WO2022247510A1 - 射频系统、天线切换方法和通信设备 - Google Patents

射频系统、天线切换方法和通信设备 Download PDF

Info

Publication number
WO2022247510A1
WO2022247510A1 PCT/CN2022/086796 CN2022086796W WO2022247510A1 WO 2022247510 A1 WO2022247510 A1 WO 2022247510A1 CN 2022086796 W CN2022086796 W CN 2022086796W WO 2022247510 A1 WO2022247510 A1 WO 2022247510A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
path
antenna
transceiver
target
Prior art date
Application number
PCT/CN2022/086796
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP22810243.0A priority Critical patent/EP4344072A1/en
Publication of WO2022247510A1 publication Critical patent/WO2022247510A1/zh
Priority to US18/518,191 priority patent/US20240106491A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of antennas, and in particular to a radio frequency system, an antenna switching method and communication equipment.
  • a dual connection mode of 4G signal and 5G signal is usually adopted in a Non-Standalone (NSA) mode.
  • NSA Non-Standalone
  • the antenna switching in the existing RF system is usually implemented in the form of a hardware switch. On the one hand, it will bring a large insertion loss to the RF system, and on the other hand, it is impossible to decouple the RF path on the hardware, thus affecting the The communication performance of the system in each communication mode.
  • a radio frequency system an antenna switching method, and a communication device are provided.
  • a radio frequency system comprising:
  • a radio frequency transceiver circuit connected to the radio frequency transceiver, the radio frequency transceiver circuit includes a first transceiver path, a second transceiver path, a first receive path, and a second receive path, the first transceiver path and the first receive path
  • the path is configured to switchably connect the first antenna and the third antenna
  • the second transceiving path and the second receiving path are configured to switchably connect the second antenna and the fourth antenna
  • the first transceiving path and the second transceiver path are independent of each other;
  • the radio frequency transceiver is configured to configure a target transceiving channel according to radio frequency signals received by the first transceiving channel and the second transceiving channel, and configure the target transceiving channel to be used for transmitting and receiving target radio frequency signals, wherein the The target transceiving path is one of the first transceiving path and the second transceiving path.
  • An antenna switching method applied to a radio frequency system comprising:
  • the radio frequency transceiver configures the target transceiver path according to the radio frequency signals received by the first transceiver path and the second transceiver path in the radio frequency transceiver circuit;
  • the radio frequency transceiver configures the target transceiving path to transmit and receive target radio frequency signals; wherein, the target transceiving path is one of the first transceiving path and the second transceiving path; wherein, the first transceiving path and the The second transceiving paths are independent of each other, and the first transceiving path is configured to be switchably connected to the first antenna and the third antenna, and the second transceiving path is configured to be switchably connected to the second antenna and the fourth antenna .
  • a communication device includes the above-mentioned radio frequency system.
  • a communication device comprising:
  • a radio frequency transceiver circuit connected to the radio frequency transceiver, the radio frequency transceiver circuit includes a first transceiver module, a second transceiver module, a first receiving module, and a second receiving module;
  • a first switch unit the first switch unit is used to switchably connect the first transceiver module and the first receiver module to the first antenna and the third antenna;
  • a second switch unit configured to switchably connect the second transceiver module and the second receiver module to the second antenna and the fourth antenna
  • the radio frequency transceiver is configured to configure one of the first transceiver module and the second transceiver module as a target transceiver module according to the radio frequency signals received by the first transceiver module and the second transceiver module, so as to The target radio frequency signal is sent and received by the target transceiver module.
  • FIG. 1 is one of the framework schematic diagrams of a radio frequency system in an embodiment
  • Fig. 2 is the second schematic diagram of the framework of the radio frequency system in an embodiment
  • FIG. 3 is a schematic diagram of distribution of four antennas in a communication device in an embodiment
  • Fig. 4 is a third schematic diagram of the framework of the radio frequency system in an embodiment
  • FIG. 5 is a fourth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 6 is a fifth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 7 is a sixth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 8 is a seventh schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 9 is the eighth schematic diagram of the framework of the radio frequency system in an embodiment.
  • Fig. 10 is a ninth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 11 is a tenth schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 12 is the eleventh schematic diagram of the framework of the radio frequency system in an embodiment
  • Fig. 13 is a schematic diagram of the distribution of the first switch unit and the second switch unit in the communication device in an embodiment
  • Fig. 14 is a flowchart of an antenna switching method in an embodiment
  • Fig. 15 is a schematic structural diagram of a communication device in an embodiment.
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first antenna could be termed a second antenna, and, similarly, a second antenna could be termed a first antenna, without departing from the scope of the present application.
  • Both the first antenna and the second antenna are antennas, but they are not the same antenna.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • severeal means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the radio frequency system involved in the embodiments of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A user equipment (User Equipment, UE) (for example, a mobile phone), a mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • an embodiment of the present application provides a radio frequency system.
  • the radio frequency system provided by the embodiment of the present application can work in non-standalone networking (Non-Standalone, NSA) working mode, independent networking mode (Standalone, SA) working mode (or called NR SA working mode), long-term evolution network (long term evolution, LTE) working mode (or called LTE only working mode).
  • Non-Standalone, SA independent networking mode
  • SA independent networking mode
  • LTE long-term evolution network
  • LTE long term evolution only working mode
  • the non-independent networking working mode includes any one of EN-DC, NE-DC and NGEN-DC architectures.
  • the EN-DC architecture is used as an example for illustration.
  • E stands for Evolved-Universal Mobile Telecommunications System Terrestrial Radio Access (E-UTRA), representing 4G wireless access of mobile terminals
  • N stands for New Radio (NR), representing mobile The 5G wireless connection of the terminal
  • DC stands for Dual Connectivity, representing the dual connection of 4G and 5G.
  • E-UTRA Evolved-Universal Mobile Telecommunications System Terrestrial Radio Access
  • NR New Radio
  • DC Dual Connectivity, representing the dual connection of 4G and 5G.
  • the radio frequency system can realize dual connections with 4G base stations and 5G base stations at the same time.
  • the EN-DC combination is mainly shown in Table 1, but not limited to the combination form shown in Table 1.
  • EN-DC combinations supported by the radio frequency system provided in the embodiment of the present application are not limited to the combinations shown in Table 1.
  • the radio frequency system may also be in the SA working mode or the LTE working mode.
  • the radio frequency system when in the SA working mode, the radio frequency system can only realize the single connection of the 5G base station, that is, to realize the transmission and reception of the 5G NR signal; when in the LTE working mode, the radio frequency system can only realize the single connection of the 4G base station , that is, to realize the transmission and reception of 4G LTE signals.
  • the radio frequency system includes: a radio frequency transceiver 10, a radio frequency transceiver circuit 20, a first antenna ANT0, a second antenna ANT1, a third antenna ANT2, a fourth Antenna ANT3.
  • the first antenna ANT0 , the second antenna ANT1 , the third antenna ANT2 and the fourth antenna ANT3 can all correspondingly support the sending and receiving of radio frequency signals of LTE and NR low, medium and high frequency bands.
  • the antennas may be formed using any suitable type of antenna.
  • each antenna may include an antenna with a resonating element formed from the following antenna structures: array antenna structure, loop antenna structure, patch antenna structure, slot antenna structure, helical antenna structure, strip antenna, monopole antenna, dipole antenna structure, At least one of the pole antennas, etc.
  • Different types of antennas can be used for different frequency bands and combinations of frequency bands.
  • the types of the first antenna ANT0 , the second antenna ANT1 , the third antenna ANT2 and the fourth antenna ANT3 are not further limited.
  • the RF transceiver 10 may be configured with multiple ports connected to the RF transceiver circuit 20 .
  • the radio frequency transceiving circuit 20 includes a first transceiving path TRX0 , a second transceiving path TRX1 , a first receiving path RX2 and a second receiving path RX3 .
  • the first antenna ANT0 and the third antenna ANT2 are respectively connected to some ports of the radio frequency transceiver 10 via the radio frequency transceiver circuit 20 .
  • the first transceiving path TRX0 and the first receiving path RX2 are configured to switchably connect the first antenna ANT0 and the third antenna ANT2 .
  • the second antenna ANT1 and the fourth antenna ANT3 are respectively connected to some ports of the radio frequency transceiver 10 via the radio frequency transceiver circuit 20.
  • the second transceiving channel TRX1 and the second receiving channel RX3 are configured to be switchably connected to the second antenna ANT1 and the fourth antenna ANT3 .
  • the first transceiving channel TRX0 and the second transceiving channel TRX1 are independent of each other. Mutual independence can be understood as that the first transceiver path TRX0 and the second transceiver path TRX1 are mutually independent in hardware. That is, there is no hardware interconnection or coupling between the first transceiving channel TRX0 and the second transceiving channel TRX1 .
  • the first transceiving channel TRX0 can only be connected to the first antenna ANT0 and the third antenna ANT2 , but cannot be connected to the second antenna ANT1 and the fourth antenna ANT4 .
  • the second transceiving channel TRX1 can only be connected to the second antenna ANT1 and the fourth antenna ANT4 , but not to the first antenna ANT0 and the third antenna ANT2 .
  • the radio frequency transceiver 10 stores configuration information of the first transceiving path TRX0 , the second transceiving path TRX1 , the first receiving path RX2 , and the second receiving path RX3 .
  • the configuration information may include the identification information of the antenna, the identification information of the port of the radio frequency transceiver 10, the control of each switch on the first transceiver path TRX0, the second transceiver path TRX1, the first reception path RX2, and the second reception path RX3 logical information, etc.
  • the radio frequency transceiver 10 may pre-store default receiving paths, default transmitting paths, etc. of the radio frequency system in different working modes.
  • the default receiving path and the default transmitting path may be understood as a priority path or an optimal path for signal transmission of the radio frequency system in an initial state. It can be understood that the above configuration information can also be stored in a storage device independent of the radio frequency transceiver 10, and can be read by the radio frequency transceiver 10 when needed. The above configuration information may also be stored in the radio frequency transceiver 10 . In the embodiment of the present application, no further limitation is made on the storage location of the configuration information.
  • the radio frequency transceiver 10 is used to configure the target transceiving path according to the radio frequency signals received by the first transceiving path TRX0 and the second transceiving path TRX1, and configure the target transceiving path for transmitting and receiving the target radio frequency signal, wherein the target transceiving path is the first transceiving path One of the channel TRX0 and the second transceiving channel TRX1.
  • the radio frequency signal may include a first radio frequency signal of the first communication standard and a second radio frequency signal of the second communication standard.
  • the first radio frequency signal may include 4G LTE signals of multiple frequency bands
  • the second radio frequency signal may include 5G NR signals of multiple frequency bands.
  • the communication standards of the radio frequency signals that can be transmitted and received by the first transceiving channel TRX0 and the second transceiving channel TRX1 are different.
  • its RF signal may include 5G NR signals in multiple frequency bands, and its corresponding target RF signal is also a 5G NR signal;
  • its RF signal includes multiple
  • the corresponding target RF signals are also 4G LTE signals;
  • its RF signals include 4G LTE signals in multiple frequency bands and 5G NR signals in multiple frequency bands.
  • the radio frequency transceiver can configure the target transceiving channel according to the signal strength of the radio frequency signals received by the first transceiving channel TRX0 and the second transceiving channel TRX1 .
  • a transceiving path with a high signal strength may be used as a target transceiving path, and the target transceiving path may be configured to transmit and receive a target radio frequency signal.
  • signal strength may include, but is not limited to, obtained by detecting network information of radio frequency signals, where network information may include raw and processed information associated with radio performance metrics of received antenna signals, such as received power, transmitted Power, Reference Signal Receiving Power (RSRP), Reference Signal Reception Quality (Reference signal reception quality, RSRQ), Received Signal Strength Indicator (RSSI), Signal to Noise Ratio, SNR), rank of MIMO channel matrix (Rank), carrier to interference plus noise ratio (Carrier to Interference plus Noise Ratio, RS-CINR), frame bit error rate, bit error rate, etc.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Reception Quality
  • RSSI Received Signal Strength Indicator
  • SNR Signal to Noise Ratio
  • rank of MIMO channel matrix Rank
  • Carrier to Interference plus Noise Ratio Carrier to Interference plus Noise Ratio, RS-CINR
  • the radio frequency system includes a radio frequency transceiver 10 and a radio frequency transceiver circuit 20, wherein the first transceiver path TRX0 and the second transceiver path TRX1 in the radio frequency transceiver circuit 20 are independent of each other to achieve decoupling and facilitate flexible layout.
  • the first transceiver path TRX0 and the second transceiver path TRX1 can be placed close to the corresponding antenna positions to reduce the link loss on the first transceiver path TRX0 and the second transceiver path TRX1, thereby improving the communication performance of the radio frequency system .
  • the radio frequency system further includes a first switch unit 310 and a second switch unit 320 that are independent of each other.
  • the first transceiver path TRX0 and the first reception path RX2 are switchably connected to the first antenna ANT0 and the third antenna ANT2 through the first switch unit 310; the second transceiver path TRX1 and the second reception path RX3 are switchable through the second switch unit 320
  • the ground is connected to the second antenna ANT1 and the fourth antenna ANT3.
  • both the first switch unit 310 and the second switch unit 320 may be DPDT switches.
  • the two first ends of the first switch unit 310 may be respectively connected to the first transceiving path TRX0 and the first receiving path RX2, and the two second ends of the first switch unit 310 are respectively connected to the first antenna ANT0 and the first antenna ANT0.
  • the three antennas ANT2 are connected in one-to-one correspondence.
  • the two first ends of the second switch unit 320 can be respectively connected to the second transceiving path TRX1 and the second receiving path RX3, and the two second ends of the second switch unit 320 are respectively connected to the second antenna ANT1 and the fourth antenna ANT1.
  • the antenna ANT4 is connected in one-to-one correspondence.
  • two discrete DPDT switches are used to replace the switch unit used to switch antennas in the related art (for example, a 3P3T switch connected to three antennas or a 4P4T switch connected to four antennas respectively) , to realize the decoupling of the first transceiver path TRX0 and the second transceiver path TRX1, which can reduce the insertion loss of the switch device itself, for example, it can be reduced by about 0.5dB to improve the communication performance of the radio frequency system in different working modes, and it can also reduce the The cost of switching devices.
  • the first antenna ANT0 can be used for the transmission of the first radio frequency signal and the main set reception of the first radio frequency signal, and the third antenna ANT2 can be used for the diversity reception of the first radio frequency signal;
  • the second antenna ANT1 can be used for the transmission of the second radio frequency signal and the main set reception of the second radio frequency signal, and the fourth antenna ANT3 can be used for the diversity reception of the second radio frequency signal.
  • the first radio frequency signal may be a 4G LTE signal
  • the second radio frequency signal may be a 5G NR signal
  • the combination of the first radio frequency signal and the second radio frequency signal may satisfy the combination of EN-DC.
  • the first radio frequency signal is a 4G LTE signal in the B3 frequency band (abbreviation, B3 signal), and the second radio frequency signal is a 5G NR signal in the N1 frequency band (abbreviation, N1 signal).
  • B3 signal B3 frequency band
  • N1 signal N1 frequency band
  • the first antenna ANT0 can be used for B3 signal transmission and main set reception
  • the third antenna ANT2 can be used for B3 signal diversity reception
  • the second antenna ANT1 can be used for N1 signal transmission and main set reception
  • the fourth antenna ANT2 can be used for N1 signal transmission and main set reception.
  • Antenna ANT3 can be used for diversity reception of N1 signals.
  • the radio frequency system When the radio frequency system works in the non-independent networking mode, it can realize the dual connection of the first radio frequency signal and the second radio frequency signal, and can distribute the uplink signal to the first antenna ANT0 and the second antenna ANT1 with better antenna efficiency On, the reliability of the uplink signal can be guaranteed.
  • the first antenna ANT0 can also be used for the main set MIMO reception of the second radio frequency signal, and the second antenna ANT0 can also be used for the diversity MIMO reception of the second radio frequency signal;
  • the third antenna ANT2 can also be used for the main set MIMO reception of the first radio frequency signal, and the fourth antenna ANT3 can also be used for the diversity MIMO reception of the first radio frequency signal, so that the radio frequency system can support the first radio frequency signal and the second radio frequency signal. 4*4MIMO function of radio frequency signal.
  • the radio frequency system When the radio frequency system is in the LTE working mode, the radio frequency system can realize the transceiving of 4G LTE signals.
  • the radio frequency transceiver 10 can configure the target transceiving channel according to the 4G LTE signals received by the first transceiving channel TRX0 and the second transceiving channel TRX1. , and configure the target transceiving path to transmit and receive 4G LTE signals.
  • the radio frequency system When the radio frequency system is in the SA working mode, the radio frequency system can realize the transmission and reception of 5G NR signals.
  • the radio frequency transceiver 10 can configure the target transceiver channel according to the 5G NR signals received by the first transceiver channel TRX0 and the second transceiver channel TRX1. , and configure the target transceiving path to transmit and receive 5G NR signals.
  • the radio frequency system can not only work in the non-independent networking mode to realize the dual connection of the first radio frequency signal and the second radio frequency signal, but also distribute the uplink signal to the first antenna ANT0 with better antenna efficiency. And on the second antenna ANT1, the reliability of the uplink signal can be guaranteed; and when the radio frequency system works in the independent networking mode or the long-term evolution network mode, by configuring the target from the first transceiver channel TRX0 and the second transceiver channel TRX1
  • the transmission path is used to realize the transmission and reception of corresponding radio frequency signals (4G LTE signals or 5G NR signals) in different working modes, and the uplink signals can also be distributed on the first antenna ANT0 or the second antenna ANT1 with better antenna efficiency, which can ensure
  • the reliability of the uplink signal is used to improve the communication performance of the radio frequency system working in the independent networking mode or the long-term evolution network mode.
  • the radio frequency transceiver 10 is configured with a plurality of ports, for example, may include a first output port TX OUT0, a second output port TX OUT1, a first input port RFIN0, a second input port RFIN1, a third input port RFIN2 and a fourth input port RFIN3.
  • the first transceiving path TRX0 includes a first sub-receiving path RX0 and a first transmitting path TX0
  • the second transceiving path TRX1 includes a second sub-receiving path RX1 and a second transmitting path TX1.
  • each input port is used to receive the radio frequency signal input from the antenna side, and each output port is used to output the radio frequency signal processed by the radio frequency transceiver 10 to the antenna side.
  • the first output port TX OUT0 is correspondingly connected to the first transmission path TX0
  • the second output port TX OUT1 is correspondingly connected to the second transmission path TX1
  • the first input port RFIN0 is correspondingly set to be connected to the first sub-reception path RX0
  • the second The input port RFIN1 is correspondingly connected to the second sub-receiving channel RX1.
  • the radio frequency transceiver 10 is configured to connect the first transmit path TX0 and the first sub-receive path RX0 to the first antenna ANT0, and configure the second transmit path TX1 and the second sub-receive path RX1 to connect to the first antenna ANT0.
  • the radio frequency transceiver 10 is configured to configure a target transmission path according to radio frequency signals received by the first sub-reception path RX0 and the second sub-reception path RX1, and the target transmission path is one of the first transmission path TX0 and the second transmission path TX1.
  • the radio frequency transceiver 10 may configure the first transmission path TX0 as a default transmission path of the first radio frequency signal. That is, the first antenna ANT0 is used for transmission and main set reception of the first radio frequency signal; the second antenna ANT1 is used for diversity reception of the first radio frequency signal; the third antenna ANT2 is used for main set MIMO reception of the first radio frequency signal; The fourth antenna ANT3 is used for diversity MIMO reception of the first radio frequency signal.
  • the radio frequency transceiver 10 is configured to configure a target transceiving path based on the first radio frequency signals received by the first sub-receiving path RX0 and the second sub-receiving path RX1.
  • the radio frequency transceiver 10 may determine and configure the target transceiving channel based on the first radio frequency signal received by the first sub-receiving channel RX0 and the second sub-receiving channel RX1 , for example, the B3 signal.
  • the first difference in signal quality of the first radio frequency signal respectively received by the second sub-receiving channel RX1 and the first sub-receiving channel RX0 is greater than a first preset threshold.
  • the first difference may be the difference between the first signal quality corresponding to the second sub-receiving path RX1 minus the second signal quality corresponding to the first sub-receiving path RX0.
  • the radio frequency transceiver 10 may configure the second transmission path TX1 as the target transmission path, and configure the second transmission path TX1 as the target transmission path for transmitting the first radio frequency signal.
  • the transmission and main reception of the first radio frequency signal can be switched to the second antenna ANT1. Therefore, the second antenna ANT1 with higher efficiency is used to realize the transmission and main set reception of the first radio frequency signal, so as to improve the communication quality of the first radio frequency signal.
  • the radio frequency transceiver 10 can configure the second transmission path TX1 as a default transceiving path of the second radio frequency signal.
  • the second antenna ANT1 is used for the transmission and main set reception of the second radio frequency signal;
  • the first antenna ANT0 is used for the diversity reception of the second radio frequency signal;
  • the third antenna ANT2 is used for the diversity MIMO reception of the second radio frequency signal;
  • the four antennas ANT3 are used for main set MIMO reception of the second radio frequency signal.
  • the radio frequency transceiver 10 is configured to configure the target transceiving path based on the second radio frequency signal received by the first sub-receiving path RX0 and the second sub-receiving path RX1.
  • the radio frequency transceiver 10 may determine and configure the target transceiving channel based on the second radio frequency signal received by the first sub-receiving channel RX0 and the second sub-receiving channel RX1, for example, the N1 signal.
  • the second difference in signal quality of the second radio frequency signal respectively received by the second sub-receiving channel RX1 and the first sub-receiving channel RX0 is greater than a second preset threshold.
  • the second difference may be the difference between the second signal quality corresponding to the second sub-receiving path RX1 minus the first signal quality corresponding to the first sub-receiving path RX0.
  • the radio frequency transceiver 10 can use the first transmission path as the target transmission path, configuring the first transmission path TX0 as a target transmission path for transmitting the second radio frequency signal.
  • both the first threshold and the second threshold are greater than zero, and the magnitudes of the first threshold and the second threshold can be set as required.
  • the radio frequency transceiver 10 is further configured to configure the target receiving channel according to at least one of the radio frequency signals received by the target transmitting channel, the first sub-receiving channel RX0 and the second sub-receiving channel RX1 .
  • the target receiving path and the target transmitting path are connected to the same antenna or different antennas.
  • the target receiving path and the target transmitting path are connected to the same antenna.
  • the target transmission path is switched from the first transmission path TX0 to the second transmission path TX1, that is, after the target antenna is switched from the first antenna ANT0 to the second antenna ANT1, the corresponding target reception path will also be switched from the first antenna ANT0 to the second antenna ANT1.
  • the sub-receiving channel RX0 is switched to the second sub-receiving channel RX1, the second antenna ANT1 is used as the transmitting antenna and the main receiving antenna of the radio frequency signal, and the first antenna ANT0 is used as the diversity receiving antenna of the radio frequency signal.
  • the target receiving path and the target transmitting path may be connected to different antennas. That is, even if the target transmit path is switched from the first transmit path TX0 to the second transmit path TX1, the target receive path may not change, that is, the target receive path may still be connected to the first antenna ANT0.
  • the radio frequency transceiver circuit 20 includes a first transceiver module 220 , a first receiver module 230 , a second transceiver module 240 and a second receiver module 250 .
  • Both the first transceiver module 220 and the second transceiver module 240 can support receiving and transmitting processing of the first radio frequency signal and the second radio frequency signal.
  • Both the first receiving module 230 and the second receiving module 250 can support receiving and processing of the first radio frequency signal and the second radio frequency signal.
  • the first transceiver module 220 can form the first transceiver path in the radio frequency transceiver circuit 20
  • the second transceiver module 240 can form the second transceiver path in the radio frequency transceiver circuit 20
  • the first receiver module 230 can form the radio frequency transceiver circuit 20.
  • the second receiving module 250 can form the second receiving path in the radio frequency transceiver circuit 20 . That is, the first transceiver module 220 and the first receiving module 230 can be switchably connected to the first antenna ANT0 and the third antenna ANT2 through the first switch unit 310 .
  • the second transceiver module 240 and the second receiving module 250 are switchably connected to the second antenna ANT1 and the fourth antenna ANT3 through the second switch unit 320 .
  • both the first transceiver module 220 and the second transceiver module 240 may include an MMPA device, a filter module, and the like.
  • the radio frequency MMPA device can be understood as a multimode multiband power amplifier (Multimode Multiband Power Amplifier Module, MMPA).
  • the radio frequency MMPA device can support the transmission and reception processing of the first radio frequency signal and the second radio frequency signal in multiple different frequency bands.
  • the filter module is connected with the radio frequency MMPA device, and can be used to support the filtering processing of the first radio frequency signal and the second radio frequency signal of different frequency bands, so as to output the first radio frequency signal and the second radio frequency signal of different frequency bands.
  • the filtering module may include a plurality of filters, and each filter is used for filtering the first radio frequency signal and the second radio frequency signal of a plurality of different frequency bands output by the radio frequency MMPA device. Specifically, each filter only allows the first radio frequency signal and the second radio frequency signal of the preset frequency band to pass through to filter out spurious waves in other frequency bands, and the frequency bands of the first radio frequency signal and the second radio frequency signal output by each filter are different. .
  • the first transceiver module 220 and the second transceiver module 240 can also be radio frequency PA Mid devices.
  • the radio frequency PA Mid device can be understood as a power amplifier module (Power Amplifier Modules including Duplexers, PA Mid) with a built-in low noise amplifier, which can be used to support the amplification and filtering of the first radio frequency signal and the second radio frequency signal in multiple different frequency bands deal with.
  • the specific composition forms of the first transceiver module 220 and the second transceiver module 240 are not further limited.
  • the first receiving module 230 and the second receiving module 250 can be LFEM (Low noise amplifier front end module, radio frequency low noise amplifier module) devices, which can specifically include low noise amplifiers and multiple filters, etc., which can be used for Support the receiving and processing of the first radio frequency signal and the second radio frequency signal (for example, 4G LTE signal and 5G NR signal including multiple different frequency bands).
  • the radio frequency transceiver 10 includes a first transmitting unit 110 , a second transmitting unit 120 and a control unit 130 .
  • the first transmitting unit 110 is connected with the first output port TX OUT0, and is used for transmitting and processing the first radio frequency signal and the second radio frequency signal.
  • the second transmitting unit 120 is connected to the second output port TX OUT1, and is used for transmitting and processing the first radio frequency signal and the second radio frequency signal.
  • both the first transmitting unit 110 and the second transmitting unit 120 may include a plurality of power amplifiers for power amplifying the first radio frequency signal and the second radio frequency signal.
  • the control unit 130 is respectively connected to the first input port RFIN0, the second input port RFIN1, the first transmitting unit 110, and the second transmitting unit 120, and is used to determine the target according to the radio frequency signals received by the first input port RFIN0 and the second input port RFIN1.
  • the transmitting unit is configured to work with the target transmitting unit to conduct the target transmitting path. Wherein, the target transmitting unit is one of the first transmitting unit 110 and the second transmitting unit 120 .
  • control unit 130 may be based on the first signal quality of the radio frequency signal received by the first sub-receiving path and the first input port RFIN0 and according to the second signal quality of the radio frequency signal received by the second sub-receiving path and the second input port RFIN1 to determine the target launch unit.
  • the control unit 130 can judge the efficiency of the first antenna ANT0 and the second antenna ANT1 according to the first difference between the second signal quality and the first signal quality. Exemplarily, if the first difference is greater than the preset threshold, it is determined that the efficiency of the second antenna ANT1 is greater than the efficiency of the first antenna ANT0. At this time, the second antenna ANT1 can be used as the target transmitting antenna. Therefore, the second The transmitting unit 120 serves as the target transmitting unit, and controls the power amplifier in the second transmitting unit 120 to work, and controls the power amplifier in the first transmitting unit 110 to stop working, so as to configure the target transmitting unit to conduct the target transmitting path.
  • the first transmitting unit 110 can be used as target transmitting unit, and control the power amplifier in the first transmitting unit 110 and the first transceiver module 220 to work, and control the power amplifier in the second transmitting unit 120 and the power amplifier in the second transceiver module 240 to stop working, so as to achieve the target
  • the transmitting unit is configured to conduct the target transmitting path.
  • both the first transmitting unit 110 and the second transmitting unit 120 in the radio frequency transceiver 10 can support the transmission processing of the first radio frequency signal and the second radio frequency signal, regardless of whether the radio frequency system is in the SA working mode , still in LTE working mode, if the efficiency of the first antenna ANT0 is lower than the efficiency of the second antenna ANT1, then the target transmitting unit in the radio frequency transceiver 10 can be reconfigured, for example, the target radio frequency transmitting unit is changed from the original first A transmitting unit 110 is changed to the second transmitting unit 120, or the original second transmitting unit 120 is maintained as the target transmitting unit, so as to open its target transmitting path.
  • the radio frequency transceiver 10 includes a first transmitting unit 110 , a second transmitting unit 120 , a control unit 130 and a switch unit 140 .
  • the first transmitting unit 110 is connected to the first output port TX OUT0 via the switch unit 140, and is only used to transmit and process the first radio frequency signal;
  • the unit 140 is connected to the second output port TX OUT1, and is only used to transmit and process the second radio frequency signal.
  • the first transmitting unit 110 may include a power amplifier for supporting power amplification of the first radio frequency signal
  • the second transmitting unit 120 may include a power amplifier for supporting power amplification of the second radio frequency signal.
  • the first transmitting unit 110 only supports power amplification processing of the first radio frequency signal
  • the second transmitting unit 120 only supports power amplification processing of the second radio frequency signal.
  • the control unit 130 is configured to determine the target antenna according to the radio frequency signals received by the first input port RFIN0 and the second input port RFIN1 , generate a switching signal and output it to the switch unit 140 connected thereto.
  • the switch unit 140 is also connected with the first output port TX OUT0 and the second output port TX OUT1.
  • the switch unit 140 can conduct the path between the target output port and the target transmission path according to the switching signal output by the control unit 130.
  • the target output port is one of the first output port TX OUT0 and the second output port TX OUT1.
  • the target input port is also associated with the working mode of the current radio frequency system. Exemplarily, if the radio frequency system is in the LTE working mode, the first transmitting unit 110 is in the working state, and its corresponding target output port is the first output port TX OUT0; correspondingly, if the radio frequency system is in the SA working mode, the second The transmitting unit 120 is in the working state, and its corresponding target output port is the second output port TX OUT1.
  • the switch unit 140 may be a double-pole double-throw switch, wherein the two first ends of the double-pole double-throw switch are respectively connected to the first transmitting unit 110 and the second transmitting unit 120 in a one-to-one correspondence, The two second ends of the DPDT switch are respectively connected to the first output port TX OUT0 and the second output port TX OUT1 in one-to-one correspondence.
  • the switch unit 140 may also include two single-pole double-throw switches, wherein, the single terminal of the first single-pole double-throw switch is connected to the first transmitting unit 110, and the two selection terminals of the first single-pole double-throw switch are connected to the second terminal respectively.
  • the first output port TX OUT0 and the second output port TX OUT1 are connected in one-to-one correspondence; the single terminal of the second single-pole double-throw switch is connected to the second transmitting unit 120, and the two selection ends of the second single-pole double-throw switch are respectively connected to the first output
  • the port TX OUT0 and the second output port TX OUT1 are connected in one-to-one correspondence.
  • the specific combination form of the switch unit 140 is not further limited.
  • the radio frequency system works in the LTE working mode and the first radio frequency signal is a B3 signal as an example for description.
  • the first transmission path is used as the target transmission path
  • the first antenna ANT0 is the main antenna, which is used for the transmission antenna of the B3 signal and the main antenna.
  • the radio frequency transceiver 10 can be configured according to the first signal quality of the B3 signal received by the first sub-receiving path and the first input port RFIN0 and according to the second signal quality of the B3 signal received by the second sub-receiving path RX1 and the second input port RFIN1 Identify the target antenna.
  • the control unit 130 may judge the efficiency of the first antenna ANT0 and the second antenna ANT1 according to the first difference between the second signal quality and the first signal quality. Exemplarily, if the first difference is greater than the preset threshold, it is determined that the efficiency of the second antenna ANT1 is greater than the efficiency of the first antenna ANT0, and the second antenna ANT1 may be used as the target antenna. Please continue to refer to FIG.
  • control unit 130 can control the switch unit 140 to conduct the second transmission path between the first transmission unit 110 and the second output port TX OUT1, so as to configure the second transmission path as the target transmission path, and set the second
  • the sub-receiving channel is configured as a target receiving channel
  • the second antenna ANT1 is used as the main antenna for transmitting and receiving the B3 signal.
  • the first sub-receiving path connected to the first antenna ANT0 is correspondingly configured as the main set MIMO receiving path of the B3 signal, so that the first antenna ANT0 is used for the main set MIMO reception of the B3 signal.
  • the switch unit 140 in this embodiment can be arranged between the radio frequency transceiver 10 and the transceiver circuit 20 . That is, the switch unit 140 can also be externally installed in the radio frequency transceiver 10 .
  • the switch unit 140 can be controlled to conduct the path between the target transmitting unit and the target transmitting path , so that the radio frequency system can use the target antenna with optimal efficiency to support the transmission of radio frequency signals.
  • the radio frequency transceiver 10 is further configured with a third input port RFIN2 and a fourth input port RFIN3, wherein the third input port RFIN2 is connected to the first receiving path, The fourth input port RFIN3 is connected to the second receive path.
  • the radio frequency transceiver 10 further includes a first receiving unit 150 and a second receiving unit 160 that both can support receiving and processing the first radio frequency signal and the second radio frequency signal.
  • the first receiving unit 150 is connected to the first input port RFIN0 and the third input port RFIN2 respectively
  • the second receiving unit 160 is connected to the second input port RFIN1 and the fourth input port RFIN3 respectively.
  • the radio frequency transceiver 10 when the radio frequency system is in one of the independent networking working mode and the long-term evolution network working mode, the radio frequency transceiver 10 is used to At least one of them configures a target receive path, wherein the target receive path and the target transmit path are connected to the same antenna or to different antennas.
  • the target receiving path and the target transmitting path are connected to the same antenna as an example for illustration.
  • the first transmission path is used as the target transmission path
  • the first transmission path is used as the target reception path
  • the first antenna ANT0 is the main antenna.
  • the second antenna ANT1 is used for main set MIMO reception of B3 signals
  • the third antenna ANT2 is a diversity antenna for diversity reception of B3 signals
  • the fourth antenna ANT3 is used for diversity reception of B3 signals MIMO reception.
  • the radio frequency transceiver 10 can correspondingly configure the second sub-receiving channel of the second antenna ANT1 as the main receiving channel of the B3 signal, so that the second antenna ANT1 is used for the main receiving channel of the B3 signal; correspondingly configure the first sub-receiving channel of the first antenna ANT0
  • the path is the main set MIMO receiving path of the B3 signal, so that the first antenna ANT0 is used for the main set MIMO reception of the B3 signal;
  • the third antenna ANT2 is used for the diversity MIMO reception of the B3 signal; correspondingly, the second receiving path connected to the fourth antenna ANT3 is configured as the diversity receiving path of the B3 signal, so that the fourth antenna ANT3 is used for the diversity reception of the B3 signal.
  • both the first transceiver module 220 and the second transceiver module 240 may include a transmitting unit 201 and a receiving unit 202 .
  • the transmitting unit 201 may include a power amplifier, a filter, etc., and may be used to support processing such as power amplification and filtering of first radio frequency signals of multiple different frequency bands and second radio frequency signals of multiple different frequency bands.
  • the receiving unit 202 may include a low noise amplifier, a filter, etc., and may be used to support processing such as filtering and low noise amplification of first radio frequency signals of multiple different frequency bands and second radio frequency signals of multiple different frequency bands.
  • the transmitting unit 201 of the first transceiver module 220 can form a first transmitting channel
  • the receiving unit 202 of the first transceiver module 220 can form a first sub-receiving channel
  • the transmitting unit 201 of the second transceiver module 240 can form a second transmitting channel.
  • the receiving unit 202 of the second transceiver module 240 may form a second sub-receiving channel.
  • the embodiment of the present application is based on the radio frequency system shown in FIG. 12 , and uses B3+N1 to describe the working principle of the radio frequency transceiver system supporting LTE (MH band)+NR (MH band) ENDC.
  • LTE B3 as the anchor point of 5G, first establishes the signaling connection.
  • the working principle of B3 is as follows:
  • the first transmitting unit 110 ⁇ the switch unit 140 ⁇ the first output port TX OUT0 ⁇ the transmitting unit 201 of the first transceiver module 220 ⁇ the first switch unit 310 ⁇ the first antenna ANT0.
  • the main set receiving channel path of N1 is the main set receiving channel path of N1:
  • the first antenna ANT0 and the third antenna ANT2 can also be used for the main set MIMO reception of N1 and the diversity MIMO reception of N1 respectively.
  • the second antenna ANT1 and the fourth antenna ANT1 The antenna ANT3 can also be used for the main set MIMO reception of B3 and the diversity MIMO reception of B3 respectively.
  • the insertion loss of the switching device itself can be reduced correspondingly, for example, it can be reduced by about 0.5dB. Therefore, the insertion loss on the receiving path can be reduced to improve the radio frequency system. sensitivity. In addition, the cost of the radio frequency system can also be reduced.
  • the hardware decoupling of the two transmission paths is realized in the RF front-end, which is convenient for flexible layout, and can be arranged close to the corresponding antennas respectively. As shown in FIG.
  • the first switch unit 310 connected to the first transmission path can be arranged close to the first antenna ANT0 and the third antenna ANT2, and the second switch unit 320 connected to the second transmission path can be set close to the second antenna ANT1
  • the configuration with the fourth antenna ANT3 can further optimize the radio frequency front-end path loss of each transmission path, and improve the communication performance of the radio frequency system.
  • the signal strength of each antenna may change correspondingly. For example, when antennas at different locations are blocked, the signal strength of the antennas at different locations will be affected.
  • the radio frequency system can also periodically obtain the signal strength R ANT0 of the first radio frequency signal obtained based on the first sub-receiving path, and the signal strength R ANT0 obtained based on the receiving path of the third antenna ANT2 A signal strength R ANT2 of the radio frequency signal.
  • the period may be a fixed time, for example, it may be set to 1 minute; it may also be an unfixed time, for example, a different time length may be set according to the use status of the radio frequency system.
  • the first switch unit 310 will switch on the path between the first transceiver module 220 and the third antenna ANT2, and turn on the path between the first receiving module 230 and the first antenna ANT0, so that the third antenna ANT2
  • the first transmit signal is used for transmission and main set reception, so that the first antenna ANT0 is used for diversity reception of the first transmit signal, thereby ensuring the stability of first transmit signal transmission and main set reception.
  • the radio frequency system when the radio frequency system is in the non-independent networking mode, can also periodically obtain the signal strength R ANT1 of the second radio frequency signal based on the second sub-receiving path, and based on the fourth antenna The signal strength R ANT3 of the second radio frequency signal acquired by the receiving path of ANT3 .
  • the second switch unit 320 will switch on the path between the second transceiver module 240 and the fourth antenna ANT3, and turn on the path between the second receiving module 250 and the second antenna ANT1, so that the fourth antenna ANT3
  • the second antenna ANT1 is used for the second transmit signal transmission and the main set reception, so that the second antenna ANT1 is used for the second transmit signal diversity reception, thereby ensuring the stability of the second transmit signal transmission and the main set reception.
  • an embodiment of the present application further provides an antenna switching method, which is applied to the radio frequency system in any of the foregoing embodiments.
  • the antenna switching method includes: step 1402-step 1404.
  • Step 1402 the radio frequency transceiver configures the target transceiving path according to the radio frequency signals received by the first transceiving path and the second transceiving path in the radio frequency transceiving circuit.
  • Step 1404 the radio frequency transceiver configures the target transceiving path to transmit and receive the target radio frequency signal; wherein, the target transceiving path is one of the first transceiving path and the second transceiving path.
  • first transceiving path and the second transceiving path are independent of each other, and the first transceiving path is configured to be switchably connected to the first antenna and the third antenna, and the second transceiving path is configured to be switchably connected to the second antenna and the third antenna.
  • the RF transceiver 10 may be configured with multiple ports connected to the RF transceiver circuit 20 .
  • the radio frequency transceiving circuit 20 includes a first transceiving path, a second transceiving path, a first receiving path and a second receiving path.
  • the first antenna ANT0 and the third antenna ANT2 are respectively connected to some ports of the radio frequency transceiver 10 via the radio frequency transceiver circuit 20 .
  • the first transceiving path and the first receiving path are configured to be switchably connected to the first antenna ANT0 and the third antenna ANT2.
  • the second antenna ANT1 and the fourth antenna ANT3 are respectively connected to some ports of the radio frequency transceiver 10 via the radio frequency transceiver circuit 20 .
  • the second transceiving path and the second receiving path are configured to be switchably connected to the second antenna ANT1 and the fourth antenna ANT3.
  • the first transceiving path and the second transceiving path are independent of each other. Mutually independent may be understood as that the first transceiver path and the second transceiver path are independent of each other in hardware. That is, there is no hardware interconnection or coupling between the first transceiver path and the second transceiver path.
  • the first transceiving channel can only be connected to the first antenna ANT0 and the third antenna ANT2, but not to the second antenna ANT1 and the fourth antenna ANT4.
  • the second transceiving channel can only be connected to the second antenna ANT1 and the fourth antenna ANT4, but not to the first antenna ANT0 and the third antenna ANT2.
  • the radio frequency transceiver 10 stores configuration information of the above-mentioned first transceiving path, the second transceiving path, the first receiving path, and the second receiving path.
  • the configuration information may include identification information of the antenna, identification information of the port of the radio frequency transceiver 10, control logic information of switches on the first transceiver path, the second transceiver path, the first receiving path, and the second receiving path.
  • the radio frequency transceiver 10 may pre-store default receiving paths, default transmitting paths, etc. of the radio frequency system in different working modes. In the embodiment of the present application, the default receiving path and the default transmitting path may be understood as a priority path or an optimal path for signal transmission of the radio frequency system in an initial state.
  • the above configuration information can also be stored in a storage device independent of the radio frequency transceiver 10, and can be read by the radio frequency transceiver 10 when needed.
  • the above configuration information may also be stored in the radio frequency transceiver 10 . In the embodiment of the present application, no further limitation is made on the storage location of the configuration information.
  • the radio frequency transceiver 10 is used to configure the target transceiving path according to the radio frequency signals received by the first transceiving path and the second transceiving path, and configure the target transceiving path for transmitting and receiving the target radio frequency signal, wherein the target transceiving path is the first transceiving path and the One of the second transceiver channels.
  • the radio frequency signal may include a first radio frequency signal of the first communication standard and a second radio frequency signal of the second communication standard.
  • the first radio frequency signal may include 4G LTE signals of multiple frequency bands
  • the second radio frequency signal may include 5G NR signals of multiple frequency bands.
  • the communication standards of the radio frequency signals that can be transmitted and received by the first transceiving path and the second transceiving path are different.
  • its RF signal may include 5G NR signals in multiple frequency bands, and its corresponding target RF signal is also a 5G NR signal;
  • its RF signal includes multiple
  • the corresponding target RF signals are also 4G LTE signals;
  • its RF signals include 4G LTE signals in multiple frequency bands and 5G NR signals in multiple frequency bands.
  • the radio frequency transceiver can configure the target transceiving channel according to the signal strengths of the radio frequency signals received by the first transceiving channel and the second transceiving channel. For example, a transceiving path with a high signal strength may be used as a target transceiving path, and the target transceiving path may be configured to transmit and receive a target radio frequency signal.
  • the radio frequency transceiver configures the target transceiver path according to the radio frequency signals received by the first transceiver path and the second transceiver path in the radio frequency transceiver circuit, and can configure the target transceiver path to send and receive the target radio frequency signal; wherein,
  • the target transceiving path is one of the first transceiving path and the second transceiving path. Since the first transceiver path and the second transceiver path are independent of each other, decoupling is realized, which is convenient for flexible layout.
  • the first transceiver path and the second transceiver path can be placed close to the corresponding antenna positions to reduce the number of first transceiver paths. and the link loss on the second transceiver path, thereby improving the communication performance of the radio frequency system.
  • the efficiencies of the first antenna and the second antenna are higher than those of the third antenna and the fourth antenna
  • the first transceiving path includes the first transmitting path and the first sub-receiving path
  • the second transceiving path includes The second transmit path and the second sub-receive path
  • the radio frequency transceiver is used to configure the first transmit path and the first sub-receive path to be connected to the first antenna, and configure the second transmit path and the second sub-receive path to be connected to the second antenna.
  • the radio frequency transceiver can configure the target transmission path according to the radio frequency signals received by the first sub-reception path and the second sub-reception path, and the target transmission path is one of the first transmission path and the second transmission path.
  • the radio frequency transceiver can also configure the target receiving path according to at least one of the radio frequency signals received by the target transmitting path, the first sub-receiving path and the second sub-receiving path, wherein the target receiving path and the target transmitting path
  • the vias are connected to the same antenna or to different antennas.
  • steps in the flow chart of FIG. 14 are displayed sequentially as indicated by the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in Figure 14 may include multiple sub-steps or multiple stages, these sub-steps or stages are not necessarily executed at the same moment, but may be executed at different moments, the execution of these sub-steps or stages The order is not necessarily performed sequentially, but may be performed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • An embodiment of the present application further provides a communication device, where the communication device further includes the radio frequency system in any one of the foregoing embodiments.
  • the first transceiver path and the second transceiver path are independent of each other; wherein, the radio frequency transceiver can configure the target according to the radio frequency signals received by the first transceiver path and the second transceiver path
  • the transceiver path can realize the decoupling of the first transceiver path and the second transceiver path, which is convenient for flexible layout.
  • the first transceiver path and the second transceiver path can be placed close to the corresponding antenna positions, which can reduce the first transceiver path and the second transceiver path.
  • the link loss on the second transceiver path can further improve the communication performance of the radio frequency system in any working mode.
  • the communication device not only can the communication device work in the non-independent networking mode to realize the dual connection of the first radio frequency signal and the second radio frequency signal, but also the The uplink signal is distributed on the first antenna and the second antenna with better antenna efficiency, which can ensure the reliability of the uplink signal; and it can also make the communication equipment work in the independent networking mode or the long-term evolution network mode.
  • the corresponding radio frequency signals (4G LTE signal or 5G NR signal) can also distribute uplink signals on the first antenna or second antenna with better antenna efficiency; it can improve the communication performance of communication equipment working in independent networking mode or long-term evolution network mode.
  • the communication device is a mobile phone 10 as an example for description, specifically, as shown in Figure 15, the mobile phone 10 may include a memory 21 (which optionally includes one or more computer-readable storage media), processing circuit 22, peripheral device interface 23, radio frequency system 24, input/output (I/O) subsystem 26. These components optionally communicate via one or more communication buses or signal lines 29 .
  • the mobile phone 10 shown in FIG. 15 does not constitute a limitation to the mobile phone, and may include more or less components than those shown in the illustration, or combine some components, or arrange different components.
  • the various components shown in FIG. 15 are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Memory 21 optionally includes high-speed random access memory, and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 21 include an operating system 211 , a communication module (or an instruction set) 212 , a global positioning system (GPS) module (or an instruction set) 213 and the like.
  • GPS global positioning system
  • Processing circuitry 22 and other control circuitry, such as control circuitry in radio frequency system 24 may be used to control the operation of handset 10 .
  • the processing circuit 22 may include one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, and the like.
  • the processing circuit 22 may be configured to implement a control algorithm that controls the use of antennas in the handset 10 .
  • the processing circuit 22 may also issue control commands and the like for controlling switches in the radio frequency system 24 .
  • I/O subsystem 26 couples input/output peripherals on handset 10 such as a keypad and other input control devices to peripherals interface 23 .
  • I/O subsystem 26 optionally includes a touch screen, keys, tone generator, accelerometer (motion sensor), ambient light sensor and other sensors, light emitting diodes and other status indicators, data ports, and the like.
  • a user may control the operation of handset 10 by supplying commands via I/O subsystem 26 and may use the output resources of I/O subsystem 26 to receive status information and other output from handset 10 .
  • the user can turn on or turn off the mobile phone by pressing the button 261 .
  • the radio frequency system 24 may be the radio frequency system in any of the foregoing embodiments, wherein the radio frequency system 24 may also be used to process radio frequency signals of multiple different frequency bands.
  • the radio frequency system 24 may also be used to process radio frequency signals of multiple different frequency bands.
  • the Sub-6G frequency band may specifically include a 2.496GHz-6GHz frequency band and a 3.3GHz-6GHz frequency band.
  • the embodiment of the present application also provides a communication device, including a radio frequency transceiver, a computer program is stored in the radio frequency transceiver, and when the computer program is executed by the radio frequency transceiver, the radio frequency transceiver executes the antenna switching method in any of the above embodiments A step of.
  • An embodiment of the present application also provides a communication device, including a memory and a processor, where a computer program is stored in the memory, and when the computer program is executed by the processor, the processor is made to execute the steps of the antenna switching method in any of the above embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions when the computer-executable instructions are executed by one or more processors, the processors execute the antenna switching method in any of the above-mentioned embodiments step.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the antenna switching method.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM), Synchronous Synchlink DRAM (SLDRAM), Memory Bus (Rambus) Direct RAM (RDRAM), Direct Memory Bus Dynamic RAM (DRDRAM), and Memory Bus Dynamic RAM (RDRAM).
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchronous Synchlink DRAM
  • SLDRAM Synchronous Synchlink DRAM
  • Memory Bus Radbus
  • RDRAM Direct RAM
  • DRAM Direct Memory Bus Dynamic RAM
  • RDRAM Memory Bus Dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种射频系统,射频系统包括射频收发器(10);射频收发电路(20),与射频收发器(10)连接,射频收发电路(20)包括第一收发通路(TRX0)、第二收发通路(TRX1)、第一接收通路(RX2)和第二接收通路(RX3),第一收发通路(TRX0)及第一接收通路(RX2)被配置为可切换地连接第一天线(ANT0)和第三天线(ANT2),第二收发通路(TRX1)和第二接收通路(RX3)被配置为可切换地连接第二天线(ANT1)和第四天线(ANT3);第一收发通路(TRX0)和第二收发通路(TRX1)相互独立;其中,射频收发器(10)用于根据第一收发通路(TRX0)和第二收发通路(TRX1)接收的射频信号配置目标收发通路,并将目标收发通路配置为用于收发目标射频信号,其中,目标收发通路为第一收发通路(TRX0)和第二收发通路(TRX1)之一。

Description

射频系统、天线切换方法和通信设备
相关申请的交叉引用
本申请要求于2021年5月24日提交中国专利局、申请号为2021105639632发明名称为“射频系统、天线切换方法和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种射频系统、天线切换方法和通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着技术的发展和进步,移动通信技术逐渐开始应用于通信设备,例如手机等。对于支持5G通信技术的通信设备,在非独立组网(Non-Standalone,NSA)模式下通常采用4G信号和5G信号的双连接模式。一般,为了提高4G和5G双连接模式下的通信性能,需要在通信设备的射频系统中设置开关电路,以实现必要的天线切换。然而,现有射频系统中的天线切换,通常采用硬件开关的形式实现,一方面会给射频系统带来较大的插损,另一方面无法实现射频通路在硬件上的解耦,从而影响射频系统在各通信模式下的通信性能。
发明内容
根据本申请的各种实施例,提供一种射频系统、天线切换方法和通信设备。
一种射频系统,包括:
射频收发器;
射频收发电路,与所述射频收发器连接,所述射频收发电路包括第一收发通路、第二收发通路、第一接收通路和第二接收通路,所述第一收发通路及所述第一接收通路被配置为可切换地连接第一天线和第三天线,所述第二收发通路和所述第二接收通路被配置为可切换地连接第二天线和第四天线;所述第一收发通路和所述第二收发通路相互独立;
其中,所述射频收发器用于根据所述第一收发通路和所述第二收发通路接收的射频信号配置目标收发通路,并将所述目标收发通路配置为用于收发目标射频信号,其中,所述目标收发通路为所述第一收发通路和所述第二收发通路之一。
一种天线切换方法,应用于射频系统,所述方法包括:
射频收发器根据射频收发电路中的第一收发通路和第二收发通路接收的射频信号配置目标收发通路;
所述射频收发器配置所述目标收发通路收发目标射频信号;其中,所述目标收发通路为所述第一收发通路和所述第二收发通路之一;其中,所述第一收发通路和所述第二收发通路相互独立,且所述第一收发通路被配置为可切换地连接第一天线和第三天线,所述第二收发通路被配置为可切换地连接第二天线和第四天线。
一种通信设备,包括如上述的射频系统。
一种通信设备,包括:
射频收发器;
射频收发电路,与所述射频收发器连接,所述射频收发电路包括第一收发模块、第二收发模块、第一接收模块、第二接收模块;
第一开关单元,所述第一开关单元用于将所述第一收发模块及所述第一接收模块可切 换地连接至第一天线和第三天线;
第二开关单元,所述第二开关单元用于将所述第二收发模块及所述第二接收模块可切换地连接至第二天线和第四天线;
其中,所述射频收发器用于根据所述第一收发模块和所述第二收发模块接收的射频信号,将所述第一收发模块和所述第二收发模块之一配置为目标收发模块,以通过所述目标收发模块收发目标射频信号。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中射频系统的框架示意图之一;
图2为一个实施例中射频系统的框架示意图之二;
图3为一个实施例中四天线在通信设备中的分布示意图;
图4为一个实施例中射频系统的框架示意图之三;
图5为一个实施例中射频系统的框架示意图之四;
图6为一个实施例中射频系统的框架示意图之五;
图7为一个实施例中射频系统的框架示意图之六;
图8为一个实施例中射频系统的框架示意图之七;
图9为一个实施例中射频系统的框架示意图之八;
图10为一个实施例中射频系统的框架示意图之九;
图11为一个实施例中射频系统的框架示意图之十;
图12为一个实施例中射频系统的框架示意图之十一;
图13为一个实施例中第一开关单元、第二开关单元在通信设备中的分布示意图;
图14为一个实施例中天线切换方法的流程图;
图15为一个实施例中通信设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一天线称为第二天线,且类似地,可将第二天线称为第一天线。第一天线和第二天线两者都是天线,但其不是同一天线。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处 理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。
如图1所示,本申请实施例提供一种射频系统。本申请实施例提供的射频系统可工作在非独立组网(Non-Standalone,NSA)工作模式、独立组网模式(Standalone,SA)工作模式(或称之为NR SA工作模式)、长期演进网络(long term evolution,LTE)工作模式下(或称之为LTE only工作模式)。
其中,非独立组网工作模式包括EN-DC、NE-DC和NGEN-DC构架中的任一种。在本申请实施例中,以非独立组网工作模式为EN-DC构架为例进行说明。E为演进的通用移动通信系统地面无线接入(Evolved-Universal Mobile Telecommunications System Terrestrial Radio Access,E-UTRA),代表移动终端的4G无线接入;N为新空口(New Radio,NR),代表移动终端的5G无线连接;DC为双连接(Dual Connectivity),代表4G和5G的双连接。在EN-DC模式下,以4G核心网为基础,射频系统能够实现同时与4G基站和5G基站进行双连接。依据3GPP Release-5中5G的规范要求,EN-DC组合主要如表1所示,但不限于如表1所示的组合形式。
表1 ENDC组合
5G频段 ENDC组合
N5 B12+N5/B1+N5
N8 B12+N8/B1+N8
N20 B12+N20/B1+N20
N28A B12+N28A/B1+N28A
N28B B12+N28B/B1+N28B
N1 B3+N1
N41 B3+N41/B39+N41
N78 B3+N78/B5+N78
N79 B3+N79
需要说明的是,本申请实施例提供的射频系统所能支持的EN-DC组合不限于如表1所示的组合形式。
其中,射频系统还可以处于SA工作模式或LTE工作模式。其中,当处于SA工作模式时,射频系统仅能够实现5G基站的单连接,也即,用于实现对5G NR信号的收发;当处于LTE工作模式时,射频系统仅能够实现4G基站的单连接,也即,实现对4G LTE信号的收发。
如图1所示,在其中一个实施例中,本申请实施例提供的射频系统包括:射频收发器10、射频收发电路20、第一天线ANT0、第二天线ANT1、第三天线ANT2、第四天线ANT3。其中,第一天线ANT0、第二天线ANT1、第三天线ANT2和第四天线ANT3均可以对应支持对LTE和NR低中高频多个频段的射频信号的收发。各支天线可以使用任何合适类型的天线形成。例如,各支天线可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同的频段和频段组合。在本申请实施例中,对第一天线ANT0、第二天线ANT1、第三天线ANT2和第四天线ANT3的类型不做进一步的限定。
射频收发器10可被配置有多个与射频收发电路20连接的端口。具体的,射频收发电路20包括第一收发通路TRX0、第二收发通路TRX1、第一接收通路RX2和第二接收通路RX3。其中,第一天线ANT0、第三天线ANT2分别经射频收发电路20与射频收发器10的部分端口连接。具体的,第一收发通路TRX0及第一接收通路RX2被配置为可切换地连接第一天线ANT0和第三天线ANT2。第二天线ANT1、第四天线ANT3分别经射频 收发电路20与射频收发器10的部分端口连接。具体的,第二收发通路TRX1和第二接收通路RX3被配置为可切换地连接第二天线ANT1和第四天线ANT3。
其中,第一收发通路TRX0和第二收发通路TRX1相互独立。相互独立可以理解为第一收发通路TRX0和第二收发通路TRX1在硬件上相互独立。也即,第一收发通路TRX0、第二收发通路TRX1不存在硬件上的相互连接或耦合。示例性的,第一收发通路TRX0仅可连接至第一天线ANT0和第三天线ANT2,而不可以连接至第二天线ANT1、第四天线ANT4。相应的,第二收发通路TRX1仅可连接至第二天线ANT1、第四天线ANT4,而不可以连接至第一天线ANT0、第三天线ANT2。
射频收发器10存储上述第一收发通路TRX0、第二收发通路TRX1、第一接收通路RX2、第二接收通路RX3的配置信息。其中,该配置信息可以包括天线的标识信息、射频收发器10端口的标识信息、第一收发通路TRX0、第二收发通路TRX1、第一接收通路RX2、第二接收通路RX3上的各开关的控制逻辑信息等。射频收发器10中可以预先存储射频系统在不同工作模式下的默认接收通路、默认发射通路等。在本申请实施例中,默认接收通路、默认发射通路可以理解为射频系统在初始状态的信号传输的优先通路或最优通路。可以理解,上述配置信息也可以存储于独立于射频收发器10的存储器件内,在需要的时候可以被射频收发器10读取。上述配置信息也可以存储在射频收发器10中。在本申请实施例中,对配置信息的存储位置不做进一步的限定。
射频收发器10用于根据第一收发通路TRX0和第二收发通路TRX1接收的射频信号配置目标收发通路,并将目标收发通路配置为用于收发目标射频信号,其中,目标收发通路为第一收发通路TRX0和第二收发通路TRX1之一。其中,射频信号可以包括第一通信制式的第一射频信号和第二通信制式的第二射频信号。具体的,第一射频信号可包括多个频段的4G LTE信号,第二射频信号可包括多个频段的5G NR信号。需要说明的是,当射频系统处于不同工作模式下时,第一收发通路TRX0和第二收发通路TRX1能够收发的射频信号的通信制式不同。例如,当射频系统处于SA工作模式时,其射频信号可包括多个频段的5G NR信号,其对应的目标射频信号也为5G NR信号;当射频系统处于LTE工作模式时,其射频信号包括多个频段的4G LTE信号,其对应的目标射频信号也为4G LTE信号;射频系统处于NSA工作模式时,其射频信号包括多个频段的4G LTE信号和多个频段的5G NR信号。
当射频系统处于SA工作模式或LTE工作模式时,射频收发器可根据第一收发通路TRX0和第二收发通路TRX1接收的射频信号的信号强度大小来配置目标收发通路。例如,可以将信号强度大的收发通路作为目标收发通路,并配置该目标收发通路来实现对目标射频信号的收发。其中,信号强度可以包括但不限于通过检测射频信号的网络信息来获取,其中,网络信息可以包括与所接收的天线信号的无线性能度量相关联的原始和处理后的信息,诸如接收功率、发射功率、参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference signal reception quality,RSRQ)、接收信号强度指示(Received Signal Strength Indicator,RSSI)、信噪比(Signal to Noise Ratio,SNR)、MIMO信道矩阵的秩(Rank)、载波干扰噪声比(Carrier to Interference plus Noise Ratio,RS-CINR)、帧误码率、比特误码率等。
本申请实施例中射频系统包括射频收发器10、射频收发电路20,其中,射频收发电路20中的第一收发通路TRX0和第二收发通路TRX1相互独立,实现了解耦,方便于灵活布局,可以将第一收发通路TRX0和第二收发通路TRX1分别靠近布局在对应的天线位置处,以减少第一收发通路TRX0和第二收发通路TRX1上的链路损耗,进而可以提高射频系统的通信性能。
如图2所示,在其中一个实施例中,射频系统还包括相互独立的第一开关单元310和第二开关单元320。第一收发通路TRX0和第一接收通路RX2通过第一开关单元310可切 换地连接第一天线ANT0和第三天线ANT2;第二收发通路TRX1和第二接收通路RX3通过第二开关单元320可切换地连接第二天线ANT1和第四天线ANT3。也即,在本申请实施例中,通过设置第一开关单元310和第二开关单元320,以支持第一收发通路TRX0和第二收发通路TRX1的相互独立设置,以使第一收发通路TRX0和第二收发通路TRX1不存在硬件上的相互连接或耦合。具体的,第一开关单元310和第二开关单元320均可以为DPDT开关。示例性的,第一开关单元310的两个第一端可以分别与第一收发通路TRX0和第一接收通路RX2连接,第一开关单元310的两个第二端分别与第一天线ANT0和第三天线ANT2一一对应连接。相应的,第二开关单元320的两个第一端可以分别与第二收发通路TRX1和第二接收通路RX3连接,第二开关单元320的两个第二端分别与第二天线ANT1和第四天线ANT4一一对应连接。
在本申请实施例中,通过设置两个分立的DPDT开关来取代相关技术中用于实现天线切换的开关单元(例如,分别与三个天线的3P3T开关或分别与四个天线连接的4P4T开关),以实现第一收发通路TRX0和第二收发通路TRX1的解耦,可以降低开关器件本身的插损,例如可以减少0.5dB左右以提高射频系统在不同工作模式下的通信性能,同时也可以降低开关器件的成本。
一般,该射频系统应用在通信设备中时,由于受到通信设备结构的限制,如图3所示,通常会将第一天线ANT0和第二天线ANT1分别设置在通信设备的顶边框101和底边框103,将第三天线ANT2和第四天线ANT3设置在通信设备的两个侧边框102、104,因此,第一天线ANT0和第二天线ANT1的效率均高于第三天线ANT2和第四天线ANT3的效率。
当射频系统处于非独立组网工作模式时,第一天线ANT0可以用于第一射频信号的发射和第一射频信号的主集接收,第三天线ANT2可以用于第一射频信号的分集接收;第二天线ANT1可以用于第二射频信号的发射和第二射频信号的主集接收,第四天线ANT3可以用于第二射频信号的分集接收。其中,第一射频信号可以为4G LTE信号,第二射频信号可以为5G NR信号,且第一射频信号和第二射频信号的组合可以满足EN-DC的组合。为了便于说明,如图4所示,本申请实施例中以第一射频信号为B3频段的4G LTE信号(简称,B3信号),第二射频信号为N1频段的5G NR信号(简称,N1信号)为例进行说明。也即,第一天线ANT0可以用于B3信号的发射和主集接收,第三天线可以ANT2用于B3信号的分集接收;第二天线ANT1可以用于N1信号的发射和主集接收,第四天线ANT3可以用于N1信号的分集接收。
当射频系统工作在非独立组网工作模式下,可以实现对第一射频信号和第二射频信号的双连接,并且可以将上行信号分布在天线效率更好的第一天线ANT0和第二天线ANT1上,可以保证上行信号的可靠性。
进一步的,当射频系统处于非独立组网工作模式时,第一天线ANT0还可以用于第二射频信号的主集MIMO接收,第二天线ANT0还可以用于第二射频信号的分集MIMO接收;第三天线ANT2还可以用于第一射频信号的主集MIMO接收,第四天线ANT3还可以用于第一射频信号的分集MIMO接收,以使该射频系统能够支持对第一射频信号和第二射频信号的4*4MIMO功能。
当射频系统处于LTE工作模式时,射频系统能够实现对4G LTE信号的收发,此时,射频收发器10可以根据第一收发通路TRX0和第二收发通路TRX1接收的4G LTE信号来配置目标收发通路,并将目标收发通路配置为用于收发4G LTE信号。
当射频系统处于SA工作模式时,射频系统能够实现对5G NR信号的收发,此时,射频收发器10可以根据第一收发通路TRX0和第二收发通路TRX1接收的5G NR信号来配置目标收发通路,并将目标收发通路配置为用于收发5G NR信号。
本申请实施例中,射频系统不仅能够工作在非独立组网工作模式下以实现对第一射频信号和第二射频信号的双连接,可以将上行信号分布在天线效率更好的第一天线ANT0和 第二天线ANT1上,可以保证上行信号的可靠性;而且当射频系统工作在独立组网工作模式或长期演进网络工作模式下,通过从第一收发通路TRX0和第二收发通路TRX1中配置目标发射通路,以实现对不同工作模式下对应射频信号(4G LTE信号或5G NR信号)的收发,也可以将上行信号分布在天线效率更好的第一天线ANT0或第二天线ANT1上,可以保证上行信号的可靠性以提高射频系统工作在独立组网工作模式或长期演进网络工作模式的通信性能。
如图4,在其中一个实施例中,射频收发器10被配置有多个端口,例如,可包括第一输出端口TX OUT0、第二输出端口TX OUT1、第一输入端口RFIN0、第二输入端口RFIN1、第三输入端口RFIN2和第四输入端口RFIN3。第一收发通路TRX0包括第一子接收通路RX0和第一发射通路TX0,第二收发通路TRX1包括第二子接收通路RX1和第二发射通路TX1。其中,各输入端口用于接收由天线侧输入的射频信号,各输出端口用于将射频收发器10处理后的射频信号输出至天线侧。其中,第一输出端口TX OUT0对应与第一发射通路TX0连接,第二输出端口TX OUT1对应与第二发射通路TX1连接,第一输入端口RFIN0对应设置与第一子接收通路RX0连接,第二输入端口RFIN1对应与第二子接收通路RX1连接。
在其中一个实施例中,射频收发器10用于配置第一发射通路TX0和第一子接收通路RX0连接至第一天线ANT0,并配置第二发射通路TX1和第二子接收通路RX1连接至第二天线ANT1。射频收发器10用于根据第一子接收通路RX0和第二子接收通路RX1接收的射频信号配置目标发射通路,目标发射通路为第一发射通路TX0和第二发射通路TX1中的一个。
具体的,当射频系统处于LTE工作模式时,射频收发器10可配置第一发射通路TX0为第一射频信号的默认发射通路。也即,第一天线ANT0用于第一射频信号的发射和主集接收;第二天线ANT1用于第一射频信号的分集接收;第三天线ANT2用于第一射频信号的主集MIMO接收;第四天线ANT3用于第一射频信号的分集MIMO接收。其中,射频收发器10用于基于第一子接收通路RX0和第二子接收通路RX1接收的第一射频信号配置目标收发通路。示例性的,射频收发器10可以基于第一子接收通路RX0和第二子接收通路RX1接收的第一射频信号,例如,B3信号,来确定并配置目标收发通路。
若第二子接收通路RX1和第一子接收通路RX0分别接收的第一射频信号的信号质量的第一差值大于第一预设阈值。其中,第一差值可以为第二子接收通路RX1对应的第一信号质量减去第一子接收通路RX0对应的第二信号质量的差值。例如,第二子接收通路RX1接收的第一射频信号的信号质量减去第一子接收通路RX0接收的第一射频信号的信号质量得到的第一差值大于第一预设阈值,则可以认为第一天线ANT0可能被遮挡(例如,被用户握持),此时,第二天线ANT1的效率高于第一天线ANT0的效率。为确保第一射频信号的通信质量,射频收发器10可将第二发射通路TX1配置为目标发射通路,并配置第二发射通路TX1为传输第一射频信号的目标发射通路。如此,可以将第一射频信号的发射和主集接收切换至第二天线ANT1。从而利用效率更高的第二天线ANT1来实现第一射频信号的发射和主集接收,以提升第一射频信号的通信质量。
在其中一个实施例中,当射频系统处于独立组网工作模式时,射频收发器10可配置第二发射通路TX1为第二射频信号的默认收发通路。相应的,第二天线ANT1用于第二射频信号的发射和主集接收;第一天线ANT0用于第二射频信号的分集接收;第三天线ANT2用于第二射频信号的分集MIMO接收;第四天线ANT3用于第二射频信号的主集MIMO接收。其中,射频收发器10用于基于第一子接收通路RX0和第二子接收通路RX1接收的第二射频信号配置目标收发通路。示例性的,射频收发器10可以基于第一子接收通路RX0和第二子接收通路RX1接收的第二射频信号,例如,N1信号,来确定并配置目标收发通路。
具体的,若第二子接收通路RX1和第一子接收通路RX0分别接收的第二射频信号的信号质量的第二差值大于第二预设阈值。其中,第二差值可以为第二子接收通路RX1对应的第二信号质量减去第一子接收通路RX0对应的第一信号质量的差值。则可以认为第一天线ANT0可能被遮挡(例如,被用户握持),此时,第二天线ANT1的效率高于第一天线ANT0的效率,射频收发器10可将第一发射通路作为目标发射通路,配置第一发射通路TX0为传输第二射频信号的目标发射通路。
在本申请实施例中,第一阈值和第二阈值均大于零,第一阈值和第二阈值的大小可以根据需要设置。
在申请实施例中,通过设置第一阈值、第二阈值的判定条件,还可以防止因为天线的信号强度可能一直处于变化中而导致的天线之间频繁切换,进而可以减小天线的传输效率的影响。
在其中一个实施例中,射频收发器10还可用于根据目标发射通路、第一子接收通路RX0和第二子接收通路RX1接收的射频信号中的至少之一来配置目标接收通路。其中,目标接收通路与目标发射通路连接至同一天线或不同天线。
具体的,若收发处理的射频信号为FDD制式时,则目标接收通路与目标发射通路连接至同一天线。示例性的,若目标发射通路从第一发射通路TX0切换至第二发射通路TX1,即,目标天线由第一天线ANT0切换至第二天线ANT1后,则对应的目标接收通路也会由第一子接收通路RX0切换至第二子接收通路RX1,第二天线ANT1作为射频信号的发射天线和主集接收天线,其第一天线ANT0作为射频信号的分集接收天线。
若收发处理的射频信号为TDD制式时,则目标接收通路与目标发射通路可连接至不同天线。也即,即便是目标发射通路从第一发射通路TX0切换至第二发射通路TX1,其目标接收通路也可以不发生改变,也即,目标接收通路可仍然连接至第一天线ANT0。
如图5所示,在其中一个实施例中,射频收发电路20包括第一收发模块220、第一接收模块230、第二收发模块240和第二接收模块250。第一收发模块220、第二收发模块240均可支持对第一射频信号和第二射频信号的接收和发射处理。第一接收模块230、第二接收模块250均可支持对第一射频信号和第二射频信号的接收处理。其中,第一收发模块220可形成射频收发电路20中的第一收发通路,第二收发模块240可形成射频收发电路20中的第二收发通路,第一接收模块230可形成射频收发电路20中的第一接收通路,第二接收模块250可形成射频收发电路20中的第二接收通路。也即,第一收发模块220和第一接收模块230可通过第一开关单元310可切换地连接第一天线ANT0和第三天线ANT2。第二收发模块240和第二接收模块250通过第二开关单元320可切换地连接第二天线ANT1和第四天线ANT3。
具体的,第一收发模块220和第二收发模块240均可以包括MMPA器件、滤波模组等。该射频MMPA器件可以理解为多模多频功率放大器(Multimode Multiband Power Amplifier Module,MMPA)。该射频MMPA器件可以支持对多个不同频段的第一射频信号、第二射频信号的发射和接收处理。滤波模组与射频MMPA器件连接,可用于支持对不同频段的第一射频信号、第二射频信号的滤波处理,以输出具有不同频段的第一射频信号、第二射频信号。具体的,滤波模组可包括多个滤波器,每一滤波器用于对射频MMPA器件输出的多个不同频段的第一射频信号、第二射频信号进行滤波处理。具体的,各滤波器仅允许预设频段的第一射频信号、第二射频信号通过以滤除其他频段的杂散波,且各滤波器输出的第一射频信号、第二射频信号的频段不同。
可选的,该第一收发模块220和第二收发模块240还可以为射频PA Mid器件。该射频PA Mid器件可以理解为内置低噪声放大器的功率放大器模块(Power Amplifier Modules including Duplexers,PA Mid),其可用于支持对多个不同频段的第一射频信号、第二射频信号的放大、滤波处理。需要说明的是,在本申请实施例中,对第一收发模块220和第二 收发模块240的具体组成形式不做进一步的限定。
具体的,第一接收模块230和第二接收模块250可以为LFEM(Low noise amplifier front end module,射频低噪声放大器模组)器件,其具体可包括低噪声放大器和多个滤波器等,可用于支持对第一射频信号和第二射频信号(例如,包括多个不同频段的4G LTE信号和5G NR信号)的接收处理。请继续参考图5,在其中一个实施例中,射频收发器10包括第一发射单元110、第二发射单元120和控制单元130。其中,第一发射单元110,与第一输出端口TX OUT0连接,用于发射并处理第一射频信号和第二射频信号。第二发射单元120,与第二输出端口TX OUT1连接,用于发射并处理第一射频信号和第二射频信号。具体的,第一发射单元110和第二发射单元120均可包括多个用于对第一射频信号、第二射频信号进行功率放大的功率放大器。
控制单元130分别与第一输入端口RFIN0、第二输入端口RFIN1、第一发射单元110、第二发射单元120连接,用于根据第一输入端口RFIN0和第二输入端口RFIN1接收的射频信号确定目标发射单元,并配置目标发射单元工作,以导通目标发射通路。其中,目标发射单元为第一发射单元110和第二发射单元120中的一个。具体的,控制单元130可根据第一子接收通路、第一输入端口RFIN0接收的射频信号的第一信号质量以及根据第二子接收通路、第二输入端口RFIN1接收的射频信号的第二信号质量来确定目标发射单元。
其中,控制单元130可根据第二信号质量和第一信号质量的第一差值来判断第一天线ANT0与第二天线ANT1的效率大小。示例性的,若第一差值大于预设阈值,则认定第二天线ANT1的效率大于第一天线ANT0的效率,此时,可将第二天线ANT1作为目标发射天线,因此,可以将第二发射单元120作为目标发射单元,并控制第二发射单元120中的功率放大器工作,并控制第一发射单元110中功率放大器停止工作,以实现对目标发射单元的配置,以导通目标发射通路。若第一差值小于预设阈值,则认定第一天线ANT0的效率大于第二天线ANT1的效率,此时,可将第一天线ANT0作为目标发射天线,因此,可以将第一发射单元110作为目标发射单元,并控制第一发射单元110以及第一收发模块220中的功率放大器工作,并控制第二发射单元120中的功率放大器以及第二收发模块240中功率放大器停止工作,以实现对目标发射单元的配置,以导通目标发射通路。
在本申请实施例中,由于射频收发器10中的第一发射单元110和第二发射单元120均可以支持对第一射频信号和第二射频信号的发射处理,不管射频系统是处于SA工作模式,还是处于LTE工作模式,若第一天线ANT0的效率低于第二天线ANT1的效率,则可以将射频收发器10中的目标发射单元进行重新配置,例如,将目标射频发射单元由原来的第一发射单元110变更为第二发射单元120,或,将维持原来的第二发射单元120为目标发射单元,以导通其目标发射通路。
如图6和图7所示,在其中一个实施例中,射频收发器10包括第一发射单元110、第二发射单元120、控制单元130和开关单元140。与前述实施例不同的是,在本实施例中,第一发射单元110经开关单元140与第一输出端口TX OUT0连接,仅用于发射并处理第一射频信号;第二发射单元120经开关单元140与第二输出端口TX OUT1连接,仅用于发射并处理第二射频信号。具体的,第一发射单元110中可包括用于支持对第一射频信号进行功率放大的功率放大器,第二发射单元120中可包括用于支持对第二射频信号进行功率放大的功率放大器。也即,第一发射单元110仅支持对第一射频信号的功率放大处理,第二发射单元120仅支持对第二射频信号的功率放大处理。示例性的,若射频系统处于LTE工作模式,则第一发射单元110处于工作状态;若射频系统处于SA工作模式,则第二发射单元120处于工作状态。在本实施例中,控制单元130用于根据第一输入端口RFIN0和第二输入端口RFIN1接收的射频信号确定目标天线,并生成切换信号并输出至与之连接的开关单元140。其中,开关单元140还与第一输出端口TX OUT0、第二输出端口TX OUT1连接。开关单元140可根据控制单元130输出的切换信号导通目标输出端口与目标 发射通路之间的通路。其中,目标输出端口为第一输出端口TX OUT0和第二输出端口TX OUT1中的一个。可以理解的是,目标输入端口还与当前射频系统所出的工作模式相关联。示例性的,若射频系统处于LTE工作模式,则第一发射单元110处于工作状态,其对应的目标输出端口为第一输出端口TX OUT0;相应的,若射频系统处于SA工作模式,则第二发射单元120处于工作状态,其对应的目标输出端口为第二输出端口TX OUT1。
在其中一个实施例中,开关单元140可以为双刀双掷开关,其中,该双刀双掷开关的两个第一端分别与第一发射单元110、第二发射单元120一一对应连接,双刀双掷开关的两个第二端分别与第一输出端口TX OUT0、第二输出端口TX OUT1一一对应连接。
可选的,开关单元140也可以包括两个单刀双掷开关,其中,第一单刀双掷开关的单端子与第一发射单元110连接,第一单刀双掷开关的两个选择端分别与第一输出端口TX OUT0、第二输出端口TX OUT1一一对应连接;第二单刀双掷开关的单端子与第二发射单元120连接,第二单刀双掷开关的两个选择端分别与第一输出端口TX OUT0、第二输出端口TX OUT1一一对应连接。在本申请实施例中,对开关单元140的具体组合形式不做进一步的限定。
为了便于说明,在本申请实施例中,以射频系统工作在LTE工作模式下,且第一射频信号为B3信号为例进行说明。
请继续参考图6,当射频系统工作在LTE工作模式的默认状态或初始状态时,第一发射通路作为目标发射通路,第一天线ANT0为主集天线,用于B3信号的发射天线和主集接收天线;第二天线ANT1用于B3信号的主集MIMO接收;第三天线ANT2为分集天线;用于B3信号的分集接收天线;第四天线ANT3用于B3信号的分集MIMO接收。
射频收发器10可根据第一子接收通路、第一输入端口RFIN0接收到B3信号的第一信号质量以及根据第二子接收通路RX1、第二输入端口RFIN1接收的B3信号的第二信号质量来确定目标天线。具体的,控制单元130可根据第二信号质量和第一信号质量的第一差值来判断第一天线ANT0与第二天线ANT1的效率大小。示例性的,若第一差值大于预设阈值,则认定第二天线ANT1的效率大于第一天线ANT0的效率,则可将第二天线ANT1作为目标天线。请继续参考图7,控制单元130可控制开关单元140导通第一发射单元110与第二输出端口TX OUT1之间第二发射通路,以将第二发射通路配置为目标发射通路,将第二子接收通路配置为目标接收通路,将第二天线ANT1作为主集天线,用于B3信号的发射和主集接收。同时,也会对应配置与第一天线ANT0连接的第一子接收通路为B3信号的主集MIMO接收通路,以使第一天线ANT0用于B3信号的主集MIMO接收。
如图8所示,在其中一个实施例中,与如图6和图7所示的射频系统不同的是,本实施例中的开关单元140可以设置在射频收发器10与收发电路20之间。也即,该开关单元140也可以外置于射频收发器10。
基于如图6-8所示的射频系统,基于当前射频系统所处的工作模式(例如SA工作模式或LTE工作模式),可以控制开关单元140导通目标发射单元与目标发射通路之间的通路,以使射频系统能够使用效率最优的目标天线来支持对射频信号的发射。
如图9和图10所示,在其中一个实施例中,射频收发器10还被配置有第三输入端口RFIN2和第四输入端口RFIN3,其中,第三输入端口RFIN2与第一接收通路连接,第四输入端口RFIN3与第二接收通路连接。其中,射频收发器10还包括均可以支持对第一射频信号和第二射频信号接收处理的第一接收单元150和第二接收单元160。其中,第一接收单元150分别与第一输入端口RFIN0和第三输入端口RFIN2连接,第二接收单元160分别与第二输入端口RFIN1、第四输入端口RFIN3连接。具体的,当射频系统处于独立组网工作模式和长期演进网络工作模式中的一种时,射频收发器10用于根据目标发射通路、第一子接收通路和第二子接收通路接收的射频信号中的至少之一配置目标接收通路,其中,目标接收通路与目标发射通路连接至同一天线或不同天线。
在本申请实施例中,以目标接收通路与目标发射通路连接至同一天线为例进行说明。请继续参考图9,若射频系统工作在LTE工作模式的默认状态或初始状态时,第一发射通路作为目标发射通路,第一发射通路作为目标接收通路,第一天线ANT0为主集天线,用于B3信号的发射和主集接收;第二天线ANT1用于B3信号的主集MIMO接收;第三天线ANT2为分集天线,用于B3信号的分集接收;第四天线ANT3用于B3信号的分集MIMO接收。请继续参考图10,若射频收发器10的目标发射通路由第一发射通路切换至第二发射通路,也即,目标天线由第一天线ANT0切换至第二天线ANT1时,此时,射频收发器10可对应配置第二天线ANT1的第二子接收通路为B3信号的主集接收通路,以使第二天线ANT1用于B3信号的主集接收;对应配置第一天线ANT0的第一子接收通路为B3信号的主集MIMO接收通路,以使第一天线ANT0用于B3信号的主集MIMO接收;对应配置与第三天线ANT2连接的第一接收通路为B3信号的分集接收MIMO通路,以使第三天线ANT2用于B3信号的分集MIMO接收;对应配置与第四天线ANT3连接的第二接收通路为B3信号的分集接收通路,以使第四天线ANT3用于B3信号的分集接收。
如图11和图12所示,在其中一个实施例中,第一收发模块220和第二收发模块240中均可包括发射单元201和接收单元202。其中,发射单元201可包括功率放大器和滤波器等,可用于支持对多个不同频段的第一射频信号和多个不同频段的第二射频信号的功率放大、滤波等处理。接收单元202可包括低噪声放大器和滤波器等,可用于支持对多个不同频段的第一射频信号和多个不同频段的第二射频信号的滤波、低噪声放大等处理。具体的,第一收发模块220的发射单元201可以形成第一发射通路,第一收发模块220的接收单元202可以形成第一子接收通路,第二收发模块240的发射单元201可以形成第二发射通路,第二收发模块240的接收单元202可以形成第二子接收通路。
为了便于说明,本申请实施例基于如图12所示的射频系统,以B3+N1来阐述射频收发系统支持LTE(MH band)+NR(MH band)ENDC的工作原理。其中,LTE B3作为5G的锚点,先行建立信令连接,B3的工作原理如下:
B3的发射通路路径:
第一发射单元110→开关单元140→第一输出端口TX OUT0→第一收发模块220的发射单元201→第一开关单310→第一天线ANT0。
B3的主集接收通路路径:
第一天线ANT0→第一开关单310→第一收发模块220的接收射单元202→第一输入端口RFIN0。
B3的分集接收通路路径:
第三天线ANT2→第一开关单310→第一接收模块230→第三输入端口RFIN2。
N1的发射通路路径:
第二发射单元120→开关单元140→第二输出端口TX OUT1→第二收发模块240的发射单元201→第二开关单320→第二天线ANT1。
N1的主集接收通路路径:
第二天线ANT1→第二开关单320→第二收发模块240的接收射单元202→第二输入端口RFIN1。
N1的分集接收通路路径:
第四天线ANT3→第二开关单320→第二接收模块250→第四输入端口RFIN3。
其中,当射频系统工作在NSA工作模式下时,第一天线ANT0和第三天线ANT2还可以分别用于N1的主集MIMO接收、N1的分集MIMO接收,相应的,第二天线ANT1和第四天线ANT3还可以分别用于B3的主集MIMO接收、B3的分集MIMO接收。
在本申请实施例中,通过设置为两个分立的DPDT开关,可以对应减少开关器件本身的插损,例如可以减少0.5dB左右,因此,可以减少接收通路上的插损,以提高射频系统 的灵敏度。另外,还可以降低射频系统的成本。同时两条发射通路在射频前端中实现了硬件解耦,方便于灵活布局,可以分别靠近对应的天线布局。如图13所示,比如与第一发射通路连接的第一开关单元310可以靠近第一天线ANT0和第三天线ANT2设置,与第二发射通路连接的第二开关单元320可以靠近第二天线ANT1和第四天线ANT3设置,可以进一步优化各发射通路的射频前端路径损耗,提升了射频系统的通信性能。
在其中一个实施例中,当射频系统所处的环境改变时,各个天线的信号强度可能会对应改变。例如,不同位置的天线被遮挡时,会影响不同位置天线的信号强度。当射频系统处于非独立组网工作模式下时,射频系统还可以周期性的获取基于第一子接收通路获取第一射频信号的信号强度R ANT0,以及基于第三天线ANT2的接收通路获取的第一射频信号的信号强度R ANT2。其中,周期可以为固定的时间,例如,可以设置为1分钟;也可以为不固定的时间,例如,可以根据射频系统的使用状态设置不同的时长等。
具体的,若信号强度R ANT2与信号强度R ANT0的差值大于0,则可认定第三天线ANT2接收第一射频信号的信号强度大于第一天线ANT0接收第一射频信号的信号强度,也即,第一开关单元310会将切换导通第一收发模块220与第三天线ANT2之间的通路,并导通第一接收模块230与第一天线ANT0之间的通路,以使第三天线ANT2用于的第一发射信号发射和主集接收,以使第一天线ANT0用于第一发射信号分集接收,进而保证了第一发射信号发射和主集接收的稳定性。
在其中一个实施例中,当射频系统处于非独立组网工作模式下时,射频系统还可以周期性的获取基于第二子接收通路获取第二射频信号的信号强度R ANT1,以及基于第四天线ANT3的接收通路获取的第二射频信号的信号强度R ANT3。具体的,若信号强度R ANT1与信号强度R ANT3的差值大于0,则可认定第四天线ANT3接收第二射频信号的信号强度大于第二天线ANT1接收第二射频信号的信号强度,也即,第二开关单元320会将切换导通第二收发模块240与第四天线ANT3之间的通路,并导通第二接收模块250与第二天线ANT1之间的通路,以使第四天线ANT3用于的第二发射信号发射和主集接收,以使第二天线ANT1用于第二发射信号分集接收,进而保证了第二发射信号发射和主集接收的稳定性。
如图14所示,本申请实施例还提供了一种天线切换方法,应用于上述任一实施例中的射频系统。在其中一个实施例中,天线切换方法包括:步骤1402-步骤1404。
步骤1402,射频收发器根据射频收发电路中的第一收发通路和第二收发通路接收的射频信号配置目标收发通路。
步骤1404,射频收发器配置目标收发通路收发目标射频信号;其中,目标收发通路为第一收发通路和第二收发通路之一。
其中,第一收发通路和第二收发通路相互独立,且第一收发通路被配置为可切换地连接第一天线和第三天线,第二收发通路被配置为可切换地连接第二天线和第四天线。
射频收发器10可被配置有多个与射频收发电路20连接的端口。具体的,射频收发电路20包括第一收发通路、第二收发通路、第一接收通路和第二接收通路。其中,第一天线ANT0、第三天线ANT2分别经射频收发电路20与射频收发器10的部分端口连接。具体的,第一收发通路及第一接收通路被配置为可切换地连接第一天线ANT0和第三天线ANT2。
第二天线ANT1、第四天线ANT3分别经射频收发电路20与射频收发器10的部分端口连接。具体的,第二收发通路和第二接收通路被配置为可切换地连接第二天线ANT1和第四天线ANT3。其中,第一收发通路和第二收发通路相互独立。相互独立可以理解为第一收发通路和第二收发通路在硬件上相互独立。也即,第一收发通路、第二收发通路不存在硬件上的相互连接或耦合。示例性的,第一收发通路仅可连接至第一天线ANT0和第三天线ANT2,而不可以连接至第二天线ANT1、第四天线ANT4。相应的,第二收发通路仅可连接至第二天线ANT1、第四天线ANT4,而不可以连接至第一天线ANT0、第三天 线ANT2。
射频收发器10存储上述第一收发通路、第二收发通路、第一接收通路、第二接收通路的配置信息。其中,该配置信息可以包括天线的标识信息、射频收发器10端口的标识信息、第一收发通路、第二收发通路、第一接收通路、第二接收通路上的各开关的控制逻辑信息等。射频收发器10中可以预先存储射频系统在不同工作模式下的默认接收通路、默认发射通路等。在本申请实施例中,默认接收通路、默认发射通路可以理解为射频系统在初始状态的信号传输的优先通路或最优通路。可以理解,上述配置信息也可以存储于独立于射频收发器10的存储器件内,在需要的时候可以被射频收发器10读取。上述配置信息也可以存储在射频收发器10中。在本申请实施例中,对配置信息的存储位置不做进一步的限定。
射频收发器10用于根据第一收发通路和第二收发通路接收的射频信号配置目标收发通路,并将目标收发通路配置为用于收发目标射频信号,其中,目标收发通路为第一收发通路和第二收发通路之一。其中,射频信号可以包括第一通信制式的第一射频信号和第二通信制式的第二射频信号。具体的,第一射频信号可包括多个频段的4G LTE信号,第二射频信号可包括多个频段的5G NR信号。需要说明的是,当射频系统处于不同工作模式下时,第一收发通路和第二收发通路能够收发的射频信号的通信制式不同。例如,当射频系统处于SA工作模式时,其射频信号可包括多个频段的5G NR信号,其对应的目标射频信号也为5G NR信号;当射频系统处于LTE工作模式时,其射频信号包括多个频段的4G LTE信号,其对应的目标射频信号也为4G LTE信号;射频系统处于NSA工作模式时,其射频信号包括多个频段的4G LTE信号和多个频段的5G NR信号。
当射频系统处于SA工作模式或LTE工作模式时,射频收发器可根据第一收发通路和第二收发通路接收的射频信号的信号强度大小来配置目标收发通路。例如,可以将信号强度大的收发通路作为目标收发通路,并配置该目标收发通路来实现对目标射频信号的收发。
本申请实施例中的天线切换方法,射频收发器根据射频收发电路中的第一收发通路和第二收发通路接收的射频信号配置目标收发通路,并可配置目标收发通路收发目标射频信号;其中,目标收发通路为第一收发通路和第二收发通路之一。由于第一收发通路和第二收发通路相互独立,实现了解耦,方便于灵活布局,可以将第一收发通路和第二收发通路分别靠近布局在对应的天线位置处,以减少第一收发通路和第二收发通路上的链路损耗,进而可以提高射频系统的通信性能。
在其中一个实施例中,第一天线和第二天线的效率均高于第三天线、第四天线的效率,第一收发通路包括第一发射通路和第一子接收通路,第二收发通路包括第二发射通路和第二子接收通路,射频收发器用于配置第一发射通路和第一子接收通路连接至第一天线,并配置第二发射通路和第二子接收通路连接至第二天线。
具体的,射频收发器可根据第一子接收通路和第二子接收通路接收的射频信号配置目标发射通路,目标发射通路为第一发射通路和第二发射通路之一。
在其中一个实施例中,射频收发器还可根据目标发射通路、第一子接收通路和第二子接收通路接收的射频信号中的至少之一配置目标接收通路,其中,目标接收通路与目标发射通路连接至同一天线或不同天线。
应该理解的是,虽然图14的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图14中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地 执行。
本申请实施例还提供了一种通信设备,该通信设备还包括上述任一实施例中的射频系统。通过在通信设备中内置上述任一实施例中的射频系统,第一收发通路和第二收发通路相互独立;其中,射频收发器可根据第一收发通路和第二收发通路接收的射频信号配置目标收发通路,可实现第一收发通路和第二收发通路解耦,方便于灵活布局,可以将第一收发通路和第二收发通路分别靠近布局在对应的天线位置处,可以减少第一收发通路和第二收发通路上的链路损耗,进而可以提高射频系统在任一工作模式下的通信性能。
另外,通过在通信设备中内置上述任一实施例中的射频系统,不仅能够使通信设备工作在非独立组网工作模式下以实现对第一射频信号和第二射频信号的双连接,可以将上行信号分布在天线效率更好的第一天线和第二天线上,可以保证上行信号的可靠性;而且还可以使通信设备工作在独立组网工作模式或长期演进网络工作模式下。当通信设备工作在独立组网工作模式或长期演进网络工作模式下,通过在第一收发通路和第二收发通路中配置目标发射通路,以实现对不同工作模式下对应射频信号(4G LTE信号或5G NR信号)的收发,也可以将上行信号分布在天线效率更好的第一天线或第二天线上;可以提高通信设备工作在独立组网工作模式或长期演进网络工作模式的通信性能。
如图15所示,进一步的,以通信设备为手机10为例进行说明,具体的,如图15所示,该手机10可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理电路22、外围设备接口23、射频系统24、输入/输出(I/O)子系统26。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图15所示的手机10并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图15中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成电路。
存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作系统211、通信模块(或指令集)212、全球定位系统(GPS)模块(或指令集)213等。
处理电路22和其他控制电路(诸如射频系统24中的控制电路)可以用于控制手机10的操作。该处理电路22可以包括一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
处理电路22可以被配置为实现控制手机10中的天线的使用的控制算法。处理电路22还可以发出用于控制射频系统24中各开关的控制命令等。
I/O子系统26将手机10上的输入/输出外围设备诸如键区和其他输入控制设备耦接到外围设备接口23。I/O子系统26任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据端口等。示例性的,用户可以通过经由I/O子系统26供给命令来控制手机10的操作,并且可以使用I/O子系统26的输出资源来从手机10接收状态信息和其他输出。例如,用户按压按钮261即可启动手机或者关闭手机。
射频系统24可以为前述任一实施例中的射频系统,其中,射频系统24还可用于处理多个不同频段的射频信号。例如用于接收1575MHz的卫星定位信号的卫星定位射频电路、用于处理IEEE802.11通信的2.4GHz和5GHz频段的WiFi和蓝牙收发射频电路、用于处理蜂窝电话频段(诸如850MHz、900MHz、1800MHz、1900MHz、2100MHz的频段、和Sub-6G频段)的无线通信的蜂窝电话收发射频电路。其中,Sub-6G频段可具体包括2.496GHz-6GHz频段,3.3GHz-6GHz频段。
本申请实施例还提供了一种通信设备,包括射频收发器,射频收发器中储存有计算机程序,计算机程序被射频收发器执行时,使得射频收发器执行上述任一实施例中的天线切 换方法的步骤。
本申请实施例还提供了一种通信设备,包括存储器及处理器,存储器中储存有计算机程序,计算机程序被处理器执行时,使得处理器执行上述任一实施例中的天线切换方法的步骤。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行上述任一实施例中的天线切换方法的步骤。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行天线切换方法。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (22)

  1. 一种射频系统,包括:
    射频收发器;
    射频收发电路,与所述射频收发器连接,所述射频收发电路包括第一收发通路、第二收发通路、第一接收通路和第二接收通路,所述第一收发通路及所述第一接收通路被配置为可切换地连接第一天线和第三天线,所述第二收发通路和所述第二接收通路被配置为可切换地连接第二天线和第四天线;所述第一收发通路和所述第二收发通路相互独立;
    其中,所述射频收发器用于根据所述第一收发通路和所述第二收发通路接收的射频信号配置目标收发通路,并将所述目标收发通路配置为用于收发目标射频信号,其中,所述目标收发通路为所述第一收发通路和所述第二收发通路之一。
  2. 根据权利要求1所述的射频系统,其中,所述射频系统还包括相互独立的第一开关单元和第二开关单元,其中,
    所述第一收发通路和所述第一接收通路通过所述第一开关单元可切换地连接所述第一天线和所述第三天线;
    所述第二收发通路和所述第二接收通路通过所述第二开关单元可切换地连接所述第二天线和所述第四天线。
  3. 根据权利要求2所述的射频系统,其中,所述第一天线和所述第二天线的效率均高于所述第三天线、第四天线的效率,所述第一收发通路包括第一发射通路和第一子接收通路,所述第二收发通路包括第二发射通路和第二子接收通路,所述射频收发器还用于配置所述第一发射通路和所述第一子接收通路连接至所述第一天线,并配置所述第二发射通路和所述第二子接收通路连接至所述第二天线。
  4. 根据权利要求3所述的射频系统,其中,所述射频收发器用于根据所述第一子接收通路和所述第二子接收通路接收的所述射频信号配置目标发射通路,所述目标发射通路为所述第一发射通路和所述第二发射通路之一。
  5. 根据权利要求4所述的射频系统,其中,当所述射频系统处于长期演进网络工作模式时,所述射频收发器配置所述第一发射通路作为所述射频信号的默认发射通路,所述射频收发器还用于基于所述第一子接收通路和所述第二子接收通路接收的所述射频信号配置所述目标发射通路。
  6. 根据权利要求5所述的射频系统,其中,若所述第二子接收通路和所述第一子接收通路分别接收的所述射频信号的信号质量的第一差值大于第一预设阈值,则所述射频收发器配置所述第二发射通路所述目标发射通路。
  7. 根据权利要求4所述的射频系统,其中,当所述射频系统处于独立组网工作模式时,所述射频收发器配置所述第二发射通路作为所述射频信号的默认发射通路,所述射频收发器还用于根据所述第一子接收通路和所述第二子接收通路接收的所述射频信号配置所述目标发射通路。
  8. 根据权利要求7所述的射频系统,其中,若所述第一子接收通路和所述第二子接收通路分别接收的所述射频信号的信号质量的第二差值大于第二预设阈值,则所述射频收发器配置所述第一发射通路为所述目标发射通路。
  9. 根据权利要求4至8任一项所述的射频系统,其中,所述射频收发器还用于根据所述目标发射通路、所述第一子接收通路和所述第二子接收通路接收的所述射频信号中的至少之一配置目标接收通路,其中,所述目标接收通路与所述目标发射通路连接至同一天线或不同天线。
  10. 根据权利要求3所述的射频系统,其中,所述射频收发器被配置有第一输出端口、第二输出端口、第一输入端口以及第二输入端口,其中,所述第一输出端口与所述第一发射通路连接,所述第二输出端口与所述第二发射通路连接;所述第一输入端口与所述第一 子接收通路连接,所述第二输入端口与所述第二子接收通路连接;所述射频信号包括通信制式不同的第一射频信号和第二射频信号,其中,所述射频收发器还包括:
    第一发射单元,与所述第一输出端口连接,用于发射并处理所述射频信号;
    第二发射单元,与所述第二输出端口连接,用于发射并处理所述射频信号;
    控制单元,分别与第一输入端口、第二输入端口、第一发射单元、第二发射单元连接,用于根据所述第一输入端口和所述第二输入端口接收的所述射频信号在所述第一发射单元和所述第二发射单元之间确定目标发射单元,并配置所述目标发射单元工作,以将与所述目标发射单元连接的发射通路配置为所述目标发射通路。
  11. 根据权利要求3所述的射频系统,其中,所述射频收发器被配置有第一输出端口、第二输出端口、第一输入端口以及第二输入端口,其中,所述第一输出端口与所述第一发射通路连接,所述第二输出端口与所述第二发射通路连接;所述第一输入端口与所述第一子接收通路连接,所述第二输入端口与所述第二子接收通路连接;所述射频信号包括通信制式不同的第一射频信号和第二射频信号,其中,所述射频收发器包括:
    第一发射单元,与所述第一输出端口连接,用于发射并处理所述第一射频信号;
    第二发射单元,与所述第二输出端口连接,用于发射并处理所述第二射频信号;
    控制单元,分别与第一输入端口、第二输入端口连接,用于根据所述第一输入端口和所述第二输入端口接收的所述射频信号在所述第一发射通路和所述第二发射通路之间确定目标发射通路,并根据所述目标发射通路生成切换信号;
    所述射频系统还包括:
    开关单元,分别与所述控制单元、第一输出端口、第二输出端口连接,用于根据所述切换信号和所述目标射频信号导通所述目标发射通路与所述第一输出端口或所述第二输出端口之间的连接,其中,所述目标射频信号为所述第一射频信号和所述第二射频信号中的一个。
  12. 根据权利要求11所述的射频系统,其中,所述开关单元设置在所述射频收发器与所述射频收发电路之间。
  13. 根据权利要求11所述的射频系统,其中,所述开关单元集成在所述射频收发器内,所述开关单元的两个第一端分别与所述第一发射单元、所述第二发射单元一一对应连接,所述开关单元的两个第二端分别与所述第一输出端口、所述第二输出端口连接。
  14. 根据权利要求11所述的射频系统,其中,所述开关单元为双刀双掷开关。
  15. 根据权利要求10或11所述的射频系统,其中,所述射频收发器还配置有第三输入端口和第四输入端口,其中,所述第三输入端口与所述第一接收通路连接,所述第四输入端口与所述第二接收通路连接;其中,
    所述射频收发器还包括:
    第一接收单元,分别与所述第一输入端口、第三输入端口连接,用于接收并处理所述射频信号;
    第二接收单元,分别与所述第二输入端口、第四输入端口连接,用于接收并处理所述射频信号;
    所述控制单元还用于根据所述目标发射通路、所述第一子接收通路接收的所述射频信号和所述第二子接收通路接收的所述射频信号中的至少之一配置目标接收通路,其中,所述目标接收通路与所述目标发射通路连接至同一天线或不同天线。
  16. 根据权利要求2所述的射频系统,其中,所述射频收发器被配置有第一输出端口、第二输出端口、第一输入端口、第二输入端口、第三输入端口和第四输入端口,所述射频收发电路包括:第一收发模块,第一接收模块,第二收发模块和第二接收模块;
    所述第一开关单元,包括两个第一端和两个第二端,其中所述第一开关单元的一个所述第一端通过所述第一收发模块分别与所述第一输入端口和所述第一输出端口连接,另一 个所述第一端通过所述第一接收模块与所述第三输入端口连接,所述第一开关单元的两个第二端分别与第一天线、第三天线一一对应连接;
    所述第二开关单元,包括两个第一端和两个第二端,其中所述第二开关单元的一个所述第一端通过所述第二收发模块分别与所述第二输入端口和所述第二输出端口连接,另一个所述第一端通过所述第二接收模块与所述第四输入端口连接,所述第二开关单元的两个第二端分别与第二天线、第四天线一一对应连接。
  17. 根据权利要求2所述的射频系统,其中,所述第一开关单元和所述第二开关单元均为DPDT开关,所述第一开关单元的两个第一端可以分别与所述第一收发通路和所述第一接收通路连接,所述第一开关单元的两个第二端分别与所述第一天线和所述第三天线一一对应连接;所述第二开关单元的两个第一端可以分别与所述第二收发通路和所述第二接收通路连接,所述第二开关单元的两个第二端分别与所述第二天线和所述第四天线一一对应连接。
  18. 一种天线切换方法,应用于射频系统,所述方法包括:
    射频收发器根据射频收发电路中的第一收发通路和第二收发通路接收的射频信号配置目标收发通路;
    所述射频收发器配置所述目标收发通路收发目标射频信号;其中,所述目标收发通路为所述第一收发通路和所述第二收发通路之一;其中,所述第一收发通路和所述第二收发通路相互独立,且所述第一收发通路被配置为可切换地连接第一天线和第三天线,所述第二收发通路被配置为可切换地连接第二天线和第四天线。
  19. 一种通信设备,包括如权利要求1至17中任一项所述的射频系统。
  20. 一种通信设备,包括:
    射频收发器;
    射频收发电路,与所述射频收发器连接,所述射频收发电路包括第一收发模块、第二收发模块、第一接收模块、第二接收模块;
    第一开关单元,所述第一开关单元用于将所述第一收发模块及所述第一接收模块可切换地连接至第一天线和第三天线;
    第二开关单元,所述第二开关单元用于将所述第二收发模块及所述第二接收模块可切换地连接至第二天线和第四天线;
    其中,所述射频收发器用于根据所述第一收发模块和所述第二收发模块接收的射频信号,将所述第一收发模块和所述第二收发模块之一配置为目标收发模块,以通过所述目标收发模块收发目标射频信号。
  21. 根据权利要求20所述的通信设备,其中,所述第一开关单元、第二开关单元均为DPDT开关。
  22. 根据权利要求20所述的通信设备,其中,所述第一天线和所述第二天线的效率均高于所述第三天线、第四天线的效率,其中,
    所述射频收发器还用于控制所述第一开关单元导通所述第一收发模块与所述第一天线之间通路,以及控制所述第二开关单元导通所述第二收发模块与所述第二天线之间通路。
PCT/CN2022/086796 2021-05-24 2022-04-14 射频系统、天线切换方法和通信设备 WO2022247510A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22810243.0A EP4344072A1 (en) 2021-05-24 2022-04-14 Radio frequency system, antenna switching method, and communication device
US18/518,191 US20240106491A1 (en) 2021-05-24 2023-11-22 Radio-frequency system and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110563963.2 2021-05-24
CN202110563963.2A CN113285732B (zh) 2021-05-24 2021-05-24 射频系统、天线切换方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/518,191 Continuation US20240106491A1 (en) 2021-05-24 2023-11-22 Radio-frequency system and communication device

Publications (1)

Publication Number Publication Date
WO2022247510A1 true WO2022247510A1 (zh) 2022-12-01

Family

ID=77281023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086796 WO2022247510A1 (zh) 2021-05-24 2022-04-14 射频系统、天线切换方法和通信设备

Country Status (4)

Country Link
US (1) US20240106491A1 (zh)
EP (1) EP4344072A1 (zh)
CN (2) CN115987324B (zh)
WO (1) WO2022247510A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833885A (zh) * 2023-02-15 2023-03-21 南昌龙旗智能科技有限公司 一种5g通讯方法及调制解调器的配置方法
CN117081622A (zh) * 2023-09-18 2023-11-17 荣耀终端有限公司 天线状态控制方法、芯片、电子设备和可读存储介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115987324B (zh) * 2021-05-24 2024-04-16 Oppo广东移动通信有限公司 射频系统和通信设备
CN113824473B (zh) * 2021-09-30 2023-07-21 联想(北京)有限公司 控制方法、装置及通信系统
CN114124145B (zh) * 2021-11-30 2023-05-05 Oppo广东移动通信有限公司 射频系统及通信设备
CN114124141B (zh) * 2021-11-30 2023-03-17 Oppo广东移动通信有限公司 射频系统和通信设备
CN114124139A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统及通信设备
CN114124140B (zh) * 2021-11-30 2023-05-05 Oppo广东移动通信有限公司 射频系统和通信设备
CN113949400B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN114124137B (zh) * 2021-11-30 2023-07-14 Oppo广东移动通信有限公司 射频系统及通信设备
CN114124138A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频系统和通信设备
CN114124136B (zh) * 2021-11-30 2023-06-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN113938152B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN113949402B (zh) * 2021-11-30 2022-12-13 Oppo广东移动通信有限公司 射频系统及通信设备
CN114499572A (zh) * 2022-02-07 2022-05-13 Oppo广东移动通信有限公司 一种射频收发系统、电子设备和实现天线切换的方法
CN114726396A (zh) * 2022-04-12 2022-07-08 Oppo广东移动通信有限公司 天线切换装置、天线切换方法及电子设备
WO2024016282A1 (zh) * 2022-07-21 2024-01-25 海能达通信股份有限公司 联动天线电路及终端
WO2024035396A1 (en) * 2022-08-09 2024-02-15 Google Llc New radio-long term evolution (nr-lte) antenna swapping for optimal link performance
CN115361035B (zh) * 2022-08-15 2023-11-10 Oppo广东移动通信有限公司 射频系统、通信设备、通信控制方法及通信控制装置
CN117318751B (zh) * 2023-11-24 2024-04-16 荣耀终端有限公司 通信方法和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140187284A1 (en) * 2012-12-28 2014-07-03 Futurewei Technologies, Inc. Simultaneous Voice-Long Term Evolution Dual Antenna System
CN106656248A (zh) * 2016-11-28 2017-05-10 维沃移动通信有限公司 一种天线切换装置和移动终端
US20180048345A1 (en) * 2016-08-10 2018-02-15 Skyworks Solutions, Inc. Apparatus and methods for filter bypass for radio frequency front-ends
CN110572178A (zh) * 2019-09-06 2019-12-13 维沃移动通信有限公司 一种网络射频结构、射频控制方法及电子设备
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4405331B2 (ja) * 2004-07-06 2010-01-27 富士通株式会社 無線受信装置、無線送信装置及びキャリブレーション方法
US20080076366A1 (en) * 2006-09-27 2008-03-27 Broadcom Corporation, A California Corporation Multiple band antenna structure
US8068805B2 (en) * 2006-11-20 2011-11-29 Broadcom Corporation RF selection diversity module
KR101798046B1 (ko) * 2011-07-28 2017-11-15 엘지전자 주식회사 이동 단말기
US9866262B2 (en) * 2015-10-05 2018-01-09 Zyxel Communications Corp. Wireless transceiving device
CN109257082A (zh) * 2017-07-14 2019-01-22 中兴通讯股份有限公司 一种天线切换处理方法、装置及系统
CN108462499A (zh) * 2018-03-16 2018-08-28 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN111865352B (zh) * 2019-04-24 2022-07-15 株式会社村田制作所 高频信号收发电路以及高频信号收发装置
CN114726384A (zh) * 2019-06-28 2022-07-08 华为技术有限公司 一种天线的切换电路和电子设备
CN112398503B (zh) * 2020-11-09 2022-05-17 维沃移动通信有限公司 多模式射频电路、射频信号的传输方法、装置及电子设备
CN112436847B (zh) * 2020-12-02 2022-05-17 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN112436845B (zh) * 2020-12-02 2022-05-13 Oppo广东移动通信有限公司 射频L-PA Mid器件、射频收发系统和通信设备
CN112583442B (zh) * 2020-12-07 2022-08-09 Oppo广东移动通信有限公司 射频系统和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140187284A1 (en) * 2012-12-28 2014-07-03 Futurewei Technologies, Inc. Simultaneous Voice-Long Term Evolution Dual Antenna System
US20180048345A1 (en) * 2016-08-10 2018-02-15 Skyworks Solutions, Inc. Apparatus and methods for filter bypass for radio frequency front-ends
CN106656248A (zh) * 2016-11-28 2017-05-10 维沃移动通信有限公司 一种天线切换装置和移动终端
CN110572178A (zh) * 2019-09-06 2019-12-13 维沃移动通信有限公司 一种网络射频结构、射频控制方法及电子设备
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115833885A (zh) * 2023-02-15 2023-03-21 南昌龙旗智能科技有限公司 一种5g通讯方法及调制解调器的配置方法
CN117081622A (zh) * 2023-09-18 2023-11-17 荣耀终端有限公司 天线状态控制方法、芯片、电子设备和可读存储介质
CN117081622B (zh) * 2023-09-18 2024-03-15 荣耀终端有限公司 天线状态控制方法、芯片、电子设备和可读存储介质

Also Published As

Publication number Publication date
US20240106491A1 (en) 2024-03-28
EP4344072A1 (en) 2024-03-27
CN115987324A (zh) 2023-04-18
CN113285732A (zh) 2021-08-20
CN115987324B (zh) 2024-04-16
CN113285732B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2022247510A1 (zh) 射频系统、天线切换方法和通信设备
WO2020019876A1 (zh) 射频系统、天线切换控制方法及相关产品
CN113676208B (zh) 放大器模组、射频系统及通信设备
CN113676213B (zh) 放大器模组、射频系统及通信设备
CN113676211B (zh) 放大器模组、射频系统及通信设备
WO2023061043A1 (zh) 电子设备及其控制方法、计算机设备和可读存储介质
WO2022127397A1 (zh) 射频收发系统及通信设备
WO2023098110A1 (zh) 射频系统及通信设备
CN113676212B (zh) 放大器模组、射频系统及通信设备
CN114142886B (zh) 射频系统及通信设备
WO2022127404A1 (zh) 射频收发系统及通信设备
CN114124139A (zh) 射频系统及通信设备
WO2021238534A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2023098245A1 (zh) 射频系统和通信设备
CN113382484A (zh) 客户前置设备
WO2023142765A1 (zh) 射频前端模组和射频系统
WO2023142766A1 (zh) 射频前端模组和射频系统
CN113676210B (zh) 放大器模组、射频系统及通信设备
CN113676214B (zh) 放大器模组、射频系统及通信设备
CN215871405U (zh) 射频系统和通信设备
CN115632676A (zh) 射频系统及通信设备
CN115378444A (zh) 射频系统和通信设备
CN115208416A (zh) 射频系统和通信设备
CN216490479U (zh) 射频系统和通信设备
CN218679066U (zh) 射频系统及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022810243

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022810243

Country of ref document: EP

Effective date: 20231221