CN112751578B - 射频elna器件和射频系统 - Google Patents

射频elna器件和射频系统 Download PDF

Info

Publication number
CN112751578B
CN112751578B CN202110015269.7A CN202110015269A CN112751578B CN 112751578 B CN112751578 B CN 112751578B CN 202110015269 A CN202110015269 A CN 202110015269A CN 112751578 B CN112751578 B CN 112751578B
Authority
CN
China
Prior art keywords
frequency
radio frequency
low
elna
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110015269.7A
Other languages
English (en)
Other versions
CN112751578A (zh
Inventor
王国龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Oppo Mobile Telecommunications Corp Ltd
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp Ltd filed Critical Guangdong Oppo Mobile Telecommunications Corp Ltd
Priority to CN202110015269.7A priority Critical patent/CN112751578B/zh
Publication of CN112751578A publication Critical patent/CN112751578A/zh
Application granted granted Critical
Publication of CN112751578B publication Critical patent/CN112751578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

本申请实施例涉及一种射频ELNA器件和射频系统,射频ELNA器件,被配置有用于连接射频收发器的中频输出端口和第一低频输出端口,以及用于连接天线的中频输入端口和中低频输入端口,射频ELNA器件包括:中频放大电路,与中频输入端口连接,用于支持对中频信号的接收放大;中低频放大电路,与中低频输入端口连接,用于支持对中低频信号的接收放大;第一开关模块,第一开关模块的两个第一端分别与中频输出端口和第一低频输出端口连接,第一开关模块的两个第二端分别与中频放大电路、中低频放大电路连接,第一开关模块用于选择输出中频信号至中频输出端口和第一低频输出端口中的一个,以及还用于选择输出中低频信号至中频输出端口和第一低频输出端口中的另一个。

Description

射频ELNA器件和射频系统
技术领域
本申请实施例涉及射频技术领域,特别是涉及一种射频ELNA器件和射频系统。
背景技术
随着通信网络的发展,从最初只支持语音通话的2G网络,发展到现在支持高速数据流量的5G网络,移动通信正在为人类的日常生活提供了便利。随着通信网络制式的增加,通信设备需要支持2G、3G、4G、5G各种网络制式下的通信要求,但是,愈发复杂的通信功能也会影响各通路上的接收性能,从而导致通信设备整体的接收性能不佳。
发明内容
本申请实施例提供了一种射频ELNA器件和射频系统,可以优化射频ELNA器件的插入损耗,从而提升射频ELNA器件的增益,进而改善通信设备的接收性能。
一种射频ELNA器件,被配置有用于连接射频收发器的中频输出端口和第一低频输出端口,以及用于连接天线的中频输入端口和中低频输入端口,所述射频ELNA器件包括:
中频放大电路,与所述中频输入端口连接,用于支持对中频信号的接收放大;
中低频放大电路,与所述中低频输入端口连接,用于支持对中低频信号的接收放大;
第一开关模块,所述第一开关模块的两个第一端分别与所述中频输出端口和所述第一低频输出端口连接,所述第一开关模块的两个第二端分别与所述中频放大电路、所述中低频放大电路连接,所述第一开关模块用于选择输出所述中频信号至所述中频输出端口和第一低频输出端口中的一个,以及,还用于选择输出所述中低频信号至所述中频输出端口和第一低频输出端口中的另一个。
一种射频ELNA器件,被配置有用于连接射频收发器的中频输出端口、第一低频输出端口和第二低频输出端口,以及用于连接天线的中频输入端口、中低频输入端口和第一低频输入端口,所述射频ELNA器件包括:
中频放大电路,分别与所述中频输入端口、所述中频输出端口连接,用于支持对中频信号的接收放大;
中低频放大电路,分别与所述中低频输入端口、所述第一低频输出端口连接,用于支持对中低频信号的接收放大;
低频放大电路,分别与所述低频输入端口、所述第二低频输出端口连接,用于支持对低频信号的接收放大。
一种射频系统,包括:
射频收发器;
如上述的射频ELNA器件;
第二开关模块,所述第二开关模块的多个第一端分别与所述射频ELNA器件连接;
天线,与所述第二开关模块的第二端连接;
其中,所述第二开关模块用于选择导通不同频段的射频信号至所述射频ELNA器件。
一种通信设备,包括上述的射频系统。
上述射频ELNA器件和射频系统,所述射频ELNA器件,被配置有用于连接射频收发器的中频输出端口和第一低频输出端口,以及用于连接天线的中频输入端口和中低频输入端口,所述射频ELNA器件包括:中频放大电路,与所述中频输入端口连接,用于支持对中频信号的接收放大;中低频放大电路,与所述中低频输入端口连接,用于支持对中低频信号的接收放大;第一开关模块,所述第一开关模块的两个第一端分别与所述中频输出端口和所述第一低频输出端口连接,所述第一开关模块的两个第二端分别与所述中频放大电路、所述中低频放大电路连接,所述第一开关模块用于输出所述中频信号至所述中频输出端口和第一低频输出端口中的一个,以及,输出所述中低频信号至所述中频输出端口和第一低频输出端口中的另一个。通过采用第一开关模块进行信号传输路径的切换,可以优化射频ELNA器件的插入损耗,从而提升射频ELNA器件的增益。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例的射频ELNA器件的结构框图之一;
图2为一实施例的射频ELNA器件的结构框图之二;
图3为一实施例的射频系统的结构框图之一;
图4为一实施例的接收开关组件的结构框图之一;
图5为一实施例的接收开关组件的结构框图之二;
图6为一实施例的射频系统的结构框图之二;
图7为一实施例的射频系统的结构框图之三;
图8为一实施例的射频ELNA器件的结构框图之三;
图9为一实施例的射频系统的结构框图之四;
图10为一实施例的射频ELNA器件的结构框图之四;
图11为一实施例的射频系统的结构框图之五;
图12为一实施例的射频ELNA器件的结构框图之五;
图13为一实施例的射频系统的结构框图之六。
元件标号说明:
射频ELNA器件:10;主集射频ELNA器件:11;分集射频ELNA器件:12;中频放大电路:100;中频低噪声放大器:110;第四射频开关:120;中低频放大电路:200;第一开关模块:300;第一射频开关:310;第二射频开关:320;第三射频开关:330;第一低频放大电路:400;第一合路器:510;第二合路器:520;第二低频放大电路:600;高频放大电路:700;射频收发器:20;第二开关模块:30;第五射频开关:31;第六射频开关:32;滤波单元:40;射频MMPA器件:50。
具体实施方式
为了便于理解本申请实施例,下面将参照相关附图对本申请实施例进行更全面的描述。附图中给出了本申请实施例的首选实施例。但是,本申请实施例可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请实施例的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请实施例的技术领域的技术人员通常理解的含义相同。本文中在本申请实施例的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请实施例。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一端称为第二端,且类似地,可将第二端称为第一端。第一端和第二端两者都是端,但其不是同一端。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
本申请实施例涉及的射频ELNA器件10可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。网络设备可以包括基站、接入点等。
射频ELNA器件10可以理解为外部低噪声放大器(External Low NoiseAmplifier)。射频ELNA器件10可以支持对多个频段的射频信号的接收和放大,以实现对信号的接收切换控制。其中,射频ELNA器件10可以理解为封装结构,图1为一实施例的射频ELNA器件10的结构框图之一,参考图1,在本实施例中,射频ELNA器件10被配置有用于连接射频收发器20的中频输出端口MB0 OUT和第一低频输出端口LB2 OUT,以及用于连接天线的中频输入端口MB0 IN和中低频输入端口MLB IN。其中,各输入端口和输出端口可以理解为射频ELNA器件10的射频引脚端子,用于与各外部器件进行连接。所述射频ELNA器件10包括中频放大电路100、中低频放大电路200和第一开关模块300。
中频放大电路100与所述中频输入端口MB0 IN连接,用于支持对中频信号的接收放大。其中,中频信号包括但不限于N1、B1、N3、B3、B34和B39频段的射频信号。具体地,射频ELNA器件10可以被配置有多个中频输入端口MB0 IN,各输入端口分别可以用于输入一个或多个频段的射频信号。中频信号由中频输入端口MB0 IN输入,并经中频放大电路100、第一开关模块300传输至第一低频输出端口LB2 OUT进行输出,或传输至中频输出端口MB0 OUT进行输出。可以理解的是,射频ELNA器件10还可以被配置有备用的输入端口和/或输出端口,以支持不同的射频系统的信号接收功能。
中低频放大电路200与所述中低频输入端口MLB IN连接,用于支持对中低频信号的接收放大。其中,中低频信号包括但不限于B11频段的射频信号。具体地,中低频信号由中低频输入端口MLB IN输入,并经中低频放大电路200、第一开关模块300传输至第一低频输出端口LB2 OUT进行输出,或传输至中频输出端口MB0 OUT进行输出。
第一开关模块300的两个第一端分别与所述中频输出端口MB0 OUT和所述第一低频输出端口LB2 OUT连接,所述第一开关模块300的两个第二端分别与所述中频放大电路100、所述中低频放大电路200连接,所述第一开关模块300用于输出所述中频信号至所述中频输出端口MB0 OUT和第一低频输出端口LB2 OUT中的一个,以及,输出所述中低频信号至所述中频输出端口MB0 OUT和第一低频输出端口LB2 OUT中的另一个。在本实施例中,第一开关模块300用于切换中频信号和中低频信号的传输路径,以将射频信号传输至目标输出端口,其中,目标输出端口为中频输出端口MB0 OUT和所述第一低频输出端口LB2 OUT中的一个,具体可以选择与接收的射频信号的频段较为匹配的端口作为目标输出端口,也可以选择当前空闲的端口作为目标输出端口。
可以理解的是,灵敏度和总增益是评价射频ELNA器件10的接收性能的关键性能指标。其中,灵敏度是指射频ELNA器件10在满足一定误码率性能下,射频ELNA器件10能够接收到的最小输入信号电平,具体地,通信协议3GPP规定,在测试灵敏度指标时,要求比特出错概率(Bit Error Ratio,BER)必须低于5%,即吞吐量(Throughput)高于95%。在上述条件下,测得的最小输入电平信号即为射频ELNA器件10的灵敏度。
进一步地,灵敏度可以通过理论公式计算得出,具体如下述公式1所示。
灵敏度=-174+10lgBW+NF   (公式1)
其中,BW是指射频ELNA器件10的工作频段带宽,工作频段带宽的单位是Hz;NF是指射频ELNA器件10的噪声系数,噪声系数的单位是dB。因此,通过获取射频ELNA器件10的工作频段带宽和噪声系数,就可以获取计算射频ELNA器件10的灵敏度性能。此外,由于射频ELNA器件10由多个级联的器件构成的,级联噪声系数也可以通过计算获得,具体如下述公式2所示。
NF=N1+(N2-1)/G1+(N3-1)/G1*G2+(N4-1)/G1*G2*G3+…(公式2)
其中,N1至N4分别代表第一级至第四级的噪声系数,G1至G3分别代表第一级至第三集的增益,通过公式2可以计算出整个接收通路最终的级联噪声。根据公式2可以得知,级联噪声系数主要由N1、N2和G1决定的,特别是N1直接累加到整机级联的噪声系数上。因此,降低N1是降低整机噪声系数的最有效的手段。
在现有技术中,射频ELNA器件10内部的微带功分器等结构的插入损耗较高,因此会导致接收通路上的增益指标过低,在现有技术中,天线至射频收发器20的接收通路上的增益通常只有13dB左右,因此,需要通过后端的射频收发器20内部的LNA器件提高增益,以提高接收通路的增益水平。但是,现有技术中的处理方法会大大增加后端的射频收发器20的压力。
在本实施例中,通过采用上述中频放大电路100、中低频放大电路200和第一开关模块300相结合的射频ELNA器件10,基于第一开关模块300的主动切换功能及其自身的插入损耗特性,可以有效降低射频接收通路上的插入损耗,从而提高射频ELNA器件10的总增益,进而可以有效改善射频系统和通信设备的接收性能。
图2为一实施例的射频ELNA器件10的结构框图之二,参考图2,在本实施例中,所述第一开关模块300包括第一射频开关310,第一射频开关310为双刀双掷DPDT开关,所述第一射频开关310的两个第一端分别与所述中频输出端口MB0 OUT、所述第一低频输出端口LB2OUT一一对应连接,所述第一射频开关310的两个第二端分别与所述中频放大电路100、所述中低频放大电路200一一对应连接。在本实施例中,通过采用DPDT开关,可以以较小的器件占用面积实现需要的通路切换功能,以使输入并放大后的射频信号传输至目标输出端口,而且,开关的插入损耗较小,示例性地,可为-0.3dB,因此对接收通路的增益性能影响较小,即,本实施例提供了一种体积小、集成度高且具有较佳接收性能的射频ELNA器件10。
继续参考图2,所述中频输入端口MB0 IN的数量可以为多个,多个中频输入端口MB0 IN例如可以包括端口MB0 IN2、端口MB0 IN1和端口MB0 IN0,多个中频输入端口MB0 IN可以支持对多路中频信号的接收,所述中频放大电路100包括中频低噪声放大器110和第四射频开关120。
所述中频低噪声放大器110的输出端与所述第一开关模块300连接,以将接收到的射频信号放大后传输至第一开关模块300,在本实施例中,即传输至第一射频开关310的一个第二端。所述第四射频开关120的第一端与所述中频低噪声放大器110连接,所述第四射频开关120的多个第二端分别与多个所述中频输入端口MB0 IN一一对应连接,所述第四射频开关120用于选择导通所述中频低噪声放大器110与任一所述中频输入端口MB0 IN之间的接收通路。
示例性地,第四射频开关120可以选择导通端口MB0 IN1对应的信号接收通路,射频信号由端口MB0 IN1输入后经第四射频开关120传输至中频低噪声放大器110,中频低噪声放大器110对接收到的信号进行放大后传输至第一射频开关310,第一射频开关310可以选择将接收到的射频信号传输至第一低频输出端口LB2 OUT以进行输出。在本实施例中,通过设置第四射频开关120,可以有效提升射频ELNA器件10接收信号时的灵活性,从而提高射频系统和通信射频的通信灵活性。需要说明的是,第一射频开关310只需包括两个第一端和两个第二端即可实现上述功能,且射频ELNA器件10的体积较小,但是,本申请也并不限定第一射频开关310可以包括更多数量的第一端和第二端,以实现更加丰富的通路切换功能。
进一步地,在其他放大电路中也可以配置有上述第四射频开关120和对应频段的低噪声放大器,以进一步提升射频ELNA器件10接收信号时的灵活性。例如,在图2所示的实施例中,中低频放大电路200中也可以设置有第四射频开关120和中低频低噪声放大器,以从端口MLB IN2、端口MLB IN1和端口MLB IN0中选择一个进行射频信号的接收,并将接收到的信号传输至中低频低噪声放大器,在其他放大电路中的第四射频开关120和低噪声放大器的设置方式均可参考前述的中频放大电路100和中低频放大电路200中的设置方式,在其他实施例中不再进行赘述。
再进一步地,根据信号频段的种类差异,不同放大电路中的第四射频开关120的第二端的数量可以不同,例如,中频放大电路100中的第四射频开关120包括三个第二端,但高频放大电路700中的第四射频开关120可以包括两个第二端,具体可以根据实际需求进行设置,从而以较小的射频ELNA器件10体积实现需要的接收通路的切换功能。
继续参考图2,射频ELNA器件10还被配置有高频输入端口HB IN和高频输出端口HBOUT,所述射频ELNA器件10还包括高频放大电路700,高频放大电路700分别与所述高频输入端口HB IN、所述高频输出端口HB OUT连接,所述高频放大电路700用于支持对高频信号的接收放大。可以理解的是,当一个频段范围内包括的频段种类较多时,也可以设置于多个放大电路中进行放大,并设置对应数量的输入端口和输出端口,例如,在图2所示的实施例中,设置有两组高频放大电路700HB0 OUT和HB1 OUT,各高频放大电路700中分别包括一个高频低噪声放大器,同时,也相应设置有多个高频输入端口HB1 IN1、HB1 IN0、HB0 IN1和HB0IN0,以及两个高频输出端口HB1 OUT和HB0 OUT。相似地,射频ELNA器件10中也可以设置有两组低频输入端口LB0 IN和LB1 IN,或设置有两组中频输入端口MB0 IN和MB1 IN。
基于图2的射频ELNA器件10,本申请实施例还提供了一种射频系统。图3为一实施例的射频系统的结构框图之一,参考图3,在本实施例中,射频系统包括射频收发器20、天线、第二开关模块30和如上所述的射频ELNA器件10,在本实施例中,射频ELNA器件10的中低频输入端口MLB IN可以用于接收B11频段的射频信号。
具体地,天线与所述第二开关模块30的第二端连接,所述第二开关模块30的多个第一端分别与所述射频ELNA器件10连接,所述第二开关模块30用于选择导通不同频段的射频信号至所述射频ELNA器件10。其中,各天线可以为定向天线,也可以为非定向天线。示例性地,天线可以使用任何合适类型的天线形成。例如,天线可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。
在本实施例中,射频系统包括一个天线,第二开关模块30可以选择导通射频ELNA器件10的任一接收端口与天线之间的信号接收通路,其中,接收端口包括为中频接收端口和中低频接收端口,也可以进一步包括高频接收端口和低频接收端口,具体可以根据实际需要进行设置。通过上述结构,可以将天线接收到的信号灵活地传输至射频ELNA器件10进行放大接收,而且,基于较小损耗、较大增益的射频ELNA器件10,可以使射频收发器20接收到目标增益值的射频信号,从而有效地减小了射频收发器20中的放大压力,提供了一种接收增益较佳的射频系统。
继续参考图3,射频系统还包括多个滤波单元40,各所述滤波单元40的输入端分别与所述第二开关模块30的各第一端一一对应连接,各所述滤波单元40的输出端分别与所述射频ELNA器件10的各输入端口一一对应连接,各所述滤波单元40分别用于对不同频段的所述射频信号进行滤波;其中,所述输入端口至少包括所述中频输入端口MB0 IN、所述中低频输入端口MLB IN。
具体地,通过设置与射频ELNA器件10的各输入端口一一对应的滤波单元40,可以有效去除射频信号在传输过程中产生的其他频段噪声,其他频段即非信号实际传输的频段,从而改善接收到的射频信号的信噪比,提高射频ELNA器件10接收到的射频信号的可靠性和准确性,从而提升射频系统整体的信号接收性能。
进一步地,继续参考图3,多个所述滤波单元40的输入端与所述第二开关模块30的同一第一端连接,且与所述同一第一端连接的多个滤波单元40的输出端分别与所述射频ELNA器件10的多个输入端口一一对应连接。可以理解的是,若两个滤波单元40的滤波频段之间的相差较大,则两个滤波单元40所需要滤波处理的两个射频信号之间的干扰较小,因此,即使两个滤波单元40通过第二开关模块30的同一第一端接收射频信号,也不会影响信号的准确性。基于上述接收方式,可以减少第二开关模块30的第一端的数量,从而缩小第二开关模块30体积,进而缩小射频系统的整体体积,以减小射频系统在通信设备中的占用面积。
在其中一个实施例中,继续参考图3,与所述第二开关模块30的同一第一端连接的两个所述滤波单元40集成为双通道滤波器件,即两个滤波单元40封装于同一器件中,所述双通道滤波器件的两个通道分别用于对一个频段的射频信号进行滤波,其中,一所述双通道滤波器可用于对B39/B41双频段进行滤波,另一双通道滤波器可用于对B1/B3双频段进行滤波。在图3所示的实施例中,设置有两个双通道滤波器件。其中一个双通道滤波器件用于对B39和B41两个频段进行滤波,该双通道滤波器件的输入端与第二开关模块30的端口TRX2连接。其中另一个双通道滤波器件用于对B1和B3两个频段进行滤波,该双通道滤波器件的输入端与第二开关模块30的端口TRX3连接。可以理解的是,能够集成为双通道滤波器件的滤波单元40也不限于对本实施例提供的频段进行滤波,只需双通道滤波器件进行滤波处理的两个频段之间不会互相发生干扰即可。
再进一步地,在一些实施例中,也可以将上述多个滤波单元40与第二开关模块30集成于同一器件中,即,提供一种具有通路切换和信号滤波功能的接收开关组件,例如图4为一实施例的接收开关组件的结构框图之一,参考图4,在本实施例中,基于上述高集成度的接收开关组件,可以进一步提升射频系统的集成度,缩小射频系统的整体体积。
在其中另一个实施例中,图5为一实施例的接收开关组件的结构框图之二,参考图5,在本实施例中,与所述第二开关模块30的同一第一端连接的三个所述滤波单元40集成为三通道滤波器件,即三个滤波单元40封装于同一器件中,所述三通道滤波器件的三个通道分别用于对一个频段的射频信号进行滤波,所述三通道滤波器件用于对B41/B1/B3三个频段进行滤波。在本实施例中,通过将三个滤波单元40集成于同一器件中,可以进一步提升射频系统的集成度。
图6为一实施例的射频系统的结构框图之二,参考图6,在本实施例中,所述射频系统包括两个所述射频ELNA器件10,一个所述射频ELNA器件10即主集射频ELNA器件11,用于支持对射频信号的主集接收,另一个所述射频ELNA器件10即分集射频ELNA器件12,用于支持对射频信号的分集接收。所述第二开关模块30包括多个第一端和多个第二端,其中,多个第一端分别与主集射频ELNA器件11、分集射频ELNA器件12连接。所述射频系统包括多个天线,多个所述天线分别与所述第二开关模块30的多个第二端一一对应连接。
具体地,在本实施例中,所述第二开关模块30包括四个第二端,所述射频系统包括四个天线,四个所述天线分别与所述第二开关模块30的四个第二端一一对应连接。通过分别设置主集接收和分集接收的射频ELNA器件10,可以用于接收载有同一信息的两个不同的信号,两个信号之间的差异可以包括传输路径、频率、时间、集化方式等中的至少一种,并根据预设规则将来自两个接收端口的信号进行处理,从而获得最终的接收信息。通过上述设置方式,可以有效提升信息传输的准确性,即,提供一种可靠性更高的射频ELNA器件10。
需要说明的是,主集接收的射频ELNA器件10和分集接收的射频ELNA器件10可以具有相同的硬件结构,但是两个射频ELNA器件10与第二开关模块30之间的连接关系可以不完全相同。示例性地,主集接收的射频ELNA器件10可支持对B28频段的接收接收放大,分集接收的射频ELNA器件10可不支持对B28频段的接收放大。另一示例性地,在主集接收的射频ELNA器件10中,N41频段和N38频段可以由两个不同的输入端口进行接收,但是在分集接收的射频ELNA器件10中,N41频段和N38频段可以由一个输入端口进行接收,具体可以根据实际的需求进行连接和设置。
继续参考图6,在本实施例中,所述第二开关模块30包括第五射频开关31DP4T和两个第六射频开关32。所述第五射频开关31DP4T的多个第二端分别与多个所述天线一一对应连接,各所述第六射频开关32分别包括多个第一端和一个第二端,两个所述第六射频开关32的第二端分别与所述第五射频开关31DP4T的两个第一端一一对应连接,各所述第六射频开关32的第一端分别与对应的所述射频ELNA器件10连接。通过设置上述多个射频开关,可以实现更加灵活准确的接收通路的切换功能,从而提高射频系统的接收灵活性。可以理解的是,如图6所示,两个第六射频开关32可以被配置有不同数量的第一端,如前述说明,主集射频ELNA器件11和分集射频ELNA器件12的连接关系可以不相同,相应的,两个第六射频开关32的也可以不同,以适配对应的射频ELNA器件10的接收功能。基于图6所示的射频系统,进一步阐述其工作原理。具体地,B11工作原理如下所述:
接收路径:接收信号从ANT0天线口进入,经Path3路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点1,经Path1路径,至第六射频开关32的ANT端口;第六射频开关32切换至触点13,至TRX12端口;经Path12路径,滤波单元40滤波后;经Path10路径,至射频ELNA器件10的MLB IN2端口;第四射频开关120切换单端口,经中低频低噪声放大器放大后,可选两条路径;路径1:切换至MB0 OUT端口,从RXP_MHB_LNA06端口进入射频收发器20;路径2:切换至LB2 OUT端口,从RXP_LB_LNA03端口进入射频收发器20。
进一步地,在射频ELNA器件10的信号输入端口处,可以分别计算路径1和路径2对应的接收参数,如表1和表2所示。基于表1和表2,可以发现各路径上的接收增益均为17.7,主要在于导入的第一射频开关310,降低了器件内部MB0 OUT端口的插入损耗,而且降低了器件内部的面积;与此同时,还达到了降成本的目的。
表1 路径1接收参数
Figure BDA0002886576540000071
表2 路径2接收参数
Figure BDA0002886576540000072
进一步地,在一些实施例中,射频系统还可以设置射频MMPA器件50,以实现射频信号的发射功能,具体地,图7为一实施例的射频系统的结构框图之三,参考图7,在本实施例中,射频MMPA器件50与一个射频ELNA器件10共用滤波单元40,并通过双工器实现信号收发路径的隔离,以减少射频系统中的滤波单元40的数量,提升射频系统的集成度。
具体地,主集射频ELNA器件11被配置有多个输入端口,对应的第六射频开关32也被配置有多个第一端,主集射频ELNA器件11的各输入端口分别经对应的一个滤波单元40与第六射频开关32的一个第一端连接,该第六射频开关32还包括一个第二端,该第六射频开关32的第二端与第五射频开关31的一个第一端连接,分集射频ELNA器件12与另一个第六射频开关32之间的连接关系与上述连接关系相似,且另一个第六射频开关32的第二端与第五射频开关31的另一个第一端连接,第五射频开关31的四个第二端分别与四个天线一一对应连接。基于图7所示的射频系统,进一步阐述其工作原理。具体地,B11工作原理如下所述:
发射路径:发射信号从射频收发器20的TX0A0 LB0端口输出,从射频MMPA器件50的LB1 RFIN端口进入;SPDT开关切换单端口,至低频功率放大器;经低频功率放大器放大,至SP5T开关;SP5T开关切换至触点6,至LB1端口输出;经Path8路径,至B11双工器;经滤波单元40滤波后,经Path12路径,至第六射频开关32的TRX12端口;第六射频开关32切换单端口,至ANT端口输出;经Path1路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点3,经Path3路径,至ANT0天线口输出。
接收路径:接收信号从ANT0天线口进入,经Path3路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点1,经Path1路径,至第六射频开关32的ANT端口;第六射频开关32切换至触点13,至TRX12端口;经Path12路径,滤波单元40滤波后,至B11双工器;经Path10路径,至射频ELNA器件10的MLB IN2端口;第四射频开关120切换单端口,经中低频低噪声放大器放大后,可选两条路径;路径1:切换至MB0 OUT端口,从RXP_MHB_LNA06端口进入射频收发器20;路径2:切换至LB2 OUT端口,从RXP_LB_LNA03端口进入射频收发器20。
可以理解的是,本实施例的B11频段的射频信号在路径1和路径2上的增益与图6实施例相同,可参考前述表1和表2,此处不再进行赘述。
图8为一实施例的射频ELNA器件10的结构框图之三,参考图8,在本实施例中,所述第一开关模块300包括第二射频开关320和第三射频开关330。具体地,所述第二射频开关320的第一端与所述中频输出端口MB0 OUT连接,所述第二射频开关320的一第二端与所述中频放大电路100连接,所述第三射频开关330的一第一端与所述第二射频开关320的另一第二端连接,所述第三射频开关330的另一第一端与所述第一低频输出端口LB2 OUT连接,所述第三射频开关330的第二端与所述中低频放大电路200连接。
基于图8的射频ELNA器件10,本申请实施例还提供了一种射频系统。可以理解的是,基于图8提供的射频ELNA器件10,可以提供单射频ELNA器件10的射频系统(类似图3所示的实施例),也可以提供双射频ELNA器件10的射频系统(类似图6所示的实施例),以实现主集接收和分集接收的功能,还可以提供进一步包括射频MMPA器件50的射频系统(类似图7所示的实施例),但由于单射频ELNA器件10的射频系统和双射频ELNA器件10的射频系统均与前述实施例相似,所以为了简化说明,此处不再进行赘述,只需将前述实施例中的射频ELNA器件10替换为本实施例的射频ELNA器件10即可,本实施例中着重以包括射频MMPA器件50的射频系统为例进行说明。在其他实施例中,双射频ELNA器件10的射频系统可包括如图8所示的射频ELNA器件10和如图2所示的射频ELNA器件10。可选的,射频ELNA器件10也均可应用于上述多个射频系统,但也均以包括射频MMPA器件50的射频系统为例进行说明,在其他实施例中将不再进行赘述。
图9为一实施例的射频系统的结构框图之四,可以理解的是,本实施例的射频ELNA器件10构成射频系统的连接关系可以参考图7所示的实施例,此处不再进行赘述。基于图9所示的射频系统,进一步阐述其工作原理。分别以B11和B28为例进行分析,B11工作原理如下所述:
发射路径:发射信号从射频收发器20的TX0A0 LB0端口输出,从射频MMPA器件50的LB1 RFIN端口进入;SPDT开关切换单端口,至低频功率放大器;经低频功率放大器放大,至SP5T开关;SP5T开关切换至触点6,至LB1端口输出;经Path8路径,至B11双工器;经滤波单元40滤波后,经Path12路径,至第六射频开关32的TRX12端口;第六射频开关32切换单端口,至ANT端口输出;经Path1路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点3,经Path3路径,至ANT0天线口输出。
接收路径:接收信号从ANT0天线口进入,经Path3路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点1,经Path1路径,至第六射频开关32的ANT端口;第六射频开关32切换至触点13,至TRX12端口;经Path12路径,滤波单元40滤波后,至B11双工器;经Path10路径,至射频ELNA器件10的MLB IN2端口;第四射频开关120切换单端口,经中低频低噪声放大器放大后,可选两条路径;路径1:切换至开关;切换单端口,至MB0 OUT端口输出经射频线连接,从RXP_MHB_LNA06端口进入射频收发器20;路径2:切换,至LB2OUT端口输出;经射频线连接,从RXP_LB_LNA03端口进入射频收发器20。
B28工作原理如下所述:
发射路径:发射信号从射频收发器20的TX0A0 LB0端口输出,从射频MMPA器件50的LB1 RFIN端口进入;SPDT开关切换单端口,至低频功率放大器;经低频功率放大器放大,至SP5T开关;SP5T开关切换至触点3,至LB4端口输出;经Path7路径,至B28双工器;经滤波单元40滤波后,经Path11路径,至第六射频开关32的TRX9端口;第六射频开关32切换单端口,至ANT端口输出;经Path1路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点3,经Path3路径,至ANT0天线口输出。
接收路径:接收信号从ANT0天线口进入,经Path3路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点1,经Path1路径,至第六射频开关32的ANT端口;第六射频开关32切换至触点10,至TRX9端口;经Path11路径,滤波单元40滤波后,至B28双工器;经Path9路径,至射频ELNA器件10的LB0 IN0端口;SP3T切换单端口,经低频功率放大器放大后,至LBO OUT端口输出;经射频线连接,从RXP_LB_LNA01端口进入射频收发器20。
进一步地,在射频ELNA器件10的信号输入端口处,可以分别计算路径1和路径2对应的接收参数,如表3和表4所示。基于表3和表4,可以发现各路径上的接收增益分别为17.4和17.7,主要在于导入的第二射频开关320和第三射频开关330,降低了器件内部MB0 OUT端口的插入损耗,而且降低了器件内部的面积;与此同时,还达到了降成本的目的。
表3 路径1接收参数
Figure BDA0002886576540000091
表4 路径2接收参数
Figure BDA0002886576540000092
图10为一实施例的射频ELNA器件10的结构框图之四,参考图10,在本实施例中,所述射频ELNA器件10还被配置有第一低频输入端口LB1 IN,所述射频ELNA器件10还包括第一低频放大电路400和第一合路器510MUX1。第一低频放大电路400与所述第一低频输入端口LB1 IN连接,用于支持对第一低频信号的接收放大,所述第一合路器510MUX1的两个输入端分别与所述第一低频放大电路400、所述第三射频开关330的所述另一第一端连接,所述第一合路器510MUX1的输出端与所述第一低频输出端口LB1 OUT连接。
进一步地,继续参考图10,射频ELNA器件10还被配置有第二低频输入端口LB0 IN和第二低频输出端口LB0 OUT,所述射频ELNA器件10还包括第二低频放大电路600和第二合路器520MUX2。第二低频放大电路600与所述第二低频输入端口LB0 IN连接,用于支持对第二低频信号的接收放大,所述第二合路器520MUX2的两个输入端分别与所述第一低频放大电路400、所述第二低频放大电路600连接,所述第二合路器520MUX2的输出端与所述第二低频输出端口LB0 OUT连接。
在本实施例中,第二射频开关320和第三射频开关330均为SPDT开关,SPDT开关的插入损耗约为-0.6dB,通过设置第二射频开关320和第三射频开关330,相比采用微带功分器的射频ELNA器件10,可以将增益有效地从13提升至17,从而改善射频ELNA器件10的接收增益。
基于图10的射频ELNA器件10,本申请实施例还提供了一种射频系统。图11为一实施例的射频系统的结构框图之五,基于图11所示的射频系统,进一步阐述其工作原理。B11工作原理如下所述:
发射路径:发射信号从射频收发器20的TX0A0 LB0端口输出,从射频MMPA器件50的LB1 RFIN端口进入;SPDT开关切换单端口,至低频功率放大器;经低频功率放大器放大,至SP5T开关;SP5T开关切换至触点6,至LB1端口输出;经Path8路径,至B11双工器;经滤波单元40滤波后,经Path12路径,至第六射频开关32的TRX12端口;第六射频开关32切换单端口,至ANT端口输出;经Path1路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点3,经Path3路径,至ANT0天线口输出。
接收路径:接收信号从ANT0天线口进入,经Path3路径,至第五射频开关31DP4T;第五射频开关31DP4T切换至触点1,经Path1路径,至第六射频开关32的ANT端口;第六射频开关32切换至触点13,至TRX12端口;经Path12路径,滤波单元40滤波后,至B11双工器;经Path10路径,至射频ELNA器件10的MLB IN2端口;第四射频开关120切换单端口,经中低频低噪声放大器放大后,可选两条路径;路径1:切换至开关;切换单端口,至MB0 OUT端口输出;经射频线连接,从RXP_MHB_LNA06端口进入射频收发器20;路径2:切换至MUX1合路;MUX1合路后,至LB1 OUT端口输出;经射频线连接,从RXP_LB_LNA02端口进入射频收发器20。
进一步地,在射频ELNA器件10的信号输入端口处,可以分别计算路径1和路径2对应的接收参数,如表5和表6所示。基于表5和表6,可以发现各路径上的接收增益均为17,主要在于导入的第二射频开关320和第三射频开关330,降低了器件内部MB0 OUT端口的插入损耗,而且降低了器件内部的面积;与此同时,还达到了降成本的目的。
表5 路径1接收参数
Figure BDA0002886576540000101
表6 路径2接收参数
Figure BDA0002886576540000102
图12为一实施例的射频ELNA器件10的结构框图之五,参考图12,在本实施例中,射频ELNA器件10被配置有用于连接射频收发器20的中频输出端口MB0 OUT、第一低频输出端口LB2 OUT和第二低频输出端口LB1 OUT,以及用于连接天线的中频输入端口MB0 IN、中低频输入端口MLB IN和第一低频输入端口LB1 IN,所述射频ELNA器件10包括中频放大电路100、中低频放大电路200和低频放大电路。
中频放大电路100分别与所述中频输入端口MB0 IN、所述中频输出端口MB0 OUT连接,用于支持对中频信号的接收放大。中低频放大电路200分别与所述中低频输入端口MLBIN、所述第一低频输出端口LB2 OUT连接,用于支持对中低频信号的接收放大。低频放大电路,分别与所述第一低频输入端口LB1 IN、所述第二低频输出端口LB1 OUT连接,用于支持对低频信号的接收放大。基于本实施例的射频ELNA器件10,放大后的射频信号可以直接传输至对应的输出端口,从而有效避免了路径上的损耗,从而提升了射频ELNA器件10的接收增益。
进一步地,继续参考图12,射频ELNA器件10被配置有用于连接射频收发器20的多组高频输出端口HB OUT,以及用于连接天线的多组高频输入端口HB IN,所述射频ELNA器件10还包括高频放大电路700,高频放大电路700分别与对应的所述高频输入端口HB0 IN、所述高频输出端口HB0 OUT连接,或与对应的所述高频输入端口HB1 IN、所述高频输出端口HB1 OUT连接,用于支持对高频信号的接收放大。在本实施例中,通过设置高频放大电路700,以及对应的高频输入端口和高频输出端口,可以进一步扩展射频ELNA器件10的工作频段,从而提升射频ELNA器件10的适用性,使其可以应用于更多的射频系统。
基于图12的射频ELNA器件10,本申请实施例还提供了一种射频系统。图13为一实施例的射频系统的结构框图之六,基于图13所示的射频系统,进一步阐述其工作原理。B11工作原理如下所述:
接收路径:接收信号从ANT0天线口进入,经第二开关模块30;至滤波单元40滤波后;至射频ELNA器件10的MLB IN2端口;第四射频开关120切换单端口,经中低频低噪声放大器放大后,至MLB OUT端口输出;经射频线连接,从RXP_LB_LNA03端口进入射频收发器20。
进一步地,在射频ELNA器件10的信号输入端口处,可以分别计算路径1和路径2对应的接收参数,如表7。基于表7,可以发现接收路径上的接收增益为18,即,降低了器件内部MB0 OUT端口的插入损耗,而且降低了器件内部的面积;与此同时,还达到了降成本的目的。
表7 B11接收参数
Figure BDA0002886576540000111
一种通信设备,通信设备上设置有上述任一实施例中的射频收发系统,通过在通信设备上设置射频收发系统,可以提高通信设备的接收增益,而且,还能提高通信设备的集成度,从而缩小通信设备的整体尺寸,即,提供了一种接收性能更好的小体积通信设备。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请实施例的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请实施例构思的前提下,还可以做出若干变形和改进,这些都属于本申请实施例的保护范围。因此,本申请实施例专利的保护范围应以所附权利要求为准。

Claims (15)

1.一种射频系统,其特征在于,包括:
射频收发器;
两个射频ELNA器件,一个所述射频ELNA器件用于支持对射频信号的主集接收,另一个所述射频ELNA器件用于支持对射频信号的分集接收,所述射频ELNA器件被配置有用于连接所述射频收发器的多个中频输出端口和第一低频输出端口,以及用于连接天线的多个中频输入端口和中低频输入端口,所述射频ELNA器件包括:
多个中频放大电路,分别与多个所述中频输入端口一一对应连接,用于支持对中频信号的接收放大;
中低频放大电路,与所述中低频输入端口连接,用于支持对中低频信号的接收放大;
第一开关模块,所述第一开关模块的两个第一端分别与所述中频输出端口和所述第一低频输出端口连接,所述第一开关模块的两个第二端分别与部分所述中频放大电路、所述中低频放大电路连接,所述第一开关模块用于选择输出所述中频信号至所述中频输出端口和第一低频输出端口中的一个,以及,还用于选择输出所述中低频信号至所述中频输出端口和第一低频输出端口中的另一个;
射频MMPA器件,与所述射频收发器连接,用于支持对所述中频信号和所述低频信号的发射放大;
多个天线;
第二开关模块,所述第二开关模块包括:第五射频开关,所述第五射频开关的多个第二端分别与多个所述天线一一对应连接;两个第六射频开关,各所述第六射频开关分别包括多个第一端和一个第二端,两个所述第六射频开关的第二端分别与所述第五射频开关的两个第一端一一对应连接,各所述第六射频开关的第一端分别与对应的所述射频ELNA器件连接;
其中,所述第二开关模块用于选择导通不同频段的射频信号至所述射频ELNA器件。
2.根据权利要求1所述的射频系统,其特征在于,所述第一开关模块包括:
第一射频开关,所述第一射频开关的两个第一端分别与所述中频输出端口、所述第一低频输出端口一一对应连接,所述第一射频开关的两个第二端分别与所述中频放大电路、所述中低频放大电路一一对应连接。
3.根据权利要求1所述的射频系统,其特征在于,所述第一开关模块包括:
第二射频开关,所述第二射频开关的第一端与所述中频输出端口连接,所述第二射频开关的一第二端与所述中频放大电路连接;
第三射频开关,所述第三射频开关的一第一端与所述第二射频开关的另一第二端连接,所述第三射频开关的另一第一端与所述第一低频输出端口连接,所述第三射频开关的第二端与所述中低频放大电路连接。
4.根据权利要求3所述的射频系统,其特征在于,所述射频ELNA器件还被配置有第一低频输入端口,所述射频ELNA器件还包括:
第一低频放大电路,与所述第一低频输入端口连接,用于支持对第一低频信号的接收放大;
第一合路器,所述第一合路器的两个输入端分别与所述第一低频放大电路、所述第三射频开关的所述另一第一端连接,所述第一合路器的输出端与所述第一低频输出端口连接。
5.根据权利要求4所述的射频系统,其特征在于,所述射频ELNA器件还被配置有第二低频输入端口和第二低频输出端口,所述射频ELNA器件还包括:
第二低频放大电路,与所述第二低频输入端口连接,用于支持对第二低频信号的接收放大;
第二合路器,所述第二合路器的两个输入端分别与所述第一低频放大电路、所述第二低频放大电路连接,所述第二合路器的输出端与所述第二低频输出端口连接。
6.根据权利要求1所述的射频系统,其特征在于,所述中频输入端口的数量为多个,所述中频放大电路包括:
中频低噪声放大器,所述中频低噪声放大器的输出端与所述第一开关模块连接;
第四射频开关,所述第四射频开关的第一端与所述中频低噪声放大器连接,所述第四射频开关的多个第二端分别与多个所述中频输入端口一一对应连接,所述第四射频开关用于选择导通所述中频低噪声放大器与任一所述中频输入端口之间的接收通路。
7.根据权利要求1所述的射频系统,其特征在于,所述射频ELNA器件还被配置有高频输入端口和高频输出端口,所述射频ELNA器件还包括:
高频放大电路,分别与所述高频输入端口、所述高频输出端口连接,所述高频放大电路用于支持对高频信号的接收放大。
8.根据权利要求1至7任一项所述的射频系统,其特征在于,还包括:
多个滤波单元,各所述滤波单元的输入端分别与所述第二开关模块的各第一端一一对应连接,各所述滤波单元的输出端分别与所述射频ELNA器件的各输入端口一一对应连接,各所述滤波单元分别用于对不同频段的所述射频信号进行滤波;
其中,所述输入端口至少包括所述中频输入端口、所述中低频输入端口。
9.根据权利要求8所述的射频系统,其特征在于,多个所述滤波单元的输入端与所述第二开关模块的同一第一端连接,且与所述同一第一端连接的多个滤波单元的输出端分别与所述射频ELNA器件的多个输入端口一一对应连接。
10.根据权利要求9所述的射频系统,其特征在于,与所述第二开关模块的同一第一端连接的两个所述滤波单元集成为双通道滤波器件,所述双通道滤波器件的两个通道分别用于对一个频段的射频信号进行滤波,各所述双通道滤波器分别用于对B39/B41双频段、B1/B3双频段和B34/B39双频段中的一个进行滤波。
11.根据权利要求9所述的射频系统,其特征在于,与所述第二开关模块的同一第一端连接的三个所述滤波单元集成为三通道滤波器件,所述三通道滤波器件的三个通道分别用于对一个频段的射频信号进行滤波,所述三通道滤波器件用于对B41/B1/B3三频段进行滤波。
12.根据权利要求1至7任一项所述的射频系统,其特征在于,所述中低频输入端口用于接收B11频段的射频信号。
13.一种射频系统,其特征在于,包括:
射频收发器;
两个射频ELNA器件,一个所述射频ELNA器件用于支持对射频信号的主集接收,另一个所述射频ELNA器件用于支持对射频信号的分集接收,所述射频ELNA器件被配置有用于连接射频收发器的中频输出端口、第一低频输出端口和第二低频输出端口,以及用于连接天线的中频输入端口、中低频输入端口和第一低频输入端口,所述射频ELNA器件包括:
多个中频放大电路,分别与多个所述中频输入端口、所述中频输出端口连接,用于支持对中频信号的接收放大;
中低频放大电路,分别与所述中低频输入端口、所述第一低频输出端口连接,用于支持对中低频信号的接收放大;
低频放大电路,分别与所述低频输入端口、所述第二低频输出端口连接,用于支持对低频信号的接收放大;
射频MMPA器件,与所述射频收发器连接,用于支持对所述中频信号和所述低频信号的发射放大;
多个天线;
第二开关模块,所述第二开关模块包括:第五射频开关,所述第五射频开关的多个第二端分别与多个所述天线一一对应连接;两个第六射频开关,各所述第六射频开关分别包括多个第一端和一个第二端,两个所述第六射频开关的第二端分别与所述第五射频开关的两个第一端一一对应连接,各所述第六射频开关的第一端分别与对应的所述射频ELNA器件连接;
其中,所述第二开关模块用于选择导通不同频段的射频信号至所述射频ELNA器件。
14.根据权利要求13所述的射频系统,其特征在于,所述射频ELNA器件还被配置有用于连接射频收发器的高频输出端口,以及用于连接天线的高频输入端口,所述射频ELNA器件还包括:
高频放大电路,分别与所述高频输入端口、所述高频输出端口连接,用于支持对高频信号的接收放大。
15.一种通信设备,其特征在于,包括如权利要求1至14任一项所述的射频系统。
CN202110015269.7A 2021-01-06 2021-01-06 射频elna器件和射频系统 Active CN112751578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110015269.7A CN112751578B (zh) 2021-01-06 2021-01-06 射频elna器件和射频系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110015269.7A CN112751578B (zh) 2021-01-06 2021-01-06 射频elna器件和射频系统

Publications (2)

Publication Number Publication Date
CN112751578A CN112751578A (zh) 2021-05-04
CN112751578B true CN112751578B (zh) 2023-05-05

Family

ID=75651272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110015269.7A Active CN112751578B (zh) 2021-01-06 2021-01-06 射频elna器件和射频系统

Country Status (1)

Country Link
CN (1) CN112751578B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205171A1 (zh) * 2017-05-10 2018-11-15 广东欧珀移动通信有限公司 射频电路开关芯片、射频电路、天线装置及电子设备
CN111294081A (zh) * 2020-01-22 2020-06-16 Oppo广东移动通信有限公司 射频系统和电子设备
CN112187311A (zh) * 2020-09-27 2021-01-05 Oppo广东移动通信有限公司 射频系统和通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171349A (ja) * 2008-01-17 2009-07-30 Nsc Co Ltd 受信機
US9391570B2 (en) * 2014-07-17 2016-07-12 Apple Inc. Electronic device with low noise amplifier module
CN108965533B (zh) * 2018-07-23 2021-01-08 Oppo广东移动通信有限公司 射频系统、天线切换控制方法及相关产品
JP2020195119A (ja) * 2019-05-30 2020-12-03 株式会社村田製作所 高周波回路および通信装置
CN112187297B (zh) * 2020-09-27 2022-08-09 Oppo广东移动通信有限公司 射频收发系统和通信设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205171A1 (zh) * 2017-05-10 2018-11-15 广东欧珀移动通信有限公司 射频电路开关芯片、射频电路、天线装置及电子设备
CN111294081A (zh) * 2020-01-22 2020-06-16 Oppo广东移动通信有限公司 射频系统和电子设备
CN112187311A (zh) * 2020-09-27 2021-01-05 Oppo广东移动通信有限公司 射频系统和通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡荣贻 ; 韩潇 ; 范斌 ; .终端射频前端架构浅析.邮电设计技术.2017,(09),全文. *

Also Published As

Publication number Publication date
CN112751578A (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
EP4220974A1 (en) Radio frequency l-pa mid device, radio frequency transceiving system, and communication equipment
CN213661598U (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN112910492B (zh) 射频PA Mid器件、射频系统和通信设备
CN112769438B (zh) 射频mmpa器件、射频系统和通信设备
CN113726360B (zh) 射频PA Mid器件、射频收发装置和通信设备
CN112436846A (zh) 射频L-PA Mid器件、射频收发系统及通信设备
CN213661597U (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN114124140B (zh) 射频系统和通信设备
CN114285421B (zh) 射频drx器件、射频收发系统和通信设备
CN216721325U (zh) 射频模组和通信设备
CN111682885B (zh) 1t2r射频电路、无线通信设备
CN114124137B (zh) 射频系统及通信设备
CN114095048A (zh) 射频系统及通信设备
CN115102559B (zh) 射频PA Mid器件、射频系统和通信设备
CN113922828B (zh) 一种接收器件、射频系统及通信设备
CN112751578B (zh) 射频elna器件和射频系统
CN115208416B (zh) 射频系统和通信设备
CN216490480U (zh) 射频前端器件和射频系统
CN115118297B (zh) 射频前端模组、射频收发系统和通信设备
CN114337694B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN114285423B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN114793121B (zh) 射频系统和通信设备
CN115250130B (zh) 射频PA Mid器件、射频收发系统和通信设备
CN216959862U (zh) 射频系统和通信设备
CN218734301U (zh) 射频系统及通信设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant