WO2023098245A1 - 射频系统和通信设备 - Google Patents

射频系统和通信设备 Download PDF

Info

Publication number
WO2023098245A1
WO2023098245A1 PCT/CN2022/120403 CN2022120403W WO2023098245A1 WO 2023098245 A1 WO2023098245 A1 WO 2023098245A1 CN 2022120403 W CN2022120403 W CN 2022120403W WO 2023098245 A1 WO2023098245 A1 WO 2023098245A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radio frequency
low
receiving
module
Prior art date
Application number
PCT/CN2022/120403
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023098245A1 publication Critical patent/WO2023098245A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present application relates to the technical field of antennas, in particular to a radio frequency system and communication equipment.
  • 5G mobile communication technology is gradually applied to communication devices, such as mobile phones.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • the communication frequency of 5G mobile communication technology is higher than that of 4G mobile communication technology.
  • the traditional radio frequency system is in areas with poor signals such as the edge of the cell, deep in the building or elevators, the reception performance of the 5G low-frequency signal (for example, the N28 frequency band signal) is poor.
  • a radio frequency system and a communication device are provided.
  • the embodiment of the present application provides a radio frequency system, including:
  • a radio frequency transceiver circuit is connected to the radio frequency transceiver, and the radio frequency transceiver circuit is configured with:
  • the first receiving path is configured to support the main set receiving of the low frequency signal
  • a second receive path configured for diversity reception of the low frequency signal
  • a third receiving path configured to support MIMO reception of the low frequency signal
  • the fourth receiving path is configured to support MIMO reception of the low frequency signal.
  • an embodiment of the present application provides a communication device, including the aforementioned radio frequency system.
  • the radio frequency system includes a radio frequency transceiver and a radio frequency transceiver circuit, wherein the radio frequency transceiver circuit is configured with four receiving paths capable of supporting low-frequency signal receiving and processing, and these four receiving paths are respectively connected to four Antenna can realize 4*4 MIMO receiving function for low-frequency signals. If the radio frequency system provided by this embodiment is in an environment with a good signal, its downlink communication rate can be doubled compared with the radio frequency system in the related art that can only support low-frequency signal 2*2 MIMO reception.
  • the radio frequency system provided by this embodiment is located at the edge of a cell, deep in a building, or in a weak signal environment such as an elevator, compared with the radio frequency system in the related art that can only support low-frequency signal 2*2 MIMO reception, the diversity gain can be doubled. Its coverage distance is also doubled, and its receiving performance is greatly improved.
  • the radio frequency system provided by the embodiment of the present application now doubles the downlink communication rate and coverage distance of the radio frequency system in the related art that supports 2*2 MIMO reception of low frequency signals, thereby improving the performance of the radio frequency system for receiving low frequency signals.
  • FIG. 1 is one of the framework schematic diagrams of a radio frequency system in an embodiment
  • Fig. 2 is the second schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 3 is the third schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 4 is a fourth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 5 is a fifth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 6 is a sixth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 7 is a seventh schematic diagram of the framework of the radio frequency system in an embodiment
  • FIG. 8 is a schematic diagram of distribution of four antennas in a communication device in an embodiment
  • Fig. 9 is the eighth schematic diagram of the framework of the radio frequency system in an embodiment.
  • Fig. 10 is a ninth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 11 is a tenth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 12 is the eleventh schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 13 is a schematic structural diagram of a communication device in an embodiment.
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first antenna could be termed a second antenna, and, similarly, a second antenna could be termed a first antenna, without departing from the scope of the present application.
  • Both the first antenna and the second antenna are antennas, but they are not the same antenna.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • severeal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the radio frequency system involved in the embodiments of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A user equipment (User Equipment, UE) (for example, a mobile phone), a mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the radio frequency system includes: a radio frequency transceiver 100, a radio frequency transceiver circuit 110, a first antenna ANT0, a second antenna ANT1, a third antenna ANT2, a fourth Antenna ANT3.
  • the first antenna ANT0 , the second antenna ANT1 , the third antenna ANT2 and the fourth antenna ANT3 can all support receiving and transmitting processing of low frequency signals.
  • the antennas may be formed using any suitable type of antenna.
  • each antenna may include an antenna with a resonating element formed from the following antenna structures: array antenna structure, loop antenna structure, patch antenna structure, slot antenna structure, helical antenna structure, strip antenna, monopole antenna, dipole antenna structure, At least one of the pole antennas, etc.
  • Different types of antennas can be used for different frequency bands and combinations of frequency bands.
  • the types of the first antenna ANT0 , the second antenna ANT1 , the third antenna ANT2 and the fourth antenna ANT3 are not further limited.
  • the low-frequency signal may include a radio frequency signal of one low-frequency band, or may include radio frequency signals of multiple low-frequency bands, and the low-frequency bands of the radio signals are different.
  • the radio frequency signal may include at least one of a 4G LTE low frequency signal and a 5G NR low frequency signal. Wherein, the frequency band division of the low-frequency signal is shown in Table 1.
  • Table 1 is the frequency band division table for low-frequency signals
  • the 5G network will continue to use the frequency band used by 4G, only the identification before the serial number will be changed, and the multiple low-frequency frequency bands of low-frequency signals are not limited to the above examples.
  • the RF transceiver 100 may be configured with multiple ports connected to the RF transceiver circuit 110 .
  • the radio frequency transceiver circuit 110 is configured with a first receiving path RX0 , a second receiving path RX1 , a third receiving path RX2 and a fourth receiving path RX3 .
  • Each receiving channel in the radio frequency transceiver circuit 110 can be connected to a unique antenna, and each receiving channel can receive and process the low-frequency signal received by the antenna, and transmit the processed low-frequency signal to the corresponding radio frequency transceiver 100. ports to realize the reception and processing of low-frequency signals respectively.
  • the first receiving path RX0 can support the main set reception of low-frequency signals; the second receiving path RX1 can support diversity reception of low-frequency signals; the third receiving path RX2 can support MIMO reception of low-frequency signals; the fourth receiving path RX3 can Supports MIMO reception for low frequency signals.
  • the first receiving path RX0 , the second receiving path RX1 , the third receiving path RX2 and the fourth receiving path RX3 are configured to jointly support the 4*4 MIMO receiving function of low-frequency signals.
  • MIMO refers to multiple input multiple output (multi input multiple output).
  • the four receiving channels configured by the radio frequency transceiver circuit 110 can cooperate with four antennas to realize receiving and processing of four low-frequency signals, and further support the 4*4 MIMO receiving function of low-frequency signals.
  • the radio frequency system may support a 4*4 MIMO reception function of the N28 frequency band signal.
  • the radio frequency system can support the 4*4 MIMO reception function of N5, N8, N20, N28 and N71 frequency band signals.
  • the radio frequency system includes a radio frequency transceiver 100 and a radio frequency transceiver circuit 110, wherein the radio frequency transceiver circuit 110 is configured with four receiving paths capable of supporting low-frequency signal receiving and processing, and the four receiving paths correspond to each other one by one. Connected to four antennas, it can realize 4*4 MIMO reception function for low-frequency signals. If the radio frequency system provided by this embodiment is in an environment with a good signal, its downlink communication rate can be doubled compared with the radio frequency system in the related art that can only support low-frequency signal 2*2 MIMO reception.
  • the radio frequency system provided by this embodiment is located at the edge of a cell, deep in a building, or in a weak signal environment such as an elevator, compared with the radio frequency system in the related art that can only support low-frequency signal 2*2 MIMO reception, the diversity gain can be doubled. Its coverage distance is also doubled, and its receiving performance is greatly improved.
  • the radio frequency system provided by the embodiment of the present application now doubles the downlink communication rate and coverage distance of the radio frequency system in the related art that supports 2*2 MIMO reception of low frequency signals, thereby improving the performance of the radio frequency system for receiving low frequency signals.
  • the radio frequency transceiver circuit 110 includes a main set receiving module 111 , a diversity receiving module 112 , a first MIMO receiving module 113 and a second MIMO receiving module 114 respectively connected to the radio frequency transceiver 100 .
  • the main set receiving module 111, the diversity receiving module 112, the first MIMO receiving module 113 and the second MIMO receiving module 114 can be connected to an antenna in one-to-one correspondence, and the antennas connected to each receiving module are different.
  • the main set receiving module 111, The diversity receiving module 112 , the first MIMO receiving module 113 and the second MIMO receiving module 114 can all support low-noise amplification processing of low-frequency signals.
  • the main set receiving module 111 is configured with a first receiving channel for performing low noise amplification processing on the low frequency signal received by the connected antenna (for example, the first antenna ANT0 ) to implement the main set receiving process on the low frequency signal.
  • the diversity receiving module 112 is configured with a second receiving channel for filtering and low-noise amplification processing on the low-frequency signal received by the connected antenna (for example, the second antenna ANT1 ) to realize diversity reception processing on the low-frequency signal.
  • the first MIMO receiving module 113 is configured with a first MIMO receiving channel, which is used to perform filtering and low-noise amplification processing on low-frequency signals received by the connected antenna (for example, the third antenna ANT2) to implement the first MIMO receiving processing on the low-frequency signals .
  • the second MIMO receiving module 114 is configured with a second MIMO receiving path, which is used to perform filtering and low-noise amplification processing on the low-frequency signal received by the connected antenna (for example, the fourth antenna ANT3) to realize the second MIMO receiving processing on the low-frequency signal .
  • the main set receiving module 111 can be used to support the amplification processing of the low frequency signal.
  • the main receiver module 111 can be a low noise amplifier module, for example, ELNA (External Low Noise Amplifier, external low noise amplifier) device or LFEM (Low noise amplifier front end module, radio frequency low noise amplifier module) device , referred to as an LFEM device, can support low-noise amplification processing of low-frequency signals.
  • ELNA External Low Noise Amplifier, external low noise amplifier
  • LFEM Low noise amplifier front end module, radio frequency low noise amplifier module
  • the diversity receiving module 112, the first MIMO receiving module 113, and the second MIMO receiving module 114 can be LFEM devices, which can specifically include a low-noise amplifier and at least one filter, etc., and can be used to support low-frequency signals (for example, including at least one low-frequency frequency band 4G LTE signal and 5G NR signal) receiving and processing.
  • low-frequency signals for example, including at least one low-frequency frequency band 4G LTE signal and 5G NR signal
  • the radio frequency system includes a radio frequency transceiver 100 and a radio frequency transceiver circuit 110, wherein the radio frequency transceiver circuit 110 includes a main set receiving module 111, a diversity receiving module 112, a first MIMO receiving module 113 and a second MIMO receiving module 114 of the four receiving modules, each receiving module can support receiving and processing low-frequency signals.
  • the four receiving modules are respectively connected to the four antennas in one-to-one correspondence, which can realize the 4*4 MIMO receiving function for low-frequency signals.
  • the radio frequency system provided in this embodiment doubles the downlink communication rate and coverage distance, thereby improving the performance of the radio frequency system for receiving low-frequency signals.
  • the radio frequency system is configured with a transmission channel TX for supporting transmission of low frequency signals.
  • the first receiving path RX0 and the transmitting path TX are configured to be connected to the same antenna.
  • the antenna connected to the first receiving path RX0 and the transmitting path TX may be referred to as a target antenna (or main set antenna), and may be used to support low frequency signal transmission and low frequency signal main set reception.
  • the radio frequency transceiver circuit 110 further includes a transmitting module 115 connected to the radio frequency transceiver 100 .
  • the transmitting module 115 is configured with a transmitting channel, and can perform power amplification processing on the received low-frequency signal, so as to support the transmission processing of the low-frequency signal.
  • the transmitting module 115 may include a power amplifier 1151, which may be used to support power amplification processing of low frequency signals.
  • the radio frequency system further includes a filtering module 120 .
  • a plurality of first ends of the filter module 120 are respectively connected to the transmitting module 115 and the main set receiving module 111 in one-to-one correspondence, and the second end of the filter module 120 can be connected to the first antenna ANT0, and the filter module 120 is used to filter out low-frequency signals stray waves.
  • the filtering module 120 is used for filtering the low-frequency signal output by the transmitting module 115 to output to the antenna, and for filtering the low-frequency signal received by the antenna before outputting to the main set receiving module 111 .
  • the filtering module 120 may include a duplexer 121 .
  • the single low-frequency frequency band may be one of N5, N8, N20, N28, and N71 frequency bands.
  • the two first ends of the duplexer 121 are respectively connected to the transmitting module 115 and the main set receiving module 111 in a one-to-one correspondence, and the second end of the duplexer 121 can be connected to an antenna (for example, the first antenna ANT0 ).
  • the antenna connected to the duplexer 121 can be used for transmission and main set reception of low frequency signals.
  • the duplexer 121 can be used to filter out spurious waves other than low-frequency signals.
  • the duplexer 121 can also be used to isolate the low-frequency signal transmitted on the first receiving channel RX0 and the low-frequency signal transmitted on the transmitting channel TX. .
  • the low-frequency signal is the N28 frequency band signal
  • the duplexer 121 can filter the spurious waves outside the N28 frequency band, and only output the N28 frequency band signal to the first antenna ANT0 or the main receiver module 111 .
  • the transmitting module 115 may be configured with multiple transmitting channels.
  • the plurality of low-frequency frequency bands may include at least two of N5, N8, N20, N28, and N71 frequency bands. Wherein, the number of transmission channels is the same as the number of low-frequency frequency bands.
  • the transmitting module 115 may further include a first radio frequency switch 1152 connected to the power amplifier 1151, wherein the first radio frequency switch 1152 may be a single-pole multi-throw switch.
  • the power amplifier 1151 and the first radio frequency switch 1152 may form multiple transmission paths.
  • the master set receiving module 111 may be configured with multiple first receiving paths.
  • the main set receiving module 111 may include a low noise amplifier 1111 and a second radio frequency switch 1112, wherein the second radio frequency switch 1112 may be a single-pole multi-throw switch, and the low noise amplifier 1111 and the second radio frequency switch 1112 may constitute a plurality of first receiving paths .
  • the filtering module 120 may include a first filtering unit 122 , a second filtering unit 123 and a gating unit 124 .
  • a plurality of first ends of the first filter unit 122 are respectively connected to the main set receiving module 111, and a plurality of second ends of the first filter unit 122 are respectively connected to the gating unit 124 for filtering the low-frequency signal received by the antenna And output multiple radio frequency signals of different low frequency bands.
  • a plurality of first ends of the second filtering unit 123 are respectively connected to the transmitting module, and a plurality of second ends of the second filtering unit 123 are respectively connected to the gating unit 124 for filtering and outputting the low-frequency signal output by the transmitting module.
  • RF signals in multiple different low frequency bands are provided to the transmitting module.
  • the first filtering unit 122 and the second filtering unit 123 may respectively include a plurality of filters, and the filters may be used to filter the received low-frequency signal to output a radio frequency signal of a single low-frequency band.
  • the low-frequency signal includes radio frequency signals of the five low-frequency bands of N5, N8, N20, N28 and N71 frequency bands
  • the first filtering unit 122 includes five filters arranged on the five transmission paths one by one
  • the second filtering unit 123 includes five filters correspondingly arranged on the five first receiving paths.
  • Each filter in the first filter unit 122 and the second filter unit 123 can be connected to the first antenna ANT0 through the gate unit 124 .
  • the gating unit 124 can selectively turn on a path between any filter and the first antenna ANT0 .
  • the gate unit 124 may be an SP10T switch.
  • the multiple filters included in the first filtering unit 122 and the second filtering unit 123 may also be replaced by duplexers to implement filtering processing.
  • the transmitting module 115, the main set receiving module 111, and the filtering module 120 can be integrated in the same radio frequency device, and the radio frequency device can be a radio frequency PA Mid device.
  • the RF PA Mid device can be understood as a power amplifier module (Power Amplifier Modules including Duplexers, PA Mid) with a built-in low-noise amplifier, which can be used to support low-frequency power amplification, filtering, and low-noise amplification processing, thereby realizing the low-frequency signal Transmit and master receive processing.
  • the specific composition forms of the transmitting module 115 , the filtering module 120 and the main set receiving module 111 are not further limited.
  • the radio frequency system shown in FIG. 4 is taken as an example where the low-frequency signal is a signal in the N28A frequency band and adopts four channels of reception.
  • the radio frequency transceiver 100 outputs the N28A frequency band transmission signal, and the low-frequency signal is amplified by the transmission module 115, and the amplified signal enters the first end of the duplexer 121, and after the out-of-band signal is filtered by the duplexer 121, The low frequency signal reaches the second end of the duplexer 121, and transmits the N28A frequency band signal through the first antenna ANT0.
  • the first receiving path the first antenna ANT0 receives the N28A frequency band signal in the space, the received signal of the N28A frequency band enters the duplexer 121, and the out-of-band signal is filtered by the duplexer 121, and the N28A frequency band signal is sent from the duplexer 121
  • the output of the receiving end enters the low noise amplifier of the main set receiving module 111 to amplify the received signal in the N28A frequency band, and finally outputs it to the radio frequency transceiver 100 .
  • the second receiving path the second antenna ANT1 receives the N28A frequency band signal in the space, and the received signal of the N28A frequency band enters the diversity receiving module 112, is filtered by the diversity receiving module 112, and processed by low noise amplification, and finally output to the radio frequency transceiver 100.
  • the third receiving path the third antenna ANT2 receives the N28A frequency band signal in the space, and the received signal of the N28A frequency band enters the first MIMO receiving module 113, and is filtered and low-noise amplified by the first MIMO receiving module 113, and finally output to the RF transceiver 100.
  • the fourth receiving path the fourth antenna ANT3 receives the N28A frequency band signal in the space, and the received signal of the N28A frequency band enters the second MIMO receiving module 114, and is filtered and low-noise amplified by the second MIMO receiving module 114, and finally output to the RF transceiver 100.
  • the radio frequency system can support the transmission and processing of low-frequency signals.
  • the radio frequency system also includes a filtering module 120, which can perform filtering processing on received signals, can filter out signals other than low-frequency signals, and only output low-frequency signals.
  • a filtering module 120 can also be used to isolate the signals on the transmission path and the first reception path, so that the radio frequency system can realize the transmission function of low-frequency signals, and at the same time, it can also realize 4*4 MIMO reception of low-frequency signals.
  • the first receiving path RX0, the second receiving path RX1, the third receiving path RX2 and the fourth receiving path RX3 are respectively configured to be switchably connected to the first antenna ANT0, the The second antenna ANT1, the third antenna ANT2, and the fourth antenna ANT3.
  • each receiving path is configured to be connected to an antenna, and the antennas connected to each receiving path are different.
  • the radio frequency transceiver is configured to configure the target antenna connected to the first receiving path according to the network information of the low-frequency signals received by the first receiving path, the second receiving path, the third receiving path and the fourth receiving path.
  • the target antenna is one of the first antenna ANT0 , the second antenna ANT1 , the third antenna ANT2 and the fourth antenna ANT3 .
  • the network information may include raw and processed information associated with radio performance metrics of received low frequency signals, such as signal strength, received power, Reference Signal Received Power (RSRP), received signal strength indication (Received Signal Strength Indicator, RSSI), Signal to Noise Ratio (Signal to Noise Ratio, SNR), Rank of MIMO channel matrix (Rank), Carrier to Interference plus Noise Ratio (Carrier to Interference plus Noise Ratio, RS-CINR), Frame Error rate, bit error rate, reference signal reception quality (Reference signal reception quality, RSRQ), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • RSSI Signal to Noise Ratio
  • SNR Signal to Noise Ratio
  • Rank of MIMO channel matrix Rank
  • Carrier to Interference plus Noise Ratio Carrier to Interference plus Noise Ratio
  • the radio frequency transceiver 100 is configured with a plurality of ports, for example, may include an output port TX OUT, a first input port RF IN0, a second input port RF IN1, a third input port RF IN2 and a fourth input port RF IN3. Wherein, each input port is used to receive the low-frequency signal input from the antenna side, and the output port TX OUT is used to output the low-frequency signal processed by the radio frequency transceiver 100 to the antenna side.
  • the output port TX OUT is used to connect the transmitting module 115 configured with the transmitting path
  • the first input port RF IN0 is used to connect the main set receiving module 111 configured with the first receiving path RX0
  • the second input port RF IN1 is used to connect
  • the diversity receiving module 112 that is configured with the second receiving path RX1
  • the third input port RF IN2 is used to connect the first MIMO receiving module 113 configured with the third receiving path RX2
  • the fourth input port RF IN3 is used to connect and configure the fourth MIMO receiving module 113.
  • the radio frequency transceiver 100 stores configuration information of the first receiving path RX0 , the second receiving path RX1 , the third receiving path RX2 and the fourth receiving path RX3 .
  • the configuration information may include the identification information of the port of the radio frequency transceiver 100, the identification information of each antenna, the parameters of the switches on the first receiving path RX0, the second receiving path RX1, the third receiving path RX2, and the fourth receiving path RX3. Control logic information, etc.
  • the above configuration information can also be stored in a storage device independent of the radio frequency transceiver 100, and can be read by the radio frequency transceiver 100 when needed.
  • the above configuration information may also be stored in the radio frequency transceiver 100 . In the embodiment of the present application, no further limitation is made on the storage location of the configuration information.
  • the radio frequency transceiver 100 can configure the target antenna according to the received signal strength indicators of the low-frequency signals received by the first receiving path, the second receiving path, the third receiving path, and the fourth receiving path. Wherein, the radio frequency transceiver 100 may use the antenna connected to the receiving channel with the maximum received signal strength indicator as the target antenna.
  • the radio frequency system further includes a switch module 140 .
  • the four first ends of the switch module 140 are respectively connected to the filter module 20, the diversity receiving module 112, the first MIMO receiving module 113, and the second MIMO receiving module 114 in one-to-one correspondence, and the four second ends of the switch module 140 are respectively They are connected in one-to-one correspondence with the first antenna ANT0, the second antenna ANT1, the third antenna ANT2, and the fourth antenna ANT3.
  • the switch module 140 is a four pole four throw switch (Four pole four throw, DP4T).
  • the switch module 140 can, under the control of the radio frequency transceiver 100, select the path between the pass filter module 20 and an antenna, the path between the diversity receiving module 112 and an antenna, and the path between the first MIMO receiving module 113 and an antenna at the same time. A path between an antenna and a path between the second MIMO receiving module 114 and an antenna.
  • the antennas connected to the filtering module 20 , the diversity receiving module 112 , the first MIMO receiving module 113 , and the second MIMO receiving module 114 are different.
  • the radio frequency transceiver 100 After the radio frequency transceiver 100 determines the target antenna based on the network information of the four receiving paths, the radio frequency transceiver 100 can control the switch module 140 to connect the target antenna to the filter module 20, so as to use the target antenna as the main set antenna to realize the target antenna. Low frequency signal transmission and main set reception.
  • the receiving paths where the first antenna ANT0, the second antenna ANT1, the third antenna ANT2, and the fourth antenna ANT3 are located can be selected to be turned on, and the radio frequency transceiver 100 can receive signals from the first antenna ANT0 , the second antenna ANT1, the third antenna ANT2 and the fourth antenna ANT3 to determine the target antenna, and control the switch module 140 so that the target antenna can be connected to the filter module 20 to conduct its first receiving path and transmitting path, and the uplink The signal is distributed on the target antenna with better antenna efficiency, which can ensure the reliability of the uplink signal and improve the communication performance of the radio frequency system when any antenna is blocked.
  • the antenna efficiencies of the first antenna ANT0 and the second antenna ANT1 are higher than those of the third antenna ANT2 and the fourth antenna ANT3.
  • the efficiency of the first antenna ANT0 and the second antenna ANT1 is higher than that of the third antenna ANT2 and the fourth antenna ANT3 s efficiency.
  • the first receiving path, the transmitting path, and the second receiving path are configured to switchably connect the first antenna ANT0 and the second antenna ANT1 .
  • the first receiving path and the transmitting path are configured to be connected to the first antenna ANT0
  • the second receiving path is configured to be connected to the second antenna ANT1.
  • the first receiving path and the transmitting path are configured to be connected to the second antenna ANT1
  • the second receiving path is configured to be connected to the first antenna ANT0.
  • the third antenna ANT2 and the fourth antenna ANT3 are respectively connected to the first MIMO receiving module 13 and the second MIMO receiving module 14 in a one-to-one correspondence.
  • both the first antenna ANT0 and the second antenna ANT1 can support low-frequency signal transmission, main set reception, and diversity reception.
  • the antenna efficiencies of the first antenna ANT0 and the second antenna ANT1 are higher than those of the third antenna ANT2 and the fourth antenna ANT3, wherein the target antenna is any one of the first antenna ANT0 and the second antenna ANT1
  • the two first ends of the switch module 140 are respectively connected to the filter module 120 and the diversity receiving module 112 in one-to-one correspondence, and the two second ends of the switch module 140 are respectively They are connected in one-to-one correspondence with the first antenna ANT0 and the second antenna ANT1.
  • the switch module 140 is a DPDT switch.
  • the switch module 140 can connect the path between the filtering module 120 (ie, the first receiving path and the transmitting path) and the first antenna ANT0 , and the path between the diversity receiving module 112 (ie, the second receiving path) and the second antenna ANT1 .
  • the switch module 140 may also turn on the path between the filtering module 120 and the second antenna ANT1, and the path between the diversity receiving module 112 and the first antenna ANT0.
  • the paths between the first receiving path and the first antenna ANT0 and the second antenna ANT1 can be selected to be turned on respectively, and the radio frequency transceiver 100 can receive signals from the first antenna ANT0 and the second antenna ANT1 Determine the target antenna, and control the switch module 140 so that the target antenna can be connected to the first receiving path and the transmitting path, and the uplink signal can be distributed on the first antenna ANT0 or the second antenna ANT1 with better antenna efficiency, which can ensure the uplink The reliability of the signal is used to improve the communication performance of the radio frequency system.
  • the radio frequency transceiver 100 can configure the target antenna according to the received signal strength indicators of the low-frequency signals received by the first receiving channel and the second receiving channel. If the current received signal strength indicator of the first receiving path is less than or equal to the received signal strength indicator of the second receiving path, the antenna currently connected to the second receiving path is used as the target antenna, and the switch module 140 is controlled to connect the target antenna to the second receiving path. A receive path.
  • the radio frequency transceiver 100 is configured to configure the target antenna according to the received signal strength indications of the radio frequency signals received by the first receiving path and the second receiving path.
  • the target antenna is an antenna connected to the first receiving path.
  • the RF transceiver 100 can control the switch module 140 to turn on the path between the target antenna and the first receiving path.
  • the first antenna ANT0 is configured as the default target antenna for transmitting low-frequency signals and receiving the main set, if the signal quality difference between the low-frequency signals respectively received by the first receiving path and the second receiving path is within a preset time period If both are smaller than the preset threshold, the radio frequency transceiver 100 configures the second antenna ANT1 as the target antenna. Please continue to refer to Figure 10.
  • the first receiving path and the transmitting path are configured to connect to the first antenna ANT0, the second receiving path to connect to the second antenna ANT1, the third receiving path to connect to the third antenna ANT2, and the third receiving path to connect to the third antenna ANT2.
  • the four receiving paths are connected to the fourth antenna ANT3.
  • the first antenna ANT0 is used as the target antenna
  • the first antenna ANT0 is the main antenna, and is used for the transmitting antenna and the main receiving antenna of the N28 frequency band signal
  • the second antenna ANT1 is the diversity antenna , used for diversity reception of N28 frequency band signals
  • the third antenna ANT2 is used for first MIMO reception of N28 frequency band signals
  • the fourth antenna ANT3 is used for second MIMO reception of N28 frequency band signals.
  • the radio frequency transceiver 100 may pre-store the default target antenna of the radio frequency system and the like.
  • the default target antenna may be understood as a priority antenna or an optimal antenna for signal transmission of the radio frequency system in an initial state.
  • the radio frequency transceiver 100 will obtain the first RSSI of the low-frequency signal received by the first receiving path RX0 and the second RSSI of the low-frequency signal received by the second receiving path RX1, if the second receiving If the difference between the signal strength indicator and the first received signal strength indicator is greater than or equal to the preset threshold within the preset time, the second antenna ANT1 is used as the target antenna.
  • the target antenna please continue to refer to FIG.
  • the radio frequency transceiver 100 can control the switch module 140 to turn on the path between the target antenna (second antenna ANT1) and the first receiving path RX0, and turn on the path between the first antenna ANT0 and the first receiving path RX0.
  • the first antenna ANT0 may be blocked (for example, being held by the user), and the transmission and main reception of low-frequency signals can be switched to the second antenna ANT1, so that the transmission of low-frequency signals can be realized by using the second antenna ANT1 Receive with the main set to improve the communication quality of low frequency signals.
  • the preset thresholds are all values greater than zero, and the size of the preset thresholds can be set as required.
  • the low-frequency signal is an N28A frequency band signal using four channels of reception as an example for illustration.
  • the radio frequency transceiver 100 outputs the N28V frequency band transmission signal, and the low frequency signal is amplified by the power amplifier 1151 of the transmission module 115, and the amplified signal enters the filter module 120.
  • the module 140 transmits the N28V frequency band signal through the first antenna ANT0;
  • the first receiving path the first antenna ANT0 receives the N28A frequency band signal in the space.
  • the received signal of the N28A frequency band enters the filter module 120 through the switch module 140, and the out-of-band signal is filtered out by the filter module 120 and enters the main receiver module 111.
  • the low noise amplifier 1111 performs low noise amplification processing on the received signal in the N28A frequency band, and finally outputs it to the radio frequency transceiver 100 .
  • the second receiving path the second antenna ANT1 receives the N28A frequency band signal in the coming space, and the received signal of the N28A frequency band enters the diversity receiving module 112 through the switch module 140, and is filtered by the diversity receiving module 112, processed by low noise amplification, and finally output to the RF transceiver 100.
  • the third receiving path the third antenna ANT2 receives the N28A frequency band signal in the coming space, and the received signal of the N28A frequency band enters the first MIMO receiving module 113, and after filtering and low-noise amplification processing in the first MIMO receiving module 113, Finally, it is output to the radio frequency transceiver 100.
  • the fourth receiving path the fourth antenna ANT3 receives the N28A frequency band signal in the space, and the received signal of the N28A frequency band enters the second MIMO receiving module 114, and is filtered and low-noise amplified by the second MIMO receiving module 114, and finally output to the RF transceiver 100.
  • the radio frequency transceiver 100 can receive the first received signal strength indication of the N28 frequency band signal according to the first receiving path RX0 and the first input port RF IN0 and the N28 frequency band signal received according to the second receiving path RX1 and the second input port RF IN1 A second received signal strength indicator is used to determine the target antenna. After determining the target antenna, the radio frequency transceiver 100 can control the switch module 140 to turn on the path between the target antenna (second antenna ANT1) and the first receiving path RX0, and turn on the path between the first antenna ANT0 and the second receiving path RX1.
  • the two first ends of the switch module 140 are connected to the filter module 20 and the diversity receiving module 112 respectively, and the two second ends of the switch module 140 can be respectively connected to any two of the four antennas.
  • the remaining two antennas can be respectively connected to the first MIMO receiving module 13 and the second MIMO receiving module 14 in a one-to-one correspondence.
  • the switch module 140 is a double pole double throw switch (Double pole Double throw, DP4T).
  • the radio frequency transceiver can determine the target antenna based on the network information respectively received by the first receiving channel and the second receiving channel, and control the switch module 140 to conduct the radio frequency channel between the filtering module 20 and the target antenna.
  • the communication device is a mobile phone 10 as an example for illustration, wherein, as shown in FIG. 13 , the mobile phone 10 may include a memory 21 (which optionally includes one or more computer-readable storage media ), processing circuit 22, peripheral device interface 23, radio frequency system 24, input/output (I/O) subsystem 26. These components optionally communicate via one or more communication buses or signal lines 29 .
  • the mobile phone 10 shown in FIG. 13 is not limited to the mobile phone, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the various components shown in FIG. 13 are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Memory 21 optionally includes high-speed random access memory, and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 21 include an operating system 211 , a communication module (or an instruction set) 212 , a global positioning system (GPS) module (or an instruction set) 213 and the like.
  • GPS global positioning system
  • Processing circuitry 22 and other control circuitry, such as control circuitry in radio frequency system 24 may be used to control the operation of handset 10 .
  • the processing circuit 22 may include one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, and the like.
  • the processing circuit 22 may be configured to implement a control algorithm that controls the use of antennas in the handset 10 .
  • the processing circuit 22 may also issue control commands and the like for controlling switches in the radio frequency system 24 .
  • I/O subsystem 26 couples input/output peripherals on handset 10 such as a keypad and other input control devices to peripherals interface 23 .
  • I/O subsystem 26 optionally includes a touch screen, keys, tone generator, accelerometer (motion sensor), ambient light sensor and other sensors, light emitting diodes and other status indicators, data ports, and the like.
  • a user may control the operation of handset 10 by supplying commands via I/O subsystem 26 and may use the output resources of I/O subsystem 26 to receive status information and other output from handset 10 .
  • the user can turn on or turn off the mobile phone by pressing the button 261 .
  • the radio frequency system 24 may be the radio frequency system in any of the foregoing embodiments, wherein the radio frequency system 24 may also be used to process radio frequency signals of multiple different frequency bands.
  • the radio frequency system 24 may also be used to process radio frequency signals of multiple different frequency bands.
  • the Sub-6G frequency band may specifically include a 2.496GHz-6GHz frequency band and a 3.3GHz-6GHz frequency band.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM), Synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchronous Link (Synchlink) DRAM
  • SLDRAM Synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

一种射频系统,射频系统包括射频收发器(100)和射频收发电路(110),其中,射频收发电路(110)与射频收发器(100)连接,射频收发电路(110)被配置有第一接收通路(RX0)、第二接收通路(RX1)、第三接收通路(RX2)和第四接收通路(RX3),其中,第一接收通路(RX0),被配置为用于支持对低频信号的主集接收;第二接收通路(RX1),被配置为用于对低频信号的分集接收;第三接收通路(RX2),被配置为用于支持对低频信号的MIMO接收;第四接收通路(RX3),被配置为用于支持对低频信号的MIMO接收。

Description

射频系统和通信设备
相关申请的交叉引用
本申请要求于2021年11月30日提交中国专利局、申请号为2021114441546发明名称为“射频系统和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种射频系统和通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展和进步,移动通信技术逐渐开始应用于通信设备,例如手机等。随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。5G移动通信技术通信频率相比于4G移动通信技术的频率更高。传统的射频系统在小区边缘、楼宇深处或电梯等信号较差的区域时,对5G低频信号的接收(例如,N28频段信号)的接收性能较差。
发明内容
根据本申请的各种实施例,提供一种射频系统和通信设备。
第一方面,本申请实施例提供一种射频系统,包括:
射频收发器;
射频收发电路,与所述射频收发器连接,所述射频收发电路被配置有:
第一接收通路,被配置为用于支持对低频信号的主集接收;
第二接收通路,被配置为用于对所述低频信号的分集接收;
第三接收通路,被配置为用于支持对所述低频信号的MIMO接收;
第四接收通路,被配置为用于支持对所述低频信号的MIMO接收。
第二方面,本申请实施例提供一种通信设备,包括前述的射频系统。
上述射频系统和通信设备,射频系统包括射频收发器和射频收发电路,其中,射频收发电路配置有能够支持对低频信号接收处理的四路接收通路,这四路接收通路分别一一对应连接至四支天线,可以实现对低频信号的4*4MIMO接收功能。本实施例提供的射频系统若处于信号良好状态下的环境时,相对于相关技术中仅能够支持低频信号2*2MIMO接收的射频系统,其下行通信速率可提升一倍。若本实施例提供的射频系统若位于小区边缘,楼宇深处,电梯等弱信号环境时,相对于相关技术中仅能够支持低频信号2*2MIMO接收的射频系统,可以提高一倍的分集增益,其覆盖距离也增大一倍,其接收性能大幅度提高。本申请实施例提供的射频系统,现对于相关技术中支持低频信号2*2MIMO接收的射频系统,下行通信速率和覆盖距离提升一倍,进而可以提升射频系统对低频信号的接收性能。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中射频系统的框架示意图之一;
图2为一个实施例中射频系统的框架示意图之二;
图3为一个实施例中射频系统的框架示意图之三;
图4为一个实施例中射频系统的框架示意图之四;
图5为一个实施例中射频系统的框架示意图之五;
图6为一个实施例中射频系统的框架示意图之六;
图7为一个实施例中射频系统的框架示意图之七;
图8为一个实施例中四天线在通信设备中的分布示意图;
图9为一个实施例中射频系统的框架示意图之八;
图10为一个实施例中射频系统的框架示意图之九;
图11为一个实施例中射频系统的框架示意图之十;
图12为一个实施例中射频系统的框架示意图之十一;
图13为一个实施例中通信设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一天线称为第二天线,且类似地,可将第二天线称为第一天线。第一天线和第二天线两者都是天线,但其不是同一天线。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。
如图1所示,在其中一个实施例中,本申请实施例提供的射频系统包括:射频收发器100、射频收发电路110、第一天线ANT0、第二天线ANT1、第三天线ANT2、第四天线ANT3。其中,第一天线ANT0、第二天线ANT1、第三天线ANT2和第四天线ANT3均可以支持对低频信号的接收和发射处理。各支天线可以使用任何合适类型的天线形成。例如,各支天线可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同的频段和频段组合。在本申请实施例中,对第一天线ANT0、第二天线ANT1、第三天线ANT2和第四天线ANT3的类型不做进一步的限定。
低频信号可包括一个低频频段的射频信号,也可以包括多个低频频段的射频信号,且各射频信号的低频频段不同。该射频信号可以包括4G LTE低频信号和5G NR低频信号中的至少一个。其中,低频信号的频段划分如表1所示。
表1为低频信号的频段划分表
Figure PCTCN2022120403-appb-000001
需要说明的是,5G网络中沿用4G所使用的频段,仅更改序号之前的标识,低频信号的多个低频频段不限于上述举例说明。
射频收发器100可被配置有与射频收发电路110连接的多个端口。其中,射频收发电路110被配置有第一接收通路RX0、第二接收通路RX1、第三接收通路RX2和第四接收通路RX3。射频收发电路110中每个接收通路都可对应连接至唯一的一支天线,各接收通路可分别对天线接收的低频信号进行接收处理,并将处理后的低频信号对应传输至射频收发器100对应的端口,以分别实现对低频信号的接收处理。其中,第一接收通路RX0可支持对低频信号的主集接收;第二接收通路RX1可对低频信号的分集接收;第三接收通路RX2可支持对低频信号的MIMO接收;第四接收通路RX3可支持对低频信号的MIMO接收。可以理解的是,第一接收通路RX0、第二接收通路RX1、第三接收通路RX2和第四接收通路RX3被配置为共同支持低频信号的4*4MIMO接收功能。其中,MIMO是指多输入多输出(multi input multi output)。射频收发电路110配置的四个接收通可以协同四支天线,可以实现对四路低频信号的接收处理,进而可支持低频信号的4*4MIMO接收功能。示例性的,若低频信号为N28频段信号,则该射频系统可支持N28频段信号的4*4MIMO接收功能。若低频信号包括N5、N8、N20、N28和N71频段信号,则该射频系统可支持N5、N8、N20、N28和N71频段信号的4*4MIMO接收功能。
在本申请实施例中,射频系统包括射频收发器100和射频收发电路110,其中,射频收发电路110配置有能够支持对低频信号接收处理的四路接收通路,这四路接收通路分别一一对应连接至四支天线,可以实现对低频信号的4*4MIMO接收功能。本实施例提供的射频系统若处于信号良好状态下的环境时,相对于相关技术中仅能够支持低频信号2*2MIMO接收的射频系统,其下行通信速率可提升一倍。若本实施例提供的射频系统若位于小区边缘,楼宇深处,电梯等弱信号环境时,相对于相关技术中仅能够支持低频信号2*2MIMO接收的射频系统,可以提高一倍的分集增益,其覆盖距离也增大一倍,其接收性能大幅度提高。本申请实施例提供的射频系统,现对于相关技术中支持低频信号2*2MIMO接收的射频系统,下行通信速率和覆盖距离提升一倍,进而可以提升射频系统对低频信号的接收性能。
如图2,射频收发电路110包括分别与射频收发器100连接的主集接收模块111、分集接收模块112、第一MIMO接收模块113和第二MIMO接收模块114。主集接收模块111、分集接收模块112、第一MIMO接收模块113和第二MIMO接收模块114可一一对应连接至一个天线,且各接收模块连接的天线各不相同,主集接收模块111、分集接收模块112、第一MIMO接收模块113和第二MIMO接收模块114均可支持对低频信号的低噪声放大处理。其中,主集接收模块111配置有第一接收通路,用于对所连接天线(例如,第一天线ANT0)接收的低频信号进行低噪声放大处理以实现对低频信号的主集接收处理。分集接收模块112配置有第二接收通路,用于对所连接天线(例如,第二天线ANT1)接收的低频信号进行滤波、低噪声放大处理以实现对低频信号的分集接收处理。第一MIMO接收模块113配置有第一MIMO接收通路,用于对所连接天线(例如,第三天线ANT2)接收的低频信号进行滤波、低噪声放大处理以实现对低频信号的第一MIMO接收处理。第二MIMO接收模块114配置有第二MIMO接收通路,用于对所连接天线(例如,第四天线ANT3)接收的低频信号进行滤波、低噪声放大处理以实现对低频信号的第二MIMO接收处理。
主集接收模块111中可用于支持对低频信号的放大处理。示例性的,主集接收模块111 可以为低噪声放大器模组,例如,ELNA(External Low Noise Amplifier,外部低噪声放大器)器件或LFEM(Low noise amplifier front end module,射频低噪声放大器模组)器件,简称LFEM器件,可以支持对低频信号的低噪声放大处理。分集接收模块112、第一MIMO接收模块113和第二MIMO接收模块114可以为LFEM器件,其具体可包括低噪声放大器和至少一个滤波器等,可用于支持对低频信号(例如,包括至少一个低频频段的4G LTE信号和5G NR信号)的接收处理。
在本申请实施例中,射频系统包括射频收发器100和射频收发电路110,其中,射频收发电路110包括主集接收模块111、分集接收模块112、第一MIMO接收模块113和第二MIMO接收模块114这四个接收模块,每一接收模块均能够支持对低频信号的接收处理。这四个接收模块分别一一对应连接至四支天线,可以实现对低频信号的4*4MIMO接收功能。本实施例提供的射频系统相对于相关技术中支持低频信号2*2MIMO接收的射频系统,下行通信速率和覆盖距离提升一倍,进而可以提升射频系统对低频信号的接收性能。
如图3,在其中一个实施例中,射频系统被配置有用于支持对低频信号进行发射的发射通路TX。其中,第一接收通路RX0、发射通路TX被配置为连接同一天线。连接至第一接收通路RX0和发射通路TX的天线可以称之为目标天线(或主集天线),可用于支持对低频信号的发射以及低频信号的主集接收。如图4和图5所示,射频收发电路110还包括与射频收发器100连接的发射模块115。发射模块115配置有发射通路,可对接收的低频信号进行功率放大处理,以支持对低频信号的发射处理。其中,发射模块115中可包括功率放大器1151,可用于支持对低频信号的功率放大处理。
请继续参考图4和图5,射频系统还包括滤波模块120。滤波模块120的多个第一端分别与发射模块115、主集接收模块111一一对应连接,滤波模块120的第二端可与第一天线ANT0连接,滤波模块120用于滤除低频信号以外的杂散波。其中,滤波模块120用于对发射模块115输出的低频信号进行滤波处理以输出至天线,以及用于对天线接收的低频信号进行滤波处理后输出至主集接收模块111。
请继续参考图4,在其中一个实施例中,当低频信号为单低频频段的射频信号时,滤波模块120可以包括双工器121。其中,单低频频段可以为N5、N8、N20、N28、N71频段中的一种。双工器121的两个第一端分别与发射模块115、主集接收模块111一一对应连接,双工器121的第二端可与天线(例如,第一天线ANT0)连接。连接至双工器121的天线可以用于对低频信号的发射和主集接收。双工器121可用于滤除低频信号以外的杂散波,除此之外,双工器121还可以用于隔离第一接收通路RX0上传输的低频信号,以及发射通路TX上传输的低频信号。示例性的,若低频信号为N28频段信号,则该双工器121可对N28频段以外的杂散波进行滤波处理,仅输出N28频段信号至第一天线ANT0或主集接收模块111。
请继续参考图5,在其中一个实施例中,当低频信号包括多个低频频段的射频信号时,发射模块115可配置有多个发射通路。多个低频频段可包括N5、N8、N20、N28、N71频段中的至少两种。其中,发射通路的数量与低频频段的数量相同。发射模块115还可包括与功率放大器1151连接的第一射频开关1152,其中,第一射频开关1152可以为单刀多掷开关。功率放大器1151和第一射频开关1152可构成多个发射通路。主集接收模块111可配置有多个第一接收通路。主集接收模块111可包括低噪声放大器1111和第二射频开关1112,其中,第二射频开关1112可以为单刀多掷开关,低噪声放大器1111和第二射频开关1112可构成多个第一接收通路。
滤波模块120可包括第一滤波单元122、第二滤波单元123和选通单元124。第一滤波单元122的多个第一端分别与主集接收模块111连接,第一滤波单元122的多个第二端分别与选通单元124连接,用于对天线接收的低频信号进行滤波处理并输出多个不同低频频段的射频信号。第二滤波单元123的多个第一端分别与发射模块连接,第二滤波单元 123的多个第二端分别与选通单元124连接,用于对发射模块输出的低频信号进行滤波处理并输出多个不同低频频段的射频信号。
第一滤波单元122、第二滤波单元123可分别包括多个滤波器,滤波器可用于对接收的低频信号进行滤波处理,以输出单低频频段的射频信号。示例性的,若低频信号包括N5、N8、N20、N28和N71频段这五个低频频段的射频信号,则第一滤波单元122包括一一对应设置在5个发射通路上的五个滤波器,第二滤波单元123包括对应设置在5个第一接收通路上的五个滤波器。第一滤波单元122、第二滤波单元123中的各滤波器可通过选通单元124连接至第一天线ANT0。其中,选通单元124可选择导通,任一滤波器与第一天线ANT0之间的通路。示例性的,若低频信号包括五个低频频段的射频信号,选通单元124可以为SP10T开关。
可选的,第一滤波单元122和第二滤波单元123所包括的多个滤波器还可以用双工器替换,以实现滤波处理。
在其中一个实施例,发射模块115、主集接收模块111、滤波模块120可集成在同一射频器件中,该射频器件可以为射频PA Mid器件。该射频PA Mid器件可以理解为内置低噪声放大器的功率放大器模块(Power Amplifier Modules including Duplexers,PA Mid),其可用于支持对低频的功率放大、滤波、低噪声放大处理,进而实现对低频信号的发射和主集接收处理。需要说明的是,在本申请实施例中,对发射模块115、滤波模块120和主集接收模块111的具体组成形式不做进一步的限定。
为了便于说明,在本申请实施例中,以图4所示的射频系统,低频信号为N28A频段信号采用四路接收为例进行说明。
发射路径:射频收发器100输出N28A频段发射信号,经过发射模块115进行低频信号放大,放大后的信号进入双工器121的第一端,经过双工器121对带外信号进行滤除后,低频信号到达双工器121的第二端,通过第一天线ANT0将N28A频段信号发射出去。
第一路接收路径:第一天线ANT0接收来之空间中的N28A频段信号,N28A频段的接收信号进入双工器121,经过双工器121滤除带外信号,N28A频段信号从双工器121接收端输出进入主集接收模块111的低噪声放大器对N28A频段接收信号进行放大处理,最后输出到射频收发器100。
第二路接收路径:第二天线ANT1接收来之空间中的N28A频段信号,N28A频段的接收信号进入分集接收模块112,经过分集接收模块112的滤波、低噪声放大处理,最后输出到射频收发器100。
第三路接收路径:第三天线ANT2接收来之空间中的N28A频段信号,N28A频段的接收信号进入第一MIMO接收模块113,经过第一MIMO接收模块113的滤波、低噪声放大处理,最后输出到射频收发器100。
第四路接收路径:第四天线ANT3接收来之空间中的N28A频段信号,N28A频段的接收信号进入第二MIMO接收模块114,经过第二MIMO接收模块114的滤波、低噪声放大处理,最后输出到射频收发器100。
在本实施例中,射频系统可以支持对低频信号的发射处理,同时,射频系统还包括滤波模块120,可以对接收的信号进行滤波处理,可以滤除低频信号以外的信号,仅输出低频信号,同时还可以用于隔离发射通路和第一接收通路上的信号,以使该射频系统能够实现对低频信号的发射功能,同时,还可以实现对低频信号的4*4MIMO接收。
如图6所示,在其中一个实施例中,第一接收通路RX0、第二接收通路RX1、第三接收通路RX2和第四接收通RX3分别被配置为可切换地连接第一天线ANT0、第二天线ANT1、第三天线ANT2、第四天线ANT3。其中,每一接收通路被配置为连接至一支天线,且各接收通路连接的天线各不相同。其中,射频收发器被配置为:根据第一接收通路、第二接收通路、第三接收通路和第四接收通路接收的各低频信号的网络信息,配置连接至第 一接收通路的目标天线。目标天线为第一天线ANT0、第二天线ANT1、第三天线ANT2、第四天线ANT3之一。其中,网络信息可以包括与所接收的低频信号的无线性能度量相关联的原始和处理后的信息,诸如信号强度、接收功率、参考信号接收功率(Reference Signal Receiving Power,RSRP)、接收信号强度指示(Received Signal Strength Indicator,RSSI)、信噪比(Signal to Noise Ratio,SNR)、MIMO信道矩阵的秩(Rank)、载波干扰噪声比(Carrier to Interference plus Noise Ratio,RS-CINR)、帧误码率、比特误码率、参考信号接收质量(Reference signal reception quality,RSRQ)等。
射频收发器100被配置有多个端口,例如,可包括输出端口TX OUT、第一输入端口RF IN0、第二输入端口RF IN1、第三输入端口RF IN2和第四输入端口RF IN3。其中,各输入端口用于接收由天线侧输入的低频信号,输出端口TX OUT用于将射频收发器100处理后的低频信号输出至天线侧。其中,输出端口TX OUT用于连接配置有发射通路的发射模块115,第一输入端口RF IN0用于连接配置有第一接收通路RX0的主集接收模块111,第二输入端口RF IN1用于连接配置有第二接收通路RX1的分集接收模块112,第三输入端口RF IN2用于连接配置有第三接收通路RX2的第一MIMO接收模块113,第四输入端口RF IN3用于连接配置有第四接收通路RX3的第二MIMO接收模块114。
射频收发器100存储上述第一接收通路RX0、第二接收通路RX1、第三接收通路RX2和第四接收通RX3的配置信息。其中,该配置信息可以包括射频收发器100端口的标识信息、各个天线的标识信息、第一接收通路RX0、第二接收通路RX1、第三接收通路RX2和第四接收通RX3上的各开关的控制逻辑信息等。可以理解,上述配置信息也可以存储于独立于射频收发器100的存储器件内,在需要的时候可以被射频收发器100读取。上述配置信息也可以存储在射频收发器100中。在本申请实施例中,对配置信息的存储位置不做进一步的限定。
为了便于说明,以网络信息为接收信号强度指示为例进行说明。射频收发器100可根据第一接收通路、第二接收通路、第三接收通路、第四接收通路接收的低频信号的接收信号强度指示大小来配置目标天线。其中,射频收发器100可以将具有最大接收信号强度指示的接收通路连接的天线作为目标天线。
如图7所示,在其中一个实施例中,射频系统还包括开关模块140。其中,开关模块140的四个第一端分别与滤波模块20、分集接收模块112、第一MIMO接收模块113、第二MIMO接收模块114一一对应连接,开关模块140的四个第二端分别与第一天线ANT0、第二天线ANT1、第三天线ANT2、第四天线ANT3一一对应连接。其中,开关模块140为四刀四掷开关(Four pole four throw,DP4T)。开关模块140可在射频收发器100的控制下,在同一时刻,选择导通滤波模块20与一天线之间的通路,分集接收模块112与一天线之间的通路,第一MIMO接收模块113与一天线之间的通路以及第二MIMO接收模块114与一天线之间的通路。其中,滤波模块20、分集接收模块112、第一MIMO接收模块113、第二MIMO接收模块114连接的天线各不相同。
当射频收发器100基于四个接收通路的网络信息确定出目标天线后,该射频收发器100可控制开关模块140将目标天线连接至滤波模块20,以将该目标天线作为主集天线,实现对低频信号的发射和主集接收。
在本实施例中通过设置开关模块140,可以选择导通第一天线ANT0、第二天线ANT1、第三天线ANT2和第四天线ANT3所在的各接收通路,配合射频收发器100从第一天线ANT0、第二天线ANT1、第三天线ANT2和第四天线ANT3中来确定目标天线,并控制开关模块140使得目标天线能够连接至滤波模块20以导通其第一接收通路和发射通路,可以将上行信号分布在天线效率更好的目标天线上,可以保证任一天线被遮挡的情况下,确保上行信号的可靠性以提高射频系统工作的通信性能。
在其中一个实施例中,第一天线ANT0、第二天线ANT1的天线效率均高于第三天线 ANT2、第四天线ANT3的效率。一般,该射频系统应用在通信设备中时,由于受到通信设备结构的限制,如图8所示,通常会将第一天线ANT0和第二天线ANT1分别设置在通信设备的顶边框101和底边框103,将第三天线ANT2和第四天线ANT3设置在通信设备的两个侧边框102、104,因此,第一天线ANT0和第二天线ANT1的效率均高于第三天线ANT2和第四天线ANT3的效率。
如图9所示,第一接收通路、发射通路、第二接收通路被配置为可切换地连接第一天线ANT0和第二天线ANT1。可以理解的是,第一接收通路、发射通路被配置为连接第一天线ANT0,第二接收通路被配置为连接第二天线ANT1。或者是,第一接收通路、发射通路被配置为连接第二天线ANT1,第二接收通路被配置为连接第一天线ANT0。第三天线ANT2和第四天线ANT3分别与第一MIMO接收模块13、第二MIMO接收模块14一一对应连接。其中,在本申请实施例中,第一天线ANT0、第二天线ANT1都能够支持对低频信号的发射、主集接收和分集接收。
在本实施例中,第一天线ANT0、第二天线ANT1的天线效率均高于第三天线ANT2、第四天线ANT3的效率,其中,目标天线为第一天线ANT0、第二天线ANT1中的任一支,可以将上行信号分布在天线效率更好的第一天线ANT0或第二天线ANT1上,可以保证上行信号的可靠性以提高射频系统工作的通信性能。
如图10-图12所示,在其中一个实施例中,开关模块140的两个第一端分别与滤波模块120、分集接收模块112一一对应连接,开关模块140的两个第二端分别与第一天线ANT0、第二天线ANT1一一对应连接。其中,开关模块140为DPDT开关。开关模块140可导通滤波模块120(即第一接收通路和发射通路)与第一天线ANT0之间的通路,分集接收模块112(即第二接收通路)与第二天线ANT1之间的通路。可选地,开关模块140还可导通滤波模块120与第二天线ANT1之间的通路,以及分集接收模块112与第一天线ANT0之间的通路。
在本实施例中通过设置开关模块140,可以选择导通第一接收通路分别与第一天线ANT0、第二天线ANT1之间的通路,配合射频收发器100从第一天线ANT0和第二天线ANT1中来确定目标天线,并控制开关模块140使得目标天线能够连接至第一接收通路、发射通路,可以将上行信号分布在天线效率更好的第一天线ANT0或第二天线ANT1上,可以保证上行信号的可靠性以提高射频系统工作的通信性能。
为了便于说明,以网络信息为接收信号强度指示为例进行说明。射频收发器100可根据第一接收通路和第二接收通路接收的低频信号的接收信号强度指示大小来配置目标天线。若当前第一接收通路的接收信号强度指示小于或等于第二接收通路的接收信号强度指示,则将当前与第二接收通路连接的天线作为目标天线,并控制开关模块140将目标天线连接至第一接收通路。
射频收发器100用于根据第一接收通路和第二接收通路接收的射频信号的接收信号强度指示配置目标天线。其中,目标天线为连接至第一接收通路的天线。在确定目标天线后,射频收发器100可控制开关模块140导通目标天线与第一接收通路之间的通路。其中,第一天线ANT0被配置为对低频信号进行发射和主集接收的默认目标天线,若第一接收通路和第二接收通路分别接收的低频信号的信号质量的差值在预设时间段内均小于预设阈值,则射频收发器100配置第二天线ANT1为目标天线。请继续参考图10,射频系统默认工作状态下,第一接收通路、发射通路被配置为连接第一天线ANT0、第二接收通路连接第二天线ANT1、第三接收通路连接第三天线ANT2、第四接收通路连接第四天线ANT3。当射频系统工作在默认状态或初始状态时,第一天线ANT0作为目标天线,第一天线ANT0为主集天线,用于N28频段信号的发射天线和主集接收天线;第二天线ANT1为分集天线,用于N28频段信号的分集接收;第三天线ANT2用于N28频段信号的第一MIMO接收;第四天线ANT3用于N28频段信号的第二MIMO接收。
射频收发器100中可以预先存储射频系统的默认目标天线等。在本申请实施例中,默认目标天线可以理解为射频系统在初始状态的信号传输的优先天线或最优天线。在默认工作状态下,射频收发器100会获取第一接收通路RX0接收的低频信号的第一接收信号强度指示以及第二接收通路RX1接收的低频信号的第二接收信号强度指示,若第二接收信号强度指示减去第一接收信号强度指示的差值在预设时间内大于或等于预设阈值,则将第二天线ANT1作为目标天线。在确定目标天线后,请继续参考图11,射频收发器100可控制开关模块140导通目标天线(第二天线ANT1)与第一接收通路RX0之间的通路,并导通第一天线ANT0与第二接收通路RX1之间的通路。如此,则可以认为第一天线ANT0可能被遮挡(例如,被用户握持),可以将低频信号的发射和主集接收切换至第二天线ANT1,从而利用第二天线ANT1来实现低频信号的发射和主集接收,以提升低频信号的通信质量。若该差值小于预设阈值,则继续将第一天线ANT0作为目标天线,维持当前的工作状态。需要说明的是,在本申请实施例中,预设阈值均大于零的数值,预设阈值的大小可以根据需要设置。
在申请实施例中,通过设置预设阈值的判定条件,还可以防止因为天线的信号强度可能一直处于变化中而导致的天线之间频繁切换,进而可以减小天线的传输效率的影响。
基于如图10所示的射频系统,为了便于说明,以低频信号为N28A频段信号采用四路接收为例进行说明。
发射路径:射频收发器100输出N28V频段发射信号,经过发射模块115的功率放大器1151进行低频信号放大,放大后的信号进入滤波模块120,经过滤波模块120对带外信号进行滤除后,经过开关模块140,通过第一天线ANT0将N28V频段信号发射出去;
第一路接收路径:第一天线ANT0接收来之空间中的N28A频段信号,N28A频段的接收信号经过开关模块140进入滤波模块120,经过滤波模块120滤除带外信号进入主集接收模块111的低噪声放大器1111对N28A频段接收信号进行低噪声放大处理,最后输出到射频收发器100。
第二路接收路径:第二天线ANT1接收来之空间中的N28A频段信号,N28A频段的接收信号经过开关模块140进入分集接收模块112,经过分集接收模块112的滤除、低噪声放大处理,最后输出到射频收发器100。
第三路接收路径:第三天线ANT2接收来之空间中的N28A频段信号,N28A频段的接收信号进入第一MIMO接收模块113,经过第一MIMO接收模块113中的滤除、低噪声放大处理,最后输出到射频收发器100。
第四路接收路径:第四天线ANT3接收来之空间中的N28A频段信号,N28A频段的接收信号进入第二MIMO接收模块114,经过第二MIMO接收模块114的滤除、低噪声放大处理,最后输出到射频收发器100。
射频收发器100可根据第一接收通路RX0、第一输入端口RF IN0接收到N28频段信号的第一接收信号强度指示以及根据第二接收通路RX1、第二输入端口RF IN1接收的N28频段信号的第二接收信号强度指示来确定目标天线。在确定目标天线后,射频收发器100可控制开关模块140导通目标天线(第二天线ANT1)与第一接收通路RX0之间的通路,并导通第一天线ANT0与第二接收通路RX1之间的通路,以将第二接收通路RX1配置为目标接收通路,将第二天线ANT1作为主集天线,用于N28频段信号的发射和主集接收,将第一天线ANT0作为分集天线,用于N28频段信号的分集接收。
在其中一个实施例中,开关模块140的两个第一端分别与滤波模块20、分集接收模块112连接,开关模块140的两个第二端可分别与四个天线中的任意两个连接。剩余的两支天线可分别与第一MIMO接收模块13、第二MIMO接收模块14一一对应连接。其中,开关模块140为双刀双掷开关(Double pole Double throw,DP4T)。射频收发器可基于第一接收通路和第二接收通路分别接收的网络信息确定出目标天线,并控制开关模块140导 通滤波模块20与目标天线之间的射频通路。
如图13所示,进一步的,以通信设备为手机10为例进行说明,其中,如图13所示,该手机10可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理电路22、外围设备接口23、射频系统24、输入/输出(I/O)子系统26。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图13所示的手机10并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图13中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成电路。
存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作系统211、通信模块(或指令集)212、全球定位系统(GPS)模块(或指令集)213等。
处理电路22和其他控制电路(诸如射频系统24中的控制电路)可以用于控制手机10的操作。该处理电路22可以包括一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
处理电路22可以被配置为实现控制手机10中的天线的使用的控制算法。处理电路22还可以发出用于控制射频系统24中各开关的控制命令等。
I/O子系统26将手机10上的输入/输出外围设备诸如键区和其他输入控制设备耦接到外围设备接口23。I/O子系统26任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据端口等。示例性的,用户可以通过经由I/O子系统26供给命令来控制手机10的操作,并且可以使用I/O子系统26的输出资源来从手机10接收状态信息和其他输出。例如,用户按压按钮261即可启动手机或者关闭手机。
射频系统24可以为前述任一实施例中的射频系统,其中,射频系统24还可用于处理多个不同频段的射频信号。例如用于接收1575MHz的卫星定位信号的卫星定位射频电路、用于处理IEEE802.11通信的2.4GHz和5GHz频段的WiFi和蓝牙收发射频电路、用于处理蜂窝电话频段(诸如850MHz、900MHz、1800MHz、1900MHz、2100MHz的频段、和Sub-6G频段)的无线通信的蜂窝电话收发射频电路。其中,Sub-6G频段可具体包括2.496GHz-6GHz频段,3.3GHz-6GHz频段。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种射频系统,包括:
    射频收发器;
    射频收发电路,与所述射频收发器连接,所述射频收发电路被配置有:
    第一接收通路,用于支持对低频信号的主集接收;
    第二接收通路,用于对所述低频信号的分集接收;
    第三接收通路,用于支持对所述低频信号的MIMO接收;
    第四接收通路,用于支持对所述低频信号的MIMO接收。
  2. 根据权利要求1所述的射频系统,其中,所述射频收发电路包括:
    主集接收模块,与所述射频收发器连接,所述主集接收模块配置有所述第一接收通路,用于对天线接收的所述低频信号进行低噪声放大处理以实现对所述低频信号的接收处理;
    分集接收模块,与所述射频收发器连接,所述分集接收模块配置有所述第二接收通路,用于对天线接收的所述低频信号进行滤波、低噪声放大处理以实现对所述低频信号的接收处理;
    第一MIMO接收模块,与所述射频收发器连接,所述第一MIMO接收模块配置有所述第一MIMO接收通路,用于对天线接收的所述低频信号进行滤波、低噪声放大处理以实现对所述低频信号的接收处理;
    第二MIMO接收模块,与所述射频收发器连接,所述第二MIMO接收模块配置有所述第二MIMO接收通路,用于对天线接收的所述低频信号进行滤波、低噪声放大处理以实现对所述低频信号的接收处理,其中,
    所述主集接收模块、所述分集接收模块、所述第一MIMO接收模块、所述第二MIMO接收模块分别连接至一支天线,且连接的所述天线各不相同。
  3. 根据权利要求2所述的射频系统,其中,所述射频系统被配置有用于支持对低频信号进行发射的发射通路;其中,所述第一接收通路、所述发射通路被配置为连接同一天线。
  4. 根据权利要求2所述的射频系统,其中,所述射频系统还包括:
    发射模块,与所述射频收发器连接,所述发射模块配置有发射通路,用于支持所述射频收发器输出的所述低频信号进行发射处理;
    滤波模块,所述滤波模块的两个第一端分别与所述发射模块、所述主集接收模块一一对应连接,所述滤波模块的第二端用于与天线连接,用于对所述发射模块输出的所述低频信号进行滤波处理以输出至所述天线,以及用于对所述天线接收的所述低频信号进行滤波处理后输出至所述主集接收模块。
  5. 根据权利要求4所述的射频系统,其中,当所述低频信号为单低频频段的射频信号时,所述滤波模块包括双工器。
  6. 根据权利要求4所述的射频系统,其中,所述低频信号包括多个低频频段的射频信号,其中,
    所述发射模块配置有多个所述发射通路,所述发射模块包括功率放大器以及与所述功率放大器连接的第一射频开关,所述功率放大器和所述第一射频开关构成多个所述发射通路;
    主集接收模块配置有多个所述第一接收通路,所述主集接收模块包括低噪声放大器以及与所述低噪声放大器连接的第二射频开关,所述低噪声放大器和所述第二射频开关构成多个第一接收通路。
  7. 根据权利要求6所述的射频系统,其中,所述滤波模块包括第一滤波单元、第二滤波单元和选通单元;其中,
    所述第一滤波单元的多个第一端分别与所述主集接收模块连接,所述第一滤波单元的多个第二端分别与所述选通单元连接,用于对天线接收的低频信号进行滤波处理并输出多 个不同低频频段的射频信号;
    所述第二滤波单元的多个第一端分别与所述发射模块连接,所述第二滤波单元的多个第二端分别与所述选通单元连接,用于对所述发射模块输出的低频信号进行滤波处理并输出多个不同低频频段的射频信号。
  8. 根据权利要求7所述的射频系统,其中,所述第一滤波单元、所述第二滤波单元分别包括多个滤波器。
  9. 根据权利要求3所述的射频系统,其中,所述发射模块、所述主集接收模块、所述滤波模块可集成在同一射频器件。
  10. 根据权利要求9所述的射频系统,其中,所述射频器件为内置低噪声放大器的功率放大器模块。
  11. 根据权利要求4所述的射频系统,其中,所述第一天线和所述第二天线的效率均高于所述第三天线和所述第四天线的效率。
  12. 根据权利要求4所述的射频系统,其中,所述第一接收通路、所述第二接收通路分别被配置为可切换地连接第一天线、第二天线,所述第三接收通路被配置为连接第三天线、所述第四接收通路被配置为连接第四天线,每一所述接收通路被配置为连接至一支天线,且各所述接收通路连接的所述天线各不相同。
  13. 根据权利要求12所述的射频系统,其中,所述射频收发器被配置为:
    根据所述第一接收通路和所述第二接收通路接收的各所述低频信号的网络信息,配置连接至所述第一接收通路的目标天线,所述目标天线为所述第一天线和所述第二天线之一。
  14. 根据权利要求13所述的射频系统,其中,所述第一天线被配置为所述低频信号的默认目标天线,所述射频收发器被配置为:
    若所述第一接收通路接收的低频信号的第一信号强度与所述第二接收通路接收的所述低频信号的第二信号强度的差值在预设时间段内小于或等于预设阈值,则所述射频收发器配置所述第二天线为所述目标天线。
  15. 根据权利要求12所述的射频系统,其中,所述射频系统还包括:
    开关模块,所述开关模块的两个第一端分别与所述滤波模块、分集接收模块一一对应连接,所述开关模块的两个第二端分别与所述第一天线、所述第二天线一一对应连接。
  16. 根据权利要求4所述的射频系统,其中,所述第一接收通路、所述第二接收通路、所述第三接收通路和所述第四接收通分别被配置为可切换地连接第一天线、第二天线、第三天线、第四天线,其中,每一所述接收通路被配置为连接至一支天线,且各所述接收通路连接的所述天线各不相同;其中,
    所述射频收发器被配置为:
    根据所述第一接收通路、所述第二接收通路、所述第三接收通路和所述第四接收通路接收的各所述低频信号的网络信息,配置连接至所述第一接收通路的目标天线,所述目标天线为所述第一天线、所述第二天线、所述第三天线和所述第四天线之一。
  17. 根据权利要求16所述的射频系统,其中,所述射频系统还包括:
    开关模块,所述开关模块的四个第一端分别与所述滤波模块、分集接收模块、第一MIMO接收模块、第二MIMO接收模块一一对应连接,所述开关模块的四个第二端分别与所述第一天线、所述第二天线、所述第三天线、所述第四天线一一对应连接。
  18. 根据权利要求4所述的射频系统,其中,所述低频信号为单低频的射频信号,所述滤波模块包括双工器,其中,所述双工器的两个第一端分别与所述发射模块、所述主集接收模块一一对应连接,所述双工器的公共端与天线连接。
  19. 根据权利要求4所述的射频系统,其中,所述低频信号包括多个低频频段的射频信号,所述滤波模块包括:
    第一滤波单元,所述第一滤波单元的多个第一端分别与所述主集接收模块连接,用于对所述天线接收的所述低频信号进行滤波处理并输出多个不同低频频段的射频信号;
    第二滤波单元,所述第二滤波单元的多个第一端分别与所述发射模块连接,用于对所述发射模块输出的所述低频信号进行滤波处理并输出多个不同低频频段的射频信号;
    选通单元,所述选通单元的多个第一端分别与多个所述第一滤波单元、多个所述第二滤波单元的第二端一一对应连接,所述选通单元的第二端与所述天线连接,用于选择导通任一所述第一滤波单元或任一所述第二滤波单元与所述天线之间的射频通路。
  20. 根据权利要求1所述的射频系统,其中,所述低频信号包括N5、N8、N20、N28、N71频段中的至少一种。
  21. 一种通信设备,包括:如权利要求1-20任一项所述的射频系统。
PCT/CN2022/120403 2021-11-30 2022-09-22 射频系统和通信设备 WO2023098245A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111444154.6 2021-11-30
CN202111444154.6A CN114124138A (zh) 2021-11-30 2021-11-30 射频系统和通信设备

Publications (1)

Publication Number Publication Date
WO2023098245A1 true WO2023098245A1 (zh) 2023-06-08

Family

ID=80368638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120403 WO2023098245A1 (zh) 2021-11-30 2022-09-22 射频系统和通信设备

Country Status (2)

Country Link
CN (1) CN114124138A (zh)
WO (1) WO2023098245A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124138A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180309528A1 (en) * 2017-04-18 2018-10-25 Skyworks Solutions, Inc. Front-end architecture having quadplexer for carrier aggregation and mimo support
CN111193526A (zh) * 2020-01-14 2020-05-22 Oppo广东移动通信有限公司 射频系统和电子设备
CN111277278A (zh) * 2020-01-19 2020-06-12 Oppo广东移动通信有限公司 射频系统及电子设备
CN111294081A (zh) * 2020-01-22 2020-06-16 Oppo广东移动通信有限公司 射频系统和电子设备
CN111342859A (zh) * 2020-03-03 2020-06-26 Oppo广东移动通信有限公司 射频系统及电子设备
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备
CN114124145A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统及通信设备
CN114124138A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152643B (zh) * 2019-06-28 2022-03-11 华为技术有限公司 一种天线的切换电路和电子设备
CN110572178B (zh) * 2019-09-06 2021-09-24 维沃移动通信有限公司 一种网络射频结构、射频控制方法及电子设备
CN112422148B (zh) * 2019-12-31 2022-03-25 Oppo广东移动通信有限公司 射频模组及电子设备
CN111600616B (zh) * 2020-07-10 2020-12-04 锐石创芯(深圳)科技有限公司 一种射频前端架构、天线装置及通信终端
CN112436847B (zh) * 2020-12-02 2022-05-17 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN112436845B (zh) * 2020-12-02 2022-05-13 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN113300736B (zh) * 2021-05-19 2022-11-04 深圳市锐尔觅移动通信有限公司 射频收发系统及通信设备
CN113676212B (zh) * 2021-08-12 2022-07-15 Oppo广东移动通信有限公司 放大器模组、射频系统及通信设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180309528A1 (en) * 2017-04-18 2018-10-25 Skyworks Solutions, Inc. Front-end architecture having quadplexer for carrier aggregation and mimo support
CN111193526A (zh) * 2020-01-14 2020-05-22 Oppo广东移动通信有限公司 射频系统和电子设备
CN111277278A (zh) * 2020-01-19 2020-06-12 Oppo广东移动通信有限公司 射频系统及电子设备
CN111294081A (zh) * 2020-01-22 2020-06-16 Oppo广东移动通信有限公司 射频系统和电子设备
CN111342859A (zh) * 2020-03-03 2020-06-26 Oppo广东移动通信有限公司 射频系统及电子设备
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备
CN114124145A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统及通信设备
CN114124138A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备

Also Published As

Publication number Publication date
CN114124138A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2022247510A1 (zh) 射频系统、天线切换方法和通信设备
CN113676208B (zh) 放大器模组、射频系统及通信设备
CN113676209B (zh) 放大器模组、射频系统及通信设备
CN113676211B (zh) 放大器模组、射频系统及通信设备
WO2023098110A1 (zh) 射频系统及通信设备
WO2023016199A1 (zh) 射频系统和通信设备
CN113676213B (zh) 放大器模组、射频系统及通信设备
CN113676212B (zh) 放大器模组、射频系统及通信设备
WO2023016198A1 (zh) 射频系统和通信设备
CN114142886B (zh) 射频系统及通信设备
WO2023098111A1 (zh) 射频系统及通信设备
CN217406537U (zh) 射频系统和通信设备
CN114095048B (zh) 射频系统及通信设备
CN114124137B (zh) 射频系统及通信设备
WO2023098245A1 (zh) 射频系统和通信设备
CN114124139A (zh) 射频系统及通信设备
WO2023142765A1 (zh) 射频前端模组和射频系统
WO2023142766A1 (zh) 射频前端模组和射频系统
CN113949402B (zh) 射频系统及通信设备
CN113676210B (zh) 放大器模组、射频系统及通信设备
CN113676214B (zh) 放大器模组、射频系统及通信设备
CN215871405U (zh) 射频系统和通信设备
CN114124136B (zh) 射频系统及通信设备
CN113949401A (zh) 射频系统及通信设备
CN216490479U (zh) 射频系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900053

Country of ref document: EP

Kind code of ref document: A1