WO2023016198A1 - 射频系统和通信设备 - Google Patents

射频系统和通信设备 Download PDF

Info

Publication number
WO2023016198A1
WO2023016198A1 PCT/CN2022/106438 CN2022106438W WO2023016198A1 WO 2023016198 A1 WO2023016198 A1 WO 2023016198A1 CN 2022106438 W CN2022106438 W CN 2022106438W WO 2023016198 A1 WO2023016198 A1 WO 2023016198A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
radio frequency
network
power supply
unit
Prior art date
Application number
PCT/CN2022/106438
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023016198A1 publication Critical patent/WO2023016198A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers

Definitions

  • the present application relates to the technical field of antennas, in particular to a radio frequency system and communication equipment.
  • a dual connection mode of 4G signal and 5G signal is usually adopted in a Non-Standalone (NSA) mode.
  • NSA Non-Standalone
  • multiple discrete power amplification modules can be set in the radio frequency system, for example, multiple multi-frequency multi-mode power amplifiers (Multi -band multi-mode power amplifier, MMPA) and MMPA devices supporting 4G signal transmission to achieve dual transmission of 4G signals and 5G signals, which occupy a large space and cost high.
  • MMPA multi-frequency multi-mode power amplifier
  • a radio frequency system and a communication device are provided.
  • a radio frequency system comprising:
  • a first power supply module configured to provide a first power supply voltage
  • a second power supply module configured to provide a second power supply voltage
  • An amplification module configured with a first power supply port for connecting to the first power supply module and a second power supply port for connecting to the second power supply module, wherein the amplification module includes:
  • a first amplifying unit connected to the first power supply port, configured to amplify the received low-frequency signals of the first network and the second network under the action of the first power supply voltage;
  • the second amplifying unit is connected to the second power supply port, and is configured to amplify the received intermediate frequency signals of the first network and the second network under the action of the second power supply voltage;
  • a third amplifying unit connected to the second power supply port, configured to amplify the received first high-frequency signals of the first network and the second network under the action of the second power supply voltage;
  • the fourth amplifying unit is connected to the second power supply port, and is used to amplify the received second high-frequency signal of the second network under the action of the second power supply voltage; wherein, the second high-frequency the frequency of the signal is different from that of the first high-frequency signal;
  • the radio frequency system is used to simultaneously output two signals with different networks, wherein the first signal is the signal amplified by the first amplifying unit, and the second signal is the signal amplified by the second amplifying unit and the second amplifying unit.
  • the first signal is the signal amplified by the first amplifying unit
  • the second signal is the signal amplified by the second amplifying unit and the second amplifying unit.
  • One of the three amplifying units and the fourth amplifying unit amplifies the processed signal.
  • a communication device comprising: the foregoing radio frequency system.
  • the above-mentioned radio frequency system and communication equipment include a first power supply module, a second power supply module and an amplification module, and each amplification unit in the amplification module can support power amplification processing of radio frequency signals in different frequency bands; wherein, the first power supply module can be an amplification
  • the first amplifying unit of the module supplies power
  • the second power supply module can supply power for the second amplifying unit, the third amplifying unit, and the fourth amplifying unit of the amplifying module, so that the first amplifying unit can be connected with the second amplifying unit, the third amplifying unit, respectively
  • One of the unit and the fourth amplifying unit works at the same time, so that the amplifying module can output two signals with different networks at the same time, so as to support the simultaneous amplification of 4G LTE signals and 5G NR signals, and then realize the 4G LTE signals and 5G
  • the dual transmission function of NR signals can meet the configuration requirements of EN-DC combination between different frequency bands of 4G
  • FIG. 1 is one of the framework schematic diagrams of a radio frequency system in an embodiment
  • Fig. 2 is the second schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 3 is the third schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 4 is a fourth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 5 is a fifth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 6 is a sixth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 7 is a seventh schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 8 is the eighth schematic diagram of the framework of the radio frequency system in an embodiment
  • FIG. 9 is a ninth schematic diagram of the framework of the radio frequency system in an embodiment.
  • FIG. 10 is a tenth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 11 is the eleventh schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 12 is a schematic structural diagram of a communication device in an embodiment.
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first antenna could be termed a second antenna, and, similarly, a second antenna could be termed a first antenna, without departing from the scope of the present application.
  • Both the first antenna and the second antenna are antennas, but they are not the same antenna.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • severeal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the radio frequency system involved in the embodiments of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A user equipment (User Equipment, UE) (for example, a mobile phone), a mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • An embodiment of the present application provides a radio frequency system.
  • the radio frequency system provided by the embodiment of the present application is configured to support the non-independent networking working mode of 5G NR and the long term evolution network (long term evolution, LTE) working mode supporting 4G LTE. That is to say, the radio frequency system provided by the embodiment of the present application can work in the non-independent networking NSA working mode and the LTE working mode (or called the LTE only working mode).
  • the non-independent networking working mode includes any one of EN-DC, NE-DC and NGEN-DC architectures.
  • the EN-DC architecture is used as an example for illustration.
  • E stands for Evolved-Universal Mobile Telecommunications System Terrestrial Radio Access (E-UTRA), representing 4G wireless access of mobile terminals
  • N stands for New Radio (NR), representing mobile The 5G wireless connection of the terminal
  • DC stands for Dual Connectivity, representing the dual connection of 4G and 5G.
  • E-UTRA Evolved-Universal Mobile Telecommunications System Terrestrial Radio Access
  • NR New Radio
  • DC Dual Connectivity, representing the dual connection of 4G and 5G.
  • the radio frequency system can realize dual connections with 4G base stations and 5G base stations at the same time.
  • the radio frequency system provided by the embodiment of the present application includes: a first power supply module 110 , a second power supply module 120 and an amplification module 130 .
  • the first power supply module 110 is used for providing the first power supply voltage
  • the second power supply module 120 is used for providing the second power supply voltage.
  • both the first power supply module 110 and the second power supply module 120 may include a power management chip (Power management IC, PMIC).
  • the first power supply voltage and the second power supply voltage can be equal or different.
  • the specific structure of each amplifying unit is set.
  • the amplifying module 130 may be equipped with a first power supply port VCC1 and a second power supply port VCC2.
  • the first power supply port VCC1 is connected to the first power supply module 110 for receiving the first power supply voltage provided by the first power supply module 110
  • the second power supply port VCC2 is connected to the second power supply module 120 for receiving the first power supply voltage provided by the second power supply module 120.
  • 120 provides the second supply voltage.
  • the amplifying module 130 also includes four amplifying units, which can be respectively marked as a first amplifying unit 131 , a second amplifying unit 132 , a third amplifying unit 133 and a fourth amplifying unit 134 .
  • the input terminals of each amplifying unit can receive radio frequency signals of different networks and different frequency bands output by the radio frequency transceiver, and the power supply terminals of each amplifying unit can be connected to corresponding power supply ports to receive corresponding power supply voltages.
  • the first amplifying unit 131 is connected to the first power supply port VCC1, and is used to amplify the received low-frequency signals of the first network and the second network under the action of the first power supply voltage;
  • the second amplifying unit 132 It is connected with the second power supply port VCC2, and is used to amplify the received intermediate frequency signals of the first network and the second network under the action of the second power supply voltage;
  • the third amplifying unit 133 is connected with the second power supply port VCC2, and is used for Under the action of the second power supply voltage, amplify the received first high-frequency signals of the first network and the second network;
  • the fourth amplifying unit 134 is connected to the second power supply port VCC2, and is used for the second power supply voltage Under the action of , the received second high-frequency signal of the second network is amplified.
  • the first network may be a 4G network, where the radio frequency signal of the first network may be called a Long Term Evolution (Long Term Evolution, LTE) signal, that is, a 4G LTE signal.
  • the second network may be a 5G network, wherein the radio frequency signal of the second network may be called a new air interface (New Radio, NR) signal, that is, a 5G NR signal.
  • New Radio New Radio
  • the frequency band division of the low-frequency signal, the intermediate-frequency signal, the first high-frequency signal (high-frequency signal) and the second high-frequency signal is shown in Table 1.
  • Table 1 is the frequency band division table for low frequency signal, intermediate frequency signal, first high frequency signal and second high frequency signal
  • the 5G network will continue to use the frequency band used by 4G, and only the identification before the serial number will be changed.
  • the 5G network has added some ultra-high frequency bands that are not available in the 4G network, such as N77, N78, and N79.
  • the first amplifying unit 131 may perform power amplification on the received low-frequency signal, where the low-frequency signal may include a low-frequency 4G LTE signal and a low-frequency 5G NR signal.
  • the second amplifying unit 132 may perform power amplification on the received intermediate frequency signal, wherein the intermediate frequency signal may include an intermediate frequency 4G LTE signal and an intermediate frequency 5G NR signal.
  • the third amplifying unit 133 can perform power amplification on the received high-frequency signal, wherein the high-frequency signal can include a high-frequency 4G LTE signal and a high-frequency 5G NR signal.
  • the fourth amplifying unit 134 can perform power amplification on the received UHF signal, and the UHF signal can include a UHF 5G NR signal.
  • the first power supply module 110 may include RF PMIC#1, and the second power supply module 120 may include RF PMIC#2.
  • neither RF PMIC#1 nor RF PMIC#2 includes a boost circuit, that is, the output voltage of RF PMIC#1 is less than or equal to the input voltage of RF PMIC#1; the output voltage of RF PMIC#2 is less than or equal to Equal to the input voltage of RF PMIC#2.
  • the first power supply module 110 can supply power to the first amplifying unit 131 through the first power supply port VCC1.
  • the second power supply module 120 can respectively supply power to the second amplifying unit 132 , the third amplifying unit 133 and the fourth amplifying unit 134 through the second power supply port VCC2 .
  • Each amplifying unit can perform power amplification processing on each received radio frequency signal under the action of the power supply voltage.
  • the amplification unit may include a power amplifier to perform power amplification processing on the received radio frequency signal.
  • the amplifying unit may also include a plurality of power amplifiers and a power combining unit to implement power amplification processing of radio frequency signals by means of power combining or the like.
  • a PMIC without a boost circuit can be used to supply power to each amplifying unit.
  • the first power supply voltage and the second power supply voltage may be less than or equal to 3.6V.
  • both the first power supply module 110 and the second power supply module 120 may include a step-down power supply (Buck Source), and the supply voltage Vcc at the output end of the step-down power supply is less than or equal to 3.6V.
  • a step-down power supply can be understood as an output voltage lower than the input voltage, that is, a step-down adjustable regulated DC power supply.
  • the input voltage of the first power supply module 110 and the second power supply module 120 may be the output voltage of the battery unit of the communication device, generally between 3.6V-4.2V.
  • the number of the first power supply port VCC1 and the second power supply port VCC2 can be set according to the number of power amplifiers included in the amplifying unit, specifically, the number of the first power supply port VCC1 can be compared with the first The number of power amplifiers in the amplifying unit 131 is equal, for example, there may be two.
  • the amplifying module 130 can be understood as a multi-band multi-mode power amplifier (MMPA) with built-in multiple amplifying units.
  • MMPA multi-band multi-mode power amplifier
  • Each port configured on the amplification module 130 can be understood as a radio frequency pin of a multi-frequency multi-mode amplifier.
  • the amplifying module 130 may also be understood as a power amplifier module integrated duplexer (PA Mid), or may be a PA Mid with a built-in low noise amplifier, that is, L-PA Mid.
  • PA Mid power amplifier module integrated duplexer
  • Each port configured on the amplification module 130 can be understood as a radio frequency pin of the PA Mid.
  • the first power supply module 110 to supply power to the first amplifying unit 131
  • the second power supply module 120 to supply power to the second amplifying unit 132, the third amplifying unit 133 and the fourth amplifying unit 134
  • the first amplifying unit 131 can work simultaneously with one of the second amplifying unit 132, the third amplifying unit 133, and the fourth amplifying unit 134 respectively, so that the amplifying module 130 can simultaneously output two signals with different networks to support
  • the amplification of 4G LTE signal and 5G NR signal can realize the dual connection of 4G LTE signal and 5G NR signal.
  • the first signal is a signal amplified and processed by the first amplifying unit 131 , for example, it may be a low-frequency signal of the first network.
  • the second signal is a signal amplified by one of the second amplifying unit 132, the third amplifying unit 133, and the fourth amplifying unit 134, for example, it may be an intermediate frequency signal of the second network or a high frequency signal of the second network and one of the UHF signals of the second network. Therefore, the combination of the first signal and the second signal can meet the configuration requirements of different EN-DC combinations between 4G LTE signals and 5G NR signals, as shown in Table 2.
  • Table 2 is the configuration table of different EN-DC combinations between 4G LTE signals and 5G NR signals
  • the radio frequency system may be configured to support dual connectivity between a low-frequency signal of the first network (for example, a low-frequency signal of 4G LTE) and a target signal of a second network (for example, an intermediate frequency signal, a high-frequency signal, or a UHF signal of 5G NR).
  • a low-frequency signal of the first network for example, a low-frequency signal of 4G LTE
  • a target signal of a second network for example, an intermediate frequency signal, a high-frequency signal, or a UHF signal of 5G NR.
  • the target signal is one of the intermediate frequency signal, the first high frequency signal and the second high frequency signal of the second network.
  • the first amplifying unit 131 and the second amplifying unit 132 work simultaneously, it satisfies the EN-DC combination of L+M; when the first amplifying unit 131 and the third amplifying unit 133 work simultaneously, it satisfies L+ The EN-DC combination of H; when the first amplifying unit 131 and the fourth amplifying unit 134 work simultaneously, it satisfies the EN-DC combination of L+UH.
  • the radio frequency system of the embodiment of the present application includes a first power supply module, a second power supply module and an amplification module, and each amplification unit in the amplification module can support power amplification processing of radio frequency signals in different frequency bands; wherein, the first power supply module can be The first amplifying unit of the amplifying module supplies power, and the second power supply module can supply power to the second amplifying unit, the third amplifying unit, and the fourth amplifying unit of the amplifying module, so that the first amplifying unit can be connected with the second amplifying unit, the third amplifying unit, respectively.
  • One of the amplifying unit and the fourth amplifying unit works at the same time, so that the amplifying module can output two signals with different networks at the same time, so as to support the simultaneous amplification of 4G LTE signals and 5G NR signals, and then realize the 4G LTE signals and 5G NR signals.
  • the dual transmission function of 5G NR signals does not conflict with each other, which can meet the configuration requirements of EN-DC combination between different frequency bands of 4G LTE signals and 5G NR signals, which can improve the integration of radio frequency systems and reduce costs.
  • each amplifying unit in the amplifying module can use a power combining method to perform power combining processing on the radio frequency signals of each frequency band, and can reduce the voltage value of each power supply voltage under the premise of meeting the output power level, thereby avoiding the
  • the built-in boost circuit can further reduce the cost of the power supply module.
  • the radio frequency system further includes a transmitting module 140 .
  • the transmitting module 140 may be configured with a third power supply port VCC3.
  • the third power supply port VCC3 is connected to the first power supply module 110 for receiving the first power supply voltage.
  • the transmitting module 140 includes a fifth amplifying unit 141 connected to the third power supply port VCC3.
  • the fifth amplifying unit 141 can be configured to amplify the received intermediate frequency signals of the first network, the second network and the third network under the action of the first power supply voltage.
  • the third network may be a 2G network, for example, Global System for Mobile Communications (Global System for Mobile Communications, GSM).
  • the intermediate frequency signal of the third network may be a 2G high frequency signal, for example, may at least include GSM1800, GSM1900 and other frequency band signals.
  • the fifth amplifying unit 141 has the same structure as the amplifying units in the foregoing embodiments, and may include the first power amplifier, and the fifth amplifying unit 141 may also include a power combining unit and a plurality of power amplifiers, so as to achieve multiple Synthetic output of the output power of the power amplifier.
  • the specific structure of the fifth amplifying unit 141 is not limited, nor is it limited to the above examples.
  • the radio frequency system may use the signal amplified and processed by the first amplifying unit 131 or the fifth amplifying unit 141 as the first signal. That is to say, the first signal can be a low frequency signal output by the first amplifying unit 131, for example, a low frequency signal of the first network; the first signal can be an intermediate frequency signal output by the fifth amplifying unit 141, for example, the first network An intermediate frequency signal of a network.
  • the second signal may also be the second signal mentioned in the foregoing embodiments. Therefore, the combination of the first signal and the second signal can meet the configuration requirements of different EN-DC combinations between the 4G LTE signal and the 5G NR signal, as shown in Table 3.
  • Table 3 is the configuration table of different EN-DC combinations between 4G LTE signals and 5G NR signals
  • 4G LTE frequency band 5G NR frequency band EN-DC L m L+M L h L+H L UH L+UH m m M+M m h M+H m UH M+UH
  • the RF system can also be configured to support dual connectivity of an IF signal of the first network (e.g., an IF signal of 4G LTE) with a target signal of a second network (e.g., an IF signal, a HF signal, or a UHF signal of 5G NR)
  • the non-independent networking working mode wherein the target signal is one of the intermediate frequency signal, the first high frequency signal and the second high frequency signal of the second network.
  • the fifth amplifying unit 141 and the second amplifying unit 132 work simultaneously, it satisfies the EN-DC combination of M+M; when the fifth amplifying unit 141 and the third amplifying unit 133 work simultaneously, it satisfies the M+ The EN-DC combination of H; when the fifth amplifying unit 141 and the fourth amplifying unit 134 work simultaneously, it satisfies the EN-DC combination of M+UH.
  • the radio frequency system further includes a transmitting module 140, and the transmitting module 140 is built with a fifth amplifying unit 141 for supporting intermediate frequency signals of the first network, the second network, and the third network, which can be connected with the amplifying module 130
  • the first amplifying unit 131 shares the same power supply module, such as RF PMIC#1, and can also configure EN-DC combination modes of M+M, M+H and M+UH.
  • the amplifying module 130 provided in the embodiment of the present application integrates four amplifying units.
  • the fifth amplifying unit 141 can also support the power amplification processing of 2G high-frequency signals, and can expand the range of the communication frequency band of the radio frequency system to support the business type of voice calls.
  • the transmitting module 140 further includes a sixth amplifying unit 142 connected to the third power supply port VCC3 .
  • the sixth amplifying unit 142 is configured to amplify the received low-frequency signal of the third network under the action of the first power supply voltage.
  • the low-frequency signal of the third network may be a low-frequency signal of the 2G network, for example, may at least include GSM850, GSM900 and other frequency band signals.
  • the sixth amplifying unit 142 has the same structure as the amplifying units in the foregoing embodiments, and may include a first power amplifier, and the sixth amplifying unit 142 may also include a power combining unit and a plurality of power amplifiers, so as to achieve multiple Synthetic output of the output power of the power amplifier.
  • the specific structure of the sixth amplifying unit 142 is not limited, nor is it limited to the above examples.
  • the communication requirements for the 2G network can be realized.
  • the range of the communication frequency band of the radio frequency system can be expanded to support the business type of voice calls.
  • the fifth amplifying unit 141 and the sixth amplifying unit 142 can share the same power supply module as the first amplifying unit 131 in the amplifying module 130, such as RF PMIC#1, which can also save costs and simplify the internal structure of the radio frequency system.
  • the radio frequency system further includes a first switch unit 154 and multiple filtering modules.
  • the radio frequency system includes a first filtering module 151 , a second filtering module 152 and a third filtering module 153 respectively connected to the amplification module 130 .
  • the first filtering module 151 can be used to filter the signal output by the first amplifying unit 131.
  • the second filtering module 152 can be used for filtering the signal output by the second amplifying unit 132 .
  • the third filtering module 153 can be used for filtering the signal output by the third amplifying unit 133 .
  • each filtering module may include one or more filters and/or duplexers, so as to implement filtering processing of radio frequency signals of various frequency bands output by each amplifying unit.
  • the filter device provided on the transmission path of the radio frequency signal can be a filter of the corresponding frequency band; if the communication system of the radio frequency signal is the TDD system, then the transmission path of the radio frequency signal
  • the set filter device may be a duplexer corresponding to a frequency band.
  • each filter and duplexer only allow signals of preset frequency bands to pass through, and the frequency bands of the radio frequency signals output by each filter and duplexer are different.
  • the third filtering module 153 is taken as an example for description. If the first high-frequency signal output by the third amplifying unit 133 includes signals of the three frequency bands B7 (N7), B40 (N40), and B41 (N41), the third filtering module 153 may include two filters and a dual tool. Specifically, one filter only allows signals in the B40 (N40) frequency band to pass through, and filters out clutter in other frequency bands, and one filter only allows signals in the B41 (N41) frequency band to pass through, and filters out clutter in other frequency bands.
  • the duplexer can realize the isolation of B7 (N7) transmission and reception, and can only allow the signal of B7 (N7) frequency band to pass through during the transmission and reception process, and filter out the clutter of other frequency bands.
  • the first filtering module 151 can implement filtering processing on low-frequency signals, so as to output low-frequency signals in frequency bands such as B5 (N5), B8 (N8), and B28A (N28A).
  • the second filter module 152 can filter the intermediate frequency signal to output low frequency signals such as B1 (N1), B3 (N3), B2 (N2), B34 (N34), B39 (N39) and other frequency bands.
  • each filtering module is not limited to the illustrations in the embodiments of the present application.
  • the first filtering module 151, the second filtering module 152, and the third filtering module 153 can be adaptively adjusted according to the frequency bands of the low-frequency signal, intermediate-frequency signal and first high-frequency signal output by the corresponding amplifying unit, so as to realize the The low frequency signal, the intermediate frequency signal and the first high frequency signal are filtered.
  • first ends of the first switch unit 154 are respectively connected to the first filter module 151 , the second filter module 152 and the third filter module 153 , and the second end of the first switch unit 154 is used to be connected to the second antenna ANT1 .
  • the first switch unit 154 can be used to selectively conduct the path between any filter module and the second antenna ANT1, and then can conduct a transmission path between a corresponding amplifying unit and the second antenna ANT1, so as to transmit the power amplifier through the amplifying unit.
  • the amplified radio frequency signal is transmitted and processed by the second antenna ANT1.
  • the low-frequency signal can be transmitted through the second antenna ANT1.
  • the first switch unit 154 can be connected to the filter or duplexer in each filter module, if the first switch unit 154 conducts the filter and the second antenna that only allow the signal of the B5 (N5) frequency band to pass through The path between ANT1 can transmit the low-frequency signal of the B5 (N5) frequency band output by the first amplifying unit 131 through the second antenna ANT1.
  • the first switch unit 154 may be a single-pole multiple-throw switch, or may include multiple switches. Wherein, a plurality of first ends of the first switch unit 154 can be connected with each filter and duplexer in each filter module, and can selectively conduct low-frequency signals, intermediate-frequency signals and first high-frequency signals of any frequency band to be transmitted to Passage for the second antenna ANT1. It should be noted that, in the embodiment of the application, the specific type, quantity and combination form of the first switch units 154 are not further limited.
  • the first switch unit 154 is integrated in the transmitting module 140 .
  • the transmitting module 140 may be configured with a plurality of input ports, and the plurality of input ports may be respectively connected to filters and duplexers in a plurality of filtering modules in a one-to-one correspondence.
  • the integration degree of the radio frequency system can be improved, thereby reducing the occupied area of the radio frequency system.
  • the transmitting module 140 further includes a first filtering unit 143 and a second filtering unit 144, wherein the first filtering unit 143 is connected to the fifth amplifying unit 141 for The intermediate frequency signal output by the fifth amplification unit 141 is filtered.
  • the second filtering unit 144 is connected to the sixth amplifying unit 142 for filtering the low-frequency signal of the 2G network output by the sixth amplifying unit 142 .
  • the first filtering unit 143 may be a linear notch filter to suppress signals other than the intermediate frequency signal, thereby implementing filtering processing on the intermediate frequency signal.
  • the second filtering unit 144 can also be a linear notch filter to suppress signals other than the low-frequency signal of the 2G network, thereby realizing filtering processing of the low-frequency signal of the 2G network.
  • first filtering unit 143 and the second filtering unit 144 may also include multiple filters, duplexers, etc.
  • the first filtering unit 143 and the second filtering unit 144 are not limited to The above examples illustrate.
  • the integration degree of the radio frequency system can be further improved, thereby reducing the occupied area of the radio frequency system.
  • the radio frequency system further includes a first receiving module 161 , a second receiving module 162 and a second switching unit 163 .
  • the first receiving module 161 is respectively connected with the first filtering module 151, the second filtering module 152, and the third filtering module 153, and is used to support the low frequency, intermediate frequency, and first high frequency band signals of the first network and the second network.
  • the main set of the receive processing That is, the first receiving module 161 can be used to support the main set reception of the low frequency, intermediate frequency, and high frequency signals of the first network, and can also be used to support the main set reception of the low frequency, intermediate frequency, and high frequency signals of the second network.
  • the first receiving module 161 when the radio frequency system works in ENDC mode, the first receiving module 161 can be understood as a main set receiving module of the radio frequency system, so as to support main set reception of signals in each frequency band of the first network.
  • the second receiving module 162 is configured to support receiving and processing radio frequency signals of the first network, the second network, and the third network. Among them, the second receiving module 162 can be used to support the diversity reception of the low frequency, medium frequency and high frequency signals of the first network, and can also support the diversity reception of the low frequency, medium frequency and high frequency signals of the second network, and can also support the diversity reception of the second network The reception of the three networks.
  • the second receiving module 162 can be understood as a diversity receiving module of the radio frequency system to support main set reception of signals in each frequency band of the first network and signals of each frequency band of the second network.
  • the first receiving module 161 and the second receiving module 162 may specifically include a plurality of low noise amplifiers for supporting different frequency bands, a plurality of radio frequency switches, and the like.
  • the first receiving module 161 and the second receiving module 162 can be a radio frequency low noise amplifier module (Low noise amplifier front end module, LFEM), and can also be a diversity receiving module with an antenna switch module and a filter (Diversity Receive Module with Antenna Switch Module and SAW, DFEM), can also be a multi-band low noise amplifier (Multi band Low Noise Amplifier, MLNA) and so on.
  • LFEM radio frequency low noise amplifier module
  • DFEM Diversity Receive Module with Antenna Switch Module and SAW, DFEM
  • MLNA Multi band Low Noise Amplifier
  • the second switch unit 163 includes two first terminals and two second terminals.
  • the second switch unit 163 may be a DPDT switch.
  • the second switch unit 163 is not limited to the above example, and may also be composed of a plurality of switches.
  • the transmitting module 140 may be equipped with an antenna port, and the second end of the first switch unit 154 of the transmitting module 140 is connected to the antenna port.
  • the two first terminals of the second switch unit 163 are connected to the antenna ports of the first receiving module 161 and the transmitting module 140 respectively, and the two second terminals are used to be connected to the second antenna ANT1 and the third antenna ANT2 respectively.
  • the second switch unit 163 can selectively conduct the receiving paths between the first receiving module 161 and the second antenna ANT1 and the third antenna ANT2 respectively, and can also be used to selectively conduct the receiving paths between the second receiving module 162 and the second antenna ANT2 respectively.
  • the second switch unit 163 may be a 3PDT switch.
  • the second switch unit 163 is not limited to the above example, and may also be composed of a plurality of switches.
  • the amplifying module 130 is further configured with a transceiver port ANT for connecting to the first antenna ANT0 .
  • the first antenna ANT0 can be used for transmitting and receiving the second high-frequency signal.
  • the amplification module 130 also includes a low noise amplifier 135 and a third switch unit 136 . Wherein, the low-noise amplifier 135 is used to amplify the received second high-frequency signal, so as to support the reception of the second high-frequency signal.
  • the third switch unit 136 is respectively connected to the output end of the fourth amplifying unit 134, the input end of the low noise amplifier 135, and the transceiver port, and is used to selectively conduct the transmission path or the low-noise transmission path between the fourth amplifying unit 134 and the transceiver port. Receive path between amplifier 135 and the transceiver port. That is, the third switch unit 136 can be used to selectively turn on the transmission path or the reception path of the second high frequency signal.
  • the amplification module 130 can also be understood as a transceiver module, specifically, it can support the transmission processing of the low-frequency, medium-frequency, and high-frequency signals of the first network , and the transmission processing of the low frequency, medium frequency, high frequency and ultrahigh frequency signals of the second network, and can also support the main set reception of the ultrahigh frequency signals of the second network. That is, in the embodiment of the present application, when the radio frequency system works in ENDC mode, the amplifying module 130 can be understood as the transmitting module 140 of the radio frequency system and the main receiving module of the UHF signal of the second network.
  • a filtering unit 137 is also integrated in the amplifying module 130 .
  • the filter unit 137 is disposed between the second end of the third switch unit 136 and the transceiver port ANT, and is used for filtering the second high-frequency signal to filter out spurious waves other than the second high-frequency signal.
  • the embodiment of the present application is based on the radio frequency system shown in FIG. 7, and uses B5+N77 to describe the working principle of the radio frequency transceiver system supporting LTE (L band)+NR (UH band) ENDC.
  • LTE B5 as the anchor point of 5G, first establishes the signaling connection
  • B5+N77 dual connection is as follows:
  • the transmission of the B5 frequency band signal the first amplification unit 131 ⁇ the first filter module 151 ⁇ the first switch unit 154 ⁇ the second switch unit 163 ⁇ the second antenna ANT1.
  • the main receiver of the B5 frequency band signal the second antenna ANT1 ⁇ the second switch unit 163 ⁇ the first switch unit 154 ⁇ the first filtering module 151 ⁇ the first receiving module 161 .
  • the radio frequency system can be operated at ENDC (for example, L+M , L+H, L+UH) working mode, it is possible to avoid the use of multiple external power amplifier modules, which can improve the integration of the RF system and reduce costs.
  • ENDC for example, L+M , L+H, L+UH
  • the radio frequency system further includes a duplexer unit 170 .
  • a duplexer unit 170 multiple first ends of the duplexer unit 170 are respectively connected to the transmitting module 140, second ends of the duplexer are connected to the first receiving module 161, and third ends of the duplexer are connected to the fourth antenna ANT3.
  • the radio frequency signal output by the transmitting module 140 can be transmitted to the fourth antenna ANT3 through the duplexer unit 170 .
  • the embodiment of the present application is based on the radio frequency system shown in FIG. 8 , and uses B3+N41 to illustrate the working principle of the radio frequency transceiver system supporting LTE (M band)+NR (M band) ENDC.
  • LTE B3 as the anchor point of 5G, first establishes the signaling connection
  • B3+N66 dual connection is as follows:
  • Main set reception of B3 frequency band signal fourth antenna ANT3 ⁇ duplexer unit 170 ⁇ first receiving module 161 .
  • the transceiver path of the B3 frequency band and the transceiver path of the N66 frequency band can also be swapped, as follows:
  • the transmission of the B3 frequency band signal the second amplification unit 132 ⁇ the second filter module 152 ⁇ the first switch unit 154 ⁇ the second switch unit 163 ⁇ the second antenna ANT1.
  • the main receiver of the B3 frequency band signal the second antenna ANT1 ⁇ the second switch unit 163 ⁇ the first switch unit 154 ⁇ the second filtering module 152 ⁇ the first receiving module 161 .
  • Main set reception of N66 frequency band signal fourth antenna ANT3 ⁇ duplexer unit 170 ⁇ first receiving module 161 .
  • the fifth amplifying unit 141 in the transmitting module 140 is powered separately from the second amplifying unit 132, the third amplifying unit 133 and the fourth amplifying unit 134 in the amplifying module 130, Simultaneous transmission of intermediate frequency signals of the first network and intermediate frequency, high frequency or ultrahigh frequency signals of the second network can be realized.
  • the radio frequency The system works in the ENDC (for example, M+M, M+H, M+UH) working mode, which can avoid the use of multiple external power amplifier modules, thereby improving the integration of the radio frequency system and reducing costs.
  • the amplifying module 130 is also configured with three burst ports, and the three burst ports are respectively used to connect with the fifth antenna, the sixth antenna, and the seventh antenna; wherein,
  • the amplification module 130 also includes a fourth switch unit 138 .
  • the first end of the fourth switch unit 138 is connected to the second end of the third switch unit 136, and the four second ends of the fourth switch unit 138 are respectively connected to the transceiver port and the three transmission ports in one-to-one correspondence.
  • the second high-frequency signal can be transmitted between the transceiver port and the three burst ports SRS1, SRS2, and SRS3.
  • the alternate transmission between them can support the second high-frequency signal’s transmission function between the first antenna ANT0, the fifth antenna ANT4, the sixth antenna ANT5, and the seventh antenna ANT6, that is, the 1T4R function of SRS, Furthermore, the communication performance of the radio frequency system for sending and receiving the second high-frequency signal can be improved.
  • the radio frequency system further includes: three radio frequency switches 182 and three third receiving modules 181 .
  • the third receiving module 181 is configured to support receiving and processing the second high-frequency signal.
  • the first ends of the three radio frequency switches 182 are respectively connected to the three radio ports SRS1, SRS2, and SRS3 in one-to-one correspondence, and the other first ends of the three radio frequency switches 182 are respectively in one-to-one correspondence with the three third receiving modules 181 connection, the second ends of the three radio frequency switches 182 are respectively connected to the fifth antenna ANT4 , the sixth antenna ANT5 , and the seventh antenna ANT6 in a one-to-one correspondence.
  • the three third receiving modules 181 can simultaneously receive the second high-frequency signal received by the fifth antenna ANT4, the sixth antenna ANT5, and the seventh antenna ANT6, and can also control the third receiving module 181.
  • the conduction state of the three switch units 136 enables the low noise amplifier 135 in the amplification module 130 to also receive and amplify the second high-frequency signal, thereby supporting the reception of four second high-frequency signals at the same time, that is, It can support the 4*4 MIMO function for the second high-frequency signal, and can improve the receiving and transmitting performance of the radio frequency system for the ultra-high frequency signal of the second network.
  • the radio frequency system further includes: a first MIMO receiving module 191 and a second MIMO receiving module 192 .
  • the first MIMO receiving module 191 is connected to the eighth antenna ANT7, and is used to support the receiving and processing of the low-frequency, intermediate-frequency, and first high-frequency band signals of the first network and the second network;
  • the second MIMO receiving module 192 is connected to the The ninth antenna ANT8 is connected to support the receiving and processing of the low-frequency, medium-frequency, and first high-frequency signals of the first network and the second network.
  • the internal structures of the first MIMO receiving module 191 and the second MIMO receiving module 192 may be the same as or different from those of the first receiving module 161 and the second receiving module 162 in the foregoing embodiments.
  • the radio frequency system can support the low frequency, intermediate frequency and high frequency signals of the first network Four channels of simultaneous reception, and can also support four channels of simultaneous reception of low frequency, intermediate frequency, and high frequency signals of the second network, so that the radio frequency system can support the 4*4 MIMO function of each frequency band of the first network and the second network, so that the radio frequency system can support the 4*4 MIMO function of each frequency band of the first network and the second network,
  • the radio frequency system can improve the performance of receiving and transmitting signals of each frequency band of the first network and the second network.
  • the eighth antenna ANT7 and the ninth antenna ANT8 may also be multiplexed with the fifth antenna ANT4 , the sixth antenna ANT5 or the seventh antenna ANT6 . That is, by adding a switch module in the radio frequency system, it is used to selectively conduct the connection between the first MIMO receiving module 191 and any two antennas of the fifth antenna ANT4, the sixth antenna ANT5, and the seventh antenna ANT6. The receiving path, and selectively conducting the receiving path between the second MIMO receiving module 192 and any two antennas of the fifth antenna ANT4 , the sixth antenna ANT5 , and the seventh antenna ANT6 .
  • the radio frequency system also includes a radio frequency transceiver 100, and the radio frequency transceiver 100 can be connected with the amplification module 130, the transmitting module 140, the first receiving module 161, the second receiving module 162, and the third receiving module in the above-mentioned embodiment, respectively.
  • the module 181, the first MIMO receiving module 191, and the second MIMO receiving module 192 are connected, and can be used to output radio frequency signals of each frequency band of the first network, the second network, and the third network.
  • the radio frequency system can also support the 4*4 MIMO function for each frequency band signal of the first network by setting multiple antennas and multiple MIMO receiving modules, and can also support the 4*4 MIMO function for each frequency band signal of the second network.
  • the unique 4*4MIMO function can improve the receiving and transmitting performance of the radio frequency system for the signals of the first network and the second network in each frequency band.
  • the communication device is a mobile phone 10 as an example for description.
  • the mobile phone 10 may include a memory 21 (which optionally includes one or more computer-readable storage media), processing circuit 22, peripheral device interface 23, radio frequency system 24, input/output (I/O) subsystem 26. These components optionally communicate via one or more communication buses or signal lines 29 .
  • the mobile phone 10 shown in FIG. 12 does not constitute a limitation to the mobile phone, and may include more or less components than those shown in the illustration, or combine some components, or arrange different components.
  • the various components shown in FIG. 12 are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Memory 21 optionally includes high-speed random access memory, and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 21 include an operating system 211 , a communication module (or an instruction set) 212 , a global positioning system (GPS) module (or an instruction set) 213 and the like.
  • GPS global positioning system
  • Processing circuitry 22 and other control circuitry, such as control circuitry in radio frequency system 24 may be used to control the operation of handset 10 .
  • the processing circuit 22 may include one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, and the like.
  • the processing circuit 22 may be configured to implement a control algorithm that controls the use of antennas in the handset 10 .
  • the processing circuit 22 may also issue control commands and the like for controlling switches in the radio frequency system 24 .
  • I/O subsystem 26 couples input/output peripherals on handset 10 such as a keypad and other input control devices to peripherals interface 23 .
  • I/O subsystem 26 optionally includes a touch screen, keys, tone generator, accelerometer (motion sensor), ambient light sensor and other sensors, light emitting diodes and other status indicators, data ports, and the like.
  • a user may control the operation of handset 10 by supplying commands via I/O subsystem 26 and may use the output resources of I/O subsystem 26 to receive status information and other output from handset 10 .
  • the user can turn on or turn off the mobile phone by pressing the button 261 .
  • the radio frequency system 24 may be the radio frequency system in any of the foregoing embodiments, wherein the radio frequency system 24 may also be used to process radio frequency signals of multiple different frequency bands.
  • the radio frequency system 24 may also be used to process radio frequency signals of multiple different frequency bands.
  • the Sub-6G frequency band may specifically include a 2.496GHz-6GHz frequency band and a 3.3GHz-6GHz frequency band.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM), Synchronous Synchlink DRAM (SLDRAM), Memory Bus (Rambus) Direct RAM (RDRAM), Direct Memory Bus Dynamic RAM (DRDRAM), and Memory Bus Dynamic RAM (RDRAM).
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchronous Synchlink DRAM
  • SLDRAM Synchronous Synchlink DRAM
  • Memory Bus Radbus
  • RDRAM Direct RAM
  • DRAM Direct Memory Bus Dynamic RAM
  • RDRAM Memory Bus Dynamic RAM

Abstract

一种射频系统,射频系统包括第一供电模块(110)、第二供电模块(120)和放大模块(130),其中,放大模块(130)包括:第一放大单元(131),用于对接收的第一网络和第二网络的低频信号进行放大;第二放大单元(132),用于对接收的第一网络和第二网络的中频信号进行放大;第三放大单元(133),用于对接收的第一网络和第二网络的第一高频信号进行放大;第四放大单元(134)用于对接收的第二网络的第二高频信号进行放大;其中,射频系统用于同时输出两路网络不同的信号,其中第一路信号为经第一放大单元(131)放大处理后的信号,第二路信号为经第二放大单元(132)、第三放大单元(133)和第四放大单元(134)中的一个放大处理后的信号。

Description

射频系统和通信设备
相关申请的交叉引用
本申请要求于2021年8月12日提交中国专利局、申请号为2021109235924发明名称为“射频系统和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种射频系统和通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展和进步,移动通信技术逐渐开始应用于通信设备,例如手机等。对于支持5G通信技术的通信设备,在非独立组网(Non-Standalone,NSA)模式下通常采用4G信号和5G信号的双连接模式。一般,为了提高4G和5G双连接模式下的通信性能,可在射频系统中设置多个分立设置的功率放大模组,例如,多个用于支持4G信号发射的多频多模功率放大器(Multi-band multi-mode power amplifier,MMPA)以及支持4G信号发射的MMPA器件,以实现4G信号和5G信号的双发射,其占用空间大、成本高。
发明内容
根据本申请的各种实施例,提供一种射频系统和通信设备。
一种射频系统,包括:
第一供电模块,用于提供第一供电电压;
第二供电模块,用于提供第二供电电压;
放大模块,配置有用于与所述第一供电模块连接的第一供电端口和用于与所述第二供电模块连接的第二供电端口,其中,所述放大模块包括:
第一放大单元,与所述第一供电端口连接,用于在所述第一供电电压的作用下,对接收的第一网络和第二网络的低频信号进行放大;
第二放大单元,与所述第二供电端口连接,用于在所述第二供电电压的作用下,对接收的第一网络和第二网络的中频信号进行放大;
第三放大单元,与所述第二供电端口连接,用于在所述第二供电电压的作用下,对接收的第一网络和第二网络的第一高频信号进行放大;
第四放大单元,与所述第二供电端口连接,用于在所述第二供电电压的作用下,对接收的第二网络的第二高频信号进行放大;其中,所述第二高频信号与所述第一高频信号的频率不同;
其中,所述射频系统用于同时输出两路网络不同的信号,其中第一路信号为经所述第一放大单元放大处理后的信号,第二路信号为经所述第二放大单元、第三放大单元和第四放大单元中的一个放大处理后的信号。
一种通信设备,包括:前述的射频系统。
上述射频系统和通信设备,包括第一供电模块、第二供电模块和放大模块,放大模块中的各放大单元可支持对不同频段的射频信号进行功率放大处理;其中,第一供电模块可为放大模块的第一放大单元供电,第二供电模块可为放大模块的第二放大单元、第三放大单元、第四放大单元供电,可以使得第一放大单元可分别与第二放大单元、第三放大单元、第四放大单元中的一个同时工作,进而可以使放大模块同时输出具有不同网络的两路信 号,以支持对4G LTE信号和5G NR信号的同时放大,进而可以实现对4G LTE信号和5G NR信号的双发射功能,可以满足4G LTE信号和5G NR信号不同频段之间的EN-DC组合的配置要求,可以提高射频系统的集成度,降低成本。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中射频系统的框架示意图之一;
图2为一个实施例中射频系统的框架示意图之二;
图3为一个实施例中射频系统的框架示意图之三;
图4为一个实施例中射频系统的框架示意图之四;
图5为一个实施例中射频系统的框架示意图之五;
图6为一个实施例中射频系统的框架示意图之六;
图7为一个实施例中射频系统的框架示意图之七;
图8为一个实施例中射频系统的框架示意图之八;
图9为一个实施例中射频系统的框架示意图之九;
图10为一个实施例中射频系统的框架示意图之十;
图11为一个实施例中射频系统的框架示意图之十一;
图12为一个实施例中通信设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一天线称为第二天线,且类似地,可将第二天线称为第一天线。第一天线和第二天线两者都是天线,但其不是同一天线。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。
本申请实施例提供一种射频系统。本申请实施例提供的射频系统被配置为支持5G NR的非独立组网工作模式以及支持4G LTE的长期演进网络(long term evolution,LTE)工作模式。也即,本申请实施例提供的射频系统可工作在非独立组网NSA工作模式和LTE工作模式下(或称之为LTE only工作模式)。
其中,非独立组网工作模式包括EN-DC、NE-DC和NGEN-DC构架中的任一种。在本申请实施例中,以非独立组网工作模式为EN-DC构架为例进行说明。E为演进的通用移动通信系统地面无线接入(Evolved-Universal Mobile Telecommunications System Terrestrial Radio Access,E-UTRA),代表移动终端的4G无线接入;N为新空口(New Radio,NR),代表移动终端的5G无线连接;DC为双连接(Dual Connectivity),代表4G和5G的双连接。在EN-DC模式下,以4G核心网为基础,射频系统能够实现同时与4G基站和5G基站进行双连接。
如图1所示,在其中一个实施例中,本申请实施例提供的射频系统包括:第一供电模块110、第二供电模块120和放大模块130。
其中,第一供电模块110用于提供第一供电电压,第二供电模块120用于提供第二供电电压。具体的,第一供电模块110、第二供电模块120均可包括电源管理芯片(Power management IC,PMIC)。第一供电电压和第二供电电压可以相等,也可以不同,在本申请实施例中,对第一供电电压、第二供电电压的大小不做进一步的限定,可以根据通信需求以及放大模块130中各放大单元的具体结构来设定。
放大模块130可被配有第一供电端口VCC1和第二供电端口VCC2。其中,第一供电端口VCC1与第一供电模块110连接,用于接收第一供电模块110提供的第一供电电压,第二供电端口VCC2与第二供电模块120连接,用于接收第二供电模块120提供的第二供电电压。放大模块130中还包括四个放大单元,可分别记为第一放大单元131、第二放大单元132、第三放大单元133和第四放大单元134。其中,各个放大单元的输入端可接收射频收发器输出的不同网络不同频段的射频信号,各个放大单元的供电端可与相应的供电端口连接,以接收相应的供电电压。
具体的,第一放大单元131,与第一供电端口VCC1连接,用于在第一供电电压的作用下,对接收的第一网络和第二网络的低频信号进行放大;第二放大单元132,与第二供电端口VCC2连接,用于在第二供电电压的作用下,对接收的第一网络和第二网络的中频信号进行放大;第三放大单元133,与第二供电端口VCC2连接,用于在第二供电电压的作用下,对接收的第一网络和第二网络的第一高频信号进行放大;第四放大单元134,与第二供电端口VCC2连接,用于在第二供电电压的作用下,对接收的第二网络的第二高频信号进行放大。
例如,第一网络可以为4G网络,其中,第一网络的射频信号可以称之为长期演进(Long Term Evolution,LTE)信号,也即4G LTE信号。第二网络可以为5G网络,其中,第二网络的射频信号可以称之为新空口(New Radio,NR)信号,也即5G NR信号。
其中,低频信号、中频信号、第一高频信号(高频信号)和第二高频信号(也可称之为超高频信号)的频段划分如表1所示。
表1为低频信号、中频信号、第一高频信号和第二高频信号的频段划分表
Figure PCTCN2022106438-appb-000001
Figure PCTCN2022106438-appb-000002
需要说明的是,5G网络中沿用4G所使用的频段,仅更改序号之前的标识。此外,5G网络还新增了一些4G网络中没有的超高频段,例如,N77、N78和N79等。
具体的,第一放大单元131可以对接收的低频信号进行功率放大,其中,低频信号可包括低频的4G LTE信号和低频的5G NR信号。第二放大单元132可以对接收的中频信号进行功率放大,其中,中频信号可包括中频的4G LTE信号和中频的5G NR信号。第三放大单元133可以对接收的高频信号进行功率放大,其中,高频信号可包括高频的4G LTE信号和高频的5G NR信号。第四放大单元134可以对接收的超高频信号进行功率放大,超高频信号可包括超高频的5G NR信号。
在其中一个实施例中,第一供电模块110可包括RF PMIC#1,第二供电模块120可包括RF PMIC#2。其中,RF PMIC#1、RF PMIC#2中均不包括boost升压电路,也即,RF PMIC#1的输出电压小于或等于RF PMIC#1的输入电压;RF PMIC#2的输出电压小于或等于RF PMIC#2的输入电压。
其中,第一供电模块110可通过第一供电端口VCC1给第一放大单元131进行供电。第二供电模块120可通过第二供电端口VCC2分别给第二放大单元132、第三放大单元133、第四放大单元134供电。各个放大单元可在供电电压的作用下,对接收的各射频信号进行功率放大处理。具体的,放大单元可包括一个功率放大器,以对接收到射频信号进行功率放大处理。可选的,放大单元还可以包括多个功率放大器以及功率合成单元,以功率合成等方式来实现对射频信号的功率放大处理。当放大单元采用功率合成的方式对射频信号进行功率放大处理时,可以采用不含boost升压电路的PMIC来为各放大单元供电。示例性的,第一供电电压和第二供电电压可以小于或等于3.6V。
可选的,第一供电模块110和第二供电模块120可均包括降压电源(Buck Source),其降压电源的输出端的供电电压Vcc小于或等于3.6V。降压电源可以理解是一种输出电压低于输入电压,即降压型可调稳压直流电源。其中,第一供电模块110和第二供电模块120的输入电压可以为通信设备的电池单元的输出电压,一般在3.6V-4.2V之间。
在本申请实施例中,通过采用第一供电电压和第二供电电压来为各放大单元供电,可以避免在供电模块中增加boost升压电路,以降低各供电模块的成本。在本申请实施例中,对放大单元的具体组成形式不做限定。需要说明的是的,其第一供电端口VCC1、第二供电端口VCC2的数量可根据放大单元所包括的功率放大器的数量来设定,具体的,其第一供电端口VCC1的数量可与第一放大单元131中功率放大器的数量相等,例如,可以为2个。
其中,放大模块130可以理解为内置多个放大单元的多频多模功率放大器(Multi-band multi-mode power amplifier,MMPA)。该放大模块130上配置的各个端口可以理解为多频多模放大器的射频引脚。
可选的,放大模块130还可以理解集成双工器的功率放大器模组(Power amplifier module integrated duplexer,PA Mid),也可以为内置低噪声放大器的PA Mid,也即,L-PA Mid。该放大模块130上配置的各个端口可以理解为PA Mid的射频引脚。
在本申请实施例中,通过设置第一供电模块110为第一放大单元131供电,以及设置第二供电模块120为第二放大单元132、第三放大单元133及第四放大单元134供电,可以使得第一放大单元131可分别与第二放大单元132、第三放大单元133、第四放大单元134中的一个同时工作,进而可以使放大模块130同时输出具有不同网络的两路信号,以支持对4G LTE信号和5G NR信号的放大,进而可以实现对4G LTE信号和5G NR信号的 双连接。
其中,第一路信号为经第一放大单元131放大处理后的信号,例如,可以为第一网络的低频信号。第二路信号为经第二放大单元132、第三放大单元133、第四放大单元134中的一个放大处理后的信号,例如,可以为第二网络的中频信号、第二网络的高频信号和第二网络的超高频信号中的一个。因此,第一路信号和第二路信号的组合可以满足4G LTE信号和5G NR信号之间的不同EN-DC组合的配置要求,如表2所示。
表2为4G LTE信号和5G NR信号之间的不同EN-DC组合配置表
4G LTE频段 5G NR频段 EN-DC
L M L+M
L H L+H
L UH L+UH
射频系统可被配置为支持第一网络的低频信号(例如,4G LTE的低频信号)与第二网络的目标信号(例如,5G NR的中频信号、高频信号或超高频)双连接的非独立组网工作模式,其中,目标信号为第二网络的中频信号、第一高频信号、第二高频信号中的一个。具体的,当第一放大单元131和第二放大单元132同时工作时,其满足L+M的EN-DC组合;当第一放大单元131和第三放大单元133同时工作时,其满足L+H的EN-DC组合;当第一放大单元131和第四放大单元134同时工作时,其满足L+UH的EN-DC组合。
本申请实施例的射频系统,包括第一供电模块、第二供电模块和放大模块,放大模块中的各放大单元可支持对不同频段的射频信号进行功率放大处理;其中,第一供电模块可为放大模块的第一放大单元供电,第二供电模块可为放大模块的第二放大单元、第三放大单元、第四放大单元供电,可以使得第一放大单元可分别与第二放大单元、第三放大单元、第四放大单元中的一个同时工作,进而可以使放大模块同时输出具有不同网络的两路信号,以支持对4G LTE信号和5G NR信号的同时放大,进而可以实现对4G LTE信号和5G NR信号的双发射功能,且不互相冲突,可以满足4G LTE信号和5G NR信号不同频段之间的EN-DC组合的配置要求,可以提高射频系统的集成度,降低成本。
另外,放大模块中的各放大单元可以采用功率合成的方式对各频段的射频信号进行功率合成处理,在满足输出功率等级的前提下可以降低各供电电压的电压值,进而可以避免在供电模块中内置升压电路,可进一步降低供电模块的成本。
如图2所示,在其中一个实施例中,射频系统还包括发射模块140。该发射模块140可被配置有第三供电端口VCC3。其中,第三供电端口VCC3与第一供电模块110连接,用于接收第一供电电压。具体的,发射模块140包括与第三供电端口VCC3连接的第五放大单元141。其中,第五放大单元141可用于在第一供电电压的作用下,对接收的第一网络、第二网络和第三网络的中频信号进行放大。其中,第三网络可以为2G网络,例如,全球移动通信(Global System for Mobile Communications,GSM)。其中,第三网络的中频信号可为2G高频信号,例如,可至少包括GSM1800、GSM1900等频段信号。
其中,第五放大单元141与前述实施例中的各放大单元的结构相同,可以包括第一个功率放大器,第五放大单元141也可以包括功率合成单元和多个功率放大器,以实现对多个功率放大器的输出功率的合成输出。在本申请实施例中,对第五放大单元141的具体结构不做限定,也不限于上述举例说明。
当射频系统包括发射模块140时,其射频系统可将第一放大单元131或第五放大单元141放大处理后的信号作为第一路信号。也就是说,第一路信号可以为经第一放大单元131输出的低频信号,例如,第一网络的低频信号;第一路信号可以为经第五放大单元141输出的中频信号,例如,第一网络的中频信号。需要说明的是,当射频系统包括发射模块140时,第二路信号也可以为前述实施例中提及的第二路信号。因此,第一路信号和第二 路信号的组合可以满足4G LTE信号和5G NR信号之间的不同EN-DC组合的配置要求,如表3所示。
表3为4G LTE信号和5G NR信号之间的不同EN-DC组合配置表
4G LTE频段 5G NR频段 EN-DC
L M L+M
L H L+H
L UH L+UH
M M M+M
M H M+H
M UH M+UH
射频系统还可被配置为支持第一网路的中频信号(例如,4G LTE的中频信号)与第二网络的目标信号(例如,5G NR的中频信号、高频信号或超高频)双连接的非独立组网工作模式,其中,目标信号为第二网络的中频信号、第一高频信号、第二高频信号中的一个。具体的,当第五放大单元141和第二放大单元132同时工作时,其满足M+M的EN-DC组合;当第五放大单元141和第三放大单元133同时工作时,其满足M+H的EN-DC组合;当第五放大单元141和第四放大单元134同时工作时,其满足M+UH的EN-DC组合。
本申请实施例,射频系统还包括发射模块140,该发射模块140中内置有用于支持第一网络、第二网络、第三网络的中频信号的第五放大单元141,其可以与放大模块130中的第一放大单元131共用同一供电模块,例如RF PMIC#1,还可以配置出M+M、M+H以及M+UH的EN-DC组合模式。本申请实施例提供的放大模块130中集成了四个放大单元,相对与传统技术中,可以避免采用外挂的多个功率放大模组来支持对不同网络的射频信号的双发射,可以节约成本(例如,可以降低功率放大模组的成本),提高器件的集成度(例如,PCB布局占用面积上减少35mm 2左右)。同时,还是以拓展射频系统在ENDC工作模式下的组合方式,可以实现4G低频频段和5G中频、高频、超高频的任一组合,同时,还可以实现4G中频频段和5G中频、高频、超高频的任一组合,以进一步提高了射频系统在ENDC模式下的通信性能。另外,第五放大单元141,还可以支持对2G高频信号的功率放大处理,可以拓展该射频系统的通信频段范围,以支持对语音通话的业务类型。
请继续参考图2,在其中一个实施例中,发射模块140还包括与第三供电端口VCC3连接的第六放大单元142。其中,第六放大单元142,用于在第一供电电压的作用下,对接收的第三网络的低频信号进行放大。具体的,第三网络的低频信号可以为2G网络的低频信号,例如可至少包括GSM850、GSM900等频段信号。
其中,第六放大单元142与前述实施例中的各放大单元的结构相同,可以包括第一个功率放大器,第六放大单元142也可以包括功率合成单元和多个功率放大器,以实现对多个功率放大器的输出功率的合成输出。在本申请实施例中,对第六放大单元142的具体结构不做限定,也不限于上述举例说明。
在本实施例中,通过在发射模块140中设置两个可用于支持对2G网络的高频信号和2G网络的低频信号分别进行功率放大处理的两个放大单元,可以实现对2G网络的通信需求,可以拓展该射频系统的通信频段范围,以支持对语音通话的业务类型。另外,第五放大单元141、第六放大单元142可以与放大模块130中的第一放大单元131共用同一供电模块,例如RF PMIC#1,也可以节约成本,简化射频系统的内部结构。
如图3所示,在其中一个实施例中,射频系统还包括第一开关单元154和多个滤波模块。具体的,射频系统包括分别与放大模块130连接的第一滤波模块151、第二滤波模块152和第三滤波模块153。其中,第一滤波模块151可用于对第一放大单元131输出的信 号进行滤波处理。第二滤波模块152可用于对第二放大单元132输出的信号进行滤波处理。第三滤波模块153可用于对第三放大单元133输出的信号进行滤波处理。
如图4所示,具体的,各个滤波模块中可包括一个或多个滤波器和/或双工器,以实现对各放大单元输出的各个频段射频信号的滤波处理。其中,若射频信号的通信制式为TDD制式,则该射频信号的传输路径上设置的滤波器件可以为对应频段的滤波器,若射频信号的通信制式为TDD制式,则该射频信号的传输路径上设置的滤波器件可以为对应频段的双工器。在本申请实施例中,各个滤波器、双工器仅允许预设频段的信号通过,且各个滤波器、双工器输出的射频信号的频段不同。
示例性的,为了便于说明,以第三滤波模块153为例进行说明。若第三放大单元133输出的第一高频信号包括B7(N7)、B40(N40)、B41(N41)这三个频段的信号,则第三滤波模块153可包括两个滤波器和一个双工器。具体的,一个滤波器仅允许B40(N40)频段的信号通过,并滤除其他频段的杂波,一个滤波器仅允许B41(N41)频段的信号通过,并滤除其他频段的杂波。双工器可实现B7(N7)的发射和接收的隔离,在发射和接收过程中均可仅允许B7(N7)频段的信号通过,并滤除其他频段的杂波。
示例性的,第一滤波模块151可实现对低频信号的滤波处理,以输出例如B5(N5)、B8(N8)、B28A(N28A)等频段的低频信号。第二滤波模块152可实现对中频信号的滤波处理,以输出例如B1(N1)、B3(N3)、B2(N2)、B34(N34)、B39(N39)等频段的低频信号。
需要说明的是,各个滤波模块所包括的滤波器、双工器不限于本申请实施例中的举例说明。其中,第一滤波模块151、第二滤波模块152、第三滤波模块153可根据对应放大单元输出的低频信号、中频信号以及第一高频信号的频段做适应性调整,以能够实现对各个频段的低频信号、中频信号以及第一高频信号进行滤波处理。
第一开关单元154的多个第一端分别与第一滤波模块151、第二滤波模块152、第三滤波模块153连接,第一开关单元154的第二端用于与第二天线ANT1连接。其中,第一开关单元154可用于选择导通任一滤波模块与第二天线ANT1的通路,进而可以导通个对应放大单元与第二天线ANT1间的发射通路,以将经该放大单元功率放放大处理后的射频信号经第二天线ANT1发射处理。具体的,若第一开关单元154导通第二天线ANT1与第一放大单元131之间的发射通路时,可以将低频信号经第二天线ANT1发射出去。进一步的,若第一开关单元154可与各滤波模块中的滤波器或双工器连接,若第一开关单元154导通了仅允许B5(N5)频段的信号通过的滤波器与第二天线ANT1之间的通路,则可将第一放大单元131输出的B5(N5)频段的低频信号经第二天线ANT1发射出去。
在其中一个实施例中,第一开关单元154可以为单刀多掷开关,也可以包括多个开关。其中,第一开关单元154的多个第一端能够与各滤波模块中的各滤波器、双工器连接,可以选择导通任一频段的低频信号、中频信号和第一高频信号传输至第二天线ANT1的通路。需要说明的是,在申请实施例中,对第一开关单元154的具体类型、数量以及组合形式不做进一步的限定。
在其中一个实施例中,第一开关单元154集成在发射模块140中。具体的,该发射模块140可配置有多个输入端口,多个输入端口能够分别与多个滤波模块中的滤波器、双工器一一对应连接。
在本实施例中,通过将第一开关单元154集成在发射模块140中,可以提高射频系统的集成度,进而减小射频系统的占用面积。
请继续参考图4,在其中一个实施例中,发射模块140中还包括第一滤波单元143和第二滤波单元144,其中,第一滤波单元143与第五放大单元141连接,用于对第五放大单元141输出的中频信号进行滤波处理。第二滤波单元144与第六放大单元142连接,用于对第六放大单元142输出的2G网络的低频信号进行滤波处理。具体的,第一滤波单元 143可以为线性陷波器,以抑制除中频信号以外的信号,进而实现对中频信号的滤波处理。第二滤波单元144也可以为线性陷波器以抑制除2G网络的低频信号以外的信号,进而实现对2G网络的低频信号的滤波处理。
需要说明的是,第一滤波单元143、第二滤波单元144还可以包括多个滤波器、双工器等,在本申请实施例中,第一滤波单元143和第二滤波单元144的不限于上述举例说明。
在本实施例中,通过将第一开关单元154、第一滤波单元143、第二滤波单元144集成在发射模块140中,可以进一步提高射频系统的集成度,进而减小射频系统的占用面积。
如图5所示,在其中一个实施例中,射频系统还包括第一接收模块161、第二接收模块162和第二开关单元163。其中,第一接收模块161,分别与第一滤波模块151、第二滤波模块152、第三滤波模块153连接,用于支持对第一网络和第二网络的低频、中频、第一高频段信号的主集接收处理。也即,第一接收模块161可以用于支持对第一网络的低频、中频、高频信号的主集接收,也可以用于支持对第二网络的低频、中频、高频信号的主集接收。在本申请实施例中,当射频系统工作在ENDC模式下时,第一接收模块161可以理解为射频系统的主集接收模块,以支持对第一网络的各频段信号的主集接收。
第二接收模块162,用于支持对第一网络、第二网络、第三网络的射频信号的接收处理。其中,第二接收模块162可用于支持对第一网络的低频、中频、高频信号的分集接收,也可以支持对第二网络的低频、中频、高频信号的分集接收,还可以支持对第三网络的接收。当射频系统工作在ENDC模式下式,第二接收模块162可以理解为射频系统的分集接收模块,以支持对第一网络各频段信号以及第二网络各频段信号的主集接收。
其中,第一接收模块161、第二接收模块162可以具体包括多个用于支持不同频段的低噪声放大器、以及多个射频开关等。示例性的,第一接收模块161、第二接收模块162可以为射频低噪声放大器模组(Low noise amplifier front end module,LFEM),还可以为带天线开关模组和滤波器的分集接收模组(Diversity Receive Module with Antenna Switch Module and SAW,DFEM),还可以为多频段低噪放大器(Multi band Low Noise Amplifier,MLNA)等。在本申请实施例中,对第一接收模块161、第二接收模块162的具体组成不做进一步的限定。
第二开关单元163,包括两个第一端和两个第二端。其中,第二开关单元163可以为DPDT开关。在本申请实施例中,第二开关单元163不限于上述举例说明,还可以为由多个开关组合而成。
在本申请实施例中,以第一开关单元154内置在发射模块140中为例进行说明。其中,发射模块140可被配有一天线端口,发射模块140的第一开关单元154的第二端与天线端口连接。第二开关单元163的两个第一端分别与第一接收模块161、发射模块140的天线端口连接,两个第二端用于分别与第二天线ANT1、第三天线ANT2连接。具体的,第二开关单元163可用选择导通第一接收模块161分别与第二天线ANT1、第三天线ANT2之间的接收通路,也可以用于选择导通第二接收模块162分别与第二天线ANT1、第三天线ANT2之间的接收通路。
如图6所示,可选的,当第一开关单元154外置于发射模块140时,第二开关单元163的三个第一端分别与发射模块140、第二接收模块162、第一开关单元154的第一端连接,两个第二端用于分别与第二天线ANT1、第三天线ANT2连接。其中,第二开关单元163可以为3PDT开关。在本申请实施例中,第二开关单元163不限于上述举例说明,还可以为由多个开关组合而成。
如图7所示,在其中一个实施例中,放大模块130还配置有用于与第一天线ANT0连接的收发端口ANT。第一天线ANT0可用于第二高频信号的发射和主集接收。放大模块130还包括低噪声放大器135和第三开关单元136。其中,低噪声放大器135,用于对接收的第二高频信号进行放大处理,以支持对第二高频信号的接收。第三开关单元136,分 别与第四放大单元134的输出端、低噪声放大器135的输入端、收发端口连接,用于选择导通第四放大单元134与收发端口之间的发射通路或低噪声放大器135与收发端口之间的接收通路。也即,第三开关单元136可用于选择导通第二高频信号的发射通路或接收通路。
当放大模块130中内置由低噪声放大器135和第三开关单元136时,该放大模块130还可以理解为收发模块,具体的,可支持对第一网络的低频、中频、高频信号的发射处理,以及第二网络的低频、中频、高频和超高频信号的发射处理,还可以支持对第二网络的超高频信号的主集接收。也即,在本申请实施例中,当射频系统工作在ENDC模式下式,放大模块130可以理解为射频系统的发射模块140以及第二网络的超高频信号的主集接收模块。
请继续参考图7,在其中一个实施例中,放大模块130中还集成有滤波单元137。该滤波单元137设置在第三开关单元136的第二端与收发端口ANT之间,用于对第二高频信号的滤波处理,以滤除第二高频信号以外的杂散波。
为了便于说明,本申请实施例基于如图7所示的射频系统,以B5+N77来阐述射频收发系统支持LTE(L band)+NR(UH band)ENDC的工作原理。其中,LTE B5作为5G的锚点,先行建立信令连接,B5+N77双连接的工作原理如下:
B5频段信号的发射:第一放大单元131→第一滤波模块151→第一开关单元154→第二开关单元163→第二天线ANT1。
B5频段信号的主集接收:第二天线ANT1→第二开关单元163→第一开关单元154→第一滤波模块151→第一接收模块161。
B5频段信号的分集接收:第三天线ANT2→第二开关单元163→第二接收模块162。
N77频段信号的发射:第四放大单元134→第三开关单元136→滤波单元137→收发端口→第一天线ANT0。
N77频段信号的主集接收:第一天线ANT0→收发端口→滤波单元137→第三开关单元136→低噪声放大器135。
N77频段信号的分集接收:第三天线ANT2→第二开关单元163→第二接收模块162。
在本实施例中,通过对放大模块130中的第一放大单元131以及第二放大单元132、第三放大单元133或第四放大单元134的分别供电,可以实现对第一网络的低频信号以及第二网络的中频、高频或超高频信号的同时发射,另外,通过设置第一接收模块161、第二接收模块162以及各开关单元,可以使射频系统工作在ENDC(例如,L+M、L+H、L+UH)的工作模式下,可以避免采用多个外挂的功率放大模组,进而可提高射频系统的集成度,以及降低成本,同时,还可以简化射频系统中的对各开关的控制逻辑,减少了射频通路中的插损,提高了射频系统的通信性能。
如图8所示,在其中一个实施例中,射频系统还包括双工器单元170。其中,双工器单元170的多个第一端分别与发射模块140连接,双工器的第二端与第一接收模块161连接,双工器的第三端与第四天线ANT3连接。具体的,发射模块140输出的射频信号可经双工器单元170传输至第四天线ANT3。
为了便于说明,本申请实施例基于如图8所示的射频系统,以B3+N41来阐述射频收发系统支持LTE(M band)+NR(M band)ENDC的工作原理。其中,LTE B3作为5G的锚点,先行建立信令连接,B3+N66双连接的工作原理如下:
B3频段信号的发射:第五放大单元141→双工器单元170→第四天线ANT3。
B3频段信号的主集接收:第四天线ANT3→双工器单元170→第一接收模块161。
B3频段信号的分集接收:第三天线ANT2→第二开关单元163→第二接收模块162。
N66频段信号的发射:第二放大单元132→第二滤波模块152→第一开关单元154→第二开关单元163→第二天线ANT1。
N66频段信号的主集接收:第二天线ANT1→第二开关单元163→第一开关单元154 →第二滤波模块152→第一接收模块161。
N66频段信号的分集接收:第三天线ANT2→第二开关单元163→第二接收模块162。
可选的,B3频段的收发路径与N66频段的收发路径还可以对换,具体的如下:
B3频段信号的发射:第二放大单元132→第二滤波模块152→第一开关单元154→第二开关单元163→第二天线ANT1。
B3频段信号的主集接收:第二天线ANT1→第二开关单元163→第一开关单元154→第二滤波模块152→第一接收模块161。
B3频段信号的分集接收:第三天线ANT2→第二开关单元163→第二接收模块162。
N66频段信号的发射:第五放大单元141→双工器单元170→第四天线ANT3。
N66频段信号的主集接收:第四天线ANT3→双工器单元170→第一接收模块161。
N66频段信号的分集接收:第三天线ANT2→第二开关单元163→第二接收模块162。
在本申请实施例中,通过设置发射模块140,其中发射模块140中的第五放大单元141与放大模块130中的第二放大单元132、第三放大单元133以及第四放大单元134分开供电,可以实现对第一网络的中频信号以及第二网络的中频、高频或超高频信号的同时发射,另外,通过设置第一接收模块161、第二接收模块162以及各开关单元,可以使射频系统工作在ENDC(例如,M+M、M+H、M+UH)的工作模式下,可以避免采用多个外挂的功率放大模组,进而可提高射频系统的集成度,以及降低成本,同时,还可以简化了射频系统中的对各开关的控制逻辑,减少了射频通路中的插损,提高了射频系统的通信性能。
如图9所示,在其中一个实施例中,放大模块130还被配置有三个轮射端口,三个轮射端口分别用于与第五天线、第六天线、第七天线连接;其中,放大模块130还包括第四开关单元138。其中,第四开关单元138的第一端与第三开关单元136的第二端连接,第四开关单元138的四个第二端分别与收发端口、三个轮射端口一一对应连接,用于选择导通第四放大单元134分别与收发端口、三个轮射端口之间的发射通路,以支持对第二高频信号在第一天线ANT0、第五天线、第六天线、第七天线之间的轮射功能。
具体的,通过给放大模块130配置三个轮射端口SRS1、SRS2、SRS3,通过第四开关单元138的切换控制,第二高频信号可以在收发端口以及三个轮射端口SRS1、SRS2、SRS3之间的轮流发射,进而可以支持第二高频信号在第一天线ANT0、第五天线ANT4、第六天线ANT5、第七天线ANT6之间的轮射功能,也即,SRS的1T4R功能,进而可以提升射频系统收发第二高频信号的通信性能。
如图10所示,在其中一个实施例中,在如图9的射频系统的基础上,射频系统还包括:三个射频开关182和三个第三接收模块181。其中,第三接收模块181用于支持对第二高频信号的接收处理。三个射频开关182的一第一端分别与三个轮射端口SRS1、SRS2、SRS3一一对应连接,三个射频开关182的另一第一端分别与三个第三接收模块181一一对应连接,三个射频开关182的第二端分别与第五天线ANT4、第六天线ANT5、第七天线ANT6一一对应连接。
通过控制射频开关182的导通状态,可以使得三个第三接收模块181可以同时接收第五天线ANT4、第六天线ANT5、第七天线ANT6接收的第二高频信号,以及还可以控制第三开关单元136的导通状态,使得放大模块130中的低噪声放大器135也可以实现对第二高频信号的接收放大处理,进而可以同时支持四路第二高频信号的接收,也即,可以支持对第二高频信号的4*4MIMO功能,可以提高射频系统对第二网络的超高频信号的接收和发射性能。
如图11所示,在其中一个实施例中,射频系统还包括:第一MIMO接收模块191和第二MIMO接收模块192。具体的,第一MIMO接收模块191,与第八天线ANT7连接,用于支持对第一网络和第二网络的低频、中频、第一高频段信号的接收处理;第二MIMO接收模块192,与第九天线ANT8连接,用于支持对第一网络和第二网络的低频、中频、 第一高频段信号的接收处理。
其中,第一MIMO接收模块191、第二MIMO接收模块192可以与前述实施例中的第一接收模块161、第二接收模块162的内部结构相同,也可以不同。
当射频系统包快第一接收模块161、第二接收模块162、第一MIMO接收模块191以及第二MIMO接收模块192时,则该射频系统可以支持对第一网络的低频、中频、高频信号的四路同时接收,以及还可以支持对第二网络的低频、中频、高频信号的四路同时接收,使得该射频系统可以支持对第一网络、第二网络各个频段的4*4MIMO功能,可以提高射频系统对第一网络、第二网络的各频段信号的接收和发射性能。
在其中一个实施例中,第八天线ANT7、第九天线ANT8还可以与第五天线ANT4、第六天线ANT5或第七天线ANT6复用。也即,可通过在射频系统中增加一开关模块,用于选择导通第一MIMO接收模块191分别与第五天线ANT4、第六天线ANT5、第七天线ANT6中任两个天线之间的接收通路,以及选择导通第二MIMO接收模块192分别与第五天线ANT4、第六天线ANT5、第七天线ANT6中任两个天线之间的接收通路。
请继续参考图11,射频系统还包括射频收发器100,射频收发器100可分别与上述实施例中的放大模块130、发射模块140、第一接收模块161、第二接收模块162、第三接收模块181、第一MIMO接收模块191、第二MIMO接收模块192连接,可用于输出第一网络、第二网络、第三网络的各频段的射频信号。
在本申请实施例中,射频系统还可通过设置多个天线以及多个MIMO接收模块,可以支持对第一网络的各频段信号的4*4MIMO功能,也可以支持对第二网络的各频段信号的4*4MIMO功能,可以提高射频系统对第一网络、第二网络的各频段信号的接收和发射性能。
如图12所示,进一步的,以通信设备为手机10为例进行说明,具体的,如图12所示,该手机10可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理电路22、外围设备接口23、射频系统24、输入/输出(I/O)子系统26。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图12所示的手机10并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图12中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成电路。
存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作系统211、通信模块(或指令集)212、全球定位系统(GPS)模块(或指令集)213等。
处理电路22和其他控制电路(诸如射频系统24中的控制电路)可以用于控制手机10的操作。该处理电路22可以包括一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
处理电路22可以被配置为实现控制手机10中的天线的使用的控制算法。处理电路22还可以发出用于控制射频系统24中各开关的控制命令等。
I/O子系统26将手机10上的输入/输出外围设备诸如键区和其他输入控制设备耦接到外围设备接口23。I/O子系统26任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据端口等。示例性的,用户可以通过经由I/O子系统26供给命令来控制手机10的操作,并且可以使用I/O子系统26的输出资源来从手机10接收状态信息和其他输出。例如,用户按压按钮261即可启动手机或者关闭手机。
射频系统24可以为前述任一实施例中的射频系统,其中,射频系统24还可用于处理多个不同频段的射频信号。例如用于接收1575MHz的卫星定位信号的卫星定位射频电路、 用于处理IEEE802.11通信的2.4GHz和5GHz频段的WiFi和蓝牙收发射频电路、用于处理蜂窝电话频段(诸如850MHz、900MHz、1800MHz、1900MHz、2100MHz的频段、和Sub-6G频段)的无线通信的蜂窝电话收发射频电路。其中,Sub-6G频段可具体包括2.496GHz-6GHz频段,3.3GHz-6GHz频段。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (22)

  1. 一种射频系统,包括:
    第一供电模块,用于提供第一供电电压;
    第二供电模块,用于提供第二供电电压;
    放大模块,配置有用于与所述第一供电模块连接的第一供电端口和用于与所述第二供电模块连接的第二供电端口,其中,所述放大模块包括:
    第一放大单元,与所述第一供电端口连接,用于在所述第一供电电压的作用下,对接收的第一网络和第二网络的低频信号进行放大;
    第二放大单元,与所述第二供电端口连接,用于在所述第二供电电压的作用下,对接收的第一网络和第二网络的中频信号进行放大;
    第三放大单元,与所述第二供电端口连接,用于在所述第二供电电压的作用下,对接收的第一网络和第二网络的第一高频信号进行放大;
    第四放大单元,与所述第二供电端口连接,用于在所述第二供电电压的作用下,对接收的第二网络的第二高频信号进行放大;其中,所述第二高频信号与所述第一高频信号的频率不同;
    其中,所述射频系统用于同时输出两路网络不同的信号,其中第一路信号为经所述第一放大单元放大处理后的信号,第二路信号为经所述第二放大单元、第三放大单元和第四放大单元中的一个放大处理后的信号。
  2. 根据权利要求1所述的射频系统,所述射频系统还包括:
    发射模块,配置有用于与所述第一供电模块连接的第三供电端口,所述发射模块包括:
    第五放大单元,与所述第三供电端口连接,用于在所述第一供电电压的作用下,对接收的第一网络、第二网络和第三网络的中频信号进行放大;其中,
    所述射频系统还用于将所述第一放大单元或第五放大单元放大处理后的信号作为所述第一路信号。
  3. 根据权利要求2所述的射频系统,所述发射模块还包括:
    第六放大单元,与所述第三供电端口连接,用于在所述第一供电电压的作用下,对接收的第三网络的低频信号进行放大。
  4. 根据权利要求2所述的射频系统,所述放大模块还配置有用于与第一天线连接的发射端口;所述射频系统还包括:
    第一滤波模块,与所述放大模块连接,用于对所述第一放大单元输出的信号进行滤波处理;
    第二滤波模块,与所述放大模块连接,用于对所述第二放大单元输出的信号进行滤波处理;
    第三滤波模块,与所述放大模块连接,用于对所述第三放大单元输出的信号进行滤波处理;
    第一开关单元,所述第一开关单元的多个第一端分别与所述第一滤波模块、所述第二滤波模块、所述第三滤波模块连接,所述第一开关单元的第二端用于与第二天线连接。
  5. 根据权利要求4所述的射频系统,所述第一开关单元集成在所述发射模块中,所述第一开关单元的多个第一端分别与所述第一滤波模块、所述第二滤波模块、所述第三滤波模块、所述第五放大单元、所述第六放大单元连接,所述第一开关单元的第二端与所述发射端口连接。
  6. 根据权利要求5所述的射频系统,所述发射模块还包括:
    第一滤波单元,所述第一滤波单元与所述第五放大单元连接,用于对所述第五放大单元输出的中频信号进行滤波处理;
    第二滤波单元,所述第二滤波单元与所述第六放大单元连接,用于对所述第六放大单 元输出的2G网络的低频信号进行滤波处理;
    所述第一开关单元的多个第一端分别与所述第一滤波模块、第二滤波模块、第三滤波模块、所述第一滤波单元、所述第一滤波单元连接,所述第一开关单元的第二端与所述发射端口连接。
  7. 根据权利要求5所述的射频系统,所述射频系统还包括:
    第一接收模块,分别与所述第一滤波模块、第二滤波模块、第三滤波模块连接,用于支持对所述第一网络和第二网络的低频、中频、第一高频段信号的主集接收处理;
    第二接收模块,用于支持对第一网络、第二网络、第三网络的射频信号的接收处理;
    第二开关单元,包括两个第一端和两个第二端,其中,两个第一端分别与所述第一接收模块、所述发射模块连接,两个第二端用于分别与所述第二天线、第三天线连接。
  8. 根据权利要求7所述的射频系统,所述射频系统还包括:
    双工器单元,所述双工器单元的多个第一端分别与所述发射模块连接,所述双工器单元的第二端与所述第一接收模块连接,所述双工器单元的第三端与第四天线连接。
  9. 根据权利要求1所述的射频系统,所述放大模块还配置有用于与第一天线连接的发射端口,所述放大模块还包括:
    低噪声放大器,用于对接收的所述第二高频信号进行放大处理,以支持对所述第二高频信号的接收;
    第三开关单元,分别与所述第四放大单元的输出端、所述低噪声放大器的输入端、收发端口连接,用于选择导通所述第四放大单元与所述收发端口之间的发射通路或所述低噪声放大器与所述收发端口之间的接收通路。
  10. 根据权利要求9所述的射频系统,所述放大模块还包括:
    滤波单元,所述滤波单元设置在所述第三开关单元的第二端与所述收发端口之间,用于对第二网络的高频信号的进行滤波处理。
  11. 根据权利要求10所述的射频系统,所述放大模块还被配置有三个轮射端口,三个所述轮射端口分别用于与第五天线、第六天线、第七天线连接;其中,所述放大模块还包括:
    第四开关单元,所述第四开关单元的第一端与所述第滤波单元连接,所述第四开关单元的四个第二端分别与收发端口、三个轮射端口一一对应连接,用于选择导通所述第四放大单元分别与收发端口、三个轮射端口之间的发射通路,以支持对所述第二高频信号在所述第一天线、第五天线、第六天线、第七天线之间的轮射功能。
  12. 根据权利要求11所述的射频系统,所述射频系统还包括:三个射频开关和三个第三接收模块,其中,所述第三接收模块用于支持对所述第二高频信号的接收处理;
    三个射频开关的一第一端分别与三个所述轮射端口一一对应连接,三个射频开关的另一第一端分别与三个所述第三接收模块一一对应连接,三个射频开关的第二端分别与所述第五天线、第六天线、第七天线一一对应连接。
  13. 根据权利要求12所述的射频系统,所述射频系统还包括:
    第一MIMO接收模块,与第八天线连接,用于支持对所述第一网络和第二网络的低频、中频、第一高频段信号的接收处理;
    第二MIMO接收模块,与第九天线连接,用于支持对所述第一网络和第二网络的低频、中频、第一高频段信号的接收处理。
  14. 根据权利要求2所述的射频系统,所述射频系统被配置为支持5G NR的非独立组网工作模式。
  15. 根据权利要求14所述的射频系统,所述射频系统被配置为支持所述第一网路的低频信号与所述第二网络的目标信号双连接的非独立组网工作模式,其中,所述目标信号为第二网络的中频信号、第一高频信号、第二高频信号中的一个。
  16. 根据权利要求15所述的射频系统,所述射频系统被配置为支持所述第一网路的中频信号与所述第二网络的目标信号双连接的非独立组网工作模式。
  17. 根据权利要求1所述的射频系统,其中,所述第一供电模块和所述第二供电模块均包括电源管理芯片,其中,所述电源管理芯片的输出电压小于所述电源管理芯片的输入电压,或,所述第一供电模块和所述第二供电模块均包括降压电源。
  18. 根据权利要求17所述的射频系统,所述第一供电电压与所述第二供电电压均小于或等于3.6V。
  19. 根据权利要求1所述的射频系统,所述放大模块为多频多模放大器。
  20. 根据权利要求1所述的射频系统,所述射频系统还包括:
    射频收发器,与放大模块连接,用于输出第一网络和第二网络的各频段的射频信号。
  21. 根据权利要求1所述的射频系统,所述第一网络为4G网络,所述第二网络为5G网络。
  22. 一种通信设备,包括:如权利要求1至21中任一项所述的射频系统。
PCT/CN2022/106438 2021-08-12 2022-07-19 射频系统和通信设备 WO2023016198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110923592.4 2021-08-12
CN202110923592.4A CN113659995B (zh) 2021-08-12 2021-08-12 射频系统和通信设备

Publications (1)

Publication Number Publication Date
WO2023016198A1 true WO2023016198A1 (zh) 2023-02-16

Family

ID=78491484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106438 WO2023016198A1 (zh) 2021-08-12 2022-07-19 射频系统和通信设备

Country Status (2)

Country Link
CN (1) CN113659995B (zh)
WO (1) WO2023016198A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659995B (zh) * 2021-08-12 2022-12-13 Oppo广东移动通信有限公司 射频系统和通信设备
CN113949400B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN216721326U (zh) * 2022-01-28 2022-06-10 Oppo广东移动通信有限公司 射频前端模组和射频系统
CN216721325U (zh) * 2022-01-28 2022-06-10 Oppo广东移动通信有限公司 射频模组和通信设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365359A (zh) * 2019-07-19 2019-10-22 Oppo广东移动通信有限公司 射频前端装置和电子设备
CN110401467A (zh) * 2019-07-19 2019-11-01 Oppo广东移动通信有限公司 射频前端装置和电子设备
CN111049482A (zh) * 2019-12-17 2020-04-21 锐石创芯(重庆)科技有限公司 一种支持非独立组网的5g功率放大器架构
CN111342862A (zh) * 2019-12-17 2020-06-26 锐石创芯(重庆)科技有限公司 支持lte/nr双连接的射频前端模组及移动终端
US20210105729A1 (en) * 2018-04-12 2021-04-08 Samsung Electronics Co., Ltd. Electronic device and bandwidth adaptation-based power control method in electronic device
WO2021129781A1 (zh) * 2019-12-26 2021-07-01 华为技术有限公司 无线通信系统、供电系统及终端设备
US20210226672A1 (en) * 2018-09-21 2021-07-22 Lg Electronics Inc. Multi-transmission system structure and mobile terminal employing same
CN113659995A (zh) * 2021-08-12 2021-11-16 Oppo广东移动通信有限公司 射频系统和通信设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8296818B2 (en) * 2010-05-13 2012-10-23 Commscope, Inc. Of North Carolina Distribution and amplification systems that automatically terminate to a matched termination in response to power interruptions and related methods
US9998200B2 (en) * 2013-06-20 2018-06-12 Aviat U.S., Inc. Systems and methods for a fronthaul network
US9685911B2 (en) * 2014-09-09 2017-06-20 Murata Manufacturing Co., Ltd. Power amplifier module
JP2017118338A (ja) * 2015-12-24 2017-06-29 株式会社村田製作所 電力増幅モジュール
JP2018033121A (ja) * 2016-04-19 2018-03-01 株式会社村田製作所 通信ユニット
CN112187297B (zh) * 2020-09-27 2022-08-09 Oppo广东移动通信有限公司 射频收发系统和通信设备
CN112436845B (zh) * 2020-12-02 2022-05-13 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN112583442B (zh) * 2020-12-07 2022-08-09 Oppo广东移动通信有限公司 射频系统和通信设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105729A1 (en) * 2018-04-12 2021-04-08 Samsung Electronics Co., Ltd. Electronic device and bandwidth adaptation-based power control method in electronic device
US20210226672A1 (en) * 2018-09-21 2021-07-22 Lg Electronics Inc. Multi-transmission system structure and mobile terminal employing same
CN110365359A (zh) * 2019-07-19 2019-10-22 Oppo广东移动通信有限公司 射频前端装置和电子设备
CN110401467A (zh) * 2019-07-19 2019-11-01 Oppo广东移动通信有限公司 射频前端装置和电子设备
CN111049482A (zh) * 2019-12-17 2020-04-21 锐石创芯(重庆)科技有限公司 一种支持非独立组网的5g功率放大器架构
CN111342862A (zh) * 2019-12-17 2020-06-26 锐石创芯(重庆)科技有限公司 支持lte/nr双连接的射频前端模组及移动终端
WO2021129781A1 (zh) * 2019-12-26 2021-07-01 华为技术有限公司 无线通信系统、供电系统及终端设备
CN113659995A (zh) * 2021-08-12 2021-11-16 Oppo广东移动通信有限公司 射频系统和通信设备

Also Published As

Publication number Publication date
CN113659995A (zh) 2021-11-16
CN113659995B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2023016198A1 (zh) 射频系统和通信设备
WO2023016199A1 (zh) 射频系统和通信设备
CN113676209B (zh) 放大器模组、射频系统及通信设备
CN113676208B (zh) 放大器模组、射频系统及通信设备
CN113676213B (zh) 放大器模组、射频系统及通信设备
CN113676211B (zh) 放大器模组、射频系统及通信设备
CN113676212B (zh) 放大器模组、射频系统及通信设备
CN113676207B (zh) 发射模组、射频系统及通信设备
CN216721325U (zh) 射频模组和通信设备
WO2023016171A1 (zh) 发射模组、射频系统及通信设备
CN113676191B (zh) 发射模组、射频系统及通信设备
WO2023016185A1 (zh) 发射模组、射频系统及通信设备
CN217406537U (zh) 射频系统和通信设备
CN114142886B (zh) 射频系统及通信设备
WO2023142765A1 (zh) 射频前端模组和射频系统
WO2023142766A1 (zh) 射频前端模组和射频系统
CN114124139A (zh) 射频系统及通信设备
CN215871405U (zh) 射频系统和通信设备
WO2023016216A1 (zh) 放大器模组、射频系统及通信设备
WO2023016217A1 (zh) 放大器模组、射频系统及通信设备
CN114124138A (zh) 射频系统和通信设备
CN216490479U (zh) 射频系统和通信设备
CN216721321U (zh) 射频前端器件、射频系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE