WO2023015580A1 - 一种通过振动混合实现超快速无团聚真空冷冻干燥的装置 - Google Patents
一种通过振动混合实现超快速无团聚真空冷冻干燥的装置 Download PDFInfo
- Publication number
- WO2023015580A1 WO2023015580A1 PCT/CN2021/113026 CN2021113026W WO2023015580A1 WO 2023015580 A1 WO2023015580 A1 WO 2023015580A1 CN 2021113026 W CN2021113026 W CN 2021113026W WO 2023015580 A1 WO2023015580 A1 WO 2023015580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drying
- kettle
- vibration
- vacuum
- coil
- Prior art date
Links
- 238000009777 vacuum freeze-drying Methods 0.000 title claims abstract description 27
- 238000003805 vibration mixing Methods 0.000 title claims abstract description 22
- 238000001035 drying Methods 0.000 claims abstract description 88
- 239000000463 material Substances 0.000 claims abstract description 64
- 238000010438 heat treatment Methods 0.000 claims abstract description 38
- 238000001816 cooling Methods 0.000 claims abstract description 37
- 238000005054 agglomeration Methods 0.000 claims abstract description 11
- 230000002776 aggregation Effects 0.000 claims abstract description 11
- 238000007906 compression Methods 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 10
- 238000009833 condensation Methods 0.000 claims description 10
- 238000005057 refrigeration Methods 0.000 claims description 10
- 230000005494 condensation Effects 0.000 claims description 9
- 230000000712 assembly Effects 0.000 claims description 7
- 238000000429 assembly Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 33
- 238000004108 freeze drying Methods 0.000 abstract description 23
- 238000000859 sublimation Methods 0.000 abstract description 18
- 230000008022 sublimation Effects 0.000 abstract description 17
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 3
- 238000002061 vacuum sublimation Methods 0.000 abstract description 2
- 239000004576 sand Substances 0.000 abstract 2
- 230000007547 defect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000008569 process Effects 0.000 description 15
- 238000007710 freezing Methods 0.000 description 12
- 230000008014 freezing Effects 0.000 description 12
- 239000007788 liquid Substances 0.000 description 10
- 235000013570 smoothie Nutrition 0.000 description 10
- 239000000306 component Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000000110 cooling liquid Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 235000003363 Cornus mas Nutrition 0.000 description 2
- 240000006766 Cornus mas Species 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000005092 sublimation method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- MKWKGRNINWTHMC-UHFFFAOYSA-N 4,5,6-trinitrobenzene-1,2,3-triamine Chemical compound NC1=C(N)C([N+]([O-])=O)=C([N+]([O-])=O)C([N+]([O-])=O)=C1N MKWKGRNINWTHMC-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000002506 high-vacuum sublimation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B5/00—Drying solid materials or objects by processes not involving the application of heat
- F26B5/04—Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
- F26B5/06—Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B25/00—Details of general application not covered by group F26B21/00 or F26B23/00
- F26B25/001—Handling, e.g. loading or unloading arrangements
- F26B25/002—Handling, e.g. loading or unloading arrangements for bulk goods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B25/00—Details of general application not covered by group F26B21/00 or F26B23/00
- F26B25/02—Applications of driving mechanisms, not covered by another subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B25/00—Details of general application not covered by group F26B21/00 or F26B23/00
- F26B25/04—Agitating, stirring, or scraping devices
Definitions
- the invention relates to the technical fields of chemical production such as ultrafine materials, nanomaterials, and pharmaceuticals, and relates to a method of pre-freezing solid-liquid mixed wet materials into "sorbet” under high-acceleration vibration and high vacuum, and then under high-acceleration vibration and high vacuum.
- a freeze-drying device that heats up the "slush” under vacuum to quickly sublime into vapor, and removes it by vacuuming, finally obtaining the dried material. More specifically, it is a device for ultra-fast vacuum freeze-drying without agglomeration through vibration mixing.
- Freeze-drying is a drying method that uses the principle of ice crystal sublimation to remove the moisture or liquid phase in the wet material that has been frozen into a solid phase without melting, and directly sublimates into vapor in a high vacuum environment.
- This drying method can be carried out at room temperature and low temperature to meet the drying requirements of heat-sensitive materials; at the same time, it also eliminates the osmotic pressure that causes the materials to agglomerate and agglomerate when they change from liquid to gas, and can avoid hard agglomeration of materials to a certain extent. Maintain the porous structure of the material. Therefore, freeze drying and its equipment have been widely used in the fields of pharmacy, food processing, powder or nanomaterial preparation.
- the materials obtained by the traditional pre-freezing-sublimation freeze-drying method are often microscopically presented as porous soft agglomerated block structures, which is not conducive to subsequent direct use; especially in pharmaceutical
- the freeze-dried API powder often needs to be further dispersed into a highly dispersible powder, which increases the risk of contamination and operational safety during the dispersion process.
- Some improved freeze-drying methods such as KR1020180028233A, proposed a freeze-drying method using liquid nitrogen as a coolant. Although the rapid freezing of liquid nitrogen can prevent the material from being squeezed and agglomerated during the pre-freezing process to a certain extent, its sublimation The drying process is still slow and requires more energy due to the large amount of liquid nitrogen used for pre-freezing.
- patent EP 1 601 919B1 patent WO2004/073845A3 and WO2004/073845A2 have proposed a fast vacuum freeze-drying device and method under stirring, which can reduce the volume of ice crystals and fast sublimation drying, but limited by the stirring speed, the ice The crystal is gradually reduced by stirring, and the volume is still relatively large.
- the introduction of stirring has brought about the problem of sealing under high vacuum, which makes the price of the equipment very expensive.
- the object of the present invention is to provide a device for realizing ultra-fast agglomeration-free vacuum freeze-drying through vibration mixing, in order to solve the problems in the background technology.
- a device for realizing ultra-fast agglomeration-free vacuum freeze-drying through vibration mixing comprising: a drying kettle for holding materials; a high-acceleration vibration control system for applying high-acceleration vibration to the drying kettle so that the materials inside the drying kettle are in the state of High-acceleration vibration state; cooling and heating cycle system, used to provide external circulation cooling and heating to the drying kettle; condensation system, connected with the drying kettle; vacuum pump unit, connected to the condensation system, used to keep the inside of the drying kettle at high Vacuum state.
- the high-acceleration vibration control system includes: a vibrating table, a vibrating table moving coil, and a vibration control system.
- Spring shaft assemblies are respectively arranged on both sides of the vibrating table, and the vibrating table moving coil is fixed on the spring On the shaft assembly, the moving coil of the vibrating table is provided with a clamping device for fixing the drying kettle. Between the two spring shaft assemblies, there is a magnetic coil part for driving the spring shaft assembly to vibrate at high acceleration, a vibration control system and a magnetic coil part. electrical connection.
- a sensor is also included, and the sensor is fixed on the moving coil of the vibrating table and connected with the vibration control system through a data line.
- the magnetic coil assembly includes a current coil and magnetic assemblies disposed on both sides of the current coil.
- the spring shaft assembly includes a spring and a guide post arranged inside the spring to act as a guide, and the top of the guide post is lower than the lowest position of the moving coil of the vibrating table when vibrating at high acceleration.
- the drying kettle includes a kettle body and a lid fastened on the kettle body.
- the temperature control and adjustment parts; the kettle body is provided with an isolating device for movable connection.
- the cooling and heating circulation system is connected to the temperature control and adjustment component through a cooling and heating medium hose.
- the temperature control adjustment component is a jacket or a built-in coil.
- the condensing system includes a condenser, a condensing coil installed in the condenser, and a compression refrigeration unit connected to both ends of the condensing coil, one end of the condenser is connected to the drying kettle through a vacuum hose Sealed connection, the other end of the condenser is sealed with the vacuum pump unit.
- the vacuum hose is a vacuum bellows; a drain valve is provided at the bottom of the condenser.
- Fig. 1 is a schematic structural view of a device for achieving ultra-fast agglomeration-free vacuum freeze-drying through vibration mixing shown in some embodiments of the present application;
- Fig. 2 is a structural schematic diagram of a high-acceleration vibration control system of a device for achieving ultra-fast agglomeration-free vacuum freeze-drying through vibration mixing shown in some embodiments of the present application;
- Fig. 3 is a schematic structural view of a drying kettle of a device for achieving ultra-fast non-agglomeration vacuum freeze-drying through vibration mixing shown in some embodiments of the present application;
- Fig. 4 is a structural schematic diagram of a condensing system of a device for achieving ultra-fast non-agglomeration vacuum freeze-drying through vibration mixing shown in some embodiments of the present application;
- Fig. 5a is the appearance picture of the freeze-dried product obtained by utilizing the device of the present invention.
- Figure 5b is an appearance picture of the freeze-dried product obtained by using a traditional tray freeze dryer
- the device for achieving ultra-fast agglomeration-free vacuum freeze-drying through vibration mixing may include: a drying kettle 103 for holding materials 306; a high-acceleration vibration control system 101 for Apply high-acceleration vibration to the drying kettle 103, so that the internal material of the drying kettle 103 is in a state of high-acceleration vibration; the cooling and heating cycle system 102 is used to provide external circulation cooling and heating to the drying kettle 103; Kettle 103 is connected; vacuum pump unit 104, and vacuum pump unit 104 is connected with condensing system 105 for making the inside of drying kettle 103 in a high vacuum state.
- the device provided by the invention can pre-freeze the wet material mixed with solid and liquid phases into "slush" under high-acceleration vibration and high vacuum, and then heat up the "slush” under high-acceleration vibration and high vacuum to make the ice crystals super fast Direct sublimation into vapor, and then remove the vapor from the material by vacuuming, and re-condense into solid in the condenser 402, and finally obtain a new type of freeze-drying device for dry materials.
- the device can avoid the extrusion of the material during the pre-freezing process and avoid the agglomeration of the material into a porous material. Combined with the sublimation drying under vibration, the highly dispersed powder material can be directly obtained; at the same time, the device can greatly reduce the freeze-drying time and realize the process Fast, efficient and energy efficient.
- the present invention is a set of equipment that provides high-acceleration vibration, material cooling and heating, ice crystal sublimation, high
- the system with vacuum and vapor desublimation functions is shown in Figure 1.
- the wet material can be pre-frozen into "smoothie” at the same time under high acceleration vibration and high vacuum, and then the vapor is removed by sublimation of the "smoothie".
- the system is composed of five core components: high-acceleration vibration and control system, cooling and heating circulation system 102, drying kettle 103, vacuum pump unit 104, condensation system 105, cold and heat medium hose 106, vacuum bellows, and air release valve. 109 and drain valve 110 and other auxiliary components.
- the device with the above structure due to the existence of high-acceleration vibration and control system, can make the drying kettle 103 connected to it and its internal materials be in a state of high-acceleration vibration, so that the materials can be formed into a small volume during the pre-freezing process. 1. "Smoothie" with a large surface area; and during the sublimation process, it keeps moving and performs sufficient and rapid heat exchange with the drying kettle 103, thereby accelerating the heat exchange and accelerating the sublimation process.
- the connected drying tank 103 and its internal materials can be cooled and heated, so that the wet materials can be pre-cooled to ice crystals during the pre-freezing process point, and keep the "smoothie" in a frozen state before applying high vacuum; and the drying kettle 103 and its internal “smoothie” can be heated by slow heating during the high vacuum sublimation drying process, so as to speed up the heat exchange and sublimation drying process.
- the wet materials can be pre-frozen, heated and sublimated, and liquid and solid materials can be prevented from entering the vacuum pipe 305.
- a high vacuum state can be applied to the cavity of the drying kettle 103, the condensation system 105 and the vacuum pipe 305, and the vapor generated from the sublimation of the drying kettle 103 during the drying process can be extracted. Due to the existence of the condensing system 105, the vapor generated from the sublimation of the drying kettle 103 can be recondensed into a solid, so as to prevent the vapor from entering the vacuum pump unit 104 and contaminating the pump oil, affecting the continuous and stable operation of the system.
- the high-acceleration vibration control system 101 is a system that can realize high-acceleration vibration by adjusting the magnitude and frequency of the current, as shown in FIG. 2 .
- the high-acceleration vibration control system 101 includes: a vibration table 201, a vibration table moving coil 205, a vibration control system 209, and a sensor 207. It is said that the vibration table 201 is provided with spring shaft assemblies 202 on both sides, and the vibration table is dynamic.
- the coil 205 is fixed on the spring shaft assembly 202, the vibrating table moving coil 205 is provided with a clamping device 208 for fixing the drying kettle 103, and a clamping device 208 for driving the spring shaft assembly 202 to perform high-acceleration vibration is provided between the two spring shaft assemblies 202.
- the magnetic coil part, the vibration control system 209 is electrically connected with the magnetic coil part.
- the sensor 207 is fixed on the vibrating table moving coil 205, and is connected with the vibration control system 209 through the data line 206.
- the magnetic coil component includes a current coil 204 and magnetic components 203 disposed on both sides of the current coil 204 .
- the spring shaft assembly 202 includes a spring and a guide post arranged inside the spring to play a guiding role. The top of the guide post is lower than the lowest position of the vibrating table moving coil 205 when vibrating at high acceleration.
- the senor 207 is fixed on the vibrating table moving coil 205, and is connected with the vibration control system 209 through the data line 206, and the current coil 204 is also connected with the vibration control system 209 through the electric wire, and the drying kettle 103 is clamped
- the device 208 is connected to the vibrating table moving coil 205 and remains fixed.
- the magnetic component 203 may be a permanent magnet, such as a magnet, or an electromagnetic coil with current.
- the vibrating table moving coil 205 can vibrate up and down; due to the existence of the magnetic assembly 203 and the current coil 204, a pair of adjustable interaction forces can be generated between the two and cause the spring to vibrate.
- the vibration control system 209 can obtain the vibration frequency and the amplitude of the vibrating table moving coil 205 through the data line 206; due to the existence of the clamping device 208, it can Maintain a fixed connection between the vibrating table moving coil 205 and the drying kettle 103, and vibrate with the same amplitude and frequency.
- the frequency and amplitude data of the vibration table 201 can be analyzed, and the magnitude and frequency of the current flowing through the current coil 204 can be adjusted, thereby realizing the control of the vibration state, high acceleration vibration And the vibration frequency output by the control system ranges from 1.0 Hz to 2000 Hz, wherein the optimized vibration frequency ranges from 10 Hz to 1000 Hz, and the acceleration range that can be provided is 10 g to 100 g.
- the cooling and heating circulation system 102 is a device that can provide external circulation cooling and heating functions. Its cooling and heating control, temperature display, temperature drop and temperature rise program setting, and external circulation start can be achieved through the cooling and heating circulation system. 102 own control panel or computer to implement control.
- the cooling temperature range that can be provided is lower than the freezing temperature of the medium to be dried. Taking the drying of water-containing materials as an example, the cooling and heating circulation system 102 should be able to provide a cooling temperature range of -30 to 0°C, and the optimal cooling temperature range is - 10°C ⁇ 0°C.
- the heating temperature that can be provided is higher than the liquid boiling temperature of the medium to be dried in a high vacuum state. Taking the drying of water-containing materials as an example, the heating temperature range that the cooling and heating circulation system 102 should be able to provide is 0°C to 60°C. Optimum heating The temperature range is 0°C to 30°C.
- the drying kettle 103 includes a kettle body 302 and a kettle cover 304 fastened on the kettle body 302.
- the inside of the kettle body 302 is a temperature control and adjustment component for temperature regulation; the kettle body 302 is provided with an isolating device 303 which is movably connected.
- the cooling and heating circulation system 102 is connected with the temperature control and adjustment components through the cooling and heating medium hose 106 .
- the temperature control and adjustment component is a jacket 301 or a built-in coil.
- the drying kettle 103 is a reaction kettle device that can contain wet materials, pre-freeze and sublimate the materials, and prevent the wet and dry materials from entering the vacuum tube 305. As shown in Figure 3, it is mainly composed of a jacket 301 (also can It is composed of a kettle body 302 , an isolation device 303 , a kettle cover 304 and a vacuum tube 305 with a built-in coil pipe. Adopt the drying kettle 103 of above-mentioned structure, because the existence of jacket 301 (or built-in coil pipe), can make the refrigerant in the cold and hot medium hose 106 that is connected with it, heat medium can cool the material in the still and heating;
- the isolating device 303 is a device with a large number of small holes or screen mesh structure, which is removable for cleaning and is in close contact with the inner wall of the container. Due to the existence of the kettle body 302, the kettle cover 304 and the vacuum tube 305, the kettle body 302 can be connected with the kettle cover 304 by opening and closing the kettle body 302, so as to carry out operations such as filling materials, maintaining a high vacuum state and taking out materials.
- the condensing system 105 includes a condenser 402, a condensing coil 403 arranged in the condenser 402, and a compression refrigeration unit 401 respectively connected to both ends of the condensing coil 403, and one end of the condenser 402
- the vacuum hose 107 is hermetically connected to the drying kettle 103
- the other end of the condenser 402 is hermetically connected to the vacuum pump unit 104 .
- the condensing system 105 is a device capable of performing multi-stage compression refrigeration, and condenses the extracted low-pressure vapor into a solid through the flow of low-temperature cooling liquid. As shown in Figure 4, it is mainly composed of a compression refrigeration unit 401 and a condensation plate inside Condenser 402 composed of pipe 403 . Due to the existence of the compression refrigeration unit 401, the condensing system 105 with the above structure can compress and refrigerate the refrigerant and reduce the temperature range of the cooling liquid circulating in the condensing coil 403 to -80°C ⁇ -10°C, wherein the optimized cooling Liquid temperature range is -60°C ⁇ -30°C.
- the vapor extracted from the drying kettle 103 can be condensed into a solid in the cavity of the condenser 402 .
- the condenser 402 is connected with the vacuum unit through the vacuum tube 305 which may contain the vacuum valve 108, so as to maintain and control the high vacuum working state; The solid ice melts into a liquid and is discharged.
- the vacuum pump unit 104 is a vacuum pump device capable of providing a high vacuum state or a series or parallel combination thereof.
- the function of this unit is to provide a high vacuum state in the range of 1Pa to 1000Pa for the drying kettle 103 and the vacuum pipe 305, and the optimized high vacuum state pressure range is 10Pa to 40Pa.
- the device may also include the following other, non-essential auxiliary devices to facilitate operation, process control and maintenance.
- an aeration valve is set on the drying kettle 103 or the vacuum pipe 305 connected to it, so that after the drying is completed, the protective gas is released into the kettle to achieve pressure balance, and then the drying kettle 103 is opened to take out the material;
- a computer control system can also be set , so as to start and stop the cooling and heating circulation system 102, start and stop the compression refrigeration unit 401, start and stop the vacuum pump unit 104, and switch various valves through the setting program.
- Vacuum gauge and temperature sensor 207 can also be set in drying kettle 103, and be connected with control computer, so that measure material temperature and vacuum degree in drying kettle 103; Also can set catalyst on the vacuum tube 305 road that is connected with vacuum pump unit 104 Filtration system to avoid contamination of vacuum pump oil by residual vapor; pump oil filtration self-cleaning system can also be added to the vacuum pump; valves can be added on the pipeline between the compression refrigeration unit 401 and the condenser 402 to control the flow of refrigerant; various valves can also be changed Various types, such as solenoid valves, pneumatic valves, etc., in order to use different control methods to realize the switch control of the valve.
- Step 1 Fill 1.0kg of nano-triaminotrinitrobenzene wet material with a water content of about 40% in the drying kettle 103 of the device shown in Figure 1 to realize ultra-fast non-agglomeration vacuum freeze-drying of the present invention through high-acceleration vibration , and then install the isolation device 303 sequentially, cover the kettle cover 304 to seal, and then fix the drying kettle 103 on the moving coil 205 of the vibrating table through the clamping device 208 .
- Step 2 start the cooling cycle function of the cooling and heating cycle system 102, so that the cooling liquid flows into the jacket 301 to cool the drying kettle 103, and cool the wet material therein to 0°C-0.3°C.
- Step 3 start the vibration control system 209, first load the AC current to the current coil 204 according to the frequency from small to large, causing the vibration table moving coil 205 to vibrate, and the sensor 207 fixed on the vibration table moving coil 205 transmits the vibration frequency and amplitude data Return to the vibration control system 209 to find the frequency corresponding to the largest amplitude, and set this frequency as the output resonance frequency through the program.
- Step 4 start the compression refrigerating unit 401 of the condensing system 105, reduce the temperature inside the condenser 402 to below -30°C, and keep the continuous cooling operation before step 8.
- Step 5 make the vibration control system 209 output alternating current to the current coil 204 at the output resonance frequency searched in step 3, so as to make the materials inside the drying kettle 103 move in an optimal vibration state. Then start the vacuum pump unit 104 and open the vacuum valve 108 and the vacuum valve 108 in turn, so that the vacuum degree in the drying kettle 103 will drop below 200 Pa rapidly, and the wet material will be boiled, and the material in the cavity will cool down rapidly and form rapidly under high-acceleration vibration. Tiny "smoothies”. At the same time, continue to use the cooling and heating circulation system 102 to further cool down, so that the temperature of the material in the kettle is reduced to about -10°C.
- Step 6 after the wet material in the drying kettle 103 is completely transformed into “smooth” ( ⁇ 10min), keep the above vibration state, further reduce the vacuum degree to (10Pa ⁇ 40Pa) and continue to run, the "smooth” formed in the drying kettle 103 The “slush” will be sublimated under high vacuum and high-acceleration vibration, and the generated water vapor will be sucked away, and cooled and sublimated around the condensation coil 403 in the condenser 402 to become solid ice.
- Step 7 Switch the cooling cycle mode of the cooling and heating cycle system 102 to the heating cycle mode, and heat up the drying kettle 103 under high-acceleration vibration at a heating rate of 1.0°C/min, so as to accelerate the "sorbet" and the kettle body 302
- the heat exchange allows the "smoothie” to complete the sublimation drying process more quickly.
- the temperature of the material in the drying kettle 103 rises to 30.0°C.
- all the “smoothies” have been completely sublimated, and the nano-triaminotrinitrobenzene wet material has become a completely dry and highly dispersed material.
- Step 8 after the drying is completed, first close the vacuum valve 108, then close the vacuum pump unit 104, the compression refrigeration unit 401, and the cooling and heating circulation system 102, stop the vibration through the vibration control system 209, and then open the air release valve 109, so that the gas slowly enters the drying process.
- the kettle 103 after the pressure is balanced, open the kettle lid 304 and the isolation device 303 in sequence, and take out the dried material to obtain about 600 g of dry, highly dispersed nano-triaminotrinitrobenzene powder.
- Step 9 open the drain valve 110 to heat up and melt the solid ice inside the condenser 402, then drain it completely, and then close the drain valve 110 for the next freeze-drying use.
- the nano-triaminotrinitrobenzene that is subjected to ultra-fast freeze-drying by the above-mentioned method provided by the present invention, and the wet nano-triaminotrinitrobenzene with a water content of about 40% are placed on a tray and pre-frozen by an ordinary refrigerator, Sublimation drying is then carried out in a traditional tray-type freeze dryer, and the specific surface area of the obtained product is tested by nitrogen adsorption and desorption method, and a photo of the appearance of the product is taken with a camera.
- the results of the comparative test are listed in Table 1, and the appearance photos of the products are compared as shown in Figure 5a and Figure 5b below.
- the device for realizing ultra-fast non-agglomeration vacuum freeze-drying through high-acceleration vibration can greatly reduce the energy consumed by freeze-drying, reduce the process time, improve production efficiency, and improve the specific surface area and dispersibility of the product.
- the possible beneficial effects of the ultra-fast agglomeration-free vacuum freeze-drying device disclosed in this application include but are not limited to: for the traditional pre-freezing-vacuum sublimation freeze-drying method and the existing improved freeze-drying method It has the disadvantages of long drying time, high energy consumption, unavoidable agglomeration of products and the need for secondary dispersion.
- the present invention proposes a method to quickly prefreeze wet materials in a non-extruding manner under high acceleration vibration and high vacuum. A device that makes a "smoothie” and then heats the "smoothie” to achieve ultra-fast sublimation drying.
- the device can greatly reduce the time and energy consumption required for the freeze-drying process, and directly obtain highly dispersed powder without secondary pulverization.
- the device and the use method can be widely used in the fields of pharmaceutical technology, ultrafine powder material preparation, nanometer material preparation and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Drying Of Solid Materials (AREA)
Abstract
本发明公开了一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其包括:干燥釜,用于盛装物料;高加速度振动控制系统,用于对所述干燥釜施加高加速度振动,使干燥釜内部物料处于高加速度振动状态;冷却加热循环系统,用于对干燥釜提供外循环冷却和加热;冷凝系统,与所述干燥釜连通;真空泵机组,真空泵机组与冷凝系统连接,用于使干燥釜内部处于高真空状态。针对传统的预冷冻-真空升华冷冻干燥方法和已有的改进型冷冻干燥方法所具有的干燥时间长、能耗高、产物难以避免团聚需要二次分散等缺点,本发明提出了一种在高频振动和高真空下,使湿态物料以无挤压的方式进行快速预冻成"冰沙"、然后对"冰沙"升温从而实现超快速升华干燥的装置。
Description
本发明涉及超细材料、纳米材料、制药等化工生产技术领域,涉及一种可以将固液混合湿物料在高加速度振动和高真空下预冷冻成“冰沙”,然后在高加速度振动和高真空下对“冰沙”升温使之快速升华为蒸气,并通过抽真空去除,最终得到干燥材料的冷冻干燥装置。更具体的说是一种通过振动混合实现超快速无团聚真空冷冻干燥的装置。
冷冻干燥是利用冰晶升华的原理,在高度真空的环境下,将已冻结成固相的湿物料中的水分或液相不经过融化,而直接升华为蒸气而除去的干燥方法。这种干燥方法可在常温和低温下进行,满足热敏性物料干燥要求;同时还消除了由液态变为气态所产生的、使物料结块团聚的渗透压,可以在一定程度上避免物料硬团聚,保持材料多孔结构。因此冷冻干燥及其设备目前已经广泛用于制药、食品加工、粉体或纳米材料制备等领域。
但传统的托盘式冷冻干燥装置(如JP1988173852、JP1995197775等所公开的装置),都需要采用一个预冻过程来将含有液相的湿料冻成固相,装在托盘中的湿料在预冷冻过程中,由于结冰过程是由外向内逐层推进的,分散在液相中的材料受到局部挤压,容易结块形成块状的多孔结构。因此经传统预冷冻-升华的冷冻干燥方法得到的材料(尤其是粉体材料、纳米材料等),往往都在微观上呈现为多孔的软团聚块状结构,不利于后续直接使用;尤其在制药工业中,冷冻干燥后的原料药粉体往往还需要进一步分散成高分散性粉体,增加了在分散过程中的受到污染和操作安全的风险。
传统的托盘式冷冻干燥装置的另一个缺点是,预冷冻过程所形成的较大体积的冰块在高真空下升华时,往往是被静置在真空系统中。而高真空下升华的本质在于 热量从冰块表面向内逐层传递,热量传递的速度受限于冰块的小表面积和静置状态,导致热量传递效率低,升华速度缓慢,执行冷冻干燥过程的工艺时间通常长达数十小时,不利于快速生产,同时也大幅度增加了整个冷冻干燥过程的能源消耗和CO
2排放。
一些改进的冷冻干燥方法,如KR1020180028233A提出采用液氮作为冷却剂的冷冻干燥方法,虽然可以通过液氮的快速冷冻,在一定程度上避免物料在预冻过程中受挤压结块,但其升华干燥过程依旧缓慢,同时由于预冷冻使用大量液氮,因此需要消耗更多的能源。
专利EP 1 601 919B1、专利WO2004/073845A3和WO2004/073845A2虽然提出了在搅拌状态下的快速真空冷冻干燥装置和方法,可以减小冰晶体体积和快速升华干燥,但受搅拌速度的限制,其冰晶体是通过搅拌逐步减小的,体积仍旧较大,同时搅拌的引入带来了高真空下密封的难题,这使得设备的价格十分昂贵。
USP7188993、EP2018783465、EP2018867320、RU2016117488、和中国专利ZL201610320677.2等虽然提出了各种形式的用于固液、固固体物料混合的振动装置的设计方案,但没有提供如何设计用于快速升华干燥的、振动下湿物料冷冻干燥装置。
发明内容
本发明的目的在于提供一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,以期解决背景技术中的问题。
为了实现上述目的,本发明采用以下技术方案:
一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,包括:干燥釜,用于盛装物料;高加速度振动控制系统,用于对所述干燥釜施加高加速度振动,使干燥釜内部物料处于高加速度振动状态;冷却加热循环系统,用于对干燥釜提供外循环冷却和加热;冷凝系统,与所述干燥釜连通;真空泵机组,真空泵机组与冷凝系 统连接,用于使干燥釜内部处于高真空状态。
在一些实施例中,所述高加速度振动控制系统,包括:振动台、振动台动圈和振动控制系统,所述振动台内部两侧分别设有弹簧轴组件,振动台动圈固设在弹簧轴组件上,振动台动圈上设有用于固定干燥釜的夹持装置,在两弹簧轴组件之间设有用于带动弹簧轴组件做高加速度振动的磁性线圈部件,振动控制系统和磁性线圈部件电性连接。
在一些实施例中,还包括传感器,传感器固定在振动台动圈上,并通过数据线与振动控制系统相连接。
在一些实施例中,所述磁性线圈部件包括电流线圈和设置在所述电流线圈两侧的磁组件。
在一些实施例中,所述弹簧轴组件包括弹簧和设置在弹簧内部起导向作用的导向柱,所述导向柱的顶部低于振动台动圈在做高加速度振动运动时的最低位置。
在一些实施例中,所述干燥釜包括釜体和扣合在釜体上的釜盖,所述釜体的侧壁上设有与冷却加热循环系统配合、用于对釜体内部进行温度调节的温控调节部件;所述釜体内设有活动连接的隔离装置。
在一些实施例中,所述冷却加热循环系统通过冷热媒软管与温控调节部件连接。
在一些实施例中,所述温控调节部件为夹套或内置盘管。
在一些实施例中,所述冷凝系统包括冷凝器、设置在冷凝器内的冷凝盘管以及分别与冷凝盘管两端连接的压缩制冷机组,所述冷凝器的一端通过真空软管与干燥釜密封连接,冷凝器的另一端与真空泵机组密封连接。
在一些实施例中,所述真空软管为真空波纹管;冷凝器底部设排水阀。
图1是根据本申请一些实施例所示的通过振动混合实现超快速无团聚真空冷冻干燥的装置的结构示意图;
图2是根据本申请一些实施例所示的通过振动混合实现超快速无团聚真空冷冻干燥的装置的高加速度振动控制系统的结构示意图;
图3是根据本申请一些实施例所示的通过振动混合实现超快速无团聚真空冷冻干燥的装置的干燥釜的结构示意图;
图4是根据本申请一些实施例所示的通过振动混合实现超快速无团聚真空冷冻干燥的装置的冷凝系统的结构示意图;
图5a是利用本发明装置所得冷冻干燥产物的外观图片;
图5b是利用传统托盘式冷冻干燥机所得冷冻干燥产物的外观图片;
图中标记:101-高加速度振动控制系统,102-冷却加热循环系统,103-干燥釜,104-真空泵机组,105-冷凝系统,106-冷热媒软管,107-真空软管,108-真空阀,109-放气阀,110-排水阀,201-振动台,202-弹簧轴组件,203-磁组件,204-电流线圈,205-振动台动圈,206-数据线,207-传感器,208-夹持装置,209-振动控制系统,301-夹套,302-釜体,303-隔离装置,304-釜盖,305-真空管,306-物料,401-压缩制冷机组,402-冷凝器,403-冷凝盘管。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
相反,本申请涵盖任何由权利要求定义的在本申请的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本申请有更好的了解,在下文对本申请的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本申请。
以下将结合图1-5对本申请实施例所涉及的通过振动混合实现超快速无团聚真空冷冻干燥的装置进行详细说明。值得注意的是,以下实施例仅仅用于解释本申请, 并不构成对本申请的限定。
在本申请的实施例中,如图1-3所示通过振动混合实现超快速无团聚真空冷冻干燥的装置可以包括:干燥釜103,用于盛装物料306;高加速度振动控制系统101,用于对所述干燥釜103施加高加速度振动,使干燥釜103内部物料处于高加速度振动状态;冷却加热循环系统102,用于对干燥釜103提供外循环冷却和加热;冷凝系统105,与所述干燥釜103连通;真空泵机组104,真空泵机组104与冷凝系统105连接,用于使干燥釜103内部处于高真空状态。
本发明提供的装置可以将固液相混合的湿物料在高加速度振动和高真空下预冷冻成“冰沙”,然后在高加速度振动和高真空下对“冰沙”升温而使冰晶超快速直接升华为蒸气,进而通过抽真空将蒸气从物料中去除,并在冷凝器402中重新凝华为固体,最终得到干燥材料的新型冷冻干燥装置。利用该装置可以避免预冷冻过程对物料形成挤压,避免使物料团聚成多孔材料,结合振动下的升华干燥能够直接得到高分散粉体材料;同时该装置可以大幅度降低冷冻干燥时间,实现过程快速高效和节能。
就能够提供适用于通过高加速度振动实现超快速无团聚真空冷冻干燥的装置而言,本发明为解决所述技术问题的设备是一套具有提供高加速度振动、物料冷却和加热、冰晶升华、高真空和蒸气凝华功能的系统,如图1所示。可以在高加速度振动和高真空下可以同时将湿物料预冷冻成“冰沙”,然后通过“冰沙”的升华除去蒸气。所述的系统是由高加速度振动及控制系统、冷却加热循环系统102、干燥釜103、真空泵机组104、冷凝系统105这5个核心组件及冷热媒软管106、真空波纹管、放气阀109和排水阀110等附属组件组成。
采用上述结构的装置,由于高加速度振动及控制系统的存在,可以使与之相连接的干燥釜103及其内部物料处于高加速度振动状态,从而可以使物料在预冻结的过程中形成为体积微小、表面积大的“冰沙”;并且在升华过程中不停地运动并与 干燥釜103进行充分、快速的热量交换,从而加快热量交换使升华过程得到加速。
由于冷却加热循环系统102和相连接的冷热媒软管106的存在,可以对相连接的干燥釜103及其内部物料进行冷却和加热,从而在预冻过程中可以将湿物料预冷至冰晶点附近,并在施加高真空之前保持“冰沙”的结冰状态;并且可以在高真空升华干燥过程中通过缓慢加热来对干燥釜103及其内部“冰沙”进行加热,以便加快热量交换和升华干燥过程。
由于干燥釜103的存在,可以使湿物料得到预冷冻、加热升华并防止液体和固体物料进入真空管305路。
由于真空泵机组104的存在,可以对干燥釜103、冷凝系统105的腔体和真空管305路施加高真空状态,并抽出干燥过程中从干燥釜103升华产生的蒸气。由于冷凝系统105的存在,可以使从干燥釜103升华产生的蒸气重新凝华为固体,以免蒸气进入真空泵机组104污染泵油影响系统连续稳定工作。
由于冷热媒软管106和真空软管107的存在,两者都是软管,所以不会影响与之相连接的干燥釜103独立进行高频自由振动。由于放气阀109和排水阀110的存在,可以使干燥釜103和冷凝系统105内的真空状态根据工艺步骤需要得到控制。由于排水阀110的存在,可以使在干燥过程结束后,凝华在冷凝系统105中的冰融化为液体后,排出到冷凝系统105之外以便下一次干燥。
在一些实施例中,高加速度振动控制系统101是一种可以通过调节电流大小和频率来实现高加速度振动的系统,如图2所示。所述高加速度振动控制系统101,包括:振动台201、振动台动圈205、振动控制系统209和括传感器207,传所述振动台201内部两侧分别设有弹簧轴组件202,振动台动圈205固设在弹簧轴组件202上,振动台动圈205上设有用于固定干燥釜103的夹持装置208,在两弹簧轴组件202之间设有用于带动弹簧轴组件202做高加速度振动的磁性线圈部件,振动控制系统209和磁性线圈部件电性连接。传感器207固定在振动台动圈205上,并通过 数据线206与振动控制系统209相连接。所述磁性线圈部件包括电流线圈204和设置在所述电流线圈204两侧的磁组件203。所述弹簧轴组件202包括弹簧和设置在弹簧内部起导向作用的导向柱,所述导向柱的顶部低于振动台动圈205在做高加速度振动运动时的最低位置。
在一些实施例中,传感器207固定在振动台动圈205上,并通过数据线206与振动控制系统209相连接,电流线圈204通过电线也与振动控制系统209相连接,干燥釜103通过夹持装置208与振动台动圈205相连接并保持固定。其中,磁组件203可以是永磁体,如磁铁等,也可以是有电流的电磁线圈。
采用上述结构的高加速度振动控制系统101,由于振动台201的存在,干燥釜103和与之相连接的振动台动圈205可以得到支撑;由于弹簧轴组件202的存在,使与之相连接的振动台动圈205可以上下振动;由于磁组件203和电流线圈204的存在,可以在两者之间产生一对可以调节的相互作用力并引起弹簧振动。
在本实施例中,固定在振动台动圈205上的传感器207的存在,振动控制系统209可以通过数据线206获得振动台动圈205的振动频率和振幅;由于夹持装置208的存在,可以保持振动台动圈205和干燥釜103之间形成固定连接,并以相同的振幅和频率振动。
在本实施例中,由于振动控制系统209的存在,可以分析振动台201的频率和振幅数据,并且调整流经电流线圈204中的电流大小和频率,从而实现对振动状态的控制,高加速度振动及控制系统输出的振动频率范围为1.0Hz~2000Hz,其中优化的振动频率范围为10Hz~1000Hz,能够提供的加速度范围为在10g~100g。
在本实施例中,冷却加热循环系统102是一种能提供外循环冷却和加热功能的设备,其制冷和加热控制、温度显示、降温升温程序设定,外循环启动等可以通过冷却加热循环系统102本身的控制面板或者计算机来实施控制。其中能提供的冷却温度范围要低于待干燥媒介的冰晶点温度,以干燥含水物料为例,冷却加热循环系 统102应能提供冷却温度范围为-30~0℃,优化的冷却温度范围为-10℃~0℃。而能提供的加热温度要高于高真空状态下待干燥媒介的液体沸腾温度,以干燥含水物料为例,冷却加热循环系统102应能提供的加热温度范围为0℃~60℃,优化的加热温度范围为0℃~30℃。
在一些实施例中,所述干燥釜103包括釜体302和扣合在釜体302上的釜盖304,所述釜体302的侧壁上设有与冷却加热循环系统102配合、用于对釜体302内部进行温度调节的温控调节部件;所述釜体302内设有活动连接的隔离装置303。所述冷却加热循环系统102通过冷热媒软管106与温控调节部件连接。所述温控调节部件为夹套301或内置盘管。
干燥釜103是一种可盛装湿物料、对物料进行预冷冻和升华干燥、并且可避免干湿物料进入真空管305理的反应釜装置,如图3所示,主要由含有夹套301(也可以是内置盘管)的釜体302、隔离装置303、釜盖304和真空管305组成。采用上述结构的干燥釜103,由于夹套301(或内置盘管的)的存在,可以使与之相连接的冷热媒软管106中的冷媒、热媒能够对釜内的物料进行冷却和加热;
隔离装置303是一个具有大量小孔或筛网结构的、可拆卸清洗的、与容器内壁紧密接触的装置,作用是防止高加速度振动下液体或固体粉尘(气体不受影响)进入真空管305。由于釜体302、釜盖304和真空管305的存在,可以通过开关釜体302与釜盖304连接,实施盛装物料、保持高真空状态和物料取出等操作。
在一些实施例中,所述冷凝系统105包括冷凝器402、设置在冷凝器402内的冷凝盘管403以及分别与冷凝盘管403两端连接的压缩制冷机组401,所述冷凝器402的一端通过真空软管107与干燥釜103密封连接,冷凝器402的另一端与真空泵机组104密封连接。
冷凝系统105是一种能够进行多级压缩制冷,并且通过低温冷却液的流动,将抽出的低压蒸气凝华为固体的装置,如图4所示,主要由压缩制冷机组401和内部 设有冷凝盘管403的冷凝器402组成。采用上述结构的冷凝系统105由于压缩制冷机组401的存在,能够对制冷剂进行压缩制冷并使循环在冷凝盘管403中的冷却液温度范围降低至-80℃~-10℃,其中优化的冷却液温度范围为-60℃~-30℃。由于冷凝器402及内部冷凝盘管403的存在,能够使从干燥釜103中抽出的蒸气,在冷凝器402腔体内,凝华为固体。此外冷凝器402通过可以包含真空阀108的真空管305路和与真空机组和相连,以保持和控制于高真空工作状态;该冷凝器402底部设排水阀110,以便于在干燥完成后使腔内的固体冰融化为液体后排出。
真空泵机组104是一种能够提供高真空状态的真空泵设备或者其串联、并联组合。该机组的作用是为干燥釜103及真空管305路提供处于1Pa~1000Pa范围的高真空状态,其中优化的高真空状态压力范围为10Pa~40Pa。
作为本发明一种通过振动混合实现超快速无团聚真空冷冻干燥的装置的改进,所述的装置还可以包含以下其他的、非必要的辅助装置,以便于操作、工艺控制和维护保养。
如在与干燥釜103或与其相连接的真空管305路上设置掺气阀,以便于在干燥完成后释放保护性气体进入釜内实现压力平衡,进而打开干燥釜103取出物料;也可以设置计算机控制系统,以便于通过设定程序启停冷却加热循环系统102、启停压缩制冷机组401、启停真空泵机组104、开关各个阀门。
也可以在干燥釜103内设置真空计和温度传感器207,并与控制计算机相连接,以便于测量干燥釜103内物料温度和真空度;也可以在与真空泵机组104相连接的真空管305路上设置触媒过滤系统,以避免残余蒸气污染真空泵油;也可以对真空泵增设泵油过滤自清洁系统;可以在压缩制冷机组401与冷凝器402之间的管路上增设阀门控制冷媒流动;还可以变换各种阀门的类型,如电磁阀、气动阀等,以便于采用不同的控制方式来实现阀门的开关控制。
下面以对含水量约为40%的纳米三氨基三硝基苯湿物料实施冷冻干燥,来详细 阐述本发明的装置的工作原理:
步骤1,将含水量约为40%的纳米三氨基三硝基苯湿物料1.0kg,装填于图1所示的本发明通过高加速度振动实现超快速无团聚真空冷冻干燥的装置的干燥釜103中,然后依次装好隔离装置303,盖上釜盖304密封,然后通过夹持装置208将干燥釜103固定在振动台动圈205上。
步骤2,启动冷却加热循环系统102的冷却循环功能,使冷却液流入夹套301对干燥釜103制冷,将其中的湿物料冷却至0℃~0.3℃。
步骤3,启动振动控制系统209,首先按照频率由小到大给电流线圈204加载交流电,引起振动台动圈205振动,固定在振动台动圈205上的传感器207将振动的频率和振幅数据传输回振动控制系统209,找到对应振幅最大的频率,通过程序将该频率设置为输出共振频率。
步骤4,启动冷凝系统105的压缩制冷机组401,将冷凝器402内部的温度降低至-30℃以下,并在步骤8之前保持持续冷却运行。
步骤5,使振动控制系统209在步骤3搜索得到的输出共振频率下给电流线圈204输出交流电,以便使干燥釜103内部的物料在最佳的振动状态下运动。然后启动真空泵机组104并依次打开真空阀108和真空阀108,使干燥釜103内的真空度快速下降至200Pa以下,并使湿物料沸腾,腔内物料将迅速降温并在高加速度振动下迅速形成细小的“冰沙”。与此同时继续采用冷却加热循环系统102进一步进行冷却降温,使釜内物料温度降低至-10℃左右。
步骤6,待干燥釜103内的湿物料完全转化为“冰沙”之后(≤10min),保持上述振动状态,进一步降低真空度至(10Pa~40Pa)并持续运行,干燥釜103内形成的“冰沙”将在高真空和高加速度振动下发生升华,所产生的水蒸气被抽走,并在冷凝器402中冷凝盘管403周围冷却凝华成为固体冰。
步骤7,将冷却加热循环系统102的冷却循环模式切换为加热循环模式,按照 1.0℃/min的升温速率对处于高加速度振动下的干燥釜103进行升温,以加速“冰沙”与釜体302的热量交换,从而使“冰沙”更加快速地完成升华干燥过程。约30min~40min后,干燥釜103内的物料温度上升至30.0℃,此时所有“冰沙”已经完全升华,纳米三氨基三硝基苯湿物料已经变成了完全干燥的高分散物料。
步骤8,干燥完成后,首先关闭真空阀108,然后关闭真空泵机组104、压缩制冷机组401、冷却加热循环系统102,通过振动控制系统209停止振动,再打开放气阀109,使气体缓慢进入干燥釜103,压力平衡后,依次打开釜盖304和隔离装置303,将干燥后的物料取出,得到约600g干燥的、高分散的纳米三氨基三硝基苯粉体。
步骤9,打开排水阀110并使冷凝器402内部的固体冰升温融化后,完全排出,然后关闭排水阀110,以便下一次冷冻干燥使用。
将采用本发明提供的上述方法进行超快速冷冻干燥的纳米三氨基三硝基苯,与将含水量约为40%的湿纳米三氨基三硝基苯装于托盘并采用普通冰箱进行预冷冻,然后在传统托盘式冷冻干燥机中进行升华干燥,所得产物采用氮气吸附脱附方法测试比表面积,并用照相机拍摄产物外观照片。对比试验的结果列于表1,其产物的外观照片对比如下图5a和图5b所示。
表1本发明与普通冷冻干燥在处理纳米三氨基三硝基苯湿物料方面的对比
可以发现,按照本发明通过高加速度振动实现超快速无团聚真空冷冻干燥的装 置,能够大幅度减少冷冻干燥所消耗的能源、降低工艺时间提升生产效率、提高产物的比表面积和分散性。
本申请所披露的通过振动混合实现超快速无团聚真空冷冻干燥的装置可能带来的有益效果包括但不限于:针对传统的预冷冻-真空升华冷冻干燥方法和已有的改进型冷冻干燥方法所具有的干燥时间长、能耗高、产物难以避免团聚需要二次分散等缺点,本发明提出了一种在高加速度振动和高真空下,使湿态物料以无挤压的方式进行快速预冻成“冰沙”、然后对“冰沙”升温从而实现超快速升华干燥的装置。该装置可以大幅度降低冷冻干燥过程所需的时间和能耗,并且直接得到高度分散、无需二次粉碎的粉体。该装置和使用方法可广泛用于制药工艺、超细粉体材料制备、纳米材料制备等领域。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于包括:干燥釜,用于盛装物料;高加速度振动控制系统,用于对所述干燥釜施加高加速度振动,使干燥釜内部物料处于高加速度振动状态;冷却加热循环系统,用于对干燥釜提供外循环冷却和加热;冷凝系统,与所述干燥釜连通;真空泵机组,真空泵机组与冷凝系统连接,用于使干燥釜内部处于高真空状态。
- 根据权利要求1所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,所述高加速度振动控制系统,包括:振动台、振动台动圈和振动控制系统,所述振动台内部两侧分别设有弹簧轴组件,振动台动圈固设在弹簧轴组件上,振动台动圈上设有用于固定干燥釜的夹持装置,在两弹簧轴组件之间设有用于带动弹簧轴组件做高加速度振动的磁性线圈部件,振动控制系统和磁性线圈部件电性连接。
- 根据权利要求2所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,还包括传感器,传感器固定在振动台动圈上,并通过数据线与振动控制系统相连接。
- 根据权利要求2所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,所述磁性线圈部件包括电流线圈和设置在所述电流线圈两侧的磁组件。
- 根据权利要求2所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,所述弹簧轴组件包括弹簧和设置在弹簧内部起导向作用的导向柱,所述导向柱的顶部低于振动台动圈在做高加速度振动运动时的最低位置。
- 根据权利要求1-5任一所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,所述干燥釜包括釜体和扣合在釜体上的釜盖,所述釜体 的侧壁上设有与冷却加热循环系统配合、用于对釜体内部进行温度调节的温控调节部件;所述釜体内设有活动连接的隔离装置。
- 根据权利要求6所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,所述冷却加热循环系统通过冷热媒软管与温控调节部件连接。
- 根据权利要求6所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,所述温控调节部件为夹套或内置盘管。
- 根据权利要求1-5任一所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,所述冷凝系统包括冷凝器、设置在冷凝器内的冷凝盘管以及分别与冷凝盘管两端连接的压缩制冷机组,所述冷凝器的一端通过真空软管与干燥釜密封连接,冷凝器的另一端与真空泵机组密封连接。
- 根据权利要求9所述的一种通过振动混合实现超快速无团聚真空冷冻干燥的装置,其特征在于,所述真空软管为真空波纹管;冷凝器底部设排水阀。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110924973.4 | 2021-08-12 | ||
CN202110924973.4A CN113606879B (zh) | 2021-08-12 | 2021-08-12 | 一种通过振动混合实现超快速无团聚真空冷冻干燥的装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023015580A1 true WO2023015580A1 (zh) | 2023-02-16 |
Family
ID=78308320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/113026 WO2023015580A1 (zh) | 2021-08-12 | 2021-08-17 | 一种通过振动混合实现超快速无团聚真空冷冻干燥的装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113606879B (zh) |
WO (1) | WO2023015580A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112772927A (zh) * | 2020-12-31 | 2021-05-11 | 重庆第二师范学院 | 一种益生菌冻干粉 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2033036U (zh) * | 1986-12-31 | 1989-02-22 | 张缙渠 | 混凝土平板式电磁振动器 |
JP2005168904A (ja) * | 2003-12-12 | 2005-06-30 | Ulvac Japan Ltd | 噴霧式真空乾燥法による封入装置 |
US20080142166A1 (en) * | 2004-05-01 | 2008-06-19 | James Kenneth Carson | Drying Process and Apparatus |
CN201144103Y (zh) * | 2007-12-05 | 2008-11-05 | 梁启明 | 医用钢针电磁振动排队装置 |
CN102089605A (zh) * | 2008-07-10 | 2011-06-08 | 株式会社爱发科 | 冷冻干燥装置和冷冻干燥方法 |
CN105318666A (zh) * | 2015-11-17 | 2016-02-10 | 上海东富龙科技股份有限公司 | 一种真空喷雾冷冻干燥设备和方法 |
CN208070681U (zh) * | 2018-01-15 | 2018-11-09 | 连云港龙瑞电气有限公司 | 一种直线料槽往复式电磁振动机 |
CN213040880U (zh) * | 2020-09-09 | 2021-04-23 | 杭州华玮生物科技有限公司 | 冻干振动装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3591584B2 (ja) * | 2000-12-07 | 2004-11-24 | テクノエクセル株式会社 | 多機能型変位センサ |
CN101850530A (zh) * | 2010-04-06 | 2010-10-06 | 重庆大学 | 微动磨损的齿轮镜面抛光系统 |
WO2020076329A1 (en) * | 2018-10-11 | 2020-04-16 | Ima Life North America Inc. | Freeze drying chamber for a bulk freeze drying system |
CN211625874U (zh) * | 2019-12-20 | 2020-10-02 | 武汉迈特维尔医学科技有限公司 | 一种真空冷冻干燥机 |
-
2021
- 2021-08-12 CN CN202110924973.4A patent/CN113606879B/zh active Active
- 2021-08-17 WO PCT/CN2021/113026 patent/WO2023015580A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2033036U (zh) * | 1986-12-31 | 1989-02-22 | 张缙渠 | 混凝土平板式电磁振动器 |
JP2005168904A (ja) * | 2003-12-12 | 2005-06-30 | Ulvac Japan Ltd | 噴霧式真空乾燥法による封入装置 |
US20080142166A1 (en) * | 2004-05-01 | 2008-06-19 | James Kenneth Carson | Drying Process and Apparatus |
CN201144103Y (zh) * | 2007-12-05 | 2008-11-05 | 梁启明 | 医用钢针电磁振动排队装置 |
CN102089605A (zh) * | 2008-07-10 | 2011-06-08 | 株式会社爱发科 | 冷冻干燥装置和冷冻干燥方法 |
CN105318666A (zh) * | 2015-11-17 | 2016-02-10 | 上海东富龙科技股份有限公司 | 一种真空喷雾冷冻干燥设备和方法 |
CN208070681U (zh) * | 2018-01-15 | 2018-11-09 | 连云港龙瑞电气有限公司 | 一种直线料槽往复式电磁振动机 |
CN213040880U (zh) * | 2020-09-09 | 2021-04-23 | 杭州华玮生物科技有限公司 | 冻干振动装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113606879A (zh) | 2021-11-05 |
CN113606879B (zh) | 2022-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023015580A1 (zh) | 一种通过振动混合实现超快速无团聚真空冷冻干燥的装置 | |
US10690410B2 (en) | Freeze-drying system and freeze-drying method | |
CN112105862B (zh) | 一种充装干式杜瓦罐的方法及装置 | |
JP6617951B2 (ja) | 真空乾燥装置および真空乾燥方法 | |
CN103814258A (zh) | 低温冷却装置和方法 | |
KR101656257B1 (ko) | 식품 추출용 회전식 진공 농축 및 증류장치 | |
US20190226761A1 (en) | Low-temperature quick-freezing freeze-drying system | |
BRPI0614872A2 (pt) | aparelho de separação de soluções | |
US2374232A (en) | Desiccating apparatus | |
CN201781942U (zh) | 一种新型食品冻干设备 | |
CN207035701U (zh) | 一种真空冷冻干燥机 | |
CN108362089A (zh) | 真空微波干燥装置及系统 | |
CN206073576U (zh) | 基于水冷式半导体制冷的真空液氮冷冻干燥装置 | |
CN101358786A (zh) | 负压真空空调器 | |
CN210569543U (zh) | 一种冻干机 | |
CN209515366U (zh) | 一种超导磁体快速冷却系统 | |
CN111561810A (zh) | 真空冷冻干燥装置 | |
CN103468224B (zh) | 一种稀土RPdIn材料在低温磁制冷中的应用 | |
CN105836755A (zh) | 硼酸钆及其制备方法与应用 | |
CN206944586U (zh) | 一种采用复叠制冷系统的非原位冻干机 | |
JP2746025B2 (ja) | 2チャンネル液体冷却装置 | |
WO2005071766A1 (ja) | ヘリウム3冷凍機利用磁化測定装置 | |
CN113606880B (zh) | 利用高加速度振动实现动态超快速无团聚冷冻干燥的方法 | |
TWI842147B (zh) | 凍乾機 | |
CN207019385U (zh) | 冷冻干燥机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21953193 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21953193 Country of ref document: EP Kind code of ref document: A1 |