WO2023098111A1 - 射频系统及通信设备 - Google Patents

射频系统及通信设备 Download PDF

Info

Publication number
WO2023098111A1
WO2023098111A1 PCT/CN2022/107897 CN2022107897W WO2023098111A1 WO 2023098111 A1 WO2023098111 A1 WO 2023098111A1 CN 2022107897 W CN2022107897 W CN 2022107897W WO 2023098111 A1 WO2023098111 A1 WO 2023098111A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
low
module
circuit
port
Prior art date
Application number
PCT/CN2022/107897
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023098111A1 publication Critical patent/WO2023098111A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving

Definitions

  • the present application relates to the technical field of antennas, in particular to a radio frequency system and communication equipment.
  • 5G mobile communication technology is gradually applied to communication devices, such as mobile phones.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • the communication frequency of 5G mobile communication technology is higher than that of 4G mobile communication technology.
  • the traditional radio frequency system is in areas with poor signals such as the edge of the cell, deep in the building or elevators, the reception performance of the 5G low-frequency signal (for example, the N28 frequency band signal) is poor.
  • a radio frequency system and a communication device are provided, which can realize 4*4 MIMO reception and have better reception performance.
  • a radio frequency system comprising:
  • the radio frequency transceiver module is configured with an input port, an output port, a first antenna port and a second antenna port, the input port and the output port are respectively configured to connect to the radio frequency transceiver, and the first antenna port is Configured to connect to the first antenna, the second antenna port is configured to connect to the third antenna, the radio frequency transceiver module is used to support the transmission and main set reception of low frequency signals through the first antenna port, and through the The second antenna port supports MIMO reception of the low frequency signal;
  • the radio frequency receiving module is connected with the radio frequency transceiver and is configured with a third antenna port and a fourth antenna port, the third antenna port is configured to connect to the second antenna, and the fourth antenna port is configured to connect to the second antenna port Four antennas, the radio frequency receiving module is used to support diversity reception of the low frequency signal through the third antenna port, and support MIMO reception of the low frequency signal through the fourth antenna port;
  • a first filtering module the two first ends of the first filtering module are respectively connected to the input port and the output port in one-to-one correspondence, and the second end of the first filtering module is connected to the first antenna port, Used to filter out spurious waves other than the low frequency signal.
  • a communication device comprising a radio frequency system as described above.
  • Fig. 1 is one of the schematic structural diagrams of the radio frequency system in an embodiment
  • Fig. 2 is the second structural diagram of the radio frequency system in an embodiment
  • Fig. 3 is the third structural diagram of the radio frequency system in an embodiment
  • Fig. 4 is one of the schematic structural diagrams of the radio frequency transceiver module in an embodiment
  • Fig. 5 is the second structural diagram of the radio frequency transceiver module in an embodiment
  • Fig. 6 is the third structural diagram of the radio frequency transceiver module in an embodiment
  • FIG. 7 is a schematic structural diagram of a radio frequency transceiver module in an embodiment
  • Fig. 8 is a fourth structural schematic diagram of a radio frequency transceiver module in an embodiment
  • Fig. 9 is the fifth structural diagram of the radio frequency transceiver module in an embodiment
  • FIG. 10 is a schematic structural diagram of a radio frequency transceiver module in an embodiment
  • Fig. 11 is a schematic structural diagram of a radio frequency receiving module in an embodiment
  • Fig. 12 is one of the specific structural diagrams of the radio frequency receiving module in an embodiment
  • Fig. 13 is the second schematic diagram of the specific structure of the radio frequency receiving module in an embodiment
  • Fig. 14 is a schematic structural diagram of a communication device in an embodiment.
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first client could be termed a second client, and, similarly, a second client could be termed a first client, without departing from the scope of the present application.
  • Both the first client and the second client are clients, but they are not the same client.
  • the radio frequency system involved in the embodiments of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A user equipment (User Equipment, UE) (for example, a mobile phone), a mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the radio frequency system includes: a radio frequency transceiver 10, a radio frequency transceiver module 20, a radio frequency receiving module 30 and a first filtering module (the first filtering module is not shown in Figure 1 A filter module); also includes a first antenna ANT1, a second antenna ANT2, a third antenna ANT3 and a fourth antenna ANT4.
  • the first antenna ANT1 , the second antenna ANT2 , the third antenna ANT3 , and the fourth antenna ANT4 can all support the transmission and reception of radio frequency signals in multiple frequency bands of NR low frequency.
  • the antennas may be formed using any suitable type of antenna.
  • each antenna may include an antenna with a resonating element formed from the following antenna structures: array antenna structure, loop antenna structure, patch antenna structure, slot antenna structure, helical antenna structure, strip antenna, monopole antenna, dipole antenna structure, At least one of the pole antennas, etc.
  • Different types of antennas can be used for different frequency bands and combinations of frequency bands.
  • the types of the first antenna ANT1 , the second antenna ANT2 , the third antenna ANT3 and the fourth antenna ANT4 are not further limited.
  • the radio frequency transceiver 10 may be configured with a plurality of ports to realize connection with the radio frequency transceiving module 20 and the radio frequency receiving module 30 .
  • the radio frequency transceiver 10 includes a transmitter and a receiver, wherein the transmitter is used to transmit radio frequency signals to the radio frequency transceiver module 20 , and the receiver is used to receive radio frequency signals output by the radio frequency transceiver module 20 and the radio frequency receiver module 30 .
  • the radio frequency transceiver module 20 is configured with an input port PA IN, an output port LNA OUT, a first antenna port LB ANT1 and a second antenna port LB ANT2, and the input port PA IN and the output port LNA OUT are respectively configured as Connect the radio frequency transceiver 10, the first antenna port LB ANT1 is configured to connect the first antenna ANT1, the second antenna port LB ANT2 is configured to connect the third antenna ANT3, the radio frequency transceiver module 20 is used to support through the first antenna port LB ANT1 Transmit and receive low-frequency signals, and support MIMO reception of low-frequency signals through the second antenna port LB ANT2.
  • MIMO Multiple Input Multiple Output
  • the channel capacity of the system can be doubled.
  • the radio frequency transceiver module 20 is used to support the transmission and main set reception of multiple low frequency signals through the first antenna port LB ANT1, and support the main set MIMO reception of multiple low frequency signals through the second antenna port LB ANT2.
  • the input port PA IN of the radio frequency transceiver module 20 is connected with the radio frequency transceiver 10
  • the output port LNA OUT1 of the radio frequency transceiver module 20 is connected with the radio frequency transceiver 10
  • the radio frequency transceiver module 20 is used for sending the low frequency signal to the radio frequency transceiver 10 Perform filtering and amplification processing, output to the first antenna port LB ANT1, and transmit it through the first antenna ANT1 to realize the transmission control of low-frequency signals; it is also used to receive low-frequency signals received by the first antenna ANT1 through the first antenna port LB ANT1
  • the signal and the low-frequency signal received by the third antenna ANT3 are received through the second antenna port LB ANT2.
  • the radio frequency transceiver module 20 can be understood as a low frequency power amplifier module (LB L-PA Mid, Low Band Power Amplifier Modules including Duplexers) with a built-in low noise amplifier.
  • LB L-PA Mid, Low Band Power Amplifier Modules including Duplexers Low Band Power Amplifier Modules including Duplexers
  • the radio frequency transceiving module 20 is also used to realize switching control of receiving, switching of transmitting, and switching between transmitting and receiving multiple low-frequency signals. Specifically, through the first antenna port LB ANT1, one of the multiple low-frequency signals can be selected for transmission and main set reception, and through the second antenna port LB ANT2, one of the multiple low-frequency signals can be selected for main set MIMO reception.
  • the radio frequency transceiver module 20 can simultaneously transmit and receive the low-frequency signals of more than two frequency bands through the first antenna port LB ANT1, and perform main collection of the low-frequency signals of more than two frequency bands through the second antenna port LB ANT2. MIMO reception.
  • the low-frequency signal may include a 5G low-frequency signal and/or a 4G low-frequency signal.
  • the low-frequency signal includes at least one of N5, N8, N20, N28, and N71 frequency bands.
  • the low-frequency signal may also include at least one of B5, B8, B20, B28, and B71 frequency bands.
  • 5G low-frequency signals and 4G low-frequency signals with the same frequency band can share the same transmission path and reception path.
  • the radio frequency receiving module 30 is connected with the radio frequency transceiver 10, and is configured with a third antenna port LB ANT3 and a fourth antenna port LB ANT4, and the third antenna port LB ANT3 is configured to connect to the second antenna ANT2,
  • the fourth antenna port LB ANT4 is configured to connect to the fourth antenna ANT4, and the radio frequency receiving module 30 is used to support diversity reception of low-frequency signals through the third antenna port LB ANT3, and support MIMO for low-frequency signals through the fourth antenna port LB ANT4 take over.
  • the radio frequency receiving module 30 is used to support diversity reception of multiple low-frequency signals through the third antenna port LB ANT3, and support diversity MIMO reception of multiple low-frequency signals through the fourth antenna port LB ANT4.
  • the output port LNA OUT of the radio frequency receiving module 30 is connected with the radio frequency transceiver 10, and the radio frequency receiving module 30 receives the low frequency signal received by the second antenna ANT2 through the third antenna port LB ANT3 and receives the low frequency signal received by the second antenna ANT2 through the fourth antenna port LB ANT4.
  • the radio frequency receiving module 30 can be understood as a low noise amplifier module (LFEM, Low Noise AmPlifier FrontEnd Modules), which can specifically include a low noise amplifier and multiple filters, etc., and can be used to support the receiving and processing of low frequency signals.
  • LFEM Low Noise AmPlifier FrontEnd Modules
  • the radio frequency receiving module 30 can select one of the multiple low-frequency signals for diversity reception through the third antenna port LB ANT3, and select one of the multiple low-frequency signals for diversity MIMO reception through the fourth antenna port LB ANT4.
  • the radio frequency receiving module 30 can simultaneously perform diversity reception on low-frequency signals of more than two frequency bands through the third antenna port LB ANT3, and perform diversity MIMO reception on low-frequency signals of more than two frequency bands through the fourth antenna port LB ANT4.
  • the two first ends of the first filtering module are respectively connected to the input port PA IN and the output port LNA OUT one by one, and the second end of the first filtering module is connected to the first antenna port LB ANT1 for filtering Spurious waves other than low frequency signals.
  • the first filter module can be arranged outside the radio frequency transceiver module 20, and can also be integrated in the radio frequency transceiver module 20, for the transmission path between the input port PA IN of the radio frequency transceiver module 20 and the first antenna port LB ANT1
  • the low-frequency signal is filtered to filter out stray waves other than the low-frequency signal; it is also used to filter the low-frequency signal of the receiving path between the output port LNA OUT of the radio frequency transceiver module 20 and the first antenna port LB ANT1 to filter the low-frequency signal. Filters out spurious waves other than low frequency signals.
  • the first filtering module performs filtering processing on the low-frequency signal received by the input port PA IN after being amplified by the radio frequency transceiver module 20, so as to output the low-frequency signal after power amplification and filtering processing to the first antenna port LB ANT1;
  • the filtering module filters the low-frequency signal received by the first antenna port LB ANT1, and the filtered low-frequency signal is amplified by the radio frequency transceiver module 20 and then output to the output port LNA OUT, and then output to the radio frequency transceiver 10.
  • the first filtering module may include a duplexer or a filter, and when the low-frequency signal is a radio frequency signal of a single low-frequency band, such as an N28 frequency band signal, the second filtering module may filter spurious waves other than the N28 frequency band ;
  • the low-frequency signal is a radio frequency signal of multiple low-frequency bands
  • multiple first filtering modules can be set or the first filtering module can be set to include multiple duplexers or filters, so as to filter each low-frequency signal separately.
  • the first filter module when the first filter module includes a duplexer, the two first ends of the duplexer are respectively connected to the input port PA IN and the output port LNA OUT one by one, and the second end of the duplexer is connected to the first antenna port LB ANT1;
  • the first filter module when the first filter module includes a filter, the first filter module may include two filters and a switch device, the first ends of the two filters are respectively connected to the two first ends of the switch device, and the two filters The second end of the switching device is respectively connected to the input port PA IN and the output port LNA OUT one by one, and the second end of the switch device is connected to the first antenna port LB ANT1.
  • the radio frequency transceiver module 20 can support the transmission and main set reception of low-frequency signals, and support the MIMO reception of low-frequency signals; the radio frequency reception module 30 can support diversity reception of low-frequency signals, and Support MIMO reception of low-frequency signals, and then the radio frequency system can support 4*4 MIMO reception of low-frequency radio frequency signals, and can double the throughput of low-frequency signals without increasing spectrum resources and antenna transmission power;
  • the radio frequency system When the radio frequency system is applied to communication equipment, it can increase the download rate to improve user experience.
  • the communication equipment is located in a weak signal environment such as the edge of a cell, deep in a building, or an elevator, it can receive through 4*4 MIMO, which has higher diversity gain and Greater coverage distance.
  • the radio frequency system provided by the embodiment of the present application doubles the downlink communication rate and coverage distance, thereby improving the performance of the radio frequency system for receiving low-frequency signals.
  • the radio frequency system also includes:
  • the second filtering module 40 is connected to the second antenna port LB ANT2 and the third antenna ANT3 respectively, and is used for filtering the low-frequency signal received by the third antenna ANT3.
  • the second filtering module 40 is used to filter the low-frequency signal received by the third antenna ANT3 and select and output the 5G low-frequency signal of at least one frequency band to the second antenna port LB ANT2, and the radio frequency transceiver module 20 receives the signal through the second antenna port LB ANT2 The received low-frequency signal is output to the radio frequency transceiver 10 after low-noise amplification processing.
  • the second filtering module 40 is a filter, the input end of the filter is connected to the third antenna ANT3, and the output end of the filter is connected to the second antenna port LB ANT2.
  • the radio frequency system also includes:
  • the third filtering module 50 is respectively connected to the fourth antenna port LB ANT4 and the fourth antenna ANT4, and is used for filtering the low-frequency signal received by the fourth antenna ANT4.
  • the third filter module 50 is used to filter the low-frequency signal received by the fourth antenna ANT4 and select and output the 5G low-frequency signal of at least one frequency band to the fourth antenna port LB ANT4, and the radio frequency receiving module 30 receives the signal through the fourth antenna port LB ANT4 The received low-frequency signal is output to the radio frequency transceiver 10 after low-noise amplification processing.
  • the third filtering module 50 is a filter, the input end of the filter is connected to the fourth antenna ANT4, and the output end of the filter is connected to the fourth antenna port LB ANT4.
  • the radio frequency system also includes:
  • the first amplifying module 60 the output end of the first amplifying module 60 is connected with the second antenna port LB ANT2, the input end of the first amplifying module 60 is connected with the second filtering module 40, and is used for amplifying the low-frequency signal after the filtering process deal with.
  • the receiving performance of the second antenna port LB ANT2 of the radio frequency transceiver module 20 can be improved, avoiding the low efficiency caused by environmental problems, and being far away from the radio frequency The problem of large insertion loss caused by the noise amplifier circuit inside the transceiver module 20 .
  • the first amplification module 60 is a low noise amplifier, the input end of the low noise amplifier is connected to the second filtering module 40, and the output end of the low noise amplifier is connected to the second antenna port LB ANT2.
  • the radio frequency system also includes:
  • Second amplifying module 70 the output end of the second amplifying module 70 is connected with the fourth antenna port LB ANT4, the input end of the second amplifying module 70 is connected with the third filtering module 50, for amplifying the low-frequency signal after the filtering process deal with.
  • the second amplifying module 70 By arranging the second amplifying module 70 near the position of the fourth antenna ANT4 outside the radio frequency receiving module 30, the receiving performance of the fourth antenna port LB ANT4 of the radio frequency transceiver module 20 can be improved, avoiding the low efficiency caused by environmental problems, and being far away from the radio frequency The problem of large insertion loss caused by the noise amplifier circuit inside the receiving module 30 .
  • the second amplification module 70 is a low noise amplifier, the input end of the low noise amplifier is connected to the third filter module 50, and the output end of the low noise amplifier is connected to the fourth antenna port LB ANT4.
  • the first filtering module 200 is integrated inside the radio frequency transceiver module 20 , and the radio frequency transceiver module 20 includes: a transmitting circuit 210 , a switch circuit 220 and a first receiving circuit 230 .
  • the two first ends of the first filtering module 200 are respectively connected to the transmitting circuit 210 and the first receiving circuit 230 in one-to-one correspondence, and the second end of the first filtering module 200 is connected to the switch circuit 220, and the first filtering module 200 is used for The low-frequency signal transmitted by the transmitting circuit 210 and the low-frequency signal received by the first receiving circuit 230 are filtered.
  • integrating the first filter module 200 inside the radio frequency transceiver module 20 can reduce the board area occupied by the radio frequency system, improve the integration degree of the device, facilitate the miniaturization of the device, and reduce the cost; at the same time, it can also reduce the plug-in of the transceiver link. loss, increase the output power of the radio frequency transceiver module 20 for the low frequency signal, improve the sensitivity performance of the low frequency signal, and then improve the communication performance of the radio frequency system.
  • the low-frequency signal includes a plurality of radio frequency signals in low-frequency bands; wherein: there are multiple first filtering modules 200, and the two first ends of each first filtering module 200 are respectively connected to the transmitting circuit 210, The first receiving circuit 230, the second end of each first filter module 200 is connected to the switch circuit 220; the frequency bands of the low-frequency signals output by each first filter module 200 are different.
  • the low-frequency signals are signals in five different frequency bands of N5, N8, N20, N28, and N71, and five first filtering modules 200 can be set correspondingly to realize the filtering processing of these four low-frequency signals.
  • the low-frequency signals of the five frequency bands N5, N8, N20, N28, and N71 can be correspondingly output to the transmitting circuit 210 or the first receiving circuit 230 .
  • the transmitting circuit 210 is connected with the input port PA IN of the radio frequency transceiver module 20, and is used to amplify the low frequency signal received by the input port PA IN of the radio frequency transceiver module 20, so as to output the amplified low frequency signal to the first antenna Port LB ANT1.
  • the switch circuit 220 is respectively connected with the transmitting circuit 210, the first receiving circuit 230, and the first antenna port LB ANT1, and is used to select and conduct the connection between the transmitting circuit 210, the first receiving circuit 230 and the first antenna port LB ANT1 respectively.
  • the switch circuit 220 can be aimed at the transmission path and the reception path of a plurality of low-frequency signals, and the insertion loss of the radio frequency transceiver module 20 can be reduced by the switch circuit 220, and then the output power of a plurality of low-frequency signals at the first antenna port LB ANT1 LB ANT1 and the output power of the first antenna port LB ANT1 can be improved.
  • the switch circuit 220 includes a multi-channel selection switch, and a plurality of first ends of the multi-channel selection switch are respectively connected to the second ends of the plurality of first filter modules 200 in one-to-one correspondence; the second ends of the multi-channel selection switch Connect with the first antenna port LB ANT1.
  • the first receiving circuit 230 is respectively connected with the output port (for example, there are two output ports, namely the output port LNA OUT1 and the output port LNA OUT2), the first antenna port LB ANT1, and the second antenna port LB ANT2, for Amplifying the received low-frequency signal to output the amplified low-frequency signal to the output port LNA OUT of the radio frequency transceiver module 20.
  • the radio frequency transceiver module 20 also includes:
  • the coupling circuit 240 is connected to the switch circuit 220 and the first antenna port LB ANT1 respectively, and is used for coupling the low-frequency signal in the radio frequency path between the switch circuit 220 and the first antenna port LB ANT1.
  • the radio frequency transceiver module 20 is also configured with a coupling output port CPLOUT
  • the coupling circuit 240 is connected to the switch circuit 220, the first antenna port LB ANT1, and the coupling output port CPLOUT respectively
  • the coupling switch circuit 220 is connected to the first antenna port LB ANT1.
  • the low-frequency signal in the radio frequency path can output the coupled signal through the coupled output port CPLOUT.
  • the coupling circuit 240 includes an input terminal, an output terminal and a coupling terminal. The input end of the coupling circuit 240 is coupled to the switch circuit 220, the output end of the coupling circuit 240 is coupled to the first antenna port LB ANT1, and the coupling end is coupled to the coupling output port CPLOUT.
  • the coupling signal includes a forward coupling signal and a reverse coupling signal. Based on the forward coupling signal output by the coupling end, the forward power information of the low-frequency signal can be detected; based on the reverse coupling signal output by the coupling end, it can be detected correspondingly.
  • the reverse power information of the low-frequency signal, and the detection mode is defined as a reverse power detection mode.
  • the radio frequency transceiver module 20 can also be configured with an input port GSM LB IN, an input port GSM HB IN and a high-frequency output port GSM HB OUT.
  • the radio frequency transceiver module 20 also includes a 2G low-frequency transmitting circuit 250 and a 2G high-frequency transmitting circuit 260.
  • the 2G low-frequency transmitting circuit 250 is connected to the first end of the switch circuit 220 and the input port GSM HB IN respectively
  • the 2G high-frequency transmitting circuit 260 is connected to the input port GSM HB IN respectively.
  • Port GSM HB IN, high frequency output port GSM HB OUT connection Through the 2G low-frequency transmitting circuit 250 and the 2G high-frequency transmitting circuit 260, the amplification processing of the 2G low-frequency signal and the 2G high-frequency signal can be realized respectively.
  • the transmitting circuit 210 includes:
  • First power amplifier 211 the input end of the first power amplifier 211 is connected with input port PA IN;
  • the first switch unit 212 the first end of the first switch unit 212 is connected with the output end of the first power amplifier 211, the first switch Multiple second terminals of the unit 212 are respectively connected to the first terminals of the multiple first filter modules 200 in one-to-one correspondence (for example, the two second terminals of the first switch unit 212 are respectively connected to the two first filter modules 200 in one-to-one correspondence. the first end of the ).
  • the first power amplifier 211 and a first filter module 200 can support the correlation processing of the signal in the frequency band, so as to output a low-frequency signal without clutter correspondingly;
  • the frequency band is a plurality of preset frequency bands
  • the plurality of second ends of the first switch unit 212 are respectively connected to the first ends of the plurality of first filter modules 200 in one-to-one correspondence, so that the first power amplifier 211, the first filter module 200 It can also support correlation processing of low-frequency signals of multiple different frequency bands, so as to output low-frequency signals of each frequency band without clutter.
  • the input port PA IN of the radio frequency transceiver module 20, the first power amplifier 211, the first switch unit 212 and a plurality of first filter modules 200 form a filter path in a plurality of transmission paths, and a plurality of filter paths interact with each other. Independent, do not overlap with each other. It should be noted that when the transmitting circuit 210 only needs to transmit low-frequency signals in one frequency band, the number of the second end of the first switch unit 212 may be only one, and the number of the first filter module 200 corresponds to one.
  • the first receiving circuit 230 includes:
  • the first low-noise amplifier 231, the output end of the first low-noise amplifier 231 is connected with the output port LNA OUT of the radio frequency transceiver module 20;
  • the second switch unit 232, the first end of the second switch unit 232 is connected with the first low-noise amplifier 231 part of the second end of the second switch unit 232 is connected to the second end of the first filter module 200, and is connected to the first antenna port LB ANT1 through the first filter module 200 to receive the low frequency input by the first antenna port LB ANT1 Signal; part of the second end of the second switch unit 232 is connected to the second antenna port LB ANT2 to receive the low frequency signal input by the second antenna port LB ANT2.
  • the first low-noise amplifier 231 and the second switch unit 232 are integrated in the radio frequency transceiver module 20, and the radio frequency path between the first low-noise amplifier 231 and the first antenna port LB ANT1 is selectively turned on through the second switch unit 232, and also The radio frequency path between the first low-noise amplifier 231 and the second antenna port LB ANT2 can be selected to be turned on, thereby selecting to perform low-noise amplification processing on 5G radio frequency signals in different frequency bands, saving the number of the first low-noise amplifier 231 and reducing the The device occupies the area of the motherboard. It should be noted that, when it is necessary to perform low-noise amplification processing on low-frequency signals in multiple frequency bands, multiple first low-noise amplifiers 231 (for example, two first low-noise amplifiers 231 ) may be provided.
  • the quantity of the output port LNA OUT of the radio frequency transceiver module 20 is multiple, and the quantity of the first low noise amplifier 231 is multiple; the first receiving circuit 230 also includes:
  • the third switch unit 233 a plurality of first ends of the third switch unit 233 are respectively connected to a plurality of output ports in one-to-one correspondence, and each second end of the third switch unit 233 is respectively connected to the output ends of each first low-noise amplifier 231 One-to-one connection.
  • the third switch unit 233 is used for selectively conducting the paths between the multiple output ports and the multiple first low-noise amplifiers 231 , so as to realize the output paths of low-frequency signals in different frequency bands.
  • the third switch unit 233 may be a double-pole double-throw switch, and the two first ends of the double-pole double-throw switch correspond to two output ports (output port LNA OUT1, output port LNA OUT2) respectively.
  • the two second terminals of the double-pole double-throw switch are respectively connected to the output terminals of the two first low-noise amplifiers 231 in a one-to-one correspondence.
  • the 2G low-frequency transmitting circuit 250 includes a second power amplifier 251 and a first filtering unit 252 ; the 2G high-frequency transmitting circuit 260 includes a third power amplifier 261 and a second filtering unit 262 .
  • the input end of the second power amplifier 251 is connected with the input port GSM LB IN
  • the output end of the second power amplifier 251 is connected with the first end of the switch circuit 220 through the first filter unit 252
  • the input end of the third power amplifier 261 It is connected to the input port GSM HB IN
  • the output end of the third power amplifier 261 is connected to the high frequency output port GSM HB OUT through the second filtering unit 262.
  • the second power amplifier 251 and the third power amplifier 261 are used to amplify the 2G low-frequency signal and the 2G high-frequency signal respectively, and the first filter unit 252 and the second filter unit 262 are respectively used to amplify the 2G low-frequency signal and the 2G high-frequency signal. Perform filtering.
  • the first filter module 200 is a duplexer Du1; the first power amplifier 211 is a power amplifier LB PA, and the first switch unit 212 is a multi-channel selection switch SP8T1; the switch circuit 220 Select switch SP8T2 for multiple channels.
  • the number of the first low noise amplifier 231 is two, which are respectively the low noise amplifier LNA1 and the low noise amplifier LNA2; the number of the second switch unit 232 is two, which are respectively the multi-channel selection switch SP4T1 and the multi-channel selection switch SP4T1;
  • the three switch unit 233 is a double pole double throw switch DPDT1.
  • the coupling circuit 240 is a coupler Do; the second power amplifier 251 and the first filtering unit 252 are respectively a power amplifier 2G LB PA and a filter F1; the third power amplifier 261 and the second filtering unit 262 are respectively a power amplifier 2G HB PA and a Filter F2.
  • the input terminal of the power amplifier LB PA is connected to the input port PA IN
  • the first terminal of the multi-channel selection switch SP8T1 is connected to the output terminal of the power amplifier LB PA1
  • the multiple second terminals of the multi-channel selection switch SP8T1 correspond to each other one by one.
  • the first ends of multiple duplexers Du1 are connected (for example, the two second ends of the multi-channel selection switch SP8T1 are respectively connected to the first ends of two duplexers Du1 in one-to-one correspondence).
  • the multiple first ends of the multi-channel selection switch SP8T2 are respectively connected to the second ends of the multiple duplexers Du1 in one-to-one correspondence; the second end of the multi-channel selection switch SP8T2 is connected to the first antenna port LB ANT1.
  • each first end of the double-pole double-throw switch DPDT1 is respectively connected to the output port LNA OUT1 and the output port LNA OUT2 in one-to-one correspondence
  • each second end of the double-pole double-throw switch DPDT1 is respectively connected to the low-noise amplifier LNA1, the low-noise amplifier
  • the output ends of LNA2 are connected one by one
  • the first end of the multi-channel selection switch SP4T1 is connected to the input end of the low noise amplifier LNA1
  • the second end of the multi-channel selection switch SP4T1 is connected to the second end of the duplexer Du.
  • the input terminal of the power amplifier 2G LB PA is connected with the input port GSM LB IN
  • the output terminal of the power amplifier 2G LB PA is connected with the first end of the second gating unit 230 through the filter F1
  • the input terminal of the power amplifier 2G HB PA The end is connected to the input port GSM HB IN
  • the output end of the power amplifier 2G HB PA is connected to the high frequency output port GSM HB OUT through the filter F2.
  • the signal transceiving process of the radio frequency transceiver module 20 in this embodiment is described by taking the low frequency signal as an N28 frequency band signal as an example:
  • the radio frequency transceiver 10 outputs the N28 transmission signal through the input port PA IN and enters the radio frequency transceiver module 20, the first power amplifier 211 of the transmission circuit 210 carries out signal amplification, passes through the first switch unit 212, the first filter After the module 200 performs filter processing, it outputs to the first antenna port LB ANT1 through the switch circuit 220 and the coupling circuit 240, and finally reaches the first antenna ANT1.
  • the main receiving process of the N28 low-frequency signal the first antenna ANT1 receives the N28 low-frequency signal from the space, the N28 low-frequency signal enters the radio frequency transceiver module 20 through the first antenna port LB ANT1, and enters the first filter through the coupling circuit 240 and the switch circuit 220
  • the module 200 performs filter processing, enters the first low-noise amplifier 231 through the second switch unit 232 for amplification processing, and then reaches the output port through the third switch to output to the radio frequency transceiver 10 .
  • the third antenna ANT3 receives the N28 low-frequency signal from the space, and the N28 low-frequency signal enters the radio frequency transceiver module 20 through the second antenna port LB ANT2, and is filtered by the second filter module 40, and then passed through the second antenna port LB ANT2.
  • the second switch unit 232 enters the first low-noise amplifier 231 for amplification processing, and then reaches the output port through the third switch 233 to be output to the radio frequency transceiver 10 .
  • the radio frequency transceiver module 20 is also configured with an auxiliary input port LB TXOU, an auxiliary output port LNA_AUX, and an auxiliary transceiver port LB_TRX; wherein: two first ends of the first filtering module 80 The auxiliary input port LBTXOU and the auxiliary output port LNA_AUX are respectively connected one by one, and the second end of the first filter module 80 is connected to the auxiliary transceiver port LB_TRX.
  • the external first filter module 80 can filter the low-frequency signal sent and received by the radio frequency transceiver module 20 , and can save the number of duplexers inside the radio frequency transceiver module 20 and reduce the volume of the radio frequency transceiver module 20 .
  • the radio frequency transceiver module 20 includes: a transmitting circuit 210 , a switch circuit 220 , and a first receiving circuit 230 .
  • the transmitting circuit 210 is connected to the input port PA IN and the auxiliary input port LB TXOU respectively, and is used to amplify the low-frequency signal received by the input port PA IN.
  • the first receiving circuit 230 is respectively connected with output ports (for example, there are two output ports, respectively output port LNA OUT1, output port LNA OUT2), auxiliary output port LNA_AUX, and second antenna port LB ANT2, for receiving Low frequency signals are amplified.
  • the switch circuit 220 is connected with the transmitting circuit 210, the first receiving circuit 230, the auxiliary transceiver port LB_TRX, and the first antenna port LB ANT1 respectively, and is used to selectively conduct the transmitting circuit 210, the first receiving circuit 230 and the first antenna port LB respectively.
  • the radio frequency transceiver module 20 also includes: a coupling circuit 240, which is respectively connected to the switch circuit 220 and the first antenna port LB ANT1 for coupling between the switch circuit 220 and the first antenna port LB ANT1. Low frequency signals in the RF path.
  • the transmitting circuit 210 the first receiving circuit 230 , the switch circuit 220 , and the coupling circuit 240 , refer to the related descriptions of the above embodiments, and details are not repeated here.
  • the low-frequency signal includes radio frequency signals in multiple low-frequency bands; the radio frequency transceiver module 20 also includes:
  • Filter circuit 270 the two first ends of filter circuit 270 are respectively connected to the transmitting circuit 210 and the first receiving circuit 230 in one-to-one correspondence, and the second end of filter circuit 270 is connected to switch circuit 220 for filtering out stray signals other than low-frequency signals Wave.
  • the frequency band of the low-frequency signal filtered by the filtering circuit 270 is different from the frequency band of the low-frequency signal filtered by the first filtering module 80 .
  • a first filter module 80 and one or more filter circuits 270 may be provided.
  • the first filter module 80 is used to filter low-frequency signals of the main frequency band
  • the filter circuit 270 is used to filter low-frequency signals of other secondary frequency bands.
  • a first filtering module 80 and two filtering circuits 270 can be set to realize the first filtering module 80 to three different frequency bands. Filter processing of low-frequency signals in a frequency band.
  • the radio frequency transceiver module 20 can also be configured with an input port GSM LB IN, an input port GSM HB IN and a high frequency output port GSM HB OUT.
  • the radio frequency transceiver module 20 also includes a 2G low frequency transmission circuit and a 2G high frequency transmission circuit.
  • 2G low-frequency transmitting circuit and the 2G high-frequency transmitting circuit refer to the above-mentioned embodiments, and details are not repeated here.
  • FIG. 10 it is a specific circuit structure diagram of an embodiment.
  • the signal transceiving process of the radio frequency transceiver module 20 in this embodiment is described by taking the low frequency signal as an N28 frequency band signal as an example:
  • the transmission process of the N28 low-frequency signal the radio frequency transceiver 10 outputs the N28 transmission signal through the input port PA IN and enters the radio frequency transceiver module 20, and the signal is amplified by the first power amplifier 211 of the transmission circuit 210, and is output to the auxiliary input through the first switch unit 212
  • the port LB TXOU reaches the first filtering module 80, and the first filtering module 80 performs filtering processing and outputs to the first antenna port LB ANT1 through the auxiliary transceiver port LB_TRX and the switch circuit 220, and finally reaches the first antenna ANT1.
  • the main receiving process of the N28 low-frequency signal the first antenna ANT1 receives the N28 low-frequency signal from the space, and the N28 low-frequency signal enters the radio frequency transceiver module 20 through the first antenna port LB ANT1, passes through the coupling circuit 240, the switch circuit 220, and the auxiliary transceiver port LB_TRX enters the first filter module 80 for filtering processing, enters the first low noise amplifier 231 through the auxiliary output port LNA_AUX and the second switch unit 232 for amplification processing, and then reaches the output port through the third switch to be output to the radio frequency transceiver 10 .
  • the third antenna ANT3 receives the N28 low-frequency signal from the space, the N28 low-frequency signal is filtered by the second filter module 40, enters the radio frequency transceiver module 20 through the second antenna port LB ANT2, and then passes through the second filter module 40.
  • the second switch unit 232 enters the first low-noise amplifier 231 for amplification processing, and then reaches the output port through the third switch to be output to the radio frequency transceiver 10 .
  • the radio frequency receiving module 30 includes a second receiving circuit 310 and a third receiving circuit 320, wherein the second receiving circuit 310 is respectively connected to the output port of the radio frequency receiving module 30, the third antenna
  • the port LB ANT3 is used to support diversity reception of low-frequency signals;
  • the third receiving circuit 320 is respectively connected to the output end of the radio frequency receiving module 30 and the fourth antenna port LB ANT4, and is used to support diversity MIMO reception of low-frequency signals.
  • the radio frequency receiving module 30 also includes a first gating circuit 330, the first gating circuit 330 is respectively connected to the second receiving circuit 310, the third receiving circuit 320 and the third antenna port LB ANT3 for selectively conducting the first The radio frequency path between the second receiving circuit 310, the third receiving circuit 320 and the third antenna port LB ANT3 respectively.
  • the second receiving circuit 310 can also be connected to the fourth antenna port LB ANT5 to connect to the fourth antenna ANT4.
  • the first gating circuit 330 may be a multi-channel selection switch SP8T3.
  • the radio frequency receiving module 30 also includes a second gating circuit 340, the second gating circuit 340 is respectively connected to the two output ports of the radio frequency receiving module 30, the second receiving circuit 310, and the third receiving circuit 320 for selecting Conducting the radio frequency paths between the two output ports of the radio frequency receiving module 30 and the second receiving circuit 310 and the third receiving circuit 320 respectively.
  • the second gating circuit 340 may be a double pole double throw switch DPDT2.
  • the second receiving circuit 310 includes a low-noise amplifier LAN3, a multi-channel selection switch SP4T3, a filter F3, and a filter F4, and the input end of the low-noise amplifier LAN3 is connected to the first multi-channel selection switch SP4T1.
  • One end, the output end of the low noise amplifier LAN3 is connected to the second gating circuit 340, the first end of the multi-channel selection switch SP4T1 is connected to the first end of the filter F3 and the filter F4, the second end of the filter F3 and the filter F4
  • the terminal is connected to the first gate circuit 330.
  • the third receiving circuit 320 includes a low-noise amplifier LAN4, a multi-channel selection switch SP4T4, and a filter F6.
  • the input end of the low-noise amplifier LAN4 is connected to the first end of the multi-channel selection switch SP4T4, and the output end of the low-noise amplifier LAN4 is connected to the second selection switch.
  • the pass circuit 340 , the first end of the multi-channel selection switch SP4T4 is connected to the first end of the filter F6 , and the second end of the filter F6 is connected to the first selection circuit 330 .
  • the number of filters F in the second receiving circuit 310 and the number of filters F in the third receiving circuit 320 can be one or more.
  • the filter in the second receiving circuit 310 and the filter in the third receiving circuit 320 may also be arranged on the side of the radio frequency receiving module 30 that is close to the antenna.
  • the radio frequency receiving module 30 is also configured with a medium-high frequency antenna port MHB ANT, and the high-frequency antenna port MHB ANT is used to connect the fifth antenna to support the reception of intermediate frequency signals and high frequency signals, so as to Expand the frequency range of the radio frequency signal received by the radio frequency receiving module 30 to increase the frequency range of the radio frequency system.
  • the radio frequency receiving module 30 also includes a third receiving circuit 350, the third receiving circuit 350 is used to connect with the medium and high frequency antenna port MHB ANT, the third receiving circuit 350 may include a multi-pole multi-throw switch nPnT, a low-noise amplifier, a multiple Channel selection switch, filter F and multi-channel selection switch.
  • the signal receiving process of the radio frequency receiving module 30 in this embodiment is described by taking the low frequency signal as an N28 frequency band signal as an example:
  • the second antenna ANT2 receives N28 low-frequency signal from space
  • N28 low-frequency signal enters the radio frequency receiving module 30 through the third antenna port LB ANT3, and enters the second receiving circuit 310 through the first gate circuit 330 filter processing in the filter, enter the low noise amplifier LAN through the multi-channel selection switch SP4T3 for amplification processing, and then reach the output port LNA OUT through the second gating circuit 340 and output to the radio frequency transceiver 10.
  • the MIMO receiving process of the N28 low-frequency signal the fourth antenna ANT4 receives the N28 low-frequency signal from space, the N28 low-frequency signal enters the radio frequency receiving module 30 through the fourth antenna port LB ANT4, and then passes through the multi-channel selection switch SP4T1 of the third receiving circuit 320 Enter the low noise amplifier LAN4 for amplification processing, and then reach the output port LNA OUT through the second gating circuit 340 and output to the radio frequency transceiver 10.
  • An embodiment of the present application further provides a communication device, where the radio frequency system in any one of the foregoing embodiments is set on the communication device.
  • the radio frequency system By setting the radio frequency system on the communication device, 4*4 MIMO reception can be realized, and the throughput of low-frequency signals can be doubled without increasing spectrum resources and antenna transmission power; the download rate can be increased to improve user experience , at the same time, when the communication equipment is located in a weak signal environment such as the edge of a cell, deep in a building, or an elevator, it can receive through 4*4 MIMO, which has higher diversity gain and greater coverage distance; and the device is highly integrated, reducing radio frequency Each device in the system occupies the area of the substrate, and at the same time, layout and wiring can be simplified to save costs.
  • the communication device is a mobile phone 11 as an example for illustration, specifically, as shown in Figure 14, the mobile phone 11 may include a memory 21 (which optionally includes one or more computer-readable storage media), processor 22, peripheral device interface 23, radio frequency system 24, input/output (I/O) subsystem 26. These components optionally communicate via one or more communication buses or signal lines 29 .
  • the mobile phone 11 shown in FIG. 14 does not constitute a limitation to the mobile phone, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the various components shown in FIG. 14 are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Memory 21 optionally includes high-speed random access memory, and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 21 include an operating system 211 , a communication module (or an instruction set) 212 , a global positioning system (GPS) module (or an instruction set) 213 and the like.
  • GPS global positioning system
  • Processor 22 and other control circuits, such as control circuits in radio frequency system 24 may be used to control the operation of handset 11 .
  • the processor 22 may be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, and the like.
  • Processor 22 may be configured to implement a control algorithm that controls the use of antennas in handset 11 .
  • the processor 22 may also issue control commands and the like for controlling switches in the radio frequency system 24 .
  • I/O subsystem 26 couples input/output peripherals on handset 11 such as a keypad and other input control devices to peripherals interface 23 .
  • I/O subsystem 26 optionally includes a touch screen, keys, tone generator, accelerometer (motion sensor), ambient light sensor and other sensors, light emitting diodes and other status indicators, data ports, and the like.
  • a user may control the operation of handset 11 by supplying commands via I/O subsystem 26 and may use the output resources of I/O subsystem 26 to receive status information and other output from handset 11 .
  • the user can turn on or turn off the mobile phone by pressing the button 261 .
  • the radio frequency system 24 may be the radio frequency system in any of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请涉及一种射频系统及通信设备。该射频系统,包括:射频收发器(10)、射频收发模块(20)、射频接收模块(30)及第一滤波模块,射频收发模块(20)用于支持对低频信号的发射和主集接收,及支持对低频信号的MIMO接收;射频接收模块(30)用于支持对低频信号的分集接收,及支持对低频信号的MIMO接收,进而射频系统能够支持对低频信号的4*4MIMO接收,在不增加频谱资源和天线发射功率的情况下,可以成倍提高对于低频信号的吞吐量;在射频系统应用于通信设备时,可以提升下载速率以提高用户的体验,同时,当通信设备位于小区边缘、楼宇深处、电梯等弱信号环境时通过4*4MIMO接收,具有更高的分集增益及更大的覆盖范围,从而具有更好的接收性能。

Description

射频系统及通信设备
相关申请的交叉引用
本申请要求于2021年11月30日提交中国专利局、申请号为2021114491437、发明名称为“射频系统及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种射频系统及通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
随着技术的发展和进步,移动通信技术逐渐开始应用于通信设备,例如手机等。随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。5G移动通信技术通信频率相比于4G移动通信技术的频率更高。传统的射频系统在小区边缘、楼宇深处或电梯等信号较差的区域时,对5G低频信号的接收(例如,N28频段信号)的接收性能较差。
发明内容
根据本申请的各种实施例,提供了一种射频系统及通信设备,可以实现4*4MIMO接收,具有更好的接收性能。
一种射频系统,包括:
射频收发器;
射频收发模块,被配置有输入端口、输出端口、第一天线端口及第二天线端口,所述输入端口和所述输出端口分别被配置为连接所述射频收发器,所述第一天线端口被配置为连接第一天线,所述第二天线端口被配置为连接第三天线,所述射频收发模块用于通过所述第一天线端口支持对低频信号的发射和主集接收,及通过所述第二天线端口支持对所述低频信号的MIMO接收;
射频接收模块,与所述射频收发器连接,被配置有第三天线端口和第四天线端口,所述第三天线端口被配置为连接第二天线,所述第四天线端口被配置为连接第四天线,所述射频接收模块用于通过所述第三天线端口支持对所述低频信号的分集接收,及通过所述第四天线端口支持对所述低频信号的MIMO接收;
第一滤波模块,所述第一滤波模块的两个第一端分别一一对应连接所述输入端口、所述输出端口,所述第一滤波模块的第二端连接所述第一天线端口,用于滤除所述低频信号以外的杂散波。
一种通信设备,包括如上所述的射频系统。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中射频系统的结构示意图之一;
图2为一个实施例中射频系统的结构示意图之二;
图3为一个实施例中射频系统的结构示意图之三;
图4为一个实施例中射频收发模块的结构示意图之一;
图5为一个实施例中射频收发模块的结构示意图之二;
图6为一个实施例中射频收发模块的结构示意图之三;
图7为一个实施例中射频收发模块的具体结构示意图;
图8为一个实施例中射频收发模块的结构示意图之四;
图9为一个实施例中射频收发模块的结构示意图之五;
图10为一个实施例中射频收发模块的具体结构示意图;
图11为一个实施例中射频接收模块的结构示意图;
图12为一个实施例中射频接收模块的具体结构示意图之一;
图13为一个实施例中射频接收模块的具体结构示意图之二;
图14为一个实施例中通信设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一客户端称为第二客户端,且类似地,可将第二客户端称为第一客户端。第一客户端和第二客户端两者都是客户端,但其不是同一客户端。
本申请实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。
如图1所示,在其中一个实施例中,本申请实施例提供的射频系统包括:射频收发器10、射频收发模块20、射频接收模块30及第一滤波模块(图1中未示出第一滤波模块);还包括第一天线ANT1、第二天线ANT2、第三天线ANT3和第四天线ANT4。
在本实施例中,第一天线ANT1、第二天线ANT2、第三天线ANT3和第四天线ANT4均能够支持NR低频多个频段的射频信号的收发。各支天线可以使用任何合适类型的天线形成。例如,各支天线可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同的频段和频段组合。在本申请实施例中,对第一天线ANT1、第二天线ANT2、第三天线ANT3和第四天线ANT4的类型不做进一步的限定。
在本实施例中,射频收发器10可被配置有多个端口,以实现与射频收发模块20及射频接收模块30的连接。可选地,射频收发器10包括发射器和接收器,其中发射器用于向射频收发模块20发射射频信号,接收器用于接收射频收发模块20及射频接收模块30输出的射频信号。
在本实施例中,射频收发模块20被配置有输入端口PA IN、输出端口LNA OUT、第一天线端口LB ANT1及第二天线端口LB ANT2,输入端口PA IN、输出端口LNA OUT分别被配置为连接射频收发器10,第一天线端口LB ANT1被配置为连接第一天线ANT1,第二天线端口LB ANT2被配置为连接第三天线ANT3,射频收发模块20用于通过第一天线端口LB ANT1支持对低频信号的发射和主集接收,及通过第二天线端口LB ANT2支持对低频信号的MIMO接收。
其中,MIMO(Multiple Input Multiple Output,多发多收)技术是指在发射端口和接收端口分别使用多个发射天线和接收天线,充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统的信道容量。
其中,射频收发模块20用于通过第一天线端口LB ANT1支持对多个低频信号的发射和主集接收,及通过第二天线端口LB ANT2支持对多个低频信号的主集MIMO接收。具体地,射频收发模块20的输入端口PA IN与射频收发器10连接,射频收发模块20的输出端口LNA OUT1与射频收发器10连接,射频收发模块20用于对射频收发器10发出的低频信号进行滤波放大处理,输出至第一天线端口LB ANT1,经第一天线ANT1发射出去,以实现对低频信号的发射控制;还用于通过第一天线端口LB ANT1接收由第一天线ANT1接收的低频信号及通过第二天线端口LB ANT2接收由第三天线ANT3接收的低频信号,对低频信号进行滤波放大处理后,经输出端口LNA OUT输出至射频收发器10,以实现对低频信号的接收控制。可选地,射频收发模块20可以理解为内置低噪声放大器的低频的功率放大器模块(LB L-PA Mid,Low Band Power Amplifier Modules including Duplexers)。
可选地,射频收发模块20还用于实现对多个低频信号间的接收切换控制、发射切换控制以及发射与接收之间的切换控制。具体地,通过第一天线端口LB ANT1可以在多个低频信号中选择一个进行发射和主集接收,及通过第二天线端口LB ANT2在多个低频信 号中选择一个进行主集MIMO接收。可选地,射频收发模块20通过第一天线端口LB ANT1可以同时对两个以上频段的低频信号进行发射和主集接收,通过第二天线端口LB ANT2对两个以上频段的低频信号进行主集MIMO接收。
其中,低频信号可以包括5G低频信号和/或4G低频信号。可选地,低频信号包括N5、N8、N20、N28、N71频段中的至少一种。可选地,低频信号还可以包括B5、B8、B20、B28、B71频段中的至少一种。其中,频段相同的5G低频信号和4G低频信号可以共用相同的发射通路和接收通路。
在本实施例中,射频接收模块30,与射频收发器10连接,被配置有第三天线端口LB ANT3和第四天线端口LB ANT4,第三天线端口LB ANT3被配置为连接第二天线ANT2,第四天线端口LB ANT4被配置为连接第四天线ANT4,射频接收模块30用于通过第三天线端口LB ANT3支持对低频信号的分集接收,及通过第四天线端口LB ANT4支持对低频信号的MIMO接收。
其中,射频接收模块30用于通过第三天线端口LB ANT3支持对多个低频信号的分集接收,及通过第四天线端口LB ANT4支持对多个低频信号的分集MIMO接收。具体地,射频接收模块30的输出端口LNA OUT与射频收发器10连接,射频接收模块30通过第三天线端口LB ANT3接收由第二天线ANT2接收的低频信号及通过第四天线端口LB ANT4接收由第四天线ANT4接收的低频信号,对低频信号进行滤波放大处理后,经射频接收模块30的输出端口LNA OUT输出至射频收发器10,以实现对低频信号的接收控制。可选地,射频接收模块30可以理解为低噪声放大器模块(LFEM,Low Noise AmPlifier FrontEnd Modules),其具体可包括低噪声放大器和多个滤波器等,可用于支持对低频信号的接收处理。
可选地,射频接收模块30通过第三天线端口LB ANT3可以在多个低频信号中选择一个进行分集接收,及通过第四天线端口LB ANT4在多个低频信号中选择一个进行分集MIMO接收。可选地,射频接收模块30通过第三天线端口LB ANT3可以同时对两个以上频段的低频信号进行分集接收,通过第四天线端口LB ANT4对两个以上频段的低频信号进行分集MIMO接收。
在本实施例中,第一滤波模块的两个第一端分别一一对应连接输入端口PA IN、输出 端口LNA OUT,第一滤波模块的第二端连接第一天线端口LB ANT1,用于滤除低频信号以外的杂散波。
其中,第一滤波模块可以设置在射频收发模块20外,也可以集成在射频收发模块20内部,用于对射频收发模块20的输入端口PA IN与第一天线端口LB ANT1之间的发射通路的低频信号进行滤波处理,以滤除低频信号以外的杂散波;还用于对射频收发模块20的输出端口LNA OUT与第一天线端口LB ANT1之间的接收通路的低频信号进行滤波处理,以滤除低频信号以外的杂散波。具体地,第一滤波模块对输入端口PA IN接收经射频收发模块20放大处理后的低频信号进行滤波处理,以将功率放大及滤波处理后的低频信号输出至第一天线端口LB ANT1;第一滤波模块对第一天线端口LB ANT1接收的低频信号进行滤波处理,滤波处理后的低频信号再由射频收发模块20进行放大处理后输出至输出端口LNA OUT,进而输出至射频收发器10。
其中,第一滤波模块可以包括双工器或者滤波器,当低频信号为单低频频段的射频信号时,例如为N28频段信号,则第二滤波模块可以对N28频段以外的杂散波进行滤波处理;当低频信号为多个低频频段的射频信号时,可以设置多个第一滤波模块或者设置第一滤波模块包括多个双工器或者滤波器,以分别对每个低频信号进行滤波处理。其中,当第一滤波模块包括双工器时,双工器的两个第一端分别一一对应连接输入端口PA IN、输出端口LNA OUT,双工器的第二端连接第一天线端口LB ANT1;当第一滤波模块包括滤波器时,第一滤波模块可以包括两个滤波器和一个开关器件,两个滤波器的第一端分别连接开关器件的两个第一端,两个滤波器的第二端分别一一对应连接输入端口PA IN、输出端口LNA OUT,开关器件的第二端连接第一天线端口LB ANT1。
本实施提供的射频系统,射频收发模块20能够射频收发模块20支持对低频信号的发射和主集接收,及支持对低频信号的MIMO接收;射频接收模块30能够支持对低频信号的分集接收,及支持对低频信号的MIMO接收,进而射频系统能够对支持对低频段射频信号实现4*4MIMO接收,在不增加频谱资源和天线发射功率的情况下,可以成倍提高对于低频信号的吞吐量;在射频系统应用于通信设备时,可以提升下载速率以提高用户的体验,同时,当通信设备位于小区边缘、楼宇深处、电梯等弱信号环境时通过4*4MIMO接收,具有更高的分集增益及更大的覆盖距离。本申请实施例提供的射频系统,相对于相关 技术中支持低频信号2*2MIMO接收的射频系统,下行通信速率和覆盖距离提升一倍,进而可以提升射频系统对低频信号的接收性能。
如图2所示,在其中一个实施例中,射频系统还包括:
第二滤波模块40,分别与第二天线端口LB ANT2、第三天线ANT3连接,用于对第三天线ANT3接收的低频信号进行滤波处理。
第二滤波模块40用于对第三天线ANT3接收的低频信号进行滤波处理并选择输出至少一个频段的5G低频信号至第二天线端口LB ANT2,射频收发模块20通过第二天线端口LB ANT2对接收到的低频频信号进行低噪声放大处理后输出至射频收发器10。可选地,第二滤波模块40为滤波器,滤波器的输入端与第三天线ANT3连接,滤波器的输出端与第二天线端口LB ANT2。
如图2所示,在其中一个实施例中,射频系统还包括:
第三滤波模块50,分别与第四天线端口LB ANT4、第四天线ANT4连接,用于对第四天线ANT4接收的低频信号进行滤波处理。
第三滤波模块50用于对第四天线ANT4接收的低频信号进行滤波处理并选择输出至少一个频段的5G低频信号至第四天线端口LB ANT4,射频接收模块30通过第四天线端口LB ANT4对接收到的低频频信号进行低噪声放大处理后输出至射频收发器10。可选地,第三滤波模块50为滤波器,滤波器的输入端与第四天线ANT4连接,滤波器的输出端与第四天线端口LB ANT4连接。
如图3所示,在其中一个实施例中,射频系统还包括:
第一放大模块60,第一放大模块60的输出端与第二天线端口LB ANT2连接,第一放大模块60的输入端与第二滤波模块40连接,用于对滤波处理后的低频信号进行放大处理。
通过在射频收发模块20外靠近第三天线ANT3侧的位置设置第一放大模块60,可以提高射频收发模块20第二天线端口LB ANT2的接收性能,避免由于环境问题引起的效率低、由于远离射频收发模块20内部噪声放大电路引起的插损大的问题。可选地,第一放大模块60为低噪声放大器,低噪声放大器的输入端与第二滤波模块40连接,低噪声放大器的输出端与第二天线端口LB ANT2连接。
如图3所示,在其中一个实施例中,射频系统还包括:
第二放大模块70,第二放大模块70的输出端与第四天线端口LB ANT4连接,第二放大模块70的输入端与第三滤波模块50连接,用于对滤波处理后的低频信号进行放大处理。
通过在射频接收模块30外靠近第四天线ANT4侧的位置设置第二放大模块70,可以提高射频收发模块20第四天线端口LB ANT4的接收性能,避免由于环境问题引起的效率低、由于远离射频接收模块30内部噪声放大电路引起的插损大的问题。可选地,第二放大模块70为低噪声放大器,低噪声放大器的输入端与第三滤波模块50连接,低噪声放大器的输出端与第四天线端口LB ANT4连接。
在其中一个实施例中,如图4所示,第一滤波模块200集成在射频收发模块20内部,射频收发模块20包括:发射电路210、开关电路220及第一接收电路230。
其中,第一滤波模块200的两个第一端分别一一对应连接发射电路210、第一接收电路230,第一滤波模块200的第二端连接开关电路220,第一滤波模块200用于对发射电路210发射的低频信号、第一接收电路230接收的低频信号进行滤波处理。其中,将第一滤波模块200集成在射频收发模块20内部,能够减少射频系统占用的主板面积,提高器件的集成度,有利于器件的小型化,降低成本;同时还可以降低收发链路的插损,提高射频收发模块20对低频信号的输出功率,提升低频信号的灵敏度性能,进而可提升射频系统的通信性能。
可选地,低频信号包括多个低频频段的射频信号;其中:第一滤波模块200的数量为多个,每个第一滤波模块200的两个第一端分别一一对应连接发射电路210、第一接收电路230,每个第一滤波模块200的第二端连接开关电路220;每个第一滤波模块200输出的低频信号的频段不同。例如,低频信号为N5、N8、N20、N28、N71五个不同频段的信号,可对应设置五个第一滤波模块200,以实现对这四个低频信号的滤波处理,经过这五个第一滤波模块200的滤波处理后,可以对应输出N5、N8、N20、N28、N71五个频段的低频信号至发射电路210或第一接收电路230。
其中,发射电路210与射频收发模块20的输入端口PA IN连接,用于对射频收发模块20的输入端口PA IN接收的低频信号进行放大处理,以将放大处理后的低频信号输出 至第一天线端口LB ANT1。
其中,开关电路220分别与发射电路210、第一接收电路230、第一天线端口LB ANT1连接,用于选择导通发射电路210、第一接收电路230分别与第一天线端口LB ANT1之间的射频通路。开关电路220可以针对多个低频信号的发射通路和接收通路,通过开关电路220可以降低射频收发模块20的插入损耗,进而可以提升多个低频信号在第一天线端口LB ANT1LB ANT1的输出功率及在输出端口LNA OUT的输出功率。可选地,开关电路220包括多通道选择开关,多通道选择开关的多个第一端分别对应与多个第一滤波模块200的第二端一一对应连接;多通道选择开关的第二端与第一天线端口LB ANT1连接。
其中,第一接收电路230分别与输出端口(例如,输出端口为两个,分别为输出端口LNA OUT1、输出端口LNA OUT2)、第一天线端口LB ANT1、第二天线端口LB ANT2连接,用于对接收的低频信号进行放大处理,以输出放大处理后的低频信号至射频收发模块20的输出端口LNA OUT。
可选地,如图4所示,射频收发模块20还包括:
耦合电路240,分别连接开关电路220、第一天线端口LB ANT1,用于耦合开关电路220与第一天线端口LB ANT1之间的射频通路中的低频信号。
具体地,射频收发模块20还配置有耦合输出端口CPLOUT,耦合电路240分别与开关电路220、第一天线端口LB ANT1、耦合输出端口CPLOUT连接,耦合开关电路220与第一天线端口LB ANT1之间的射频通路中的低频信号,以经耦合输出端口CPLOUT输出耦合信号。更具体地,耦合电路240包括输入端、输出端和耦合端。耦合电路240的输入端与开关电路220耦接,耦合电路240的输出端与第一天线端口LB ANT1耦接,耦合端与耦合输出端口CPLOUT耦接。其中,耦合信号包括前向耦合信号和反向耦合信号,基于耦合端输出的前向耦合信号,可以检测该低频段信号的前向功率信息;基于耦合端输出的反向耦合信号,可以对应检测该低频段信号的反向功率信息,并将该检测模式定义为反向功率检测模式。
可选地,如图5所示,射频收发模块20还可以被配置有输入端口GSM LB IN、输入端口GSM HB IN及高频输出端口GSM HB OUT。射频收发模块20还包括2G低频发射电路250和2G高频发射电路260。2G低频发射电路250分别与开关电路220的第一端、输 入端口GSM HB IN连接,2G高频发射电路260分别与输入端口GSM HB IN、高频输出端口GSM HB OUT连接。通过2G低频发射电路250和2G高频发射电路260可以分别实现对2G低频信号、2G高频信号的放大处理。
在其中一个实施例中,如图6所示,发射电路210包括:
第一功率放大器211,第一功率放大器211的输入端与输入端口PA IN连接;第一开关单元212,第一开关单元212的第一端与第一功率放大器211的输出端连接,第一开关单元212的多个第二端分别一一对应连接多个第一滤波模块200的第一端(例如,第一开关单元212的两个第二端分别一一对应连接两个第一滤波模块200的第一端)。
具体地,当低频信号的频段为一预设频段时,第一功率放大器211、一个第一滤波模块200可支持对该频段信号的相关处理,以对应输出无杂波的低频信号;当低频信号的频段为多个预设频段时,第一开关单元212的多个第二端分别一一对应连接多个第一滤波模块200的第一端,从而第一功率放大器211、第一滤波模块200还可支持对多个不同频段的低频信号的相关处理,以对应输出无杂波的各个频段的低频信号。可以理解的是,射频收发模块20的输入端口PA IN、第一功率放大器211、第一开关单元212及多个第一滤波模块200形成了多个发射通路中的滤波通路,多个滤波通路相互独立,彼此不重合。需要说明的是,当发射电路210仅需要实现一个频段低频信号的发射时,第一开关单元212的第二端的数量可以仅为一个,同时第一滤波模块200的数量对应为一个。
可选地,如图6所示,第一接收电路230包括:
第一低噪声放大器231,第一低噪声放大器231的输出端与射频收发模块20的输出端口LNA OUT连接;第二开关单元232,第二开关单元232的第一端连接第一低噪声放大器231的输入端,第二开关单元232的部分第二端连接第一滤波模块200的第二端,通过第一滤波模块200与第一天线端口LB ANT1连接以接收第一天线端口LB ANT1输入的低频信号;第二开关单元232的部分第二端连接第二天线端口LB ANT2连接以接收第二天线端口LB ANT2输入的低频信号。
将第一低噪声放大器231、第二开关单元232集成于射频收发模块20内,通过第二开关单元232选择导通第一低噪声放大器231与第一天线端口LB ANT1之间的射频通路,还可以选择导通第一低噪声放大器231与第二天线端口LB ANT2之间的射频通路,从而 选择对不同频段的5G射频信号进行低噪声放大处理,节省了第一低噪声放大器231的数量,缩小器件占用主板的面积。需要说明的是,当需要对多个频段的低频信号进行低噪声放大处理时,可以设置多个第一低噪声放大器231(例如两个第一低噪声放大器231)。
可选地,如图6所示,射频收发模块20的输出端口LNA OUT的数量为多个,及第一低噪声放大器231的数量为多个;第一接收电路230还包括:
第三开关单元233,第三开关单元233的多个第一端分别与多个输出端口一一对应连接,第三开关单元233的各第二端分别与各第一低噪声放大器231的输出端一一对应连接。第三开关单元233用于选择导通多个输出端口与多个第一低噪声放大器231之间的通路,以实现不同频段的低频信号的输出通路。进一步可选地,第三开关单元233可以是双刀双掷开关,该双刀双掷开关的两个第一端分别与两个输出端口(输出端口LNA OUT1、输出端口LNA OUT2)一一对应连接,双刀双掷开关的两个第二端分别与两个第一低噪声放大器231的输出端一一对应连接。
可选地,如图6所示,2G低频发射电路250包括第二功率放大器251及第一滤波单元252;2G高频发射电路260包括第三功率放大器261及第二滤波单元262。其中,第二功率放大器251的输入端与输入端口GSM LB IN连接,第二功率放大器251的输出端经第一滤波单元252与开关电路220的第一端连接,第三功率放大器261的输入端与输入端口GSM HB IN连接,第三功率放大器261的输出端经第二滤波单元262与高频输出端口GSM HB OUT连接。第二功率放大器251和第三功率放大器261分别用于对2G低频信号、2G高频信号进行放大处理,第一滤波单元252和第二滤波单元262分别用于对2G低频信号、2G高频信号进行滤波处理。
在其中一个实施例中,如图7所示,第一滤波模块200为双工器Du1;第一功率放大器211为功率放大器LB PA,第一开关单元212为多通道选择开关SP8T1;开关电路220为多通道选择开关SP8T2。第一低噪声放大器231的数量为两个,分别为低噪声放大器LNA1、低噪声放大器LNA2;第二开关单元232的数量为两个,分别为多通道选择开关SP4T1、多通道选择开关SP4T1;第三开关单元233为双刀双掷开关DPDT1。耦合电路240为耦合器Do;第二功率放大器251及第一滤波单元252分别为功率放大器2G LB PA及滤波器F1;第三功率放大器261及第二滤波单元262分别为功率放大器2G HB PA及滤 波器F2。
其中,功率放大器LB PA的输入端与输入端口PA IN连接,多通道选择开关SP8T1的第一端与功率放大器LB PA1的输出端连接,多通道选择开关SP8T1的多个第二端分别一一对应连接多个双工器Du1的第一端(例如,多通道选择开关SP8T1的两个第二端分别一一对应连接两个双工器Du1的第一端)。
其中,多通道选择开关SP8T2的多个第一端分别对应与多个双工器Du1的第二端一一对应连接;多通道选择开关SP8T2的第二端与第一天线端口LB ANT1连接。
其中,双刀双掷开关DPDT1的各第一端分别与输出端口LNA OUT1、输出端口LNA OUT2一一对应连接,双刀双掷开关DPDT1的各第二端分别与低噪声放大器LNA1、低噪声放大器LNA2的输出端一一对应连接,多通道选择开关SP4T1的第一端连接低噪声放大器LNA1的输入端,多通道选择开关SP4T1的部分第二端连接双工器Du的第二端。
其中,功率放大器2G LB PA的输入端与输入端口GSM LB IN连接,功率放大器2G LB PA的输出端经滤波器F1与第二选通单元230的第一端连接,功率放大器2G HB PA的输入端与输入端口GSM HB IN连接,功率放大器2G HB PA的输出端经滤波器F2与高频输出端口GSM HB OUT连接。
为了便于说明,以低频信号为N28频段信号为例对本实施例中的射频收发模块20的信号收发过程进行说明:
N28低频信号的发射过程:射频收发器10通过输入端口PA IN输出N28发射信号进入射频收发模块20,经过发射电路210的第一功率放大器211进行信号放大,通过第一开关单元212、第一滤波模块200进行滤波处理后经开关电路220、耦合电路240输出至第一天线端口LB ANT1,最终到达第一天线ANT1。
N28低频信号的主集接收过程:第一天线ANT1接收来自空间中的N28低频信号,N28低频信号经第一天线端口LB ANT1进入射频收发模块20,经耦合电路240、开关电路220进入第一滤波模块200进行滤波处理,经第二开关单元232进入第一低噪声放大器231进行放大处理,再经第三开关到达输出端口输出至射频收发器10。
N28低频信号的MIMO接收过程:第三天线ANT3接收来自空间中的N28低频信号,N28低频信号经第二天线端口LB ANT2进入射频收发模块20,经第二滤波模块40进行 滤波处理,再经第二开关单元232进入第一低噪声放大器231进行放大处理,再经第三开关233到达输出端口输出至射频收发器10。
如图8所示,在其中一个实施例中,射频收发模块20还被配置有辅助输入端口LB TXOU、辅助输出端口LNA_AUX、辅助收发端口LB_TRX;其中:第一滤波模块80的两个第一端分别一一对应连接辅助输入端口LB TXOU、辅助输出端口LNA_AUX,第一滤波模块80的第二端连接辅助收发端口LB_TRX。通过外挂的第一滤波模块80,可以对射频收发模块20收发的低频信号进行滤波处理,同时可以节省射频收发模块20内部的双工器的数量,减少射频收发模块20的体积。
可选地,如图8所示,射频收发模块20包括:发射电路210、开关电路220、第一接收电路230。
发射电路210,分别与输入端口PA IN、辅助输入端口LB TXOU连接,用于对输入端口PA IN接收的低频信号进行放大处理。
第一接收电路230,分别与输出端口(例如,输出端口为两个,分别为输出端口LNA OUT1、输出端口LNA OUT2)、辅助输出端口LNA_AUX、第二天线端口LB ANT2连接,用于对接收的低频信号进行放大处理。
开关电路220,分别与发射电路210、第一接收电路230、辅助收发端口LB_TRX、第一天线端口LB ANT1连接,用于选择导通发射电路210、第一接收电路230分别与第一天线端口LB ANT1之间的射频通路。
可选地,如图8所示,射频收发模块20还包括:耦合电路240,分别连接开关电路220、第一天线端口LB ANT1,用于耦合开关电路220与第一天线端口LB ANT1之间的射频通路中的低频信号。
其中,发射电路210、第一接收电路230、开关电路220、耦合电路240参见上述实施例的相关描述,在此不再赘述。
可选地,如图9所示,低频信号包括多个低频频段的射频信号;射频收发模块20还包括:
滤波电路270,滤波电路270的两个第一端分别一一对应连接发射电路210、第一接收电路230,滤波电路270的第二端连接开关电路220,用于滤除低频信号以外的杂散波。
其中,滤波电路270进行滤波处理的低频信号的频段与第一滤波模块80进行滤波处理的低频信号的频段不同。具体地,可以设置一个第一滤波模块80和一个或多个滤波电路270,第一滤波模块80用于滤除主频段的低频信号,滤波电路270用于滤除其他次要频段的低频信号。以射频收发模块20能够收发的低频信号为三个不同频段的信号为例,如图10所示,可以设置一个第一滤波模块80和两个滤波电路270,以实现第一滤波模块80对三个频段低频信号的滤波处理。
可选地,射频收发模块20还可以被配置有输入端口GSM LB IN、输入端口GSM HB IN及高频输出端口GSM HB OUT。射频收发模块20还包括2G低频发射电路和2G高频发射电路。通过2G低频发射电路和2G高频发射电路的相关描述参见上述实施例,在此不再赘述。
可选地,如图10所示,为一实施例的具体电路结构图,电路结构图的相关描述参见上述实施例,在此不再赘述。为了便于说明,以低频信号为N28频段信号为例对本实施例中的射频收发模块20的信号收发过程进行说明:
N28低频信号的发射过程:射频收发器10通过输入端口PA IN输出N28发射信号进入射频收发模块20,经过发射电路210的第一功率放大器211进行信号放大,通过第一开关单元212输出至辅助输入端口LB TXOU到达第一滤波模块80,第一滤波模块80进行滤波处理后经辅助收发端口LB_TRX、开关电路220输出至第一天线端口LB ANT1,最终到达第一天线ANT1。
N28低频信号的主集接收过程:第一天线ANT1接收来自空间中的N28低频信号,N28低频信号经第一天线端口LB ANT1进入射频收发模块20,经耦合电路240、开关电路220、辅助收发端口LB_TRX进入第一滤波模块80进行滤波处理,经辅助输出端口LNA_AUX、第二开关单元232进入第一低噪声放大器231进行放大处理,再经第三开关到达输出端口输出至射频收发器10。
N28低频信号的MIMO接收过程:第三天线ANT3接收来自空间中的N28低频信号,N28低频信号经第二滤波模块40进行滤波处理,经第二天线端口LB ANT2进入射频收发模块20,再经第二开关单元232进入第一低噪声放大器231进行放大处理,再经第三开关到达输出端口输出至射频收发器10。
如图11所示,在其中一个实施例中,射频接收模块30包括第二接收电路310和第三接收电路320,其中,第二接收电路310分别连接射频接收模块30的输出端口、第三天线端口LB ANT3,用于支持对低频信号的分集接收;第三接收电路320分别连接射频接收模块30的输出端、第四天线端口LB ANT4,用于支持对低频信号的分集MIMO接收。
可选地,射频接收模块30还包括第一选通电路330,第一选通电路330分别连接第二接收电路310、第三接收电路320及第三天线端口LB ANT3,用于选择导通第二接收电路310、第三接收电路320分别与第三天线端口LB ANT3之间的射频通路。第二接收电路310还可以连接第四天线端口LB ANT5以连接第四天线ANT4。进一步可选地,第一选通电路330可以为多通道选择开关SP8T3。
可选地,射频接收模块30还包括第二选通电路340,第二选通电路340分别连接射频接收模块30的两个输出端口、第二接收电路310、第三接收电路320,用于选择导通射频接收模块30的两个输出端口分别与第二接收电路310、第三接收电路320之间的射频通路。进一步可选地,第二选通电路340可以为双刀双掷开关DPDT2。
可选地,如图12所示,第二接收电路310包括低噪声放大器LAN3、多通道选择开关SP4T3及滤波器F3、滤波器F4,低噪声放大器LAN3的输入端连接多通道选择开关SP4T1的第一端,低噪声放大器LAN3的输出端连接第二选通电路340,多通道选择开关SP4T1的第一端连接滤波器F3、滤波器F4的第一端,滤波器F3、滤波器F4的第二端连接第一选通电路330。第三接收电路320包括低噪声放大器LAN4、多通道选择开关SP4T4及滤波器F6,低噪声放大器LAN4的输入端连接多通道选择开关SP4T4的第一端,低噪声放大器LAN4的输出端连接第二选通电路340,多通道选择开关SP4T4的第一端连接滤波器F6的第一端,滤波器F6的第二端连接第一选通电路330。其中,第二接收电路310中的滤波器F和第三接收电路320中的滤波器F的数量均可以为一个或多个。在其他实施例中,第二接收电路310中的滤波器和第三接收电路320中的滤波器还可以设置在射频接收模块30外部靠近天线的一侧中。
可选地,如图13所示,射频接收模块30还被配置有中高频天线端口MHB ANT,高频天线端口MHB ANT用于连接第五天线以支持对中频信号、高频信号的接收,以拓展其射频接收模块30接收射频信号的频率范围,以提高射频系统的接收频率范围。具体地, 射频接收模块30还包括第三接收电路350,第三接收电路350用于与中高频天线端口MHB ANT连接,第三接收电路350可以包括多刀多掷开关nPnT、低噪声放大器、多通道选择开关、滤波器F及多通道选择开关。
为了便于说明,以低频信号为N28频段信号为例对本实施例中的射频接收模块30的信号接收过程进行说明:
N28低频信号的分集接收过程:第二天线ANT2接收来自空间中的N28低频信号,N28低频信号经第三天线端口LB ANT3进入射频接收模块30,经第一选通电路330进入第二接收电路310的滤波器中进行滤波处理,经多通道选择开关SP4T3进入低噪声放大器LAN进行放大处理,再经第二选通电路340到达输出端口LNA OUT输出至射频收发器10。
N28低频信号的MIMO接收过程:第四天线ANT4接收来自空间中的N28低频信号,N28低频信号经第四天线端口LB ANT4进入射频接收模块30,再经第三接收电路320的多通道选择开关SP4T1进入低噪声放大器LAN4进行放大处理,再经第二选通电路340到达输出端口LNA OUT输出至射频收发器10。
本申请实施例还提供一种通信设备,该通信设备上设置有上述任一实施例中的射频系统。
通过在通信设备上设置该射频系统,能够实现4*4MIMO接收,在不增加频谱资源和天线发射功率的情况下,可以成倍提高对于低频信号的吞吐量;可以提升下载速率以提高用户的体验,同时,当通信设备位于小区边缘、楼宇深处、电梯等弱信号环境时通过4*4MIMO接收,具有更高的分集增益及更大的覆盖距离;并且器件具有高集成度,减小了射频系统中各器件占用基板的面积,同时还可以简化布局布线,节约成本。
如图14所示,进一步的,以通信设备为手机11为例进行说明,具体的,如图14所示,该手机11可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理器22、外围设备接口23、射频系统24、输入/输出(I/O)子系统26。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图14所示的手机11并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图14中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现, 包括一个或多个信号处理和/或专用集成电路。
存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作系统211、通信模块(或指令集)212、全球定位系统(GPS)模块(或指令集)213等。
处理器22和其他控制电路(诸如射频系统24中的控制电路)可以用于控制手机11的操作。该处理器22可以基于一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
处理器22可以被配置为实现控制手机11中的天线的使用的控制算法。处理器22还可以发出用于控制射频系统24中各开关的控制命令等。
I/O子系统26将手机11上的输入/输出外围设备诸如键区和其他输入控制设备耦接到外围设备接口23。I/O子系统26任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据端口等。示例性的,用户可以通过经由I/O子系统26供给命令来控制手机11的操作,并且可以使用I/O子系统26的输出资源来从手机11接收状态信息和其他输出。例如,用户按压按钮261即可启动手机或者关闭手机。
射频系统24可以为前述任一实施例中的射频系统。
在本说明书的描述中,参考术语“其中一个实施例”、“可选地”等的描述意指结合该实施例或示例描述的具体特征、结构或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种射频系统,包括:
    射频收发器;
    射频收发模块,被配置有输入端口、输出端口、第一天线端口及第二天线端口,所述输入端口和所述输出端口分别被配置为连接所述射频收发器,所述第一天线端口被配置为连接第一天线,所述第二天线端口被配置为连接第三天线,所述射频收发模块用于通过所述第一天线端口支持对低频信号的发射和主集接收,及通过所述第二天线端口支持对所述低频信号的MIMO接收;
    射频接收模块,与所述射频收发器连接,被配置有第三天线端口和第四天线端口,所述第三天线端口被配置为连接第二天线,所述第四天线端口被配置为连接第四天线,所述射频接收模块用于通过所述第三天线端口支持对所述低频信号的分集接收,及通过所述第四天线端口支持对所述低频信号的MIMO接收;
    第一滤波模块,所述第一滤波模块的两个第一端分别一一对应连接所述输入端口、所述输出端口,所述第一滤波模块的第二端连接所述第一天线端口,用于滤除所述低频信号以外的杂散波。
  2. 根据权利要求1所述的射频系统,其中所述射频收发模块还被配置有辅助输入端口、辅助输出端口、辅助收发端口;所述射频收发模块包括:
    发射电路,分别与所述输入端口、所述辅助输入端口连接,用于对所述输入端口接收的所述低频信号进行放大处理;
    第一接收电路,分别与所述输出端口、所述辅助输出端口、所述第二天线端口连接,用于对接收的所述低频信号进行放大处理;
    开关电路,分别与所述发射电路、所述第一接收电路、所述辅助收发端口、所述第一天线端口连接,用于选择导通所述发射电路、所述第一接收电路分别与所述第一天线端口之间的射频通路;
    其中,所述第一滤波模块的两个第一端分别一一对应连接所述辅助输入端口、所述辅助输出端口,所述第一滤波模块的第二端连接所述辅助收发端口。
  3. 根据权利要求2所述的射频系统,其中所述低频信号包括多个低频频段的射频信号; 所述射频收发模块还包括:
    滤波电路,所述滤波电路的两个第一端分别一一对应连接所述发射电路、所述第一接收电路,所述滤波电路的第二端连接所述开关电路,用于滤除所述低频信号以外的杂散波;
    其中,所述滤波电路进行滤波处理的低频信号的频段与所述第一滤波模块进行滤波处理的低频信号的频段不同。
  4. 根据权利要求1所述的射频系统,其中所述第一滤波模块集成在所述射频收发模块内部,所述射频收发模块包括:
    发射电路,与所述输入端口连接,用于对所述输入端口接收的所述低频信号进行放大处理;
    第一接收电路,分别与所述输出端口、所述第二天线端口连接,用于对接收的所述低频信号进行放大处理;
    开关电路,分别与所述发射电路、所述第一接收电路、所述第一天线端口连接,用于选择导通所述发射电路、所述第一接收电路分别与所述第一天线端口之间的射频通路;
    其中,所述第一滤波模块的两个第一端分别一一对应连接所述发射电路、所述第一接收电路,所述第一滤波模块的第二端连接所述开关电路。
  5. 根据权利要求4所述的射频系统,其中所述低频信号包括多个低频频段的射频信号;其中:
    所述第一滤波模块的数量为多个,每个所述第一滤波模块的两个第一端分别一一对应连接所述发射电路、所述第一接收电路,所述第一滤波模块的第二端连接所述开关电路,每个所述第一滤波模块输出的所述低频信号的频段不同。
  6. 根据权利要求5所述的射频系统,其中所述开关电路包括多通道选择开关,所述多通道选择开关的多个第一端分别对应与多个所述第一滤波模块的第二端一一对应连接;所述多通道选择开关的第二端与所述第一天线端口连接。
  7. 根据权利要求5所述的射频系统,其中所述发射电路包括:
    第一功率放大器,所述第一功率放大器的输入端与所述输入端口连接;
    第一开关单元,所述第一开关单元的第一端与所述第一功率放大器的输出端连接,所述第一开关单元的多个第二端分别一一对应连接多个所述第一滤波模块的第一端。
  8. 根据权利要求5所述的射频系统,其中所述第一接收电路包括:
    第一低噪声放大器,所述第一低噪声放大器的输出端与所述输出端口连接;
    第二开关单元,所述第二开关单元的第一端连接所述第一低噪声放大器的输入端,所述第二开关单元的部分第二端连接所述第一滤波模块的第二端,所述第二开关单元的部分第二端连接所述第二天线端口。
  9. 根据权利要求8所述的射频系统,其中所述输出端口的数量为多个,及所述第一低噪声放大器的数量为多个;所述第一接收电路还包括:
    第三开关单元,所述第三开关单元的多个第一端分别与多个所述输出端口一一对应连接,所述第三开关单元的各第二端分别与各所述第一低噪声放大器的输出端一一对应连接。
  10. 根据权利要求2所述的射频系统,其中所述射频收发模块还包括:
    耦合电路,分别连接所述开关电路、所述第一天线端口,用于耦合所述开关电路与所述第一天线端口之间的射频通路中的所述低频信号。
  11. 根据权利要求1所述的射频系统,其中还包括:
    第二滤波模块,分别与所述第二天线端口、所述第三天线连接,用于对所述第三天线接收的所述低频信号进行滤波处理。
  12. 根据权利要求11所述的射频系统,其中还包括:
    第一放大模块,所述第一放大模块的输出端与所述第二天线端口连接,所述第一放大模块的输入端与所述第二滤波模块连接,用于对滤波处理后的所述低频信号进行放大处理。
  13. 根据权利要求1所述的射频系统,其中还包括:
    第三滤波模块,分别与所述第四天线端口、所述第四天线连接,用于对所述第四天线接收的所述低频信号进行滤波处理。
  14. 根据权利要求13所述的射频系统,其中还包括:
    第二放大模块,所述第二放大模块的输出端与所述第四天线端口连接,所述第二放大模块的输入端与所述第三滤波模块连接,用于对滤波处理后的所述低频信号进行放大处理。
  15. 根据权利要求1所述的射频系统,其中所述低频信号包括N5、N8、N20、N28、N71频段中的至少一种。
  16. 根据权利要求1所述的射频系统,其中所述射频接收模块包括:
    第二接收电路,分别连接所述射频接收模块的输出端口、所述第三天线端口,用于支持对低频信号的分集接收;
    第三接收电路,分别连接所述射频接收模块的输出端、所述第四天线端口,用于支持对低频信号的分集MIMO接收。
  17. 根据权利要求16所述的射频系统,其中所述射频接收模块还包括:
    第一选通电路,分别连接所述第二接收电路、所述第三接收电路及所述第三天线端口,用于选择导通目标接收电路与所述第三天线端口之间的射频通路,所述目标接收电路包括所述第二接收电路和所述第三接收电路中的一路。
  18. 根据权利要求16所述的射频系统,其中所述射频接收模块还包括:
    第二选通电路,分别连接所述射频接收模块的两个输出端口、所述第二接收电路、所述第三接收电路,用于使所述射频接收模块的两个输出端口可切换地连接选择所述第二接收电路、所述第三接收电路。
  19. 根据权利要求16所述的射频系统,其中所述射频接收模块还被配置有中高频天线端口,所述高频天线端口被配置为连接第五天线,所述射频接收模块还包括:
    第三接收电路,与所述中高频天线端口连接,用于支持对中频信号、高频信号的接收。
  20. 一种通信设备,包括如权利要求1所述的射频系统。
PCT/CN2022/107897 2021-11-30 2022-07-26 射频系统及通信设备 WO2023098111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111449143.7A CN113938152B (zh) 2021-11-30 2021-11-30 射频系统及通信设备
CN202111449143.7 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098111A1 true WO2023098111A1 (zh) 2023-06-08

Family

ID=79288773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107897 WO2023098111A1 (zh) 2021-11-30 2022-07-26 射频系统及通信设备

Country Status (2)

Country Link
CN (1) CN113938152B (zh)
WO (1) WO2023098111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117890681A (zh) * 2024-03-14 2024-04-16 荣耀终端有限公司 插损校准方法及校准系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938152B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN115001525B (zh) * 2022-08-02 2022-12-23 荣耀终端有限公司 射频模组、主集收发模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170251474A1 (en) * 2016-02-25 2017-08-31 Qorvo Us, Inc. Radio frequency front end circuitry for mimo and carrier aggregation
CN112436845A (zh) * 2020-12-02 2021-03-02 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN213661598U (zh) * 2020-12-02 2021-07-09 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备
CN113300736A (zh) * 2021-05-19 2021-08-24 深圳市锐尔觅移动通信有限公司 射频收发系统及通信设备
CN113938152A (zh) * 2021-11-30 2022-01-14 Oppo广东移动通信有限公司 射频系统及通信设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9602156B2 (en) * 2014-04-22 2017-03-21 Skyworks Solutions, Inc. Apparatus and methods for diversity modules
US9391570B2 (en) * 2014-07-17 2016-07-12 Apple Inc. Electronic device with low noise amplifier module
CN107592378B (zh) * 2016-07-07 2020-07-14 中兴通讯股份有限公司 有源天线系统、移动终端及天线系统的配置方法
CN108964677B (zh) * 2018-07-23 2020-12-08 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
CN111865352B (zh) * 2019-04-24 2022-07-15 株式会社村田制作所 高频信号收发电路以及高频信号收发装置
CN212588327U (zh) * 2020-05-26 2021-02-23 Oppo广东移动通信有限公司 射频PA Mid器件、射频收发系统和通信设备
CN112436847B (zh) * 2020-12-02 2022-05-17 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170251474A1 (en) * 2016-02-25 2017-08-31 Qorvo Us, Inc. Radio frequency front end circuitry for mimo and carrier aggregation
CN112436845A (zh) * 2020-12-02 2021-03-02 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN213661598U (zh) * 2020-12-02 2021-07-09 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN113300736A (zh) * 2021-05-19 2021-08-24 深圳市锐尔觅移动通信有限公司 射频收发系统及通信设备
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备
CN113938152A (zh) * 2021-11-30 2022-01-14 Oppo广东移动通信有限公司 射频系统及通信设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117890681A (zh) * 2024-03-14 2024-04-16 荣耀终端有限公司 插损校准方法及校准系统

Also Published As

Publication number Publication date
CN113938152A (zh) 2022-01-14
CN113938152B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2023098111A1 (zh) 射频系统及通信设备
WO2023098110A1 (zh) 射频系统及通信设备
CN216490477U (zh) 射频系统和通信设备
TW201743573A (zh) 行動裝置
CN114124140B (zh) 射频系统和通信设备
WO2023016204A1 (zh) 放大器模组、射频系统及通信设备
WO2023016200A1 (zh) 放大器模组、射频系统及通信设备
CN114124137B (zh) 射频系统及通信设备
CN114095048B (zh) 射频系统及通信设备
CN114124139A (zh) 射频系统及通信设备
CN114142886A (zh) 射频系统及通信设备
CN114124136B (zh) 射频系统及通信设备
WO2023160262A1 (zh) 射频前端电路和电子设备
WO2023098245A1 (zh) 射频系统和通信设备
CN113949401B (zh) 射频系统及通信设备
CN113949402B (zh) 射频系统及通信设备
WO2022206146A1 (zh) 射频前端模块、天线装置及射频前端模块的控制方法
WO2021238430A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN113949400B (zh) 射频系统及通信设备
CN114124141B (zh) 射频系统和通信设备
CN218679066U (zh) 射频系统及通信设备
CN217159692U (zh) 射频系统和通信设备
CN218734301U (zh) 射频系统及通信设备
CN114785359B (zh) 射频系统和通信设备
CN218679064U (zh) 射频前端模组及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899931

Country of ref document: EP

Kind code of ref document: A1