch is connected to the first end of the first filter, and the second T port of the first SP3T switch is connected to the The first end of the second filter, the third T port of the first SP3T switch is connected to the first end of the third filter, and the second end of the first filter is connected to the second SP3T switch The second end of the second filter is connected to the second T port of the second SP3T switch, and the second end of the third filter is connected to the third T port of the second SP3T switch.
  • the P port of the second SP3T switch is connected to the third antenna;
  • the first filter is used to filter out frequency bands other than the third sub-frequency band
  • the second filter is used to filter out frequency bands other than the fourth sub-frequency band
  • the third filter is used to filter out all frequency bands.
  • the first filter module includes a first SPDT switch, a second SPDT switch, a fourth filter, and a fifth filter
  • the P port of the first SPDT switch is connected to the second receiving module.
  • the first receiving port of the group, the first T port of the first SPDT switch is connected to the first end of the fourth filter, and the second T port of the first SPDT switch is connected to the first terminal of the fifth filter.
  • the second end of the fourth filter is connected to the first T port of the second SPDT switch, and the second end of the fifth filter is connected to the second T port of the second SPDT switch, so
  • the P port of the second SPDT switch is connected to the fourth antenna;
  • the fourth filter is used to filter out frequency bands other than the first sub-frequency band
  • the fifth filter is used to filter out frequency bands other than the second sub-frequency band.
  • FIG. 2a is a schematic structural diagram of a selective filtering module provided in an embodiment of the present application.
  • the selection filter module 17 includes a first filter 171, a second filter 172, a third filter 173, a first SP3T switch 174, and a second SP3T switch 175.
  • the P port of the SP3T switch 174 is connected to the second receiving port 1242 of the second receiving module 124, the first T port of the first SP3T switch 174 is connected to the first end of the first filter 171, and the The second T port of an SP3T switch 174 is connected to the first end of the second filter 172, and the third T port of the first SP3T switch 174 is connected to the first end of the third filter 173.
  • the second end of a filter 171 is connected to the first T port of the second SP3T switch 175, and the second end of the second filter 172 is connected to the second T port of the second SP3T switch 175.
  • the second end of the triple filter 173 is connected to the third T port of the second SP3T switch 175, and the P port of the second SP3T switch 175 is connected to the third antenna 143;
  • the third filter 171 is used to filter out frequency bands other than the third sub-band
  • the fourth filter 172 is used to filter out frequency bands other than the fourth sub-band
  • the fifth filter 173 is used to filter out frequency bands other than the fifth sub-band.
  • the third sub-band may include N5 frequency band (uplink: 824-849MHz, downlink: 869-894MHz) or B5 frequency band
  • the fourth sub-band may include N8 frequency band (uplink: 880-915MHz, downlink: 925-960MHz) or B8 Frequency band
  • the fifth sub-band may include N28 frequency band (uplink: 703-748MHz, downlink: 758-803MHz) or B28 frequency band.
  • FIG. 2b is a schematic structural diagram of a first filtering module according to an embodiment of the present application.
  • the first filter module 16 includes a first SPDT switch 163, a second SPDT switch 164, a fourth filter 161, and a fifth filter 162.
  • the P port of the first SPDT switch 163 is connected to the The second receiving port 1242 of the second receiving module 124, the first T port of the first SPDT switch 163 is connected to the first end of the fourth filter 161, and the second T port of the first SPDT switch 163
  • the port is connected to the first end of the fifth filter 162, the second end of the fourth filter 161 is connected to the first T port of the second SPDT switch 164, and the second end of the fifth filter 162 is Connected to the second T port of the second SPDT switch 164, and the P port of the second SPDT switch 164 is connected to the fourth antenna 144;
  • the fourth filter 161 is used for filtering out frequency bands other than the first sub-frequency band
  • the fifth filter 162 is used for filtering out frequency bands other than the second sub-frequency band.
  • the first sub-band may include the B20 frequency band (uplink: 832-862 MHz, downlink: 791-821 MHz), and the second sub-band may include the B28 frequency band (uplink: 703-748 MHz, downlink: 758-803 MHz).
  • FIG. 3a is a schematic structural diagram of a radio frequency system including a DP3T switch in a switch module provided by an embodiment of the present application, as shown in FIG. 3a.
  • the radio frequency system 100 includes a radio frequency transceiver 11, a radio frequency processing circuit 12, a DP3T switch 13, a first antenna 141, a second antenna 142, a third antenna 143, a fourth antenna 144, a directional coupler 181 and a directional coupler 182, so
  • the radio frequency transceiver 12 is connected to the radio frequency processing circuit 12;
  • the radio frequency processing circuit 12 includes a first transmitting module 121, a second transmitting module 122, a first receiving module 123, a second receiving module 124, a first duplexer 151, a second duplexer 152, and a A selection switch 191, and a first filtering module 16;
  • the first transmitting module 121 is connected to the first antenna 141 through the first duplexer 151, the directional coupler 181, and the DP3T switch 13, and the first transmitting module 121 passes through the first selection
  • the switch 191, the second duplexer 152, the directional coupler 182, and the DP3T switch 13 are connected to the first antenna 141;
  • the second transmitting module 122 is connected to the second antenna 142 through the DP3T switch 13;
  • the first receiving port 1231 of the first receiving module 123 is connected to the first antenna 141 through the first duplexer 151, the directional coupler 181, and the DP3T switch 13, and the first receiving module 123
  • the second receiving port 1232 is connected to the second antenna 142 through the second duplexer 152, the first selector switch 191, the second transmitting module 122 and the DP3T switch 13, and the first receiving module
  • the second receiving port 1232 of the group 123 is connected to the first antenna 141 through the second duplexer 152, the directional coupler 182, and the DP3T switch 13, and the third receiving port 1233 of the first receiving module 123 Connect the second antenna 142 through the second transmitting module 122 and the DP3T switch 13;
  • the first receiving port 1241 of the second receiving module 124 is connected to the fourth antenna 144 through the first filter module 16, and the second receiving port 1242 of the second receiving module 124 passes through the selection filter module 17 is connected to the third antenna 143; the antenna efficiency of the first antenna 141 and the second antenna 142 is higher than the antenna efficiency of the third antenna 143 and the fourth antenna 144;
  • the first antenna 141 is used for the transmission of the first low-frequency band and the main set of reception of the first low-frequency band
  • the second antenna 142 is used for the first low-frequency band.
  • the first filtering module 16 is configured to filter out frequency bands other than the first low-frequency frequency band.
  • the first low-frequency band includes a first sub-band or a second sub-band
  • the second low-frequency band includes a third sub-band, a fourth sub-band or a fifth sub-band.
  • the first sub-band is the B20 frequency band
  • the second sub-band is the B28A frequency band
  • the third sub-band is the N5 frequency band
  • the fourth sub-band is the N8 frequency band
  • the fourth sub-band is the N8 frequency band.
  • the B28A frequency band is a component of the B28 frequency band
  • the B28 frequency band can be divided into the B28A frequency band and the B28B frequency band
  • the N28A frequency band is a component of the N28 frequency band
  • the N28 frequency band can be divided into the N28A frequency band and the N28B frequency band.
  • TX Transmit (TX) in the B20 frequency band: RF transceiver 11 (for example, WTR) ⁇ first transmitting module 121 (for example, MMPA) ⁇ first duplexer 151 (for example, B20 duplexer) ⁇ directional coupler 181 ⁇ DP3T switch 13 ⁇ first antenna 141;
  • PRX for B20 frequency band first antenna 141 ⁇ DP3T switch 13 ⁇ directional coupler 181 ⁇ first duplexer 151 (for example, B20 duplexer) ⁇ first receiving module 123 (for example, MLNA) ⁇ RF transceiver 11 (for example, WTR);
  • the fourth antenna 144 ⁇ the first filter module 16 (for example: B20+B28SAW) ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR) ;
  • N28A frequency band transmission radio frequency transceiver 11 (for example, WTR) ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ DP3T switch 13 ⁇ second antenna 142;
  • the main receiver (PRX) of the N28A frequency band the second antenna 142 ⁇ DP3T switch 13 ⁇ the second transmitting module 122 (for example, LB PAmid) ⁇ the first receiving module 123 (for example, MLNA) ⁇ the radio frequency transceiver 11 (for example , WTR);
  • the third antenna 143 the selection filter module 17 ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR).
  • N8 frequency band transmission radio frequency transceiver 11 (for example, WTR) ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ DP3T switch 13 ⁇ second antenna 142;
  • the primary receiver (PRX) of the N8 frequency band the second antenna 142 ⁇ DP3T switch 13 ⁇ the second transmitting module 122 (for example, LB PAmid) ⁇ the first receiving module 123 (for example, MLNA) ⁇ the radio frequency transceiver 11 (for example , WTR);
  • DRX Diversity reception
  • third antenna 143 selection filter module 17 ⁇ second receiving module 124 (for example, L-DRX) ⁇ radio frequency transceiver 11 (for example, WTR);
  • TX Transmit (TX) in the B20 frequency band: RF transceiver 11 (for example, WTR) ⁇ first transmitting module 121 (for example, MMPA) ⁇ first duplexer 151 (for example, B20 duplexer) ⁇ directional coupler 181 ⁇ DP3T switch 13 ⁇ first antenna 141;
  • PRX for B20 frequency band first antenna 141 ⁇ DP3T switch 13 ⁇ directional coupler 181 ⁇ first duplexer 151 (for example, B20 duplexer) ⁇ first receiving module 123 (for example, MLNA) ⁇ RF transceiver 11 (for example, WTR);
  • the fourth antenna 144 ⁇ the first filter module 16 (for example: B20+B28SAW) ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR) ;
  • TX Transmit (TX) in the B28A frequency band: RF transceiver 11 (for example, WTR) ⁇ first transmitter module 121 (for example, MMPA) ⁇ first selector switch 191 ⁇ second duplexer 152 (for example, B28A duplexer) ⁇ Directional coupler 182 ⁇ DP3T switch 13 ⁇ First antenna 141;
  • the primary receiver (PRX) of the B28A frequency band first antenna 141 ⁇ DP3T switch 13 ⁇ directional coupler 182 ⁇ second duplexer 152 (for example, B28A duplexer) ⁇ first receiving module 123 (for example, MLNA) ⁇ RF transceiver 11 (for example, WTR);
  • the fourth antenna 144 ⁇ the first filter module 16 (for example: B20+B28SAW) ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR) ;
  • N5 frequency band transmission radio frequency transceiver 11 (for example, WTR) ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ DP3T switch 13 ⁇ second antenna 142;
  • the primary receiver (PRX) of the N5 frequency band the second antenna 142 ⁇ DP3T switch 13 ⁇ the second transmitting module 122 (for example, LB PAmid) ⁇ the first receiving module 123 (for example, MLNA) ⁇ the radio frequency transceiver 11 (for example , WTR);
  • the third antenna 143 the selection filter module 17 ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR).
  • TX Transmitting
  • RF transceiver 11 for example, WTR
  • second transmitting module 122 for example, LB PAmid
  • first selector switch 191 for example, ⁇ second duplexer 152 (for example, B28A duplexer)
  • B5/B8/B20 frequency band transmission (TX): radio frequency transceiver 11 (for example, WTR) ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ DP3T switch 13 ⁇ first antenna 141;
  • B5/B8/B20 frequency band master receiver PRX: first antenna 141 ⁇ DP3T switch 13 ⁇ directional coupler 181 ⁇ first duplexer 151 (for example, B20 duplexer) ⁇ first receiving module 123 ( For example, MLNA) ⁇ RF transceiver 11 (for example, WTR);
  • the fourth antenna 142 the first filter module 16 (for example: B20+B28SAW) ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR).
  • B20+B28SAW can reserve the B20 and B28 frequency bands, and filter out other frequency bands.
  • both the directional coupler 181 and the directional coupler 182 can mix two radio frequency signals and output them.
  • the directional coupler 181 and the directional coupler 182 may also have a power distribution function, which is used to divide the power of the input signal into several ways and feed it back to the corresponding receiving port of the radio frequency transceiver 11, so as to facilitate the radio frequency transceiver 11 Adjust the power of the radio frequency signal it transmits.
  • the first antenna 141 when the radio frequency system 100 is operating in 4G mode, the first antenna 141 is used for the transmission of the first low-frequency band and the main set of reception of the first low-frequency band, The first antenna 141 is also used for the transmission of the second low-frequency band and the main set of reception of the second low-frequency band, and the second antenna 142 is used for the first low-frequency band or the second low-frequency band Diversity reception.
  • FIG. 3b is a schematic structural diagram of a radio frequency system in which a switch module includes a 3P3T switch provided by an embodiment of the present application, as shown in FIG. 3b.
  • the radio frequency system 100 includes a radio frequency transceiver 11, a radio frequency processing circuit 12, a 3P3T switch 13, a first antenna 141, a second antenna 142, a third antenna 143, a fourth antenna 144, and a directional coupler 183.
  • the radio frequency transceiver 12 Connected to the radio frequency processing circuit 12;
  • the radio frequency processing circuit 12 includes a first transmitting module 121, a second transmitting module 122, a first receiving module 123, a second receiving module 124, a first duplexer 151, a second duplexer 152, and a A selection switch 191, a second selection switch 192, a third selection switch 193 and the first filter module 16;
  • the first transmitting module 121 is connected to the first antenna 141 through the first duplexer 151, the second selector switch 192, the directional coupler 183, and the 3P3T switch 13, and the first transmitting module
  • the group 121 is connected to the first antenna through the first selection switch 191, the second duplexer 152, the third selection switch 193, the second selection switch 192, the directional coupler 183, and the 3P3T switch 13. 141;
  • the second transmitting module 122 is connected to the second antenna 142 through the 3P3T switch 13;
  • the first receiving port 1231 of the first receiving module 123 is connected to the first antenna 141 through the first duplexer 151, the second selector switch 192, the directional coupler 183, and the 3P3T switch 13.
  • the second receiving port 1232 of the first receiving module 123 is connected through the second duplexer 152, the third selector switch 193, the second selector switch 192, the directional coupler 183, and the 3P3T switch 13.
  • the second receiving port 1232 of the first receiving module 123 passes through the second duplexer 152, the first selector switch 191, the second transmitting module 122, and the 3P3T
  • the switch 13 is connected to the second antenna 142, and the third receiving port 1233 of the first receiving module 123 is connected to the second antenna 142 through the second transmitting module 122 and the 3P3T switch 13;
  • the second receiving port 1242 of the second receiving module 124 is connected to the third antenna 143 through the 3P3T switch 13, and the first receiving port 1241 of the second receiving module 124 passes through the first filtering module 16 Connect the fourth antenna 144; the antenna efficiency of the first antenna 141 and the second antenna 142 is higher than the antenna efficiency of the third antenna 143 and the fourth antenna 144;
  • the first antenna 141 is used for the transmission of the first low-frequency band and the main set of reception of the first low-frequency band
  • the second antenna 142 is used for the first low-frequency band.
  • the first filtering module 16 is configured to filter out frequency bands other than the first low-frequency frequency band.
  • the first low-frequency band includes a first sub-band or a second sub-band
  • the second low-frequency band includes a third sub-band, a fourth sub-band or a fifth sub-band.
  • the first sub-band is the B20 frequency band
  • the second sub-band is the B28A frequency band
  • the third sub-band is the N5 frequency band
  • the fourth sub-band is the N8 frequency band
  • the fourth sub-band is the N8 frequency band.
  • the B28A frequency band is a component of the B28 frequency band
  • the B28 frequency band can be divided into the B28A frequency band and the B28B frequency band
  • the N28A frequency band is a component of the N28 frequency band
  • the N28 frequency band can be divided into the N28A frequency band and the N28B frequency band.
  • Radio frequency transceiver 11 for example, WTR
  • first transmitting module 121 for example, MMPA
  • first duplexer 151 for example, B20 duplexer
  • second selector switch 192 Directional coupler 183 ⁇ 3P3T switch 13 ⁇ first antenna 141;
  • PRX for B20 frequency band first antenna 141 ⁇ 3P3T switch 13 ⁇ directional coupler 183 ⁇ second selector switch 192 ⁇ first duplexer 151 (for example, B20 duplexer) ⁇ first receiving module 123 (for example, MLNA) ⁇ RF transceiver 11 (for example, WTR);
  • the fourth antenna 144 ⁇ the first filter module 16 (for example: B20+B28SAW) ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR) ;
  • N28A frequency band transmission radio frequency transceiver 11 (for example, WTR) ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ 3P3T switch 13 ⁇ second antenna 142;
  • the primary receiver (PRX) of the N28A frequency band the second antenna 142 ⁇ 3P3T switch 13 ⁇ the second transmitting module 122 (for example, LB PAmid) ⁇ the first receiving module 123 (for example, MLNA) ⁇ the radio frequency transceiver 11 (for example , WTR);
  • DRX Diversity reception
  • third antenna 143 3P3T switch 13
  • second receiving module 124 for example, L-DRX
  • radio frequency transceiver 11 for example, WTR
  • N8 frequency band transmission radio frequency transceiver 11 (for example, WTR) ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ 3P3T switch 13 ⁇ second antenna 142;
  • N8 frequency band master receiver PRX: second antenna 142 ⁇ 3P3T switch 13 ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ first receiving module 123 (for example, MLNA) ⁇ radio frequency transceiver 11 (for example , WTR);
  • Radio frequency transceiver 11 for example, WTR
  • first transmitting module 121 for example, MMPA
  • first duplexer 151 for example, B20 duplexer
  • second selector switch 192 Directional coupler 183 ⁇ 3P3T switch 13 ⁇ first antenna 141;
  • PRX for B20 frequency band first antenna 141 ⁇ 3P3T switch 13 ⁇ directional coupler 181 ⁇ second selector switch 192 ⁇ first duplexer 151 (for example, B20 duplexer) ⁇ first receiving module 123 (for example, MLNA) ⁇ RF transceiver 11 (for example, WTR);
  • the fourth antenna 144 ⁇ the first filter module 16 (for example: B20+B28SAW) ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR) ;
  • B28A frequency band transmission radio frequency transceiver 11 (for example, WTR) ⁇ first transmitting module 121 (for example, MMPA) ⁇ first selector switch 191 ⁇ second duplexer 152 (for example, B28A duplexer) ⁇ Third selection switch 193 ⁇ Second selection switch 192 ⁇ Directional coupler 183 ⁇ 3P3T switch 13 ⁇ First antenna 141;
  • PRX for B28A frequency band first antenna 141 ⁇ 3P3T switch 13 ⁇ directional coupler 183 ⁇ second selector switch 192 ⁇ third selector switch 193 ⁇ second duplexer 152 (for example, B28A duplexer) ⁇ First receiving module 123 (for example, MLNA) ⁇ Radio frequency transceiver 11 (for example, WTR);
  • the fourth antenna 144 ⁇ the first filter module 16 (for example: B20+B28SAW) ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR) ;
  • N5 frequency band transmission radio frequency transceiver 11 (for example, WTR) ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ 3P3T switch 13 ⁇ second antenna 142;
  • N5 frequency band master receiver PRX: second antenna 142 ⁇ 3P3T switch 13 ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ first receiving module 123 (for example, MLNA) ⁇ radio frequency transceiver 11 (for example , WTR);
  • PRX N5 frequency band master receiver
  • the third antenna 143 the selection filter module 17 ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR).
  • TX Transmitting
  • RF transceiver 11 for example, WTR
  • second transmitting module 122 for example, LB PAmid
  • third selection switch 193 ⁇ second selection switch 192 for example, directional coupler 183 ⁇ 3P3T switch 13 ⁇ first antenna 141;
  • B5/B8/B20 frequency band transmission (TX): radio frequency transceiver 11 (for example, WTR) ⁇ second transmitting module 122 (for example, LB PAmid) ⁇ 3P3T switch 13 ⁇ first antenna 141;
  • B28 frequency band master receiver PRX: first antenna 141 ⁇ 3P3T switch 13 ⁇ directional coupler 183 ⁇ second selector switch 192 ⁇ third selector switch 193 ⁇ second duplexer 152 (for example, B28A duplexer) ⁇ First receiving module 123 (for example, MLNA) ⁇ Radio frequency transceiver 11 (for example, WTR);
  • B5/B8/B20 frequency band master receiver PRX: first antenna 141 ⁇ 3P3T switch 13 ⁇ directional coupler 183 ⁇ second selector switch 192 ⁇ first duplexer 151 ⁇ first receiving module 123 (for example, MLNA) ⁇ RF transceiver 11 (for example, WTR);
  • the fourth antenna 142 the first filter module 16 (for example: B20+B28SAW) ⁇ the second receiving module 124 (for example, L-DRX) ⁇ the radio frequency transceiver 11 (for example, WTR).
  • B20+B28SAW can reserve the B20 and B28 frequency bands, and filter out other frequency bands.
  • the directional coupler 183 can mix two radio frequency signals and output them.
  • the directional coupler 183 may also have a power distribution function, which is used to divide the power of the input signal into several channels and feed it back to the corresponding receiving port of the radio frequency transceiver 11, so that the radio frequency transceiver 11 can adjust the radio frequency it transmits. The power of the signal.
  • the first antenna 141 when the radio frequency system 100 is operating in 4G mode, the first antenna 141 is used for the transmission of the first low-frequency band and the main set of reception of the first low-frequency band, The first antenna 141 is also used for the transmission of the second low-frequency band and the main set of reception of the second low-frequency band, and the second antenna 142 is used for the first low-frequency band or the second low-frequency band Diversity reception.
  • the 3P3T switch used in Figure 3b is a mature material and does not require additional materials, which can ensure the stability of the switch.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 10 may include the radio frequency system 100 and the motherboard 200 shown in FIG.
  • the module 16 may be provided on the main board 200.
  • the radio frequency system 100 works in a non-independent networking mode, the radio frequency system 100 is used to implement the transmission and reception of the first low-frequency frequency band and the transmission and reception of the second low-frequency frequency band.
  • the electronic device includes a processor, a memory, a random access memory (Random Access Memory, RAM), and a display screen. Among them, the memory, RAM and display screen are all connected with the processor.
  • the electronic device also includes a speaker, a microphone, a camera, a communication interface, a signal processor, and a sensor.
  • the speaker, microphone, camera, signal processor, and sensor are all connected to the processor, and the communication interface is connected to the signal processor.
  • the display screen can be a liquid crystal display (Liquid Crystal Display, LCD), an organic or inorganic light-emitting diode (Organic Light-Emitting Diode, OLED), an active matrix organic light-emitting diode (Active Matrix/Organic Light Emitting Diode, AMOLED) )Wait.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • AMOLED Active Matrix/Organic Light Emitting Diode
  • the camera may be a normal camera, an infrared camera, or a wide-angle camera, which is not limited here, and the camera may be a front camera or a rear camera, which is not limited here.
  • the camera may also be a dual camera, for example, an infrared camera + a visible light camera, or for example, a normal camera + a wide-angle camera.
  • the number of cameras can also be more than two, which is not limited here.
  • the sensor includes at least one of the following: a light sensor, a gyroscope, an infrared proximity sensor, a fingerprint sensor, a pressure sensor, and so on.
  • the light sensor also called the ambient light sensor, is used to detect the brightness of the ambient light.
  • the light sensor may include a photosensitive element and an analog-to-digital converter.
  • the photosensitive element is used to convert the collected light signal into an electric signal
  • the analog-to-digital converter is used to convert the above electric signal into a digital signal.
  • the light sensor may further include a signal amplifier, and the signal amplifier may amplify the electrical signal converted by the photosensitive element and then output it to the analog-to-digital converter.
  • the above-mentioned photosensitive element may include at least one of a photodiode, a phototransistor, a photoresistor, and a silicon photocell.
  • the processor is the control center of the electronic device. It uses various interfaces and lines to connect the various parts of the entire electronic device. By running or executing software programs and/or modules stored in the memory, and calling data stored in the memory, Perform various functions of the electronic device and process data to monitor the electronic device as a whole.
  • the processor can be integrated with an application processor and a modem processor.
  • the application processor mainly processes an operating system, a user interface, and an application program
  • the modem processor mainly processes wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor.
  • the memory is used to store software programs and/or modules, and the processor executes various functional applications and data processing of the electronic device by running the software programs and/or modules stored in the memory.
  • the memory may mainly include a storage program area and a storage data area, where the storage program area can store an operating system, at least one software program required by a function, etc.; the storage data area can store data created according to the use of electronic equipment, etc.
  • the memory may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)

Abstract

本申请实施例公开了一种射频系统和电子设备,该射频系统包括射频收发器、射频处理电路、切换开关模组、第一天线、第二天线、第三天线和第四天线;射频处理电路包括第一发射模组、第二发射模组、第一接收模组、第二接收模组、第一双工器、第二双工器、第一选择开关和第一滤波模块;在射频系统工作在非独立组网模式下,第一天线用于第一低频频段的发射和第一低频频段的主集接收,第二天线用于第二低频频段发射和第二低频频段的主集接收,第三天线用于第二低频频段的分集接收,第四天线用于第一低频频段的分集接收,第一滤波器用于滤除第一低频频段之外的频段。本申请实施例可以保证上行信号的可靠性。

Description

射频系统和电子设备 技术领域
本申请涉及电子设备技术领域,具体涉及一种射频系统和电子设备。
背景技术
随着智能手机等电子设备的大量普及应用,智能手机能够支持的应用越来越多,功能越来越强大,智能手机向着多样化、个性化的方向发展,成为用户生活中不可缺少的电子用品。第四代(the 4th Generation,4G)移动通信系统中电子装置一般采用单天线或双天线射频系统架构。4G方案的射频框架比较简单,包括发射器件、接收器件、切换开关和天线。其中,发射器件可以包括低频(low band,LB)发射模块和中高频(middle high band,MHB)发射模块,接收器件可以包括主集接收(primary receive,PRX)模块和分集接收(diversity receive,DRX)模块。主集接收模块、切换开关和天线之间的接收通路为主集接收通路,分集接收模块、切换开关和天线之间的接收通路为分集接收通路。切换开关可以在主集接收通路和分集接收通路之间进行智能切换。目前的4G射频框架只能实现单个低频频段的发射和接收。
发明内容
本申请实施例提供了一种射频系统和电子设备,采用4根天线支持第一低频频段和第二低频频段的双连接,可以将上行信号分布在天线效率更好的2根天线上,可以保证上行信号的可靠性。
第一方面,本申请实施例提供一种射频系统,所述射频系统包括射频收发器、射频处理电路、切换开关模组、第一天线、第二天线、第三天线和第四天线,所述射频收发器连接所述射频处理电路;所述第一天线和所述第二天线的天线效率高于所述第三天线和所述第四天线的天线效率;
所述射频处理电路包括第一发射模组、第二发射模组、第一接收模组、第二接收模组、第一双工器、第二双工器、第一选择开关和第一滤波模块;
所述第一发射模组通过所述第一双工器和所述切换开关模组连接所述第一天线,所述第一发射模组通过所述第一选择开关、所述第二双工器和所述切换开关模组连接所述第一天线;
所述第二发射模组通过所述切换开关模组连接所述第二天线;
所述第一接收模组的第一接收端口通过所述第一双工器和所述切换开关模组连接所述第一天线,所述第一接收模组的第二接收端口通过所述第二双工器、所述第一选择开关、所述第二发射模组和所述切换开关模组连接所述第一天线,所述第一接收模组的第二接收端口通过所述第二双工器和所述开关切换模组连接所述第二天线,所述第一接收模组的第三接收端口通过所述第二发射模组和所述切换开关模组连接所述第二天线;
所述第二接收模组的第一接收端口通过所述第一滤波模块连接所述第四天线,所述第二接收模组的第二接收端口通过所述切换开关模组或者选择滤波模块连接所述第三天线;
在所述射频系统工作在非独立组网模式下,所述第一天线用于第一低频频段的发射和所述第一低频频段的主集接收,所述第二天线用于第二低频频段发射和所述第二低频频段的主集接收,所述第三天线用于所述第二低频频段的分集接收,所述第四天线用于所述第一低频频段的分集接收,所述第一滤波模块用于滤除所述第一低频频段之外的频段。
第二方面,本申请实施例提供一种电子设备,包括第一方面任一项所述的射频系统,在所述射频系统工作在非独立组网模式下,所述射频系统用于实现第一低频频段的发射和 接收以及所述第二低频频段的发射和接收。
可以看出,本申请实施例中,采用4根天线支持第一低频频段和第二低频频段的双连接,可以实现第一低频频段和第二低频频段的同时发射和接收,可以将上行信号分布在天线效率更好的2根天线上,可以保证上行信号的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种射频系统的结构示意图;
图2a是本申请实施例提供的一种第二滤波模块的结构示意图;
图2b是本申请实施例提供的一种第一滤波模块的结构示意图;
图3a是本申请实施例提供的一种切换开关模组包括DP3T开关的射频系统的结构示意图;
图3b是本申请实施例提供的一种切换开关模组包括3P3T开关的射频系统的结构示意图;
图4是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例所涉及到的电子设备可以包括各种具有无线通信功能的手持设备(如手机、平板电脑等)、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为电子设备。
请参阅图1,图1是本申请实施例提供的一种射频系统的结构示意图,该射频系统100包括射频收发器11、射频处理电路12、切换开关模组13、第一天线141、第二天线142、第三天线143和第四天线144,所述射频收发器11连接所述射频处理电路12;所述第一天线141和所述第二天线142的天线效率高于所述第三天线143和所述第四天线144的天线效率;
所述射频处理电路12包括第一发射模组121、第二发射模组122、第一接收模组123、第二接收模组124、第一双工器151、第二双工器152、第一选择开关191和第一滤波模块 16;
所述第一发射模组121通过所述第一双工器151和所述切换开关模组连接所述第一天线141,所述第一发射模组121通过所述第一选择开关191、所述第二双工器152和所述切换开关模组13连接所述第一天线141;
所述第二发射模组122通过所述切换开关模组13连接所述第二天线142;
所述第一接收模组123的第一接收端口1231通过所述第一双工器151和所述切换开关模组13连接所述第一天线141,所述第一接收模组123的第二接收端口1232通过所述第二双工器152、所述第一选择开关191、所述第二发射模组122和所述切换开关模组13连接所述第一天线141,所述第一接收模组123的第二接收端口1232通过所述第二双工器152和所述开关切换模组13连接所述第二天线142,所述第一接收模组123的第三接收端口1233通过所述第二发射模组122和所述切换开关模组13连接所述第二天线142;
所述第二接收模组124的第一接收端口1241通过所述第一滤波模块16连接所述第四天线144,所述第二接收模组124的第二接收端口1242通过所述切换开关模组13连接所述第三天线143或者通过选择滤波模块17连接所述第三天线143;
在所述射频系统工作在非独立组网模式下,所述第一天线141用于第一低频频段的发射和所述第一低频频段的主集接收,所述第二天线142用于第二低频频段发射和所述第二低频频段的主集接收,所述第三天线143用于所述第二低频频段的分集接收,所述第四天线144用于所述第一低频频段的分集接收,所述第一滤波模块用于滤除所述第一低频频段之外的频段。
本申请实施例中,非独立组网(non-Standalone,NSA)模式包括EN-DC、NE-DC和NGEN-DC构架中的任一种。
在EN-DC构架下,电子设备连接4G核心网,4G基站为主站,5G基站为辅站;
在NE-DC构架下,引入5G核心网,5G基站为主站,4G基站为辅站;
在NGEN-DC构架下,引入5G核心网,4G基站为主站,5G基站为辅站。
其中,DC代表Dual Connectivity,即双连接(Dual Connectivity,DC);E代表进化的通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入(Evolved-UMTS Terrestrial Radio Access,E-UTRA或EUTRA),即4G无线接入网;N代表(new radio,NR),即5G新无线;NG代表(next generation,NG)下一代核心网,即5G核心网。
EN-DC就是指4G无线接入网与5G NR的双连接,NE-DC指5G NR与4G无线接入网的双连接,而NGEN-DC指在5G核心网下的4G无线接入网与5G NR的双连接。
为了方便说明,下面的非独立组网模式以EN-DC构架为例进行说明。
在EN-DC构架下,本申请实施例的射频系统支持低频(low band LB)+LB NSA,LB+LB NSA指的是LB长期演进(long term evolution,LTE)+LB NR共同工作,需要两个功率放大器(power amplifier,PA)同时工作发射信号,而且LB LTE和NR都分别需要两根天线,一根天线做发射(transmit,TX)或主集接收(primary receive,PRX),另外一根天线做分集接收(diversity receive,DRX)。因此,要实现LB+LB NSA,需要4根天线。由于LB天线尺寸太大,对于小尺寸电子设备(比如,手机)来说,留给LB天线的净空区较小,难以同时满足4根LB天线的净空区的要求,因此,做4根天线效率都很好的LB天线比较困难,为了保证上行信号的可靠性。可以将4根天线中天线效率较好的两根天线用于LB LTE信号和LB NR信号的发射。
本申请实施例中,第一低频频段可以包括4G频段,比如,B20频段(上行:832-862MHz,下行:791-821MHz)或B28频段(上行:703-748MHz,下行:758-803MHz),第二低频频段可以包括5G频段,比如,N5频段(上行:824-849MHz,下行:869-894MHz)或N8 频段(上行:880-915MHz,下行:925-960MHz)或N28频段(上行:703-748MHz,下行:758-803MHz)。需要说明的是,4G频段的B5与5G频段的N5的频段范围相同,4G频段的B8与5G频段的N8的频段范围相同,4G频段的B28与5G频段的N28的频段范围相同。
在EN-DC构架下,第一天线141用于第一低频频段的发射和第一低频频段的主集接收,第二天线142用于第二低频频段发射和第二低频频段的主集接收,第三天线143用于第二低频频段的分集接收,第四天线144用于第一低频频段的分集接收。比如,第一天线141用于B20或B28频段的发射和主集接收,第二天线142用于N5或N8或N28频段的发射和主集接收,第三天线143用于N5或N8或N28频段的分集接收,第四天线144用于B20或B28频段的分集接收。
本申请实施例中,第一低频频段的发射(TX)通路包括:
射频收发器11→第一发射模组121→第一双工器151→切换开关模组13→第一天线141;或者,射频收发器11→第一发射模组121→第一选择开关191→第二双工器152→切换开关模组13→第一天线141;
第一低频频段的主集接收(PRX)通路包括:
第一天线141→切换开关模组13→第一双工器151→第一接收模组123→射频收发器11;或者,第一天线141→切换开关模组13→第二双工器152→第一接收模组123→射频收发器11;或者,第一天线141→切换开关模组13→第二发射模组122→第一接收模组123→射频收发器11;
第一低频频段的分集接收(DRX)通路包括:第四天线144→第一滤波模块16→第二接收模组124→射频收发器11;或者,第三天线143→切换开关模组13→第二接收模组124→射频收发器11;或者,第三天线143→选择滤波模块17→第二接收模组124→射频收发器11;
第二低频频段的发射(TX)通路包括:射频收发器11→第一发射模组121→第一选择开关191→第二双工器152→切换开关模组13→第二天线142;或者,射频收发器11→第二发射模组122→切换开关模组13→第二天线142;或者,射频收发器11→第二发射模组122→第一选择开关191→第二双工器152→切换开关模组13→第二天线142;
第二低频频段的主集接收(PRX)通路包括:第二天线142→切换开关模组13→第二双工器152→第一接收模组123→射频收发器11;或者,第二天线142→切换开关模组13→第二发射模组122→第一选择开关191→第二双工器152→第一接收模组123→射频收发器11;
或者,第二天线142→切换开关模组13→第二发射模组122→第一接收模组123→射频收发器11;
第二低频频段的分集接收(DRX)通路包括:第三天线143→切换开关模组13→第二接收模组124→射频收发器11;或者,第三天线143→选择滤波模块17→第二接收模组124→射频收发器11。
其中,第一低频频段的射频通路包括:第一低频频段的发射通路、第一低频频段的主集接收通路和第一低频频段的分集接收通路。第二低频频段的射频通路包括:第二低频频段的发射通路、第二低频频段的主集接收通路和第二低频频段的分集接收通路。
第一低频频段(比如,LB LTE频段)的射频通路只需要TX(发射信号)、PRX(主集接收信号)、DRX(分集接收信号)。第二低频频段(LB NR频段)的射频通路需要TX(发射信号)、PRX(主集接收信号)、DRX(分集接收信号)、多输入多输出(Multiple-Input Multiple-Out-put,MIMO)PRX、MIMO DRX信号。
其中,所述第一低频频段包括第一子频段或第二子频段,所述第二低频频段包括第三子频段、第四子频段或第五子频段。
比如,第一子频段为B20频段(上行:832-862MHz,下行:791-821MHz),第二子频段为B28频段(上行:703-748MHz,下行:758-803MHz),第三子频段为N5频段(上行:824-849MHz,下行:869-894MHz)或B5频段,第四子频段为N8频段(上行:880-915MHz,下行:925-960MHz)或B8频段,第五子频段为N28频段(上行:703-748MHz,下行:758-803MHz)或B28频段。
具体的,在非独立组网模式下,第一子频段为B20频段,第二子频段为B28频段,第三子频段为N5频段,第四子频段为N8频段,第五子频段为N28频段。在4G模式下,第一子频段为B20频段,第二子频段为B28频段,第三子频段为B5频段,第四子频段为B8频段,第五子频段为B28频段。
本申请实施例中,第一双工器151可以允许第一低频频段(比如,B20频段)的发射和第一低频频段的主集接收同时工作。第二双工器152可以允许第二低频频段(比如,B28A频段)的发射和第二低频频段的主集接收同时工作。
本申请实施例的第一发射模组121可以包括多模多频功率放大器(Multi-mode Multi-band Power Amplifier,MMPA),MMPA内部可以集成PA和开关等。
本申请实施例的第二发射模组122可以包括PAMID,PAMID是集成PA、双工器、滤波器、开关的射频集成模组,或者,第二发射模组122可以为Phase7lite器件,或者,第二发射模组122可以为支持NR的MMPA。
本申请实施例的第一接收模组123可以包括微低噪声放大器(micro low noise amplifier,MLNA),MLNA内部可以集成低噪声放大器(low noise amplifier,LNA),可以实现RX信号的放大,或者,或者,第一接收模组123可以为Phase7lite器件,或者,第一接收模组123可以为支持NR的MMPA。
本申请实施例的第二接收模组124可以包括L-DRX,L-DRX是集成声表面波滤波器(surface acoustic wave,SAW)和LNA的接收模组,用于实现RX信号的过滤和放大。L-DRX可以为Phase7lite器件,或者,第二接收模组124可以由DFEM和MLNA实现,或者,第二接收模组124可以由开关、SAW和MLNA实现。
本申请实施例的第一选择开关191可以包括SPDT开关。
本申请实施例的切换开关模组13可以包括DP3T开关、3P3T开关中的至少一个。其中,DP3T开关、3P3T开关可均为全连接开关。
DP3T开关可以包括3个In端口和2个OUT端口,3P3T开关可以包括3个In端口和3个OUT端口,可以In-OUT实现3-3任意连接切换。
本申请实施例中,采用4根天线支持第一低频频段和第二低频频段的双连接,可以实现第一低频频段和第二低频频段的同时发射和接收,可以将上行信号分布在天线效率更好的2根天线上,可以保证上行信号的可靠性。
可选的,在一个实施例中,在所述射频系统100工作在4G模式下,所述第一天线141用于所述第一低频频段的发射和所述第一低频频段的主集接收,所述第一天线141还用于所述第二低频频段的发射和所述第二低频频段的主集接收,所述第二天线142用于所述第一低频频段或所述第二低频频段的分集接收。
本申请实施例中,第一低频频段可以包括4G频段,比如,B20频段(上行:832-862MHz,下行:791-821MHz)或B28频段(上行:703-748MHz,下行:758-803MHz),第二低频频段可以包括4G频段,比如,B5频段(上行:824-849MHz,下行:869-894MHz)或B8频段(上行:880-915MHz,下行:925-960MHz)或B28频段(上行:703-748MHz,下行:758-803MHz)。
在射频系统100工作在4G模式下,本申请实施例中射频系统100中的第三天线143和第四天线144不用或只做低频(LB)接收(RX)实现,实现4RX/4×4MIMO功能。
本申请实施例中,第一低频频段的发射(TX)通路可以包括:射频收发器11→第二发射模组122→切换开关模组13→第一天线141;或者,射频收发器11→第二发射模组122→第一选择开关191→第二双工器152→切换开关模组13→第一天线141;或者,射频收发器11→第一发射模组121→第一选择开关191→第二双工器152→切换开关模组13→第一天线141;或者,射频收发器11→第一发射模组121→第一双工器151→切换开关模组13→第一天线141。
其中,第一低频频段的射频通路包括:第一低频频段的发射通路、第一低频频段的主集接收通路和第一低频频段的分集接收通路。第二低频频段的射频通路包括:第二低频频段的发射通路、第二低频频段的主集接收通路和第二低频频段的分集接收通路。
其中,切换开关模组13可以包括一个切换开关。
可选的,所述切换开关模组13包括一个切换开关的情况下,该切换开关包括双刀三掷DP3T开关或3P3T开关中的一种。
在一个可能的示例中,若所述切换开关模组包括DP3T开关,所述第二接收模组的第二接收端口通过所述切换开关模组或者选择滤波模块连接所述第三天线,具体为:
所述第二接收模组的第二接收端口通过所述选择滤波模块连接所述第三天线。
在一个可能的示例中,若所述切换开关模组包括3P3T开关,所述射频处理电路还包括第二选择开关和第三选择开关;
所述第一发射模组通过所述第一双工器和所述切换开关模组连接所述第一天线,具体为:
所述第一发射模组通过所述第一双工器、所述第二选择开关和所述切换开关模组连接所述第一天线;
所述第一发射模组通过所述第一选择开关、所述第二双工器和所述切换开关模组连接所述第一天线,具体为:
所述第一发射模组通过所述第一选择开关、所述第二双工器、所述第三选择开关、所述第二选择开关和所述切换开关模组连接所述第一天线。
本申请实施例中,第二选择开关、第三选择开关均可以包括SPDT开关。
在一个可能的示例中,所述第二接收模组的第二接收端口通过所述切换开关模组或者选择滤波模块连接所述第三天线,包括:
所述第二接收模组的第二接收端口通过所述切换开关模组连接所述第三天线。
在一个可能的示例中,所述选择滤波模块包括第一滤波器、第二滤波器、第三滤波器、第一单刀三掷SP3T开关和第二SP3T开关,所述第一SP3T开关的P端口连接所述第二接收模组的第二接收端口,所述第一SP3T开关的第一T端口连接所述第一滤波器的第一端,所述第一SP3T开关的第二T端口连接所述第二滤波器的第一端,所述第一SP3T开关的第三T端口连接所述第三滤波器的第一端,所述第一滤波器的第二端连接所述第二SP3T开关的第一T端口,所述第二滤波器的第二端连接所述第二SP3T开关的第二T端口,所述第三滤波器的第二端连接所述第二SP3T开关的第三T端口,所述第二SP3T开关的P端口连接所述第三天线;
所述第一滤波器用于滤除所述第三子频段之外的频段,所述第二滤波器用于滤除所述第四子频段之外的频段,所述第三滤波器用于滤除所述第五子频段之外的频段。
如此,能够实现第三子频段、第四子频段、第五子频段的分集接收信号。
在一个可能的示例中,所述第一滤波模块包括第一SPDT开关、第二SPDT开关、第四滤波器和第五滤波器,所述第一SPDT开关的P端口连接所述第二接收模组的第一接收端口,所述第一SPDT开关的第一T端口连接所述第四滤波器的第一端,所述第一SPDT开关的第二T端口连接所述第五滤波器的第一端,所述第四滤波器的第二端连接所述第二 SPDT开关的第一T端口,所述第五滤波器的第二端连接所述第二SPDT开关的第二T端口,所述第二SPDT开关的P端口连接所述第四天线;
所述第四滤波器用于滤除所述第一子频段之外的频段,所述第五滤波器用于滤除所述第二子频段之外的频段。
如此,能够实现第一子频段、第二子频段的分集接收信号。
可选的,请参阅图2a,图2a是本申请实施例提供的一种选择滤波模块的结构示意图。如图2a所示,所述选择滤波模块17包括第一滤波器171、第二滤波器172、第三滤波器173、第一单刀三掷SP3T开关174和第二SP3T开关175,所述第一SP3T开关174的P端口连接所述第二接收模组124的第二接收端口1242,所述第一SP3T开关174的第一T端口连接所述第一滤波器171的第一端,所述第一SP3T开关174的第二T端口连接所述第二滤波器172的第一端,所述第一SP3T开关174的第三T端口连接所述第三滤波器173的第一端,所述第一滤波器171的第二端连接所述第二SP3T开关175的第一T端口,所述第二滤波器172的第二端连接所述第二SP3T开关175的第二T端口,所述第三滤波器173的第二端连接所述第二SP3T开关175的第三T端口,所述第二SP3T开关175的P端口连接所述第三天线143;
所述第三滤波器171用于滤除所述第三子频段之外的频段,所述第四滤波器172用于滤除所述第四子频段之外的频段,所述第五滤波器173用于滤除所述第五子频段之外的频段。
其中,第三子频段可以包括N5频段(上行:824-849MHz,下行:869-894MHz)或B5频段,第四子频段可以包括N8频段(上行:880-915MHz,下行:925-960MHz)或B8频段,第五子频段可以包括N28频段(上行:703-748MHz,下行:758-803MHz)或B28频段。
可选的,请参阅图2b,图2b是本申请实施例提供的一种第一滤波模块的结构示意图。如图2b所示,所述第一滤波模块16包括第一SPDT开关163、第二SPDT开关164、第四滤波器161和第五滤波器162,所述第一SPDT开关163的P端口连接所述第二接收模组124的第二接收端口1242,所述第一SPDT开关163的第一T端口连接所述第四滤波器161的第一端,所述第一SPDT开关163的第二T端口连接所述第五滤波器162的第一端,所述第四滤波器161的第二端连接所述第二SPDT开关164的第一T端口,所述第五滤波器162的第二端连接所述第二SPDT开关164的第二T端口,所述第二SPDT开关164的P端口连接所述第四天线144;
所述第四滤波器161用于滤除所述第一子频段之外的频段,所述第五滤波器162用于滤除所述第二子频段之外的频段。
其中,第一子频段可以包括B20频段(上行:832-862MHz,下行:791-821MHz),第二子频段可以包括B28频段(上行:703-748MHz,下行:758-803MHz)。
请参阅图3a,图3a是本申请实施例提供的一种切换开关模组包括DP3T开关的射频系统的结构示意图,如图3a所示。该射频系统100包括射频收发器11、射频处理电路12、DP3T开关13、第一天线141、第二天线142、第三天线143、第四天线144和定向耦合器181和定向耦合器182,所述射频收发器12连接所述射频处理电路12;
所述射频处理电路12包括第一发射模组121、第二发射模组122、第一接收模组123、第二接收模组124、第一双工器151、第二双工器152、第一选择开关191、和第一滤波模块16;
所述第一发射模组121通过所述第一双工器151、定向耦合器181和所述DP3T开关13连接所述第一天线141,所述第一发射模组121通过所述第一选择开关191、所述第二双工器152、定向耦合器182和所述DP3T开关13连接所述第一天线141;
所述第二发射模组122通过所述DP3T开关13连接所述第二天线142;
所述第一接收模组123的第一接收端口1231通过所述第一双工器151、定向耦合器181和所述DP3T开关13连接所述第一天线141,所述第一接收模组123的第二接收端口1232通过所述第二双工器152、所述第一选择开关191、第二发射模组122和所述DP3T开关13连接所述第二天线142,所述第一接收模组123的第二接收端口1232通过所述第二双工器152、定向耦合器182和所述DP3T开关13连接所述第一天线141,所述第一接收模组123的第三接收端口1233通过所述第二发射模组122和所述DP3T开关13连接所述第二天线142;
所述第二接收模组124的第一接收端口1241通过所述第一滤波模块16连接所述第四天线144,所述第二接收模组124的第二接收端口1242通过所述选择滤波模块17连接所述第三天线143;所述第一天线141和所述第二天线142的天线效率高于所述第三天线143和所述第四天线144的天线效率;
在所述射频系统100工作在非独立组网模式下,所述第一天线141用于第一低频频段的发射和所述第一低频频段的主集接收,所述第二天线142用于第二低频频段发射和所述第二低频频段的主集接收,所述第三天线143用于所述第二低频频段的分集接收,所述第四天线144用于所述第一低频频段的分集接收,所述第一滤波模块16用于滤除所述第一低频频段之外的频段。
其中,所述第一低频频段包括第一子频段或第二子频段,所述第二低频频段包括第三子频段、第四子频段或第五子频段。
在所述射频系统100工作在非独立组网模式下,下面以第一子频段为B20频段、第二子频段为B28A频段、第三子频段为N5频段、第四子频段为N8频段、第五子频段为N28A频段为例进行说明。其中,B28A频段为B28频段的组成部分,B28频段可以分为B28A频段和B28B频段。N28A频段为N28频段的组成部分,N28频段可以分为N28A频段和N28B频段。
其中,B20+N28A EN-DC下具体的信号流向如下:
B20频段的发射(TX):射频收发器11(比如,WTR)→第一发射模组121(比如,MMPA)→第一双工器151(比如,B20双工器)→定向耦合器181→DP3T开关13→第一天线141;
B20频段的主集接收(PRX):第一天线141→DP3T开关13→定向耦合器181→第一双工器151(比如,B20双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B20频段的分集接收(DRX):第四天线144→第一滤波模块16(比如:B20+B28SAW)→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR);
N28A频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→DP3T开关13→第二天线142;
N28A频段的主集接收(PRX):第二天线142→DP3T开关13→第二发射模组122(比如,LB PAmid)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
N28A频段的分集接收(DRX):第三天线143→选择滤波模块17→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR)。
B20+N8EN-DC下具体的信号流向如下:
N8频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB  PAmid)→DP3T开关13→第二天线142;
N8频段的主集接收(PRX):第二天线142→DP3T开关13→第二发射模组122(比如,LB PAmid)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
N8频段的分集接收(DRX):第三天线143→选择滤波模块17→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR);
B20频段的发射(TX):射频收发器11(比如,WTR)→第一发射模组121(比如,MMPA)→第一双工器151(比如,B20双工器)→定向耦合器181→DP3T开关13→第一天线141;
B20频段的主集接收(PRX):第一天线141→DP3T开关13→定向耦合器181→第一双工器151(比如,B20双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B20频段的分集接收(DRX):第四天线144→第一滤波模块16(比如:B20+B28SAW)→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR);
B28A+N5EN-DC下具体的信号流向如下:
B28A频段的发射(TX):射频收发器11(比如,WTR)→第一发射模组121(比如,MMPA)→第一选择开关191→第二双工器152(比如,B28A双工器)→定向耦合器182→DP3T开关13→第一天线141;
B28A频段的主集接收(PRX):第一天线141→DP3T开关13→定向耦合器182→第二双工器152(比如,B28A双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B28A频段的分集接收(DRX):第四天线144→第一滤波模块16(比如:B20+B28SAW)→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR);
N5频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→DP3T开关13→第二天线142;
N5频段的主集接收(PRX):第二天线142→DP3T开关13→第二发射模组122(比如,LB PAmid)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
N5频段的分集接收(DRX):第三天线143→选择滤波模块17→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR)。
LTE ONLY工作时,信号流向如下:
B28频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→第一选择开关191→第二双工器152(比如,B28A双工器)→定向耦合器182→DP3T开关13→第一天线141;
B5/B8/B20频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→DP3T开关13→第一天线141;
B28频段的主集接收(PRX):第一天线141→DP3T开关13→定向耦合器182→第二双工器152(比如,B28A双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B5/B8/B20频段的主集接收(PRX):第一天线141→DP3T开关13→定向耦合器181→第一双工器151(比如,B20双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B20/B28频段的分集接收(DRX):第四天线142→第一滤波模块16(比如:B20+B28SAW)→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR)。
其中,B20+B28SAW可以保留B20和B28频段,滤除其他频段。
其中,定向耦合器181、定向耦合器182均可以将两路射频信号进行混合后输出。可 选的,定向耦合器181、定向耦合器182还可以具有功率分配的功能,用于将输入的信号的功率分为几路反馈到射频收发器11对应的接收端口,以便于射频收发器11调整其发射的射频信号的功率。
可选的,在一个实施例中,在所述射频系统100工作在4G模式下,所述第一天线141用于所述第一低频频段的发射和所述第一低频频段的主集接收,所述第一天线141还用于所述第二低频频段的发射和所述第二低频频段的主集接收,所述第二天线142用于所述第一低频频段或所述第二低频频段的分集接收。
可选的,图3b是本申请实施例提供的一种切换开关模组包括3P3T开关的射频系统的结构示意图,如图3b所示。该射频系统100包括射频收发器11、射频处理电路12、3P3T开关13、第一天线141、第二天线142、第三天线143、第四天线144和定向耦合器183,所述射频收发器12连接所述射频处理电路12;
所述射频处理电路12包括第一发射模组121、第二发射模组122、第一接收模组123、第二接收模组124、第一双工器151、第二双工器152、第一选择开关191、第二选择开关192、第三选择开关193和第一滤波模块16;
所述第一发射模组121通过所述第一双工器151、所述第二选择开关192、定向耦合器183和所述3P3T开关13连接所述第一天线141,所述第一发射模组121通过所述第一选择开关191、所述第二双工器152、第三选择开关193、所述第二选择开关192、定向耦合器183和所述3P3T开关13连接所述第一天线141;
所述第二发射模组122通过所述3P3T开关13连接所述第二天线142;
所述第一接收模组123的第一接收端口1231通过所述第一双工器151、所述第二选择开关192、定向耦合器183和所述3P3T开关13连接所述第一天线141,所述第一接收模组123的第二接收端口1232通过所述第二双工器152、第三选择开关193、所述第二选择开关192、定向耦合器183和所述3P3T开关13连接所述第一天线141,所述第一接收模组123的第二接收端口1232通过所述第二双工器152、所述第一选择开关191、所述第二发射模组122和所述3P3T开关13连接所述第二天线142,所述第一接收模组123的第三接收端口1233通过所述第二发射模组122和所述3P3T开关13连接所述第二天线142;
所述第二接收模组124的第二接收端口1242通过所述3P3T开关13连接所述第三天线143,所述第二接收模组124的第一接收端口1241通过所述第一滤波模块16连接所述第四天线144;所述第一天线141和所述第二天线142的天线效率高于所述第三天线143和所述第四天线144的天线效率;
在所述射频系统100工作在非独立组网模式下,所述第一天线141用于第一低频频段的发射和所述第一低频频段的主集接收,所述第二天线142用于第二低频频段发射和所述第二低频频段的主集接收,所述第三天线143用于所述第二低频频段的分集接收,所述第四天线144用于所述第一低频频段的分集接收,所述第一滤波模块16用于滤除所述第一低频频段之外的频段。
其中,所述第一低频频段包括第一子频段或第二子频段,所述第二低频频段包括第三子频段、第四子频段或第五子频段。
在所述射频系统100工作在非独立组网模式下,下面以第一子频段为B20频段、第二子频段为B28A频段、第三子频段为N5频段、第四子频段为N8频段、第五子频段为N28A频段为例进行说明。其中,B28A频段为B28频段的组成部分,B28频段可以分为B28A频段和B28B频段。N28A频段为N28频段的组成部分,N28频段可以分为N28A频段和N28B频段。
其中,B20+N28A EN-DC下具体的信号流向如下:
B20频段的发射(TX):射频收发器11(比如,WTR)→第一发射模组121(比如,MMPA)→第一双工器151(比如,B20双工器)→第二选择开关192→定向耦合器183→3P3T开关13→第一天线141;
B20频段的主集接收(PRX):第一天线141→3P3T开关13→定向耦合器183→第二选择开关192→第一双工器151(比如,B20双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B20频段的分集接收(DRX):第四天线144→第一滤波模块16(比如:B20+B28SAW)→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR);
N28A频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→3P3T开关13→第二天线142;
N28A频段的主集接收(PRX):第二天线142→3P3T开关13→第二发射模组122(比如,LB PAmid)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
N28A频段的分集接收(DRX):第三天线143→3P3T开关13→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR)。
B20+N8EN-DC下具体的信号流向如下:
N8频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→3P3T开关13→第二天线142;
N8频段的主集接收(PRX):第二天线142→3P3T开关13→第二发射模组122(比如,LB PAmid)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
N8频段的分集接收(DRX):第三天线143→3P3T开关13→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR);
B20频段的发射(TX):射频收发器11(比如,WTR)→第一发射模组121(比如,MMPA)→第一双工器151(比如,B20双工器)→第二选择开关192→定向耦合器183→3P3T开关13→第一天线141;
B20频段的主集接收(PRX):第一天线141→3P3T开关13→定向耦合器181→第二选择开关192→第一双工器151(比如,B20双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B20频段的分集接收(DRX):第四天线144→第一滤波模块16(比如:B20+B28SAW)→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR);
B28A+N5EN-DC下具体的信号流向如下:
B28A频段的发射(TX):射频收发器11(比如,WTR)→第一发射模组121(比如,MMPA)→第一选择开关191→第二双工器152(比如,B28A双工器)→第三选择开关193→第二选择开关192→定向耦合器183→3P3T开关13→第一天线141;
B28A频段的主集接收(PRX):第一天线141→3P3T开关13→定向耦合器183→第二选择开关192→第三选择开关193→第二双工器152(比如,B28A双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B28A频段的分集接收(DRX):第四天线144→第一滤波模块16(比如:B20+B28SAW)→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR);
N5频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→3P3T开关13→第二天线142;
N5频段的主集接收(PRX):第二天线142→3P3T开关13→第二发射模组122(比如,LB PAmid)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
N5频段的分集接收(DRX):第三天线143→选择滤波模块17→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR)。
LTE ONLY工作时,信号流向如下:
B28频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→第一选择开关191→第二双工器152(比如,B28A双工器)→第三选择开关193→第二选择开关192→定向耦合器183→3P3T开关13→第一天线141;
B5/B8/B20频段的发射(TX):射频收发器11(比如,WTR)→第二发射模组122(比如,LB PAmid)→3P3T开关13→第一天线141;
B28频段的主集接收(PRX):第一天线141→3P3T开关13→定向耦合器183→第二选择开关192→第三选择开关193→第二双工器152(比如,B28A双工器)→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B5/B8/B20频段的主集接收(PRX):第一天线141→3P3T开关13→定向耦合器183→第二选择开关192→第一双工器151→第一接收模组123(比如,MLNA)→射频收发器11(比如,WTR);
B20/B28频段的分集接收(DRX):第四天线142→第一滤波模块16(比如:B20+B28SAW)→第二接收模组124(比如,L-DRX)→射频收发器11(比如,WTR)。
其中,B20+B28SAW可以保留B20和B28频段,滤除其他频段。
其中,定向耦合器183可以将两路射频信号进行混合后输出。可选的,定向耦合器183还可以具有功率分配的功能,用于将输入的信号的功率分为几路反馈到射频收发器11对应的接收端口,以便于射频收发器11调整其发射的射频信号的功率。
可选的,在一个实施例中,在所述射频系统100工作在4G模式下,所述第一天线141用于所述第一低频频段的发射和所述第一低频频段的主集接收,所述第一天线141还用于所述第二低频频段的发射和所述第二低频频段的主集接收,所述第二天线142用于所述第一低频频段或所述第二低频频段的分集接收。
与图3a采用DP3T开关相比,图3b采用的3P3T开关为成熟的物料,无需新增物料,可以保证开关的稳定性。
请参阅图4,图4是本申请实施例提供的一种电子设备的结构示意图,如图4所示,该电子设备10可以包括如图1所示的射频系统100、主板200,其中,该射频系统100中的第一发射模组121、第二发射模组122、第一接收模组123、第二接收模组124、第一双工器151、第二双工器152和第一滤波模块16可以设置在主板200上。在所述射频系统100工作在非独立组网模式下,所述射频系统100用于实现第一低频频段的发射和接收以及所述第二低频频段的发射和接收。
该电子设备包括处理器、存储器、随机存取存储器(Random Access Memory,RAM)和显示屏。其中,存储器、RAM和显示屏均与处理器连接。
进一步地,电子设备还包括扬声器、麦克风、摄像头、通信接口、信号处理器和传感器,扬声器、麦克风、摄像头、信号处理器和传感器均与处理器连接,通信接口与信号处理器连接。
其中,显示屏可以是液晶显示器(Liquid Crystal Display,LCD)、有机或无机发光二极管(Organic Light-Emitting Diode,OLED)、有源矩阵有机发光二极体面板(Active Matrix/Organic Light Emitting Diode,AMOLED)等。
其中,该摄像头可以是普通摄像头、也可以是红外摄像、或者,广角摄像头,在此不作限定,该摄像头可以是前置摄像头或后置摄像头,在此不作限定。摄像头也可以为双摄像头,例如,红外摄像头+可见光摄像头,又例如,普通摄像头+广角摄像头。当然,摄像头数量也可以为2个以上,在此不做限定。
其中,传感器包括以下至少一种:光感传感器、陀螺仪、红外接近传感器、指纹传感 器、压力传感器等等。其中,光感传感器,也称为环境光传感器,用于检测环境光亮度。光线传感器可以包括光敏元件和模数转换器。其中,光敏元件用于将采集的光信号转换为电信号,模数转换器用于将上述电信号转换为数字信号。可选的,光线传感器还可以包括信号放大器,信号放大器可以将光敏元件转换的电信号进行放大后输出至模数转换器。上述光敏元件可以包括光电二极管、光电三极管、光敏电阻、硅光电池中的至少一种。
其中,处理器是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器内的软体程序和/或模块,以及调用存储在存储器内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。
其中,处理器可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器中。
其中,存储器用于存储软体程序和/或模块,处理器通过运行存储在存储器的软件程序和/或模块,从而执行电子设备的各种功能应用以及数据处理。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的软体程序等;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
以上是本申请实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种射频系统,其特征在于,所述射频系统包括射频收发器、射频处理电路、切换开关模组、第一天线、第二天线、第三天线和第四天线,所述射频收发器连接所述射频处理电路;所述第一天线和所述第二天线的天线效率高于所述第三天线和所述第四天线的天线效率;
    所述射频处理电路包括第一发射模组、第二发射模组、第一接收模组、第二接收模组、第一双工器、第二双工器、第一选择开关和第一滤波模块;
    所述第一发射模组通过所述第一双工器和所述切换开关模组连接所述第一天线,所述第一发射模组通过所述第一选择开关、所述第二双工器和所述切换开关模组连接所述第一天线;
    所述第二发射模组通过所述切换开关模组连接所述第二天线;
    所述第一接收模组的第一接收端口通过所述第一双工器和所述切换开关模组连接所述第一天线,所述第一接收模组的第二接收端口通过所述第二双工器、所述第一选择开关、所述第二发射模组和所述切换开关模组连接所述第一天线,所述第一接收模组的第二接收端口通过所述第二双工器和所述开关切换模组连接所述第二天线,所述第一接收模组的第三接收端口通过所述第二发射模组和所述切换开关模组连接所述第二天线;
    所述第二接收模组的第一接收端口通过所述第一滤波模块连接所述第四天线,所述第二接收模组的第二接收端口通过所述切换开关模组或者选择滤波模块连接所述第三天线;
    在所述射频系统工作在非独立组网模式下,所述第一天线用于第一低频频段的发射和所述第一低频频段的主集接收,所述第二天线用于第二低频频段发射和所述第二低频频段的主集接收,所述第三天线用于所述第二低频频段的分集接收,所述第四天线用于所述第一低频频段的分集接收,所述第一滤波模块用于滤除所述第一低频频段之外的频段。
  2. 根据权利要求1所述的射频系统,其特征在于,
    在所述射频系统工作在4G模式下,所述第一天线用于所述第一低频频段的发射和所述第一低频频段的主集接收,所述第一天线还用于所述第二低频频段的发射和所述第二低频频段的主集接收,所述第二天线用于所述第一低频频段或所述第二低频频段的分集接收。
  3. 根据权利要求2所述的射频系统,其特征在于,所述第三天线和所述第四天线不用或只做低频接收。
  4. 根据权利要求2或3所述的射频系统,其特征在于,所述第一低频频段的射频通路包括:所述第一低频频段的发射通路、所述第一低频频段的主集接收通路和所述第一低频频段的分集接收通路。
  5. 根据权利要求2、3、4任一项所述的射频系统,其特征在于,所述第二低频频段的射频通路包括:所述第二低频频段的发射通路、所述第二低频频段的主集接收通路和所述第二低频频段的分集接收通路。
  6. 根据权利要求1-5任一项所述的射频系统,其特征在于,所述第一低频频段包括第一子频段或第二子频段,所述第二低频频段包括第三子频段、第四子频段或第五子频段。
  7. 根据权利要求6所述的射频系统,其特征在于,所述第一子频段为B20频段,所述第二子频段为B28频段,所述第三子频段为N5频段或B5频段,所述第四子频段为N8频 段或B8频段,所述第五子频段为N28频段或B28频段。
  8. 根据权利要求7所述的射频系统,其特征在于,在所述非独立组网模式下,所述第一子频段为B20频段,所述第二子频段为B28频段,所述第三子频段为N5频段,所述第四子频段为N8频段,所述第五子频段为N28频段。
  9. 根据权利要求7或8所述的射频系统,其特征在于,在所述4G模式下,所述第一子频段为B20频段,所述第二子频段为B28频段,所述第三子频段为B5频段,所述第四子频段为B8频段,所述第五子频段为B28频段。
  10. 根据权利要求1-9任一项所述的射频系统,其特征在于,所述切换开关模组包括一个切换开关。
  11. 根据权利要求10所述的射频系统,其特征在于,所述切换开关包括双刀三掷DP3T开关或3P3T开关中的一种。
  12. 根据权利要求10或11所述的射频系统,其特征在于,若所述切换开关模组包括DP3T开关,所述第二接收模组的第二接收端口通过所述切换开关模组或者选择滤波模块连接所述第三天线,包括:
    所述第二接收模组的第二接收端口通过所述选择滤波模块连接所述第三天线。
  13. 根据权利要求10或11所述的射频系统,其特征在于,若所述切换开关模组包括3P3T开关,所述射频处理电路还包括第二选择开关和第三选择开关;
    所述第一发射模组通过所述第一双工器和所述切换开关模组连接所述第一天线,包括:
    所述第一发射模组通过所述第一双工器、所述第二选择开关和所述切换开关模组连接所述第一天线;
    所述第一发射模组通过所述第一选择开关、所述第二双工器和所述切换开关模组连接所述第一天线,包括:
    所述第一发射模组通过所述第一选择开关、所述第二双工器、所述第三选择开关、所述第二选择开关和所述切换开关模组连接所述第一天线。
  14. 根据权利要求13所述的射频系统,其特征在于,所述第一选择开关包括SPDT开关。
  15. 根据权利要求13所述的射频系统,其特征在于,所述第二选择开关、所述第三选择开关均为SPDT开关。
  16. 根据权利要求12所述的射频系统,其特征在于,所述第二接收模组的第二接收端口通过所述切换开关模组或者选择滤波模块连接所述第三天线,包括:
    所述第二接收模组的第二接收端口通过所述切换开关模组连接所述第三天线。
  17. 根据权利要求1-16任一项所述的射频系统,其特征在于,所述选择滤波模块包括第一滤波器、第二滤波器、第三滤波器、第一单刀三掷SP3T开关和第二SP3T开关,所述第一SP3T开关的P端口连接所述第二接收模组的第二接收端口,所述第一SP3T开关的第 一T端口连接所述第一滤波器的第一端,所述第一SP3T开关的第二T端口连接所述第二滤波器的第一端,所述第一SP3T开关的第三T端口连接所述第三滤波器的第一端,所述第一滤波器的第二端连接所述第二SP3T开关的第一T端口,所述第二滤波器的第二端连接所述第二SP3T开关的第二T端口,所述第三滤波器的第二端连接所述第二SP3T开关的第三T端口,所述第二SP3T开关的P端口连接所述第三天线;
    所述第一滤波器用于滤除所述第三子频段之外的频段,所述第二滤波器用于滤除所述第四子频段之外的频段,所述第三滤波器用于滤除所述第五子频段之外的频段。
  18. 根据权利要求1-17任一项所述的射频系统,其特征在于,所述第一滤波模块包括第一SPDT开关、第二SPDT开关、第四滤波器和第五滤波器,所述第一SPDT开关的P端口连接所述第二接收模组的第一接收端口,所述第一SPDT开关的第一T端口连接所述第四滤波器的第一端,所述第一SPDT开关的第二T端口连接所述第五滤波器的第一端,所述第四滤波器的第二端连接所述第二SPDT开关的第一T端口,所述第五滤波器的第二端连接所述第二SPDT开关的第二T端口,所述第二SPDT开关的P端口连接所述第四天线;
    所述第四滤波器用于滤除所述第一子频段之外的频段,所述第五滤波器用于滤除所述第二子频段之外的频段。
  19. 根据权利要求1-18任一项所述的射频系统,其特征在于,所述非独立组网模式包括EN-DC、NE-DC和NGEN-DC构架中的任一种。
  20. 一种电子设备,其特征在于,包括权利要求1-19任一项所述的射频系统,在所述射频系统工作在非独立组网模式下,所述射频系统用于实现第一低频频段的发射和接收以及所述第二低频频段的发射和接收。
PCT/CN2020/133122 2020-01-22 2020-12-01 射频系统和电子设备 WO2021147519A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20915824.5A EP4087143A4 (en) 2020-01-22 2020-12-01 Radio frequency system and electronic device
US17/814,027 US20220368357A1 (en) 2020-01-22 2022-07-21 Rf system and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010074934.5A CN111294081B (zh) 2020-01-22 2020-01-22 射频系统和电子设备
CN202010074934.5 2020-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/814,027 Continuation US20220368357A1 (en) 2020-01-22 2022-07-21 Rf system and electronic device

Publications (1)

Publication Number Publication Date
WO2021147519A1 true WO2021147519A1 (zh) 2021-07-29

Family

ID=71028492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133122 WO2021147519A1 (zh) 2020-01-22 2020-12-01 射频系统和电子设备

Country Status (4)

Country Link
US (1) US20220368357A1 (zh)
EP (1) EP4087143A4 (zh)
CN (1) CN111294081B (zh)
WO (1) WO2021147519A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676192A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 发射模组、射频系统及通信设备
CN113676208A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113676211A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113676212A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113810077A (zh) * 2021-08-18 2021-12-17 惠州Tcl移动通信有限公司 一种射频电路及移动终端
CN113922828A (zh) * 2021-10-18 2022-01-11 Oppo广东移动通信有限公司 一种接收器件、射频系统及通信设备
CN113992225A (zh) * 2021-10-25 2022-01-28 深圳警翼智能科技股份有限公司 5g执法仪天线系统、天线智能匹配方法以及5g执法仪
CN114124140A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181606A (zh) * 2019-12-31 2020-05-19 Oppo广东移动通信有限公司 射频模组及电子设备
CN111294081B (zh) * 2020-01-22 2022-01-11 Oppo广东移动通信有限公司 射频系统和电子设备
CN111756399A (zh) * 2020-06-19 2020-10-09 Oppo广东移动通信有限公司 射频电路及电子设备
CN111800160A (zh) * 2020-06-30 2020-10-20 联想(北京)有限公司 一种电子设备
CN112152690B (zh) * 2020-09-18 2024-02-09 Oppo广东移动通信有限公司 分集接收装置、设备、方法和计算机可读存储介质
CN114285422B (zh) * 2020-09-27 2023-08-11 Oppo广东移动通信有限公司 射频drx器件、射频系统和通信设备
CN115589232B (zh) * 2020-09-27 2024-06-21 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN112350744B (zh) * 2020-10-30 2023-02-03 维沃移动通信有限公司 天线切换方法、装置、信号收发电路和电子设备
CN112398491B (zh) * 2020-11-17 2022-03-11 维沃移动通信有限公司 电子设备
CN213661598U (zh) * 2020-12-02 2021-07-09 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN112583442B (zh) * 2020-12-07 2022-08-09 Oppo广东移动通信有限公司 射频系统和通信设备
CN117200812A (zh) * 2020-12-16 2023-12-08 Oppo广东移动通信有限公司 射频PA Mid器件、射频收发系统和通信设备
CN114640371B (zh) * 2020-12-16 2023-05-05 Oppo广东移动通信有限公司 射频收发系统及通信设备
CN112688715B (zh) * 2020-12-21 2022-08-02 维沃移动通信有限公司 天线电路及电子设备
US12095712B2 (en) * 2020-12-23 2024-09-17 Intel Corporation Wireless communication within a control plane and a data plane
CN112751212B (zh) * 2020-12-29 2023-08-04 Oppo广东移动通信有限公司 天线系统及电子设备
CN112821916B (zh) * 2020-12-31 2022-06-10 Tcl通讯(宁波)有限公司 一种射频前端电路和移动终端
CN112751578B (zh) * 2021-01-06 2023-05-05 Oppo广东移动通信有限公司 射频elna器件和射频系统
CN114978201B (zh) * 2021-02-25 2024-02-02 Oppo广东移动通信有限公司 射频前端模组及电子设备
CN113037323B (zh) * 2021-02-26 2022-10-18 维沃移动通信有限公司 射频电路、射频电路的控制方法和电子设备
CN115118301B (zh) * 2021-03-18 2023-10-13 Oppo广东移动通信有限公司 射频电路和通信设备
CN113078922B (zh) * 2021-03-23 2022-08-09 维沃移动通信有限公司 射频电路、射频电路的控制方法和装置、电子设备
CN113098555B (zh) * 2021-03-25 2022-10-18 维沃移动通信有限公司 射频结构及电子设备
CN113285732B (zh) * 2021-05-24 2023-01-10 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备
CN113472385B (zh) * 2021-08-09 2022-08-16 Oppo广东移动通信有限公司 射频电路、天线装置及电子设备
CN113676209B (zh) * 2021-08-12 2022-07-15 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN114124138A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备
CN113949400B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN114142886B (zh) * 2021-11-30 2023-01-03 Oppo广东移动通信有限公司 射频系统及通信设备
CN114665911B (zh) * 2022-03-31 2023-05-23 联想(北京)有限公司 收发装置及信号处理方法
CN116781092B (zh) * 2023-08-28 2023-12-19 荣耀终端有限公司 通信装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230080A1 (en) * 2012-03-02 2013-09-05 Qualcomm Incorporated Multiple-input and multiple-output carrier aggregation receiver reuse architecture
CN106129588A (zh) * 2016-06-28 2016-11-16 广东欧珀移动通信有限公司 异频段的载波聚合天线及移动终端
CN108232473A (zh) * 2018-01-19 2018-06-29 广东欧珀移动通信有限公司 天线组件、电子设备及天线切换方法
CN109274379A (zh) * 2018-07-23 2019-01-25 Oppo广东移动通信有限公司 射频系统及相关产品
CN111193526A (zh) * 2020-01-14 2020-05-22 Oppo广东移动通信有限公司 射频系统和电子设备
CN111277278A (zh) * 2020-01-19 2020-06-12 Oppo广东移动通信有限公司 射频系统及电子设备
CN111294081A (zh) * 2020-01-22 2020-06-16 Oppo广东移动通信有限公司 射频系统和电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172441B2 (en) * 2013-02-08 2015-10-27 Rf Micro Devices, Inc. Front end circuitry for carrier aggregation configurations
US9225382B2 (en) * 2013-05-20 2015-12-29 Rf Micro Devices, Inc. Tunable filter front end architecture for non-contiguous carrier aggregation
KR102386389B1 (ko) * 2015-10-05 2022-04-15 삼성전자주식회사 전자 장치 및 그 제어 방법
CN105634569B (zh) * 2015-12-31 2019-03-08 宇龙计算机通信科技(深圳)有限公司 实现载波聚合和wifi双频mimo的控制电路、终端
KR102468952B1 (ko) * 2016-03-07 2022-11-22 삼성전자주식회사 신호를 송수신하는 전자 장치 및 방법
CN106656248A (zh) * 2016-11-28 2017-05-10 维沃移动通信有限公司 一种天线切换装置和移动终端
US10886607B2 (en) * 2017-07-21 2021-01-05 Apple Inc. Multiple-input and multiple-output antenna structures
CN207427152U (zh) * 2017-11-15 2018-05-29 珠海市魅族科技有限公司 信号收发组件和电子设备
CN207947761U (zh) * 2018-04-03 2018-10-09 杭州臻镭微波技术有限公司 宽带射频前端的系统架构
CN109743072B (zh) * 2018-12-26 2021-04-16 深圳市万普拉斯科技有限公司 一种移动终端信号收发装置及其控制方法
CN109861735B (zh) * 2019-03-22 2022-07-15 维沃移动通信有限公司 一种射频前端电路及移动终端
JP2020167446A (ja) * 2019-03-28 2020-10-08 株式会社村田製作所 高周波フロントエンド回路および通信装置
CN110086481B (zh) * 2019-06-14 2021-06-15 Oppo广东移动通信有限公司 射频电路及电子设备
CN110336577B (zh) * 2019-07-08 2021-03-19 维沃移动通信有限公司 一种射频电路及终端设备
JP2021048503A (ja) * 2019-09-19 2021-03-25 株式会社村田製作所 高周波回路および通信装置
US11652505B2 (en) * 2020-01-14 2023-05-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. RF system and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230080A1 (en) * 2012-03-02 2013-09-05 Qualcomm Incorporated Multiple-input and multiple-output carrier aggregation receiver reuse architecture
CN106129588A (zh) * 2016-06-28 2016-11-16 广东欧珀移动通信有限公司 异频段的载波聚合天线及移动终端
CN108232473A (zh) * 2018-01-19 2018-06-29 广东欧珀移动通信有限公司 天线组件、电子设备及天线切换方法
CN109274379A (zh) * 2018-07-23 2019-01-25 Oppo广东移动通信有限公司 射频系统及相关产品
CN111193526A (zh) * 2020-01-14 2020-05-22 Oppo广东移动通信有限公司 射频系统和电子设备
CN111277278A (zh) * 2020-01-19 2020-06-12 Oppo广东移动通信有限公司 射频系统及电子设备
CN111294081A (zh) * 2020-01-22 2020-06-16 Oppo广东移动通信有限公司 射频系统和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087143A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676208B (zh) * 2021-08-12 2022-07-15 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113676208A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113676211A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113676212A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113676212B (zh) * 2021-08-12 2022-07-15 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113676192A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 发射模组、射频系统及通信设备
CN113676211B (zh) * 2021-08-12 2022-10-28 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113676192B (zh) * 2021-08-12 2023-01-06 Oppo广东移动通信有限公司 发射模组、射频系统及通信设备
WO2023016204A1 (zh) * 2021-08-12 2023-02-16 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备
CN113810077A (zh) * 2021-08-18 2021-12-17 惠州Tcl移动通信有限公司 一种射频电路及移动终端
CN113922828A (zh) * 2021-10-18 2022-01-11 Oppo广东移动通信有限公司 一种接收器件、射频系统及通信设备
CN113992225A (zh) * 2021-10-25 2022-01-28 深圳警翼智能科技股份有限公司 5g执法仪天线系统、天线智能匹配方法以及5g执法仪
CN114124140A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备

Also Published As

Publication number Publication date
CN111294081B (zh) 2022-01-11
EP4087143A4 (en) 2023-06-28
CN111294081A (zh) 2020-06-16
US20220368357A1 (en) 2022-11-17
EP4087143A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2021147519A1 (zh) 射频系统和电子设备
US11303318B2 (en) RF system and electronic device
CN112436845B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN111193526B (zh) 射频系统和电子设备
CN109412657B (zh) 射频系统、天线切换控制方法及相关产品
CN111277278B (zh) 射频系统及电子设备
US11757484B2 (en) Radio frequency front-end circuit and mobile terminal
TWI603596B (zh) 行動裝置
WO2018027984A1 (zh) 一种终端设备及切换方法
CN108462498B (zh) 多路选择开关、射频系统和无线通信设备
CN108880602B (zh) 多路选择开关以及相关产品
WO2018014422A1 (zh) 一种天线、载波射频电路、终端和载波聚合方法
CN114124140B (zh) 射频系统和通信设备
US11652505B2 (en) RF system and electronic device
WO2023016209A1 (zh) 发射模组、射频系统及通信设备
WO2023098111A1 (zh) 射频系统及通信设备
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023098244A1 (zh) 射频前端器件和射频系统
CN114124136A (zh) 射频系统及通信设备
CN216721321U (zh) 射频前端器件、射频系统和通信设备
CN217159692U (zh) 射频系统和通信设备
WO2021143756A1 (zh) 射频系统及电子设备
CN113949400B (zh) 射频系统及通信设备
CN114124141B (zh) 射频系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020915824

Country of ref document: EP

Effective date: 20220805

NENP Non-entry into the national phase

Ref country code: DE