WO2023015523A1 - 一种具备均流的电压转换装置、均流方法、装置和介质 - Google Patents

一种具备均流的电压转换装置、均流方法、装置和介质 Download PDF

Info

Publication number
WO2023015523A1
WO2023015523A1 PCT/CN2021/112283 CN2021112283W WO2023015523A1 WO 2023015523 A1 WO2023015523 A1 WO 2023015523A1 CN 2021112283 W CN2021112283 W CN 2021112283W WO 2023015523 A1 WO2023015523 A1 WO 2023015523A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage conversion
conversion module
target voltage
drive signal
driving signal
Prior art date
Application number
PCT/CN2021/112283
Other languages
English (en)
French (fr)
Inventor
张学
张希俊
杨启涯
姚军
梁宏风
李勇超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180099574.7A priority Critical patent/CN117501607A/zh
Priority to PCT/CN2021/112283 priority patent/WO2023015523A1/zh
Publication of WO2023015523A1 publication Critical patent/WO2023015523A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present application relates to the field of power electronics, in particular to a voltage conversion device with current sharing, a current sharing method, device and medium.
  • the boost circuit is one of the common voltage converter topologies, and is used in various types of power systems because it can realize a boost function.
  • voltage converters in power systems such as power management systems of electric/hybrid vehicles, photovoltaic power generation systems, communication power supply systems, and data centers often need to use Boost circuits to achieve voltage conversion.
  • the output currents of the two voltage converters may be unbalanced, which will cause two voltages to be unbalanced. Unbalanced output power of converters and excessive output current of a single voltage converter.
  • the present application provides a voltage conversion device with current sharing, a current sharing method, device and medium, which are used to balance the current of the voltage conversion device and ensure the normal operation of the voltage conversion device.
  • an embodiment of the present application provides a voltage conversion device with current sharing, and the voltage conversion device includes: a plurality of voltage conversion modules connected in parallel, a detection unit, and a controller.
  • each voltage conversion module is connected to the input end of the voltage conversion device, and the other end of each voltage conversion module is connected to the output end of the voltage conversion device, and each voltage conversion module is used to receive the driving signal sent by the controller. signal, and convert the input voltage of the voltage conversion device into the first voltage according to the driving signal, and divide the input current of the voltage conversion device;
  • the detection unit is connected with each voltage conversion module and the controller respectively, and the detection unit is used to detect each The current of each voltage conversion module, and output the detected current to the controller;
  • the controller is connected with each voltage conversion module, and the controller is used to output the driving signal for each voltage conversion module, and according to the current detected by the detection unit, determine when determining the current When the difference between the average current between the target voltage conversion module and the first voltage conversion module exceeds the preset range, adjust the negative current of the target voltage conversion module;
  • the first voltage conversion module is determined according to the current detected by the detection unit, and the target voltage conversion
  • the module is any voltage conversion module except the first voltage conversion module among the pluralit
  • the average current of the target voltage conversion module can be adjusted by adjusting the negative current of the target voltage conversion module, so that the average current of the target voltage conversion module is the same as or similar to the average current of the first voltage conversion module, so as to realize the first voltage conversion module Current sharing with the target voltage conversion module.
  • each voltage conversion module includes: a first inductor, a first switch and a second switch.
  • the first terminal of the first inductance is connected to the first terminal of the input terminal of the voltage conversion device, and the second terminal of the first inductance is respectively connected to the first electrode of the first switch and the second electrode of the second switch; the first switch The second electrode of the second switch is respectively connected to the second terminal of the input terminal of the voltage conversion device and the second terminal of the output terminal of the voltage conversion device; the first electrode of the second switch is connected to the first terminal of the output terminal of the voltage conversion device.
  • the controller is used for outputting a first driving signal to the first switch and a second driving signal to the second switch, the first driving signal and the second driving signal constitute the driving signal of the voltage conversion module.
  • the controller is used to adjust the driving signal output to the target voltage conversion module to increase the negative current of the target voltage conversion module.
  • the target voltage when the average current of the target voltage conversion module is greater than the average current of the first voltage conversion module, and the current between the target voltage conversion module and the first voltage conversion module is unbalanced, the target voltage can be converted by increasing the target voltage.
  • the negative current of the module reduces the average current of the target voltage conversion module, and realizes that the average current of the adjusted target voltage conversion module is equal to or similar to the average current of the first voltage conversion module, thereby achieving the first voltage conversion module and the target voltage conversion module. for current balancing purpose.
  • the controller is configured to: when it is determined that the average current difference between the target voltage conversion module and the first voltage conversion module exceeds a preset range, the guide voltage of the first driving signal in the target voltage conversion module The conduction end point is shifted forward by the first duration to keep the conduction start point of the first drive signal unchanged; the conduction start point of the second drive signal in the target voltage conversion module is shifted forward by the first duration to maintain the target voltage The conduction end point of the conversion module does not change.
  • the forward energy storage time of the first inductor can be reduced, thereby reducing the positive current peak value of the target voltage conversion module, and at the same time, the conduction time of the second switch can be extended.
  • the on-time is long, the inversion energy storage time of the first inductor is increased, and the negative current peak value of the target voltage conversion module is reduced, thereby reducing the average current of the target voltage conversion module.
  • the first duration is determined according to an average current difference between the target voltage conversion module and the first voltage conversion module and an inductance value of the target voltage conversion module.
  • the current calculation formula of the inductance coil can be used to determine the difference between the adjusted average current. How long it takes.
  • the controller when the controller determines that the average current difference between the target voltage conversion module and the first voltage conversion module exceeds a preset interval, the controller sends the first drive signal sent to the target voltage conversion module last time to The conduction end point of the current shifts forward i times for the second duration, keeping the conduction start point of the first drive signal unchanged; the conduction start point of the second drive signal sent to the target voltage conversion module is shifted forward Shift the second duration i times, keep the conduction end point of the second driving signal unchanged; wherein, i is a positive integer; send the adjusted first driving signal and the second driving signal to the target voltage conversion module, and adjust the first After the driving signal and the second driving signal, the average current difference between the target voltage conversion module and the first voltage conversion module is within a preset interval.
  • the first drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller for the first time
  • the second drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller the second drive signal.
  • a closed-loop adjustment method can be adopted, and according to the current on the target voltage conversion module after each adjustment, it is determined whether to continue the adjustment until The average current of the target voltage conversion module is equal to or similar to the average current of the first voltage conversion module, so as to achieve the purpose of current sharing between the target voltage conversion module and the first voltage conversion module.
  • the controller is configured to: when it is determined that the average current difference between the target voltage conversion module and the first voltage conversion module exceeds a preset interval, the guide voltage of the second driving signal of the target voltage conversion module The conduction end point is shifted backward by the third duration, and the conduction start point of the second driving signal remains unchanged.
  • the inversion energy storage time of the first inductor can be increased, thereby increasing the negative current peak value of the target voltage conversion module and reducing the target voltage conversion module. average current purpose.
  • the controller is configured to: shift the conduction end point of the first driving signal of the target voltage conversion module forward by a fourth duration, and keep the conduction start point of the first drive signal unchanged.
  • the forward energy storage time of the first inductor can be reduced by reducing the conduction time of the first switch, thereby reducing the peak value of the positive current of the first inductor, and at the same time, due to the positive current of the first inductor
  • the peak value decreases, the zero-crossing point of the first inductance shifts forward, resulting in the prolongation of the reverse phase energy storage time of the first inductance, which increases the negative current peak value of the target voltage conversion module, thereby reducing the average value of the target voltage conversion module. current purpose.
  • the controller is used to adjust the driving signal output to the target voltage conversion module to reduce the negative current of the target voltage conversion module.
  • the preset threshold is the current of the target voltage conversion module stress.
  • the average current difference between the first voltage conversion module and the target voltage conversion module exceeds a preset interval, it is determined that there is a problem of current imbalance between the first voltage conversion module and the target voltage conversion module , if the average current output by the first voltage conversion module is less than the average current of the target voltage conversion module, the average current of the target voltage conversion module can be increased by reducing the negative current of the target voltage conversion module, so that the average current of the target voltage conversion module It is equal to or similar to the average current of the first voltage conversion module, so as to realize current sharing between the first voltage conversion module and the target voltage conversion module.
  • the controller is configured to: when it is determined that the average current difference between the target voltage conversion module and the first voltage conversion module exceeds a preset range, the guide voltage of the first driving signal in the target voltage conversion module The conduction end point is shifted backward by the fifth duration, and the conduction start point of the first drive signal is kept unchanged; the conduction start point of the second drive signal in the target voltage conversion module is shifted backward by the fifth duration, and kept The conduction end point of the second driving signal remains unchanged.
  • the positive energy storage time of the first inductance can be increased by increasing the conduction time of the first switch, thereby increasing the positive current peak value of the target voltage conversion module, and at the same time reducing the current of the second switch.
  • the on-time length reduces the reverse-phase energy storage time of the first inductor and reduces the peak value of the negative current of the target voltage conversion module, thereby increasing the average current of the target voltage conversion module.
  • the controller when the controller determines that the average current difference between the target voltage conversion module and the first voltage conversion module exceeds a preset interval, the controller sends the first drive signal sent to the target voltage conversion module last time to The conduction end point of is shifted backward j times for the sixth duration, and the conduction start point of the first drive signal remains unchanged; the conduction start point of the second drive signal sent to the target voltage conversion module before is backward Shift the sixth duration j times, and keep the conduction end point of the first driving signal unchanged; j is a positive integer; send the adjusted first driving signal and the second driving signal to the target voltage conversion module, adjust the first After the driving signal and the second driving signal, the average current difference between the target voltage conversion module and the first voltage conversion module is within a preset interval.
  • the first drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller for the first time
  • the second drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller the second drive signal.
  • a closed-loop adjustment method can be adopted, and whether to continue to adjust is determined according to the current of the target voltage conversion module after each adjustment , until the average current on the target voltage conversion module is equal to or close to the average current of the first voltage conversion module, so as to achieve the purpose of current sharing between the target voltage conversion module and the first voltage conversion module.
  • the controller is configured to: when it is determined that the difference in average current between the target voltage conversion module and the first voltage conversion module exceeds a preset interval, guide the first driving signal of the target voltage conversion module to The conduction end point is shifted backward by the seventh duration, and the conduction start point of the first drive signal remains unchanged, and the adjusted conduction end point of the first drive signal is different from the conduction start point of the second drive signal The first preset threshold.
  • the positive energy storage time of the first inductor can be increased by increasing the conduction time of the first switch, thereby increasing the positive current peak value of the target voltage conversion module.
  • the zero-crossing point of the first inductance will shift backwards, resulting in the reduction of the reverse-phase energy storage time of the first inductance, and the decrease of the negative current peak value of the target voltage conversion module, so as to achieve the purpose of reducing the average current of the target voltage conversion module .
  • the controller is configured to: shift the conduction end point of the second drive signal of the target voltage conversion module forward by an eighth duration, and keep the conduction start point of the second drive signal unchanged, There is a second preset threshold difference between the adjusted conduction start point of the second driving signal and the conduction end point of the first drive signal.
  • the positive energy storage time of the first inductor can be reduced, thereby reducing the negative current peak value of the target voltage conversion module and increasing the target voltage conversion module. for the purpose of the average current.
  • the periods of the first driving signal and the second driving signal remain unchanged.
  • the off time of the first switch and the second switch can be adjusted accordingly according to the requirements of the working mode of the voltage conversion module.
  • an embodiment of the present application provides a current sharing method for a voltage conversion device, the method is applied to a voltage conversion device, and the voltage conversion device may include a plurality of parallel voltage conversion modules. Specifically, the method specifically includes The following steps:
  • Detecting the current of each voltage conversion module calculating the average current of each voltage conversion module according to the current of each voltage conversion module; determining that the difference between the average current of the target voltage conversion module and the first voltage conversion module exceeds a preset In the interval, adjust the negative current of the target voltage conversion module, so that the difference of the average current between the target voltage conversion module and the first voltage conversion module is in the preset interval.
  • the first voltage conversion module is determined according to the average current of each voltage conversion module, and the target voltage conversion module is any one of the multiple voltage conversion modules except the first voltage conversion module.
  • adjusting the negative current of the target voltage conversion module includes:
  • each voltage conversion module includes a first inductor, a first switch and a second switch.
  • the first terminal of the first inductance is connected to the first terminal of the input terminal of the voltage conversion device, and the second terminal of the first inductance is respectively connected to the first electrode of the first switch and the second electrode of the second switch; the first switch The second electrode of the second switch is respectively connected to the second terminal of the input terminal of the voltage conversion device and the second terminal of the output terminal of the voltage conversion device; the first electrode of the second switch is connected to the first terminal of the output terminal of the voltage conversion device.
  • the first driving signal received by the first switch and the second driving signal received by the second switch constitute the driving signal of the voltage conversion module.
  • the negative current of the target voltage conversion module can be changed by adjusting the driving signal of the target voltage conversion module, so that the adjusted target voltage conversion module
  • the average current of the first voltage conversion module is equal to or similar to the average current of the first voltage conversion module, so as to achieve the purpose of current sharing of the voltage conversion device.
  • adjusting the negative current of the target voltage conversion module includes:
  • the adjusted target voltage conversion can be realized by increasing the negative current of the target voltage conversion module and reducing the average current of the target voltage conversion module
  • the average current of the module is equal to or close to the average current of the first voltage conversion module, so as to achieve the purpose of current balance between the first voltage conversion module and the target voltage conversion module.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the forward energy storage time of the first inductor can be reduced, thereby reducing the positive current peak value of the target voltage conversion module, and at the same time, by prolonging the conduction time of the second switch, The reverse-phase energy storage time of the first inductor is increased to reduce the negative current peak value of the target voltage conversion module, thereby reducing the average current of the target voltage conversion module.
  • the first duration is determined according to an average current difference between the target voltage conversion module and the first voltage conversion module and an inductance value of the target voltage conversion module.
  • the current calculation formula of the inductance coil can be used to calculate and adjust the average current difference the desired length of time.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the first drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller for the first time
  • the second drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller the second drive signal.
  • a closed-loop adjustment method can be used to determine whether to continue the adjustment according to the current of the target voltage conversion module after each adjustment until the target voltage conversion module is on
  • the average current of the current is equal to or similar to the average current of the current of the first voltage conversion module, so as to achieve the purpose of current sharing between the target voltage conversion module and the first voltage conversion module.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the conduction end point of the second drive signal of the target voltage conversion module is shifted backward by a third time period, and the conduction start point of the second drive signal remains unchanged.
  • the negative current peak value of the target voltage conversion module can be increased, and the average current of the target voltage conversion module can be reduced. Purpose.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the conduction end point of the first driving signal of the target voltage conversion module is shifted forward by a fourth duration, and the conduction start point of the first drive signal remains unchanged.
  • the positive-phase energy storage time of the first inductor can be reduced by reducing the conduction time of the first switch, thereby reducing the peak value of the positive current of the first inductor.
  • the peak value of the positive current of the first inductor is reduced , the zero-crossing point of the first inductance shifts forward, resulting in the prolongation of the reverse-phase energy storage time of the first inductance, increasing the negative current peak value of the target voltage conversion module, thereby achieving the purpose of reducing the average current of the target voltage conversion module .
  • adjust the negative current of the target voltage conversion module include:
  • the adjusted target voltage conversion can be realized by reducing the negative current of the target voltage conversion module and reducing the average current of the target voltage conversion module
  • the average current of the module is equal to or close to the average current of the first voltage conversion module, so as to achieve the purpose of current balance between the first voltage conversion module and the target voltage conversion module.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the conduction end point of the first drive signal in the target voltage conversion module is shifted backward by the fifth duration, and the conduction start point of the first drive signal remains unchanged; the conduction of the second drive signal in the target voltage conversion module The starting point is shifted backward by the fifth duration, and the conduction end point of the second driving signal remains unchanged.
  • the positive phase energy storage time of the first inductor can be increased by increasing the conduction time of the first switch, thereby increasing the positive current peak value of the target voltage conversion module, and at the same time reducing the conduction time of the second switch , reducing the reverse phase energy storage time of the first inductor, reducing the peak value of the negative current of the target voltage conversion module, thereby increasing the average current of the target voltage conversion module.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the first drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller for the first time
  • the second drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller the second drive signal.
  • a closed-loop adjustment method can be used to determine whether to continue to adjust according to the current of the target voltage conversion module after each adjustment until the target voltage
  • the average current on the conversion module is equal to or similar to the average current of the first voltage conversion module, so as to achieve the purpose of current sharing between the target voltage conversion module and the first voltage conversion module.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the conduction end point of the first drive signal of the target voltage conversion module is shifted backward by the seventh duration, and the conduction start point of the first drive signal remains unchanged, and the adjusted conduction end point of the first drive signal is the same as
  • the difference between the conduction start points of the second driving signal is a first preset threshold.
  • the positive phase energy storage time of the first inductor can be increased by increasing the conduction time of the first switch, thereby increasing the positive current peak value of the target voltage conversion module.
  • the zero-crossing point of the first inductor shifts backward, resulting in the reduction of the reverse phase energy storage time of the first inductor, and the decrease of the negative current peak value of the target voltage conversion module, so as to achieve the purpose of reducing the average current of the target voltage conversion module.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the conduction end point of the second drive signal of the target voltage conversion module is shifted forward by the eighth duration, and the conduction start point of the second drive signal remains unchanged.
  • the adjusted conduction start point of the second drive signal is the same as
  • the difference between the conduction end points of the first driving signal is a second preset threshold.
  • the positive energy storage time of the first inductor can be reduced, thereby reducing the negative current peak value of the target voltage conversion module and increasing the average current of the target voltage conversion module. the goal of.
  • the periods of the first driving signal and the second driving signal remain unchanged.
  • the turn-off time of the first switch and the second switch can be adjusted accordingly according to the requirements of the working mode of the voltage conversion module.
  • an embodiment of the present application provides a control device for a voltage conversion device, and the control device for the voltage conversion device includes: a memory, a communication module, and a processor.
  • the memory is used to store program instructions; the communication module is used to receive and send data; the processor is used to call the program instructions stored in the memory to implement the current sharing of the voltage conversion device provided in any possible design of the second aspect of the embodiment method.
  • the embodiment of the present application provides a computer storage medium, the computer storage medium stores a computer program, and when the computer program is executed by the computer, the computer executes any possible method in the first aspect of the embodiment of the present application.
  • the method provided by the design is not limited to:
  • FIG. 1 is a schematic structural diagram of a voltage conversion device provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram II of a voltage converting device provided in an embodiment of the present application.
  • FIG. 3 is a first schematic diagram of a driving signal waveform adjustment provided by an embodiment of the present application.
  • FIG. 4 is a first schematic flow diagram of driving signal waveform adjustment provided by an embodiment of the present application.
  • Fig. 5 is a second schematic diagram of a driving signal waveform adjustment provided by the embodiment of the present application.
  • FIG. 6 is a third schematic diagram of driving signal waveform adjustment provided by the embodiment of the present application.
  • FIG. 7 is a fourth schematic diagram of a driving signal waveform adjustment provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram 5 of a driving signal waveform adjustment provided by an embodiment of the present application.
  • FIG. 9 is a schematic flow diagram II of a driving signal waveform adjustment provided by an embodiment of the present application.
  • Fig. 10 is a sixth schematic diagram of a driving signal waveform adjustment provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram 7 of a driving signal waveform adjustment provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram eight of a driving signal waveform adjustment provided by the embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a current sharing method of a voltage conversion device provided in an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a current sharing device of a voltage conversion device provided by an embodiment of the present application.
  • connection in the embodiments of the present application refers to electrical connection, and the connection of two electrical components may be a direct or indirect connection between two electrical components.
  • connection between A and B can be either direct connection between A and B, or indirect connection between A and B through one or more other electrical components, such as A and B connection, or A and C direct connection, C and B are directly connected, and A and B are connected through C.
  • the switch in the embodiment of the present application may be a relay, a metal oxide semiconductor field effect transistor (MOSFET), a bipolar junction transistor (BJT), an insulated gate double One or more of various types of switching devices such as insulated gate bipolar transistor (IGBT), gallium nitride field effect transistor (GaN), silicon carbide (SiC) power transistor, etc. No longer list them one by one.
  • Each switch device may include a first electrode, a second electrode and a control electrode, wherein the control electrode is used to control the switch device to be turned on or off.
  • the control electrode of the switching device is the gate
  • the first electrode of the switching device may be the source of the switching device
  • the second electrode may be the drain of the switching device
  • the first electrode may be the drain of the switching device pole
  • the second electrode may be the source of the switching device.
  • DC-DC (DC/DC) voltage converters DC-AC (DC/AC) voltage converters
  • AC-DC (AC/DC) voltage converters AC-DC (AC/DC) voltage converters
  • Boost circuit when a Boost circuit is used as a DC/DC voltage converter, the DC/DC voltage converter may be called a boost converter.
  • the Boost circuit is a boost voltage converter topology, which is widely used because of its boosting effect.
  • FIG. 1 it is a schematic structural diagram of a voltage conversion device carrying a Boost circuit.
  • the voltage conversion device mainly includes a Boost circuit
  • the Boost circuit mainly includes: a first switch Q1 , a second switch Q2 , a first inductor L1 and a controller.
  • the first terminal of the first inductor L1 is connected to the first terminal of the input terminal of the voltage conversion device, and the second terminal of the first inductor L1 is respectively connected to the first electrode of the first switch Q1 and the second electrode of the second switch Q2
  • the second electrode of the first switch Q1 is respectively connected to the second terminal of the input terminal of the voltage conversion device and the second terminal of the output terminal of the voltage conversion device
  • the first electrode of the second switch Q2 is connected to the first terminal of the output terminal of the voltage conversion device
  • the controller is respectively connected to the control electrodes of the first switch Q1 and the second switch Q2, and is used to provide driving signals for the first switch Q1 and the second switch Q2.
  • the voltage conversion device may further include a power supply circuit, or a peripheral circuit of the power supply circuit, which is not limited in this embodiment of the present application.
  • the power supply circuit can input electric energy for the Boost circuit.
  • the first terminal of the input terminal of the voltage converting device may be the terminal receiving the high potential of the voltage converting device
  • the second terminal of the input terminal of the voltage converting device may be the terminal receiving the low level of the voltage converting device
  • the first terminal and the second terminal It constitutes the input terminal of the voltage conversion device.
  • a first capacitor C1 is usually connected between the two terminals of the output terminal of the Boost circuit, and C1 can stabilize the voltage value output by the output terminal of the Boost circuit. It should be understood that when the voltage conversion device includes multiple Boost circuits, a first capacitor C1 may be provided for each Boost circuit, or multiple Boost circuits may share a first capacitor C1, which is not limited in this application.
  • the boosting principle of the Boost circuit is: control the switch Q1 to turn on and the switch Q2 to turn off, at this time, the electric energy input by the input terminal of the Boost circuit is stored in the inductor L1, after the storage of the inductor L1 is completed, the control switch Q1 is turned off and the switch Q2 is turned on , at this time, the electric energy input from the input terminal of the Boost circuit and the electric energy stored in the inductor L1 are superimposed and output to the output terminal of the Boost circuit, so that the output voltage of the Boost circuit is higher than the input voltage of the Boost circuit, realizing the boost function.
  • Boost circuit cannot meet the high-power conversion requirements, or there is a high ripple current in the output power of the Boost circuit.
  • Wave signal in order to solve the above problems, usually use multiple Boost circuits to work in parallel.
  • the number of Boost circuits connected in parallel in the voltage conversion device can be set according to the power to be converted and the conversion power of a single Boost circuit. For example, if the power to be converted is 2000 watts (watt, W), and the conversion power of a single Boost circuit is 500 W, four Boost circuits may be connected in parallel in the voltage conversion device.
  • the embodiment of the present application provides a voltage conversion device with current sharing, a current sharing method, device and medium, which are used to balance the current between multiple voltage conversion modules in the voltage conversion device, ensuring that the voltage conversion device of normal operation.
  • the voltage conversion device 200 may include: a plurality of voltage conversion modules 201 connected in parallel, a detection unit 202 and a controller 203 . It should be noted that the present application does not specifically limit the number of parallel-connected voltage conversion modules 201 in the voltage conversion device 200 .
  • each voltage conversion module 201 is connected to the input end of the voltage conversion device 200, and the other end of each voltage conversion module 201 is connected to the output end of the voltage conversion device 200, and each voltage conversion module 201 is used to receive
  • the drive signal sent by the controller 203 converts the input voltage of the voltage conversion device 200 into a first voltage according to the drive signal, and divides the input current of the voltage conversion device 200 .
  • the detection unit 202 is respectively connected with each voltage conversion module 201 and the controller 203 , and the detection unit 202 is used to detect the current of each voltage conversion module 201 and output the detected current to the controller 203 .
  • the controller 203 is connected to each voltage conversion module 201, the controller 203 can provide a driving signal for each voltage conversion module 201, and according to the current detected by the detection unit 202, determine the target voltage conversion module 201 and the first voltage conversion module 201 When the average current difference between them exceeds the preset range, adjust the negative current of the target voltage conversion module 201 so that the average current difference between the target voltage conversion module 201 and the first voltage conversion module 201 is within the preset range.
  • the preset interval is the allowable current error between the two voltage conversion modules, and the error value can be specifically set according to the application scenario of the voltage conversion device, which is not limited in this application.
  • the first voltage conversion module is determined according to the current detected by the detection unit 202 , and the target voltage conversion module is any one of the multiple voltage conversion modules except the first voltage conversion module.
  • the first voltage conversion module may be a voltage conversion module that outputs the minimum average current, or a voltage conversion module that outputs the maximum average current, or other modules, which are not specifically limited in this application.
  • the negative current is the current flowing from the output terminal of the voltage conversion module to the input terminal
  • the positive current is the current flowing from the input terminal of the voltage conversion module to the output terminal.
  • the voltage conversion module 201 is a boost converter provided with a storage inductor, and the Boost circuit shown in FIG. 1 is a possible specific example of the voltage conversion module 201 .
  • the voltage conversion module 201 has many possible implementation structures, which are not listed in this application, but all of these boost converters can be used in this application.
  • the controller 203 can calculate the average current of each voltage conversion module 201 according to the current detected by the detection unit 202, and the average current between the target voltage conversion module and the first voltage conversion module When the difference exceeds the preset range, it is determined that there is a current imbalance between the target voltage conversion module and the first voltage conversion module, and the adjustment can be realized by adjusting the negative current of the target voltage conversion module and adjusting the average current of the target voltage conversion module The effect of the current balance between the target voltage conversion module and the first voltage conversion module after the negative current.
  • the controller 203 can adjust the drive signal originally output to the target voltage conversion module, and the adjusted drive signal changes the conduction time and The conduction time makes the current on the target voltage conversion module change after the driving signal is adjusted, thereby changing the average current on the target voltage conversion module.
  • the controller 203 can adjust the negative current of the target voltage conversion module according to the magnitude of the average current on the target voltage conversion module. Specifically, if the average current of the target voltage conversion module is greater than the average current of the first voltage conversion module, when it is determined that the difference between the average current of the target voltage conversion module and the first voltage conversion module exceeds a preset interval, the controller 203 The drive signal output to the target voltage conversion module can be adjusted to increase the negative current of the target voltage conversion module and reduce the average current of the target voltage conversion module; if the average current on the target voltage conversion module is less than the average current of the first voltage conversion module , and the average current output by the first voltage conversion module is less than the preset threshold, when it is determined that the difference between the average current between the target voltage conversion module and the first voltage conversion module exceeds the preset range, the controller 203 can adjust the conversion to the target voltage The driving signal of the module is used to reduce the negative current of the target voltage conversion module and increase the average current of the target voltage conversion module.
  • the controller 203 adjusts the negative current of the target voltage conversion module in detail in conjunction with the embodiment and the Boost circuit structure shown in FIG. 1 .
  • the drive signal output by the controller 203 to the first switch can be regarded as the first drive signal
  • the drive signal output by the controller 203 to the second switch can be regarded as the second drive signal
  • the first drive signal and the second drive signal constitute
  • the controller 203 outputs the driving signal to the voltage converting module 201 .
  • the controller 203 can increase the negative current of the target voltage conversion module and reduce the average current of the target voltage conversion module by adjusting the waveform of the first driving signal and/or the second driving signal.
  • Example 1 in order to increase the negative current of the target voltage conversion module and make the average current of the target voltage conversion module equal to or close to the average current of the first voltage conversion module, the conduction of the first driving signal in the target voltage conversion module can be The conduction end point is shifted forward by the first duration to keep the conduction start point of the first drive signal unchanged; the conduction start point of the second drive signal in the target voltage conversion module is shifted forward by the first duration to maintain the target voltage The conduction end point of the conversion module does not change.
  • the first voltage conversion module and the target voltage conversion module are interleaved parallel voltage conversion modules, it is necessary to keep the driving signal periods of the first voltage conversion module and the target voltage conversion module consistent. If the periods of the driving signals between the voltage conversion modules are consistent, it is necessary to keep the periods of the first driving signal and the second driving signal unchanged. In order to realize that the periods of the first drive signal and the second drive signal remain unchanged, it is necessary to keep the turn-off end point of the first drive signal unchanged, and shift the turn-off start point of the first drive signal forward by the first duration , and keeping the turn-off start point of the second driving signal unchanged, the turn-off end point of the second drive signal is shifted forward by the first duration.
  • the adjustment waveform diagram of the driving signal can be referred to as shown in FIG. 3 . Wherein, the solid line is the original driving signal waveform, and the dotted line is the adjusted driving signal waveform.
  • the conduction time of the first switch Q1 is shortened by the first duration. Shifting the conduction start point of the second drive signal in the target voltage conversion module forward by the first duration, keeping the conduction end point of the target voltage conversion module unchanged, the conduction time of the second switch Q2 is increased by the first duration . Since the conduction time of the first switch Q1 is shortened by the first time, the energy storage time of the first inductor L is reduced by the first time, the stored electric energy of the inductor L1 is reduced, and the corresponding peak value of the positive current of the target voltage conversion module is reduced.
  • the electric energy stored in the first capacitor C1 is transferred to the inductor L1 in reverse phase. Since the on-time of the second switch Q2 increases by the first time, the first capacitor The time for C1 to store energy in reverse phase to the first inductor L1 is prolonged, and the longer the time for reverse phase energy storage of the inductor L1, the greater the value of the negative current of the target voltage conversion module, correspondingly increasing the peak value of the negative current of the target voltage conversion module.
  • the average current of the target voltage conversion module decreases to be close to or equal to the average current of the first voltage conversion module.
  • the positive current peak value is the maximum value of the positive current of the voltage conversion device
  • the negative current peak value is the maximum value of the negative current of the voltage conversion device.
  • the period of the driving signal of the target voltage conversion module may be the same as the period of the driving signal of the first voltage conversion module , may also be different from the period of the driving signal of the first voltage conversion module.
  • the period of the driving signal of the target voltage conversion module is the same as that of the first voltage conversion module, it is necessary to keep the period of the driving signal of the target voltage conversion module unchanged.
  • the principle of adjusting the negative current of the first driving signal and the second driving signal is the same as the principle of adjusting the negative current when the period of the driving signal of the target voltage conversion module is constant, except that Periods of the first driving signal and the second driving signal change, which will not be repeated in this application.
  • the first duration can be calculated according to the difference between the average current between the target voltage conversion module and the first voltage conversion module and the energy storage parameters of the target voltage conversion module.
  • the closed-loop adjustment method shown in Figure 4 can be used, specifically as follows :
  • Step 401 shifting forward the conduction end point of the first driving signal previously sent to the target voltage conversion module by a second duration, and keeping the conduction start point of the first driving signal unchanged.
  • the first driving signal sent to the target voltage converting module last time is the first driving signal sent by the controller for the first time.
  • Step 402 shifting forward the conduction start point of the second driving signal sent to the target voltage conversion module by a second duration, and keeping the conduction end point of the second drive signal unchanged.
  • the second driving signal sent to the target voltage converting module last time is the second driving signal sent by the controller for the first time.
  • Step 403 sending the adjusted first driving signal and the second driving signal to the target voltage conversion module.
  • Step 404 Obtain the output current of the target voltage conversion module, and calculate the difference of the average current between the target voltage conversion module and the first voltage conversion module.
  • Step 405 judging whether the calculated average current difference between the target voltage conversion module and the first voltage conversion module is within a preset range, if so, execute step 406 ; otherwise, return to step 401 .
  • step 401 and step 402 may be executed i times until the condition of step 405 is met.
  • i is a natural number.
  • Step 406 using the latest adjusted first driving signal and second driving signal as the latest driving signal of the target voltage conversion module.
  • the controller adjusts the negative current of the target module using the closed-loop adjustment method shown in Figure 4, the average current of the target voltage conversion module after each adjustment of the driving signal, and the distance between the target voltage conversion module and the first voltage conversion module Determine whether to perform the second drive signal adjustment until the difference between the average current of the target voltage conversion module and the average current of the first voltage conversion module after the adjustment is within a preset interval.
  • the driving signal of the first voltage conversion module may also be adjusted according to a fixed phase deviation, and then adjusted as the driving signal of the target voltage conversion module.
  • Example 2 in order to increase the negative current of the target voltage conversion module and make the average current of the target voltage conversion module equal to or close to the average current of the first voltage conversion module, the conduction of the second driving signal of the target voltage conversion module can be The conduction end point is shifted backward by the third duration, and the conduction start point of the second driving signal remains unchanged.
  • the adjustment waveform diagram of the driving signal can be referred to as shown in FIG. 5 .
  • the solid line is the original driving signal waveform
  • the dotted line is the adjusted driving signal waveform.
  • the conduction time of the second switch Q2 is increased by the third duration. Since the turn-on duration of the second switch Q2 is extended by the third duration, the time for the first capacitor C1 to store energy in reverse phase to the first inductor L1 is extended, and the longer the reverse phase energy storage time of the inductor L1, the negative current of the target voltage conversion module The larger the value, the correspondingly increases the negative current peak value of the target voltage conversion module. Since the peak value of the negative current of the target voltage conversion module increases, the average current of the target voltage conversion module decreases to be close to or equal to the average current of the first voltage conversion module.
  • the first driving signal can be kept unchanged.
  • the period of the driving signal of the target voltage conversion module may be the same as the period of the driving signal of the first voltage conversion module , may also be different from the period of the driving signal of the first voltage conversion module.
  • the period of the driving signal of the target voltage conversion module is the same as that of the first voltage conversion module, it is necessary to keep the period of the driving signal of the target voltage conversion module unchanged.
  • the first time length is shifted back and forth; when the driving signal period of the target voltage conversion module is different from the driving signal period of the first voltage conversion module, and the driving signal period of the target voltage conversion module changes, the first driving signal can be kept off. The duration of the break remains unchanged.
  • the principle of adjusting the negative current through the second driving signal is the same as the principle of adjusting the negative current when the period of the driving signal of the target voltage conversion module is constant, except that the second driving The cycle of the signal will not be repeated in this application.
  • Example 3 in order to increase the negative current of the target voltage conversion module and make the average current of the target voltage conversion module equal to or similar to the average current of the first voltage conversion module, the conduction of the first drive signal of the target voltage conversion module can be The conduction end point is shifted forward by the fourth duration, and the conduction start point of the first driving signal remains unchanged.
  • the adjustment waveform diagram of the driving signal can be referred to as shown in FIG. 6 .
  • the solid line is the original driving signal waveform
  • the dotted line is the adjusted driving signal waveform.
  • the conduction period of the first switch Q1 is reduced by the fourth time period. Since the conduction time of the first switch Q1 is reduced by the fourth duration, the energy storage time of the first inductor L1 is reduced by the fourth duration, and the corresponding peak value of the positive current of the target voltage conversion module is reduced. Due to the energy storage of the inductor L1 When the value decreases, the time required for the second switch Q2 to consume the inductance L1 to store electric energy decreases. When the second switch Q2 is turned on, the first capacitor C1 stores the electric energy in the first inductance L1 in reverse phase.
  • the negative current can be increased mainly by adjusting the first driving signal, so the second driving signal can be kept unchanged.
  • the period of the driving signal of the target voltage conversion module may be the same as the period of the driving signal of the first voltage conversion module , may also be different from the period of the driving signal of the first voltage converting module.
  • the period of the driving signal of the target voltage conversion module is the same as that of the first voltage conversion module, it is necessary to keep the period of the driving signal of the target voltage conversion module unchanged.
  • the principle of adjusting the negative current through the first driving signal is the same as the principle of adjusting the negative current when the period of the driving signal of the target voltage conversion module is constant, except that the first The period of the driving signal will not be repeated in this application.
  • the schemes of Example 2 and Example 3 can be superimposed, that is, the conduction end point of the second driving signal of the target voltage conversion module is shifted backward by the third duration, and the first The conduction start point of the second driving signal remains unchanged, and the conduction end point of the first drive signal of the target voltage conversion module is shifted forward by a fourth duration, so as to keep the conduction start point of the first drive signal unchanged.
  • the adjustment waveform diagram of the driving signal can be referred to as shown in FIG. 7 .
  • the solid line is the original driving signal waveform
  • the dotted line is the adjusted driving signal waveform.
  • the conduction end point of the first drive signal of the target voltage conversion module is shifted forward by the fourth duration, and the conduction start point of the first drive signal remains unchanged, and the conduction time of the first switch Q1 decreases
  • the conduction end point of the second driving signal is shifted backward by the third duration, and the conduction start point of the second driving signal remains unchanged, so the conduction time of the second switch Q2 increases by the third duration. Since the conduction time of the first switch Q1 is shortened by the first time, the energy storage time of the first inductor L is reduced by the first time, so the stored electric energy of the inductor L1 is reduced, and the corresponding peak value of the positive current of the target voltage conversion module is reduced.
  • the conduction time of the second switch Q2 is increased by the first time, the time for the first capacitor C1 to store energy in reverse phase to the first inductor L1 is extended, and the longer the time for the reverse phase energy storage of the inductor L1, the negative current value of the target voltage conversion module The larger is, the correspondingly increases the negative current peak value of the target voltage conversion module. Since the peak value of the positive current of the target voltage conversion module decreases and the peak value of the negative current increases, the average current of the target voltage conversion module decreases to be close to or equal to the average current of the first voltage conversion module.
  • the positive current is the current transmitted from the input terminal of the voltage conversion device 200 to the output terminal of the voltage conversion device 200 on the first inductor L1
  • the negative current is the current transmitted from the output terminal of the voltage conversion device 200 to the input terminal of the voltage conversion device 200 on the first inductor L1 transmitted current.
  • the controller 203 can reduce the negative current of the target voltage conversion module and increase the average current of the target voltage conversion module by adjusting the waveform of the first driving signal and/or the second driving signal.
  • Example 1 in order to reduce the negative current of the target voltage conversion module and make the average current of the target voltage conversion module equal to or close to the average current of the first voltage conversion module, the conduction of the first driving signal in the target voltage conversion module can be The conduction end point is shifted backward by the fifth duration, and the conduction start point of the first drive signal is kept unchanged; the conduction start point of the second drive signal in the target voltage conversion module is shifted backward by the fifth duration, and kept The conduction end point of the second driving signal remains unchanged.
  • the first voltage conversion module and the target voltage conversion module are interleaved parallel voltage conversion modules, it is necessary to keep the driving signal period of the target voltage conversion module consistent with that of the first voltage conversion module. If the periods of the driving signals between two voltage conversion modules are consistent, it is necessary to keep the periods of the first driving signal and the second driving signal unchanged. In order to realize that the periods of the first drive signal and the second drive signal remain unchanged, it is necessary to keep the turn-off end point of the first drive signal unchanged, and shift the turn-off start point of the first drive signal back by the fifth duration , and keeping the turn-off start point of the second driving signal unchanged, and shifting the turn-off end point of the second drive signal backward by the fifth duration.
  • the adjustment waveform diagram of the driving signal can be referred to as shown in FIG. 8 . Wherein, the solid line is the original driving signal waveform, and the dotted line is the adjusted driving signal waveform.
  • the conduction end point of the first drive signal is shifted backward by the fifth duration, and the conduction start point of the first drive signal remains unchanged, then the conduction time of the first switch Q1 is increased by the fifth duration, The conduction start point of the second driving signal is shifted backward by the fifth time period, and the conduction end point of the second drive signal remains unchanged, so the conduction time of the second switch Q2 is reduced by the fifth time period. Since the conduction duration of the first switch Q1 is increased by the fifth duration, the energy storage time of the first inductor L is increased by the fifth duration, the stored electric energy of the inductor L1 increases, and the corresponding peak value of the positive current of the target voltage conversion module increases .
  • the conduction duration of the second switch Q2 is reduced by the fifth duration, the time for the first capacitor C1 to store energy in reverse phase to the first inductor L1 is reduced, and the shorter the reverse phase energy storage of the inductor L1 is, the smaller the negative current value of the target voltage conversion module is. , correspondingly reducing the negative current peak value of the target voltage conversion module. Since the peak value of the positive current of the target voltage conversion module increases and the peak value of the negative current decreases, the average current of the target voltage conversion module increases to be close to or equal to the average current of the first voltage conversion module.
  • the period of the driving signal of the target voltage conversion module may be the same as the period of the driving signal of the first voltage conversion module , may also be different from the period of the driving signal of the first voltage converting module.
  • the period of the driving signal obtained by the target voltage conversion module is the same as the period of the driving signal of the first voltage conversion module, it is necessary to keep the period of the driving signal of the target voltage conversion module unchanged.
  • the fifth duration when the period of the driving signal of the target voltage conversion module is different from that of the first voltage conversion module, the period of the driving signal of the target voltage conversion module changes. At this time, the first driving signal and the second driving signal can be kept The off-time of the signal does not change.
  • the principle of adjusting the negative current by the first driving signal and the second driving signal is the same as the principle of adjusting the negative current when the period of the driving signal of the target voltage conversion module is constant, except that The period of the first driving signal increases, and the period of the second driving signal decreases, which will not be repeated in this application.
  • the first duration is determined according to the difference in average current between the target voltage conversion module and the first voltage conversion module and the inductance value of the target voltage conversion module.
  • the fifth time length required to adjust the difference between the average currents is calculated using the calculation formula of the inductor current .
  • the closed-loop adjustment method shown in Figure 9 can be used, specifically as follows:
  • Step 901 shifting the conduction end point of the first driving signal sent to the target voltage conversion module last time backward by a sixth duration, and keeping the conduction start point of the first drive signal unchanged.
  • the first driving signal sent to the target voltage converting module last time is the first driving signal sent by the controller for the first time.
  • Step 902 shifting the conduction start point of the second driving signal sent to the target voltage conversion module last time backward by the sixth duration, and keeping the conduction end point of the first drive signal unchanged.
  • the second driving signal sent to the target voltage converting module last time is the second driving signal sent by the controller for the first time.
  • Step 903 sending the adjusted first driving signal and the second driving signal to the target voltage converting module.
  • Step 904 Obtain the output current of the target voltage conversion module, and calculate the difference of the average current between the target voltage conversion module and the first voltage conversion module.
  • Step 905 judging whether the calculated average current difference between the target voltage conversion module and the first voltage conversion module is within a preset range, if so, execute step 906 ; otherwise, return to step 901 .
  • step 401 and step 402 may be performed j times until the condition of step 405 is met.
  • j is a natural number.
  • Step 906 using the latest adjusted first driving signal and second driving signal as the latest driving signal of the target voltage conversion module.
  • the driving signal of the first voltage conversion module may also be adjusted according to a fixed phase deviation, and then adjusted as the driving signal of the target voltage conversion module.
  • the conduction end point of the first driving signal in order to reduce the negative current of the target voltage conversion module and make the average current of the target voltage conversion module equal to or close to the average current of the first voltage conversion module, the conduction end point of the first driving signal can be set backward Offset by the seventh duration, and keep the conduction start point of the first drive signal unchanged, and the adjusted conduction end point of the first drive signal and the conduction start point of the second drive signal are different by a first preset threshold . It should be noted that, in order to prevent the two switches from being turned on at the same time, the adjusted end point of the conduction of the first driving signal is different from the start point of the conduction of the second driving signal by a first preset threshold.
  • the target voltage conversion module and the first voltage conversion module are interleaved parallel voltage conversion modules, it is necessary to keep the driving signal periods of the first voltage conversion module and the target voltage conversion module consistent. If the periods of the driving signals between two voltage conversion modules are consistent, it is necessary to keep the periods of the first driving signal and the second driving signal unchanged. In order to realize that the periods of the first driving signal and the second driving signal remain unchanged, it is necessary to shift the turn-off end time point of the first driving signal backward and forward by the seventh time period.
  • the adjustment waveform diagram of the driving signal can be referred to as shown in FIG. 10 . Wherein, the solid line is the original driving signal waveform, and the dotted line is the adjusted driving signal waveform.
  • the conduction time of the first switch Q1 is increased by the seventh time period. Since the conduction duration of the second switch Q2 is extended by the seventh duration, the energy storage time of the first inductor L1 is increased by the seventh duration, and the value stored on the inductor L1 increases, correspondingly increasing the positive current peak value of the target voltage conversion module . Due to the increase of the peak value of the positive current, the time required for the consumption of the inductor L1 to store electric energy during the conduction time of the second switch Q2 is extended.
  • the first capacitor C1 reverses the current to the first inductor.
  • the energy storage time of L1 is reduced, and the shorter the inversion storage time of the inductor L1 is, the smaller the negative current value of the target voltage conversion module is, correspondingly reducing the negative current peak value of the target voltage conversion module. Since the peak value of the positive current of the target voltage conversion module increases and the peak value of the negative current decreases, the average current of the target voltage conversion module increases to be close to or equal to the average current of the first voltage conversion module.
  • the second driving signal can be kept unchanged.
  • the period of the driving signal of the target voltage conversion module may be the same as the period of the driving signal of the first voltage conversion module , may also be different from the period of the driving signal of the first voltage converting module.
  • the period of the driving signal of the target voltage conversion module is the same as that of the first voltage conversion module, it is necessary to keep the period of the driving signal of the target voltage conversion module unchanged.
  • the seventh duration is shifted back and forth; when the period of the driving signal of the target voltage conversion module is different from that of the first voltage conversion module, the period of the driving signal of the target voltage conversion module changes, and the first driving signal can be kept turned off The duration does not change.
  • the principle of adjusting the negative current through the first driving signal is the same as the principle of adjusting the negative current when the period of the driving signal of the target voltage conversion module is constant, except that the first driving The cycle of the signal will not be repeated in this application.
  • Example 3 in order to reduce the negative current of the target voltage conversion module and make the average current of the target voltage conversion module equal to or close to the average current of the first voltage conversion module, the conduction of the second driving signal of the target voltage conversion module can be The conduction end point is shifted forward by the eighth duration, and the conduction start point of the second driving signal remains unchanged. It should be noted that, in order to prevent the two switches from being turned on at the same time, the adjusted start point of the conduction of the second driving signal is different from the end point of the conduction of the first driving signal by a second preset threshold.
  • the adjustment waveform diagram of the driving signal can be referred to as shown in FIG. 11 .
  • the solid line is the original driving signal waveform
  • the dotted line is the adjusted driving signal waveform.
  • the conduction duration of the second switch Q2 is reduced by the eighth duration. Since the conduction time of the second switch Q2 is reduced by the eighth duration, the time for the first capacitor C1 to store energy in reverse phase to the first inductor L1 is reduced, and the shorter the reverse phase storage time of the inductor L1 is, the lower the negative current value of the target voltage conversion module is. Small, correspondingly reduces the negative current peak value of the target voltage conversion module. Since the peak value of the positive current of the target voltage conversion module remains unchanged and the peak value of the negative current decreases, the average current of the target voltage conversion module increases to be close to or equal to the average current of the first voltage conversion module.
  • the negative current can be reduced mainly by adjusting the second driving signal, so the first driving signal can be kept unchanged.
  • the period of the driving signal of the target voltage conversion module may be the same as the period of the driving signal of the first voltage conversion module , may also be different from the period of the driving signal of the first voltage converting module.
  • the period of the driving signal of the target voltage conversion module is the same as that of the first voltage conversion module, it is necessary to keep the period of the driving signal of the target voltage conversion module unchanged.
  • the principle of adjusting the negative current through the second driving signal is the same as the principle of adjusting the negative current when the period of the driving signal of the target voltage conversion module is constant, except that the second The period of the second driving signal will not be repeated in this application.
  • the schemes of Example 2 and Example 3 can be superimposed, that is, the conduction end point of the first driving signal of the target voltage conversion module is shifted backward by the seventh duration, and kept The conduction start point of the first driving signal remains unchanged, and the conduction end point of the second drive signal of the target voltage conversion module is shifted forward by an eighth duration, and the conduction start point of the second drive signal remains unchanged.
  • the adjustment waveform diagram of the driving signal can be referred to as shown in FIG. 12 .
  • the solid line is the original driving signal waveform
  • the dotted line is the adjusted driving signal waveform.
  • the conduction end point of the first driving signal of the target voltage conversion module is shifted backward by the seventh duration, and the conduction start point of the first drive signal remains unchanged, so the conduction time of the first switch Q1 increases The seventh hour.
  • the conduction end point of the second drive signal of the target voltage conversion module is shifted forward by the eighth duration, and the conduction start point of the second drive signal remains unchanged, so the conduction time of the second switch Q2 is reduced by the eighth duration . Since the turn-on duration of the first switch Q1 increases by the seventh duration, the energy storage time of the first inductor L increases by the seventh duration, the stored electric energy of the inductor L1 increases, and the corresponding positive current peak value of the target voltage conversion module increases.
  • the turn-on duration of the second switch Q2 is reduced by the eighth duration, the energy storage time of the first capacitor C1 in reverse phase to the first inductor L1 is reduced, and the shorter the reverse phase energy storage time of the inductor L1 is, the higher the target voltage conversion module is.
  • an embodiment of the present application also provides a current sharing method for a voltage conversion device, the method is applied to the voltage conversion device, and the voltage conversion device includes a plurality of parallel-connected voltage conversion modules.
  • the voltage conversion device may be the voltage conversion device shown in FIG. 2 .
  • the method specifically includes the following steps:
  • Step 1301 detect the current of each voltage conversion module.
  • the current of the voltage conversion module can be obtained from the monitoring system of the voltage conversion device, or can be obtained by configuring a detection device separately.
  • Step 1302 calculate the average current of each voltage conversion module according to the current of each voltage conversion module.
  • Step 1303 when it is determined that the average current difference between the target voltage conversion module and the first voltage conversion module exceeds a preset range, adjust the negative current of the target voltage conversion module so that the difference between the target voltage conversion module and the first voltage conversion module The difference between the average currents is within a preset range.
  • the first voltage conversion module is determined according to the current of each voltage conversion module, and the target voltage conversion module is any one of the multiple voltage conversion modules except the first voltage conversion module.
  • the average current of each voltage conversion module is calculated according to the current of each voltage conversion module, and the first voltage conversion module is determined according to the average current of each voltage conversion module.
  • the first voltage conversion module may be the module outputting the smallest average current among the multiple voltage conversion modules, or the module outputting the largest average current, or other voltage conversion modules.
  • adjusting the negative current of the target voltage conversion module includes: adjusting the driving signal output to the target voltage conversion module to adjust the negative current of the target voltage conversion module.
  • the structure of the voltage conversion module can be seen as shown in FIG. 1 , which will not be repeated in this application.
  • adjusting the negative current of the target voltage conversion module includes: adjusting the driving signal of the target voltage conversion module to increase Negative current for the target voltage conversion module.
  • adjusting the drive signal of the target voltage conversion module includes: shifting the conduction end point of the first drive signal in the target voltage conversion module forward by a first duration, and keeping the conduction of the first drive signal The conduction start point remains unchanged; the conduction start point of the second drive signal in the target voltage conversion module is shifted forward by the first duration, and the conduction end point of the target voltage conversion module remains unchanged.
  • the first duration is determined according to an average current difference between the target voltage conversion module and the first voltage conversion module and an inductance value of the target voltage conversion module.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the first drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller for the first time
  • the second drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller the second drive signal.
  • adjusting the drive signal of the target voltage conversion module includes: shifting the conduction end point of the second drive signal of the target voltage conversion The starting point remains unchanged.
  • adjusting the drive signal of the target voltage conversion module includes: shifting the conduction end point of the first drive signal of the target voltage conversion module forward by a fourth duration, and maintaining the conduction of the first drive signal The starting point remains unchanged.
  • adjust the negative current of the target voltage conversion module including: adjusting the driving signal of the target voltage conversion module to reduce the negative current of the target voltage conversion module.
  • adjusting the driving signal of the target voltage conversion module includes: shifting the conduction end point of the first driving signal in the target voltage conversion module backward by a fifth duration, and maintaining the The conduction start point remains unchanged; the conduction start point of the second driving signal in the target voltage conversion module is shifted backward by a fifth duration, and the conduction end point of the second drive signal remains unchanged.
  • adjusting the drive signal of the target voltage conversion module includes:
  • the first drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller for the first time
  • the second drive signal sent to the target voltage conversion module last time is the first drive signal sent by the controller the second drive signal.
  • adjusting the driving signal of the target voltage conversion module includes: shifting the conduction end point of the first driving signal of the target voltage conversion module backward by a seventh duration, and maintaining the The conduction start point remains unchanged, and the adjusted conduction end point of the first driving signal and the conduction start point of the second drive signal differ by a first preset threshold.
  • adjusting the driving signal of the target voltage conversion module includes: shifting the conduction end point of the second driving signal of the target voltage conversion module forward by an eighth duration, and maintaining the The conduction start point remains unchanged, and the adjusted conduction start point of the second driving signal is different from the conduction end point of the first drive signal by a second preset threshold.
  • the periods of the first driving signal and the second driving signal remain unchanged.
  • the waveform change diagrams of the adjustment of the first driving signal and the second driving signal can be referred to in FIG. 3-11 , which will not be repeated in this application.
  • an embodiment of the present application also provides a current sharing device for a voltage conversion device, which can be applied to the voltage conversion device as shown in FIG. 2 to implement the above current sharing method for the voltage conversion device.
  • an apparatus 1400 includes: a communication module 1401 , a processor 1402 , and a memory 1403 .
  • the communication module 1401 and the memory 1403 are connected to the processor 1402 .
  • the communication module 1401, the memory 1003, and the processor 1402 may be connected to each other through a bus;
  • the bus may be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 14 , but it does not mean that there is only one bus or one type of bus.
  • the communication module 1401 is used for communicating with other devices.
  • the communication module 1401 may include a communication interface and a wireless communication module.
  • the communication interface is used for communicating with other components in the voltage conversion device.
  • the processor 1402 is used to implement the current sharing method of the voltage conversion device provided in the embodiment shown in FIG. 13 .
  • the processor 1402 may be a central processing unit (central processing unit, CPU), a digital signal processor (digital signal processor, DSP) or other hardware chips.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • the processor 1402 realizes the above functions, it may be realized by hardware, and of course, it may also be realized by executing corresponding software by hardware.
  • the memory 1403 is used to store program instructions and data. Exemplarily, in the embodiment of the present application, program instructions and data are stored in the memory 1403 . Specifically, the program instructions may include program codes including instructions for computer operations.
  • the memory 1403 may include a random access memory (random access memory, RAM), and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 1402 executes the program stored in the memory 1403, and realizes the above-mentioned functions through the above-mentioned components, so as to finally realize the current sharing method for the voltage conversion device provided in the above-mentioned embodiments.
  • the memory 1403 in FIG. 14 of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, the computer executes the voltage conversion device provided in the above embodiments flow-sharing method.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供了一种具备均流的电压转换装置(200)、均流方法、装置和介质,用于实现电压转换装置(200)均流。具备均流的电压转换装置(200)包括:并联的多个电压转换模块(201)、检测单元(202)和控制器(203);每个电压转换模块(201)的一端均与电压转换装置(200)的输入端连接,每个电压转换模块(201)的另一端均与电压转换装置(200)的输出端连接;检测单元(202)分别与每个电压转换模块(201)和控制器(203)连接,检测单元(202)用于检测每个电压转换模块(201)的电流;控制器(203)与每个电压转换模块(201)连接,控制器(203)用于根据检测单元(202)检测的电流,在确定目标电压转换模块(201)与第一电压转换模块(201)之间的平均电流之差超出预设区间时,调整目标电压转换模块(201)的负电流。

Description

一种具备均流的电压转换装置、均流方法、装置和介质 技术领域
本申请涉及电力电子领域,尤其涉及一种具备均流的电压转换装置、均流方法、装置和介质。
背景技术
Boost电路是常见的电压转换器拓扑结构之一,以其可以实现升压功能被用于多种类型的电力系统内中。例如,电动/混合动力汽车的电源管理系统、光伏发电系统、通信电源供电系统、数据中心等电力系统内的电压转换器,常需要使用Boost电路实现电压转换。
随着电力电子技术的快速发展,电压转换器中开关管的开关频率逐渐升高,因此可以选用体积更小的储能元件,从而减小了电压转换器的成本和体积。但是当上述电压转换器应用于大功率转换场景时,单个电压转换器已经很难满足功率转换需求,或者电压转换器输出的电信号中存在很高的纹波电流,为了解决上述问题,通常采用多个电压转换器并联工作。
当储能元件原料和生产制造等原因造成两个电压转换器的储能元件的储能值相差较大时,可能会两个电压转换器输出电流不均衡,该电流不均衡会造成两个电压转换器的输出功率不平衡以及单个电压转换器的输出电流过大等问题。
鉴于此,当前并联的电压转换器存在输出电流不均衡的问题。
发明内容
本申请提供一种具备均流的电压转换装置、均流方法、装置和介质,用于平衡电压转换装置的电流,保证电压转换装置正常运行。
第一方面,本申请实施例提供了一种具备均流的电压转换装置,该电压转换装置包括:并联的多个电压转换模块、检测单元和控制器。
其中,每个电压转换模块的一端均与电压转换装置的输入端连接,每个电压转换模块的另一端均与电压转换装置的输出端连接,每个电压转换模块用于接收控制器发送的驱动信号,并根据驱动信号将电压转换装置的输入电压转换为第一电压,并对电压转换装置的输入电流进行分流;检测单元分别与每个电压转换模块和控制器连接,检测单元用于检测每个电压转换模块的电流,并将检测的电流输出给控制器;控制器与每个电压转换模块连接,控制器用于为每个电压转换模块输出驱动信号,并根据检测单元检测的电流,在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,调整目标电压转换模块的负电流;第一电压转换模块是根据检测单元检测的电流确定的,目标电压转换模块为多个电压转换模块中除第一电压转换模块外的任意一个电压转换模块。
采用上述电压转换装置结构,当第一电压转换模块与目标电压转换模块之间的平均电流之差超出预设区间时,确定第一电压转换模块与目标电压转换模块之间存在电流不均衡的问题,可以通过调整目标电压转换模块的负电流,调整目标电压转换模块的平均电流,使目标电压转换模块上的平均电流与第一电压转换模块的平均电流相同或者相近,以实现第一电压转换模块与目标电压转换模块之间均流。
在一种可能的实现方式中,每个电压转换模块包括:第一电感、第一开关和第二开关。
其中,第一电感的第一端与电压转换装置输入端的第一端点连接,第一电感的第二端分别与第一开关的第一电极和第二开关的第二电极连接;第一开关的第二电极分别与电压转换装置输入端的第二端点和电压转换装置输出端的第二端点连接;第二开关的第一电极与电压转换装置输出端的第一端点连接。
控制器用于向第一开关输出第一驱动信号,以及向第二开关输出第二驱动信号,第一驱动信号和第二驱动信号构成电压转换模块的驱动信号。
在一种可能的实现方式中,若目标电压转换模块的平均电流大于第一电压转换模块的平均电流,在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超过预设区间时,控制器用于调整输出给目标电压转换模块的驱动信号,以增大目标电压转换模块的负电流。
采用上述电压转换装置结构,当目标电压转换模块的平均电流大于第一电压转换模块的平均电流、且目标电压转换模块与第一电压转换模块之间电流不平衡时,可以通过增大目标电压转换模块的负电流,降低目标电压转换模块的平均电流,实现调整后的目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,从而达到第一电压转换模块和目标电压转换模块之间电流均衡的目的。
在一种可能的实现方式中,控制器用于:在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,将目标电压转换模块中第一驱动信号的导通结束点向前偏移第一时长,保持第一驱动信号的导通起始点不变;将目标电压转换模块中第二驱动信号的导通起始点向前偏移第一时长,保持目标电压转换模块的导通结束点不变。
采用上述电压转换装置结构,可以通过减少第一开关的导通时长,减少第一电感的正向储能时长,从而减小目标电压转换模块的正电流峰值,同时可以通过延长第二开关的导通时长,增加第一电感的反相储能时间,降低目标电压转换模块的负电流峰值,从而降低目标电压转换模块的平均电流。
在一种可能的实现方式中,第一时长根据目标电压转换模块与第一电压转换模块之间的平均电流之差以及目标电压转换模块的电感值确定。
采用上述电压转换装置结构,在已知目标电压转换模块与第一电压转换模块之间的平均电流之差和电感值的情况下,可以利用电感线圈的电流计算公式,确定调整平均电流之差所需的时长。
在一种可能的实现方式中,控制器在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,将前一次发送给目标电压转换模块的第一驱动信号的导通结束点向前偏移i次第二时长,保持第一驱动信号的导通起始点不变;将前一次发送给目标电压转换模块的第二驱动信号的导通起始点向前偏移i次第二时长,保持第二驱动信号的导通结束点不变;其中,i为正整数;将调整后的第一驱动信号和第二驱动信号发送给目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与第一电压转换模块之间的平均电流之差处于预设区间。
其中,当i为1时,前一次发送给目标电压转换模块的第一驱动信号为控制器初次发送的第一驱动信号,前一次发送给目标电压转换模块的第二驱动信号为控制器初次发送的第二驱动信号。
采用上述电压转换装置结构,在不确定目标电压转换模块中电感值的情况下,可以采 用闭环循环调整的方式,并根据每次调整后的目标电压转换模块上电流,确定是否继续进行调整,直至目标电压转换模块上的平均电流与第一电压转换模块的电流的平均电流相等或者相近,从而达到目标电压转换模块与第一电压转换模块之间均流的目的。
在一种可能的实现方式中,控制器用于:在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,将目标电压转换模块的第二驱动信号的导通结束点向后偏移第三时长,保持第二驱动信号的导通起始点不变。
采用上述电压转换装置结构,可以通过延长第二驱动信号的导通时长,增加第一电感的反相储能时间,从而增大目标电压转换模块的负电流峰值,达到减小目标电压转换模块的平均电流的目的。
在一种可能的实现方式中,控制器用于:将目标电压转换模块的第一驱动信号的导通结束点向前偏移第四时长,保持第一驱动信号的导通起始点不变。
采用上述电压转换装置结构,可以通过减小第一开关的导通时长,减小第一电感的正向储能时间,从而减小第一电感的正电流峰值,同时由于第一电感的正电流峰值减小,则第一电感的过零点向前偏移,导致第一电感的反相储能时间延长,增大了目标电压转换模块的负电流峰值,从而达到减小目标电压转换模块的平均电流的目的。
在一种可能的实现方式中,若目标电压转换模块的平均电流小于第一电压转换模块的平均电流、且第一电压转换模块输出的平均电流小于预设阈值,在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,控制器用于调整输出给目标电压转换模块的驱动信号,以降低目标电压转换模块的负电流,预设阈值为目标电压转换模块电流应力。
采用上述电压转换装置结构,当第一电压转换模块与目标电压转换模块之间的平均电流之差超过预设区间时,确定第一电压转换模块与目标电压转换模块之间存在电流不均衡的问题,若第一电压转换模块输出的平均电流小于目标电压转换模块的平均电流,可以通过减小目标电压转换模块的负电流,增大目标电压转换模块的平均电流,使目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,以实现第一电压转换模块与目标电压转换模块之间均流。
在一种可能的实现方式中,控制器用于:在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,将目标电压转换模块中第一驱动信号的导通结束点向后偏移第五时长,并保持第一驱动信号的导通起始点不变;将目标电压转换模块中第二驱动信号的导通起始点向后偏移第五时长,并保持第二驱动信号的导通结束点不变。
采用上述电压转换装置结构,可以通过增长第一开关的导通时长,增加第一电感的正向储能时长,从而增大目标电压转换模块的正电流峰值,同时可以通过减小第二开关的导通时长,减小第一电感的反相储能时间,减小目标电压转换模块的负电流的峰值,从而增大目标电压转换模块的平均电流。
在一种可能的实现方式中,控制器在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,将前一次发送给目标电压转换模块的第一驱动信号的导通结束点向后偏移j次第六时长,并保持第一驱动信号的导通起始点不变;将前一次发送给目标电压转换模块的第二驱动信号的导通起始点向后偏移j次第六时长,并保持第一驱动信号的导通结束点不变;j为正整数;将调整后的第一驱动信号和第二驱动信号发送给目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与第一电压 转换模块之间的平均电流之差处于预设区间。
其中,当j为1时,前一次发送给目标电压转换模块的第一驱动信号为控制器初次发送的第一驱动信号,前一次发送给目标电压转换模块的第二驱动信号为控制器初次发送的第二驱动信号。
采用上述电压转换装置结构,在不确定目标电压转换模块中电感的储能参数的情况下,可以采用闭环循环调整的方式,并根据每次调整后的目标电压转换模块电流,确定是否继续进行调整,直至目标电压转换模块上的平均电流与第一电压转换模块的平均电流相等或者相近,从而达到目标电压转换模块与第一电压转换模块之间均流的目的。
在一种可能的实现方式下,控制器用于:在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,将目标电压转换模块的第一驱动信号的导通结束点向后偏移第七时长,并保持第一驱动信号的导通起始点不变,调整后的第一驱动信号的导通结束点与第二驱动信号的导通起始点之间相差第一预设阈值。
采用上述电压转换装置结构,可以通过增加第一开关的导通时长,增加第一电感的正向储能时间,从而增大目标电压转换模块的正电流峰值,同时由于第一电感的正电流峰值增大,则第一电感的过零点向后偏移,导致第一电感的反相储能时间减少,目标电压转换模块的负电流峰值减小,达到减小目标电压转换模块的平均电流的目的。
在一种可能的实现方式中,控制器用于:将目标电压转换模块的第二驱动信号的导通结束点向前偏移第八时长,并保持第二驱动信号的导通起始点不变,调整后的第二驱动信号的导通起始点与第一驱动信号的导通结束点之间相差第二预设阈值。
采用上述电压转换装置结构,可以通过减小第二驱动信号的导通时长,减小第一电感的正向储能时长,从而减小目标电压转换模块负电流峰值,达到增大目标电压转换模块的平均电流的目的。
在一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为交错并联式电压转换模块,第一驱动信号和第二驱动信号的周期保持不变。
采用上述电压转换装置结构,可以根据电压转换模块的工作模式的要求,相应调整第一开关和第二开关的关断时间。
第二方面,本申请实施例提供了一种电压转换装置的均流方法,该方法应用于电压转换装置中,该电压转换装置可以包括多个并联的电压转换模块,具体地,该方法具体包括以下步骤:
检测每个电压转换模块的电流;根据每个电压转换模块的电流,计算每个电压转换模块的平均电流;在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,调整目标电压转换模块的负电流,以使目标电压转换模块与第一电压转换模块之间的平均电流之差处于预设区间。其中,第一电压转换模块是根据每个电压转换模块的平均电流确定的,目标电压转换模块为多个电压转换模块中除第一电压转换模块外的任意一个电压转换模块。
采用上述方法,当第一电压转换模块与目标电压转换模块之间的平均电流之差超出预设区间时,确定第一电压转换模块与目标电压转换模块之间存在电流不均衡的问题,可以通过调整目标电压转换模块的负电流,调整目标电压转换模块的平均电流,使目标电压转换模块上的平均电流与第一电压转换模块的平均电流相同或者相近,以实现第一电压转换模块与目标电压转换模块之间均流。
在一种可能的实现方式中,调整目标电压转换模块的负电流,包括:
调整输出给目标电压转换模块的驱动信号。
具体地,每个电压转换模块包括第一电感、第一开关和第二开关。
其中,第一电感的第一端与电压转换装置输入端的第一端点连接,第一电感的第二端分别与第一开关的第一电极和第二开关的第二电极连接;第一开关的第二电极分别与电压转换装置输入端的第二端点和电压转换装置输出端的第二端点连接;第二开关的第一电极与电压转换装置输出端的第一端点连接。其中,第一开关接收的第一驱动信号和第二开关接收的第二驱动信号构成电压转换模块的驱动信号。
采用上述方法,当目标电压转换模块的与第一电压转换模块之间电流不平衡时,可以通过调整目标电压转换模块的驱动信号改变目标电压转换模块的负电流,使调整后的目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,从而实现电压转换装置均流的目的。
在一种可能的实现方式中,若目标电压转换模块的平均电流大于第一电压转换模块的平均电流,调整目标电压转换模块的负电流,包括:
调整目标电压转换模块的驱动信号。
采用上述方法,若目标电压转换模块的平均电流大于第一电压转换模块的平均电流,可以通过增大目标电压转换模块的负电流,降低目标电压转换模块的平均电流,实现调整后的目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,从而达到第一电压转换模块和目标电压转换模块之间电流均衡的目的。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将目标电压转换模块中第一驱动信号的导通结束点向前偏移第一时长,保持第一驱动信号的导通起始点不变;将目标电压转换模块中第二驱动信号的导通起始点向前偏移第一时长,保持目标电压转换模块的导通结束点不变。
采用上述方法,可以通过减少第一开关的导通时长,减少第一电感的正向储能时长,从而减小目标电压转换模块的正电流峰值,同时可以通过延长第二开关的导通时长,增加第一电感的反相储能时间,降低目标电压转换模块的负电流峰值,从而降低目标电压转换模块的平均电流。
在一种可能的实现方式中,第一时长根据目标电压转换模块与第一电压转换模块之间的平均电流之差以及目标电压转换模块的电感值确定。
采用上述方法,在已知目标电压转换模块和第一电压转换模块之间的平均电流之差和电压转换模块中电感值的情况下,可以利用电感线圈的电流计算公式,计算调整平均电流之差所需的时长。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将前一次发送给目标电压转换模块的第一驱动信号的导通结束点向前偏移i次第二时长,保持第一驱动信号的导通起始点不变;将前一次发送给目标电压转换模块的第二驱动信号的导通起始点向前偏移i次第二时长,保持第二驱动信号的导通结束点不变;其中,i为正整数;将调整后的第一驱动信号和第二驱动信号发送给目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与第一电压转换模块之间的平均电流之差处于预设区间。
其中,当i为1时,前一次发送给目标电压转换模块的第一驱动信号为控制器初次发 送的第一驱动信号,前一次发送给目标电压转换模块的第二驱动信号为控制器初次发送的第二驱动信号。
采用上述方法,在不确定目标电压转换模块中电感值的情况下,可以采用闭环循环调整的方式,根据每次调整后的目标电压转换模块电流,确定是否继续进行调整,直至目标电压转换模块上的平均电流与第一电压转换模块的电流的平均电流相等或者相近,从而达到目标电压转换模块与第一电压转换模块之间均流的目的。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将目标电压转换模块的第二驱动信号的导通结束点向后偏移第三时长,保持第二驱动信号的导通起始点不变。
采用上述方法,可以通过延长第二驱动信号的导通时长,增加第一电感的反相储能时间,从而增大目标电压转换模块的负电流峰值,达到减小目标电压转换模块的平均电流的目的。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将目标电压转换模块的第一驱动信号的导通结束点向前偏移第四时长,保持第一驱动信号的导通起始点不变。
采用上述方法,可以通过减小第一开关的导通时长,减小第一电感的正相储能时间,从而减小第一电感的正电流峰值,同时由于第一电感的正电流峰值减小,则第一电感的过零点向前偏移,导致第一电感的反相储能时间延长,增大了目标电压转换模块的负电流峰值,从而达到减小目标电压转换模块的平均电流的目的。
在一种可能的实现方式中,若目标电压转换模块的平均电流小于第一电压转换模块的平均电流、且第一电压转换模块输出的平均电流小于预设阈值,调整目标电压转换模块的负电流,包括:
调整目标电压转换模块的驱动信号。
采用上述方法,若目标电压转换模块的平均电流大于第一电压转换模块的平均电流,可以通过降低目标电压转换模块的负电流,减小目标电压转换模块的平均电流,实现调整后的目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,从而达到第一电压转换模块和目标电压转换模块之间电流均衡的目的。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将目标电压转换模块中第一驱动信号的导通结束点向后偏移第五时长,并保持第一驱动信号的导通起始点不变;将目标电压转换模块中第二驱动信号的导通起始点向后偏移第五时长,并保持第二驱动信号的导通结束点不变。
采用上述方法,可以通过增长第一开关的导通时长,增加第一电感的正相储能时长,从而增大目标电压转换模块的正电流峰值,同时可以通过减小第二开关的导通时长,减小第一电感的反相储能时间,减小目标电压转换模块的负电流的峰值,从而增大目标电压转换模块的平均电流。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将前一次发送给目标电压转换模块的第一驱动信号的导通结束点向后偏移j次第六时长,并保持第一驱动信号的导通起始点不变;将前一次发送给目标电压转换模块的第二驱动信号的导通起始点向后偏移j次第六时长,并保持第一驱动信号的导通结束点不变;j为正整数;将调整后的第一驱动信号和第二驱动信号发送给目标电压转换模块,调整第一 驱动信号和第二驱动信号后的目标电压转换模块与第一电压转换模块之间的平均电流之差处于预设区间。
其中,当j为1时,前一次发送给目标电压转换模块的第一驱动信号为控制器初次发送的第一驱动信号,前一次发送给目标电压转换模块的第二驱动信号为控制器初次发送的第二驱动信号。
采用上述方法,在不确定目标电压转换模块中电感的储能参数的情况下,可以采用闭环循环调整的方式,根据每次调整后的目标电压转换模块电流,确定是否继续进行调整,直至目标电压转换模块上的平均电流与第一电压转换模块的平均电流相等或者相近,从而达到目标电压转换模块与第一电压转换模块之间均流的目的。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将目标电压转换模块的第一驱动信号的导通结束点向后偏移第七时长,并保持第一驱动信号的导通起始点不变,调整后的第一驱动信号的导通结束点与第二驱动信号的导通起始点之间相差第一预设阈值。
采用上述方法,可以通过增加第一开关的导通时长,增加第一电感的正相储能时间,从而增大目标电压转换模块的正电流峰值,同时由于第一电感的正电流峰值增大,则第一电感的过零点向后偏移,导致第一电感的反相储能时间减少,目标电压转换模块的负电流峰值减小,达到减小目标电压转换模块的平均电流的目的。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将目标电压转换模块的第二驱动信号的导通结束点向前偏移第八时长,并保持第二驱动信号的导通起始点不变,调整后的第二驱动信号的导通起始点与第一驱动信号的导通结束点之间相差第二预设阈值。
采用上述方法,可以通过减小第二驱动信号的导通时长,减小第一电感的正向储能时长,从而减小目标电压转换模块负电流峰值,达到增大目标电压转换模块的平均电流的目的。
在一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为交错并联式电压转换模块,第一驱动信号和第二驱动信号的周期保持不变。
采用上述方法,可以根据电压转换模块的工作模式的要求,相应调整第一开关和第二开关的关断时间。
第三方面,本申请实施例提供了一种电压转换装置的控制装置,该电压转换装置的控制装置包括:存储器、通信模块和处理器。
其中,存储器用于存储程序指令;通信模块用于接收和发送数据;处理器用于调用存储器中存储的程序指令,以执行实施例第二方面任一可能的设计中提供的电压转换装置的均流方法。
第四方面,本申请实施例提供了一种计算机存储介质,该计算机存储介质中存储有计算机程序,当该计算机程序被计算机执行时,使得计算机执行本申请实施例第一方面中任一可能的设计提供的方法。
附图说明
图1为本申请实施例提供的一种电压转换装置的结构示意图一;
图2为本申请实施例提供的一种电压转换装置的结构示意图二;
图3为本申请实施例提供的一种驱动信号波形调整示意图一;
图4为本申请实施例提供的一种驱动信号波形调整的流程示意图一;
图5为本申请实施例提供的一种驱动信号波形调整示意图二;
图6为本申请实施例提供的一种驱动信号波形调整示意图三;
图7为本申请实施例提供的一种驱动信号波形调整示意图四;
图8为本申请实施例提供的一种驱动信号波形调整示意图五;
图9为本申请实施例提供的一种驱动信号波形调整的流程示意图二;
图10为本申请实施例提供的一种驱动信号波形调整示意图六;
图11为本申请实施例提供的一种驱动信号波形调整示意图七;
图12为本申请实施例提供的一种驱动信号波形调整示意图八;
图13为本申请实施例提供的一种电压转换装置的均流方法的流程示意图;
图14为本申请实施例提供的一种电压转换装置的均流装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请实施例中“连接”指的是电连接,两个电学元件连接可以是两个电学元件之间的直接或间接连接。例如,A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元件间接连接,例如A与B连接,也可以是A与C直接连接,C与B直接连接,A与B之间通过C实现了连接。
需要指出的是,本申请实施例中的开关可以是继电器、金属氧化物半导体场效应晶体管(metal oxide semiconductor field effect transistor,MOSFET),双极结型管(bipolar junction transistor,BJT),绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT),氮化镓场效应晶体管(GaN),碳化硅(SiC)功率管等多种类型的开关器件中的一种或多种,本申请实施例对此不再一一列举。每个开关器件皆可以包括第一电极、第二电极和控制电极,其中,控制电极用于控制开关器件的导通或断开。当开关器件导通时,开关器件的第一电极和第二电极之间可以传输电流,当开关器件断开时,开关器件的第一电极和第二电极之间无法传输电流。以MOSFET为例,开关器件的控制电极为栅极,开关器件的第一电极可以是开关器件的源极,第二电极可以是开关器件的漏极,或者,第一电极可以是开关器件的漏极,第二电极可以是开关器件的源极。
目前,大多数的电子设备中都安装有携带电压转换器的电压转换装置,用于实现电子设备内部的电压(或电流)变换,以满足电子设备对电压或者电流的需求。例如,直流-直流(DC/DC)电压转换器、直流-交流(DC/AC)电压转换器、交流-直流(AC/DC)电 压转换器等,可以分别实现不同形式的电压(或电流)转换。
一般来说,任一功能的电压转换器皆可以采用Boost电路和Buck电路实现。例如,采用Boost电路作为DC/DC电压转换器时,该DC/DC电压转换器可以称之为升压变换器。具体来说,Boost电路是一种升压式电压转换器拓扑结构,因其具有升压作用而被广泛应用。
如图1所示,为一种携带Boost电路的电压转换装置结构示意图。参见图1所示,电压转换装置主要包括Boost电路,该Boost电路主要包括:第一开关Q1、第二开关Q2、第一电感L1和控制器。其中,第一电感L1的第一端与电压转换装置输入端的第一端点连接,第一电感L1的第二端分别与第一开关Q1的第一电极和第二开关Q2的第二电极连接;第一开关Q1的第二电极分别与电压转换装置输入端的第二端点和电压转换装置输出端的第二端点连接;第二开关Q2的第一电极与电压转换装置输出端的第一端点连接;控制器分别与第一开关Q1和第二开关Q2的控制电极连接,用于为第一开关Q1和第二开关Q2提供驱动信号。其中,电压转换装置中还可以包括电源电路,或者电源电路的外围电路,本申请实施例对此并不多作限制。其中,电源电路可以为Boost电路输入电能。
其中,电压转换装置输入端的第一端点可以是电压转换装置接收高电位的端点,电压转换装置输入端的第二端点可以是电压转换装置接收低电平的端点,第一端点和第二端点构成电压转换装置的输入端。
实际使用时,Boost电路输出端的两个端点之间多连接有第一电容C1,C1可以稳定Boost电路输出端输出的电压数值。应理解,当电压转换装置中包含多个Boost电路时,可以为每个Boost电路设置一个第一电容C1,也可以多个Boost电路公用一个第一电容C1,本申请这里不做限定。
Boost电路的升压原理为:控制开关Q1导通以及开关Q2断开,此时Boost电路输入端输入的电能存储至电感L1上,待电感L1存储完毕,控制开关Q1断开以及开关Q2导通,此时Boost电路输入端输入的电能以及电感L1存储的电能叠加输出至Boost电路的输出端,从而使Boost电路的输出电压高于Boost电路的输入电压,实现升高功能。
当上述电压转换装置应用于大功率转换场景或者电源电路输入的电能中存在很高纹波电流时,会造成单个Boost电路无法满足大功率转换需求,或者Boost电路输出的电能中存在很高的纹波信号,为了解决上述问题,通常采用多个Boost电路并联工作。
需要说明的是,当电压转换装置应用于大功率转换场景时,电压转换装置中并联的Boost电路的数量可以根据待转换功率以及单个Boost电路的转换功率进行设置。例如,待转换功率为2000瓦特(watt,W),单个Boost电路的转换功率为500W,则电压转换装置中可以并联四个Boost电路。
以电压转换装置中包含两个并联的Boost电路为例,在理想情况下,两个Boost电路中的储能元件数值相同,因此,两个Boost电路上的电流数值相同。然而在实际实现结构中,由于两个Boost电路中第一电感的生产材料以及生产条件的不同,会导致两个Boost电路中的第一电感的数值存在差值,当差值较大时,会造成两个Boost电路之间由于电流值不同产生环流,或者由于单个或者多个Boost电路上的电流数值较大,损坏Boost电路或者与Boost电路连接的器件,影响电压转换装置的运行安全。
为解决上述问题,本申请实施例提供了一种具备均流的电压转换装置、均流方法、装置和介质,用于平衡电压转换装置中多个电压转换模块之间的电流,保证电压转换装置的 正常运行。
参见图2所示,为本申请实施例提供的一种具备均流的电压转换装置,该电压转换装置200可以包括:并联的多个电压转换模块201、检测单元202和控制器203。应注意,本申请对电压转换装置200中并联的电压转换模块201的数量不做具体限定。
其中,每个电压转换模块201的一端均与电压转换装置200的输入端连接,每个电压转换模块201的另一端均与电压转换装置200的输出端连接,每个电压转换模块201用于接收控制器203发送的驱动信号,并根据驱动信号将电压转换装置200的输入电压转换为第一电压,并对电压转换装置200的输入电流进行分流。
检测单元202分别与每个电压转换模块201和控制器203连接,检测单元202用于检测每个电压转换模块201的电流,并将检测的电流输出给控制器203。
控制器203与每个电压转换模块201连接,控制器203可以为每个电压转换模块201提供驱动信号,并根据检测单元202检测的电流,在确定目标电压转换模块201与第一电压转换模块201之间的平均电流之差超出预设区间时,调整目标电压转换模块201的负电流,以使目标电压转换模块201与第一电压转换模块201之间的平均电流之差处于预设区间。其中,预设区间为两个电压转换模块之间的电流允许误差,该误差值可以根据电压转换装置的应用场景具体设置,本申请这里不做限定。
其中,第一电压转换模块是根据检测单元202检测的电流确定的,目标电压转换模块为多个电压转换模块中除第一电压转换模块外的任意一个电压转换模块。
应理解,第一电压转换模块可以是输出最小平均电流的电压转换模块,也可以是输出最大平均电流的电压转换模块,当然也可以是其它模块,本申请这里不做具体限定。
需要说明的是,负电流为电压转换模块输出端流向输入端的电流,正电流为电压转换模块输入端流向输出端的电流。
实际使用时,电压转换模块201为设置有储电感的升压式变换器,图1所示的Boost电路为电压转换模块201一种可能的具体示例。在实际应用中,电压转换模块201具有多种可能的实现结构,本申请对此并不一一列举,但这些升压式变换器皆可以使用于本申请。
采用上述具备均流的电压转换装置200,控制器203可以根据检测单元202检测的电流,计算每个电压转换模块201的平均电流,在目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,确定目标电压转换模块与第一电压转换模块之间存在电流不平衡的问题,可以通过调整目标电压转换模块的负电流,调整目标电压转换模块平均电流,从而实现调整负电流之后的目标电压转换模块与第一电压转换模块之间电流平衡的效果。
具体实现时,为了实现调整目标电压转换模块的负电流,控制器203可以调整原输出给目标电压转换模块的驱动信号,调整后的驱动信号改变了目标电压转换模块中开关器件的导通时刻和导通时长,使得调整驱动信号后的目标电压转换模块上的电流发生改变,从而改变目标电压转换模块上的平均电流。
实际使用中,根据目标电压转换模块上平均电流的大小,控制器203调整目标电压转换模块负电流的方式存在两种。具体地,若目标电压转换模块上的平均电流大于第一电压转换模块的平均电流,在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,控制器203可以调整输出给目标电压转换模块的驱动信号,以增大目标电压转换模块的负电流,降低目标电压转换模块的平均电流;若目标电压转换模块上的平 均电流小于第一电压转换模块的平均电流、且第一电压转换模块输出的平均电流小于预设阈值,在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,控制器203可以调整给目标电压转换模块的驱动信号,以降低目标电压转换模块的负电流,增大目标电压转换模块的平均电流。其中,预设阈值可以是目标电压转换模块和第一电压转换模块中开关器件的最大工作电流,满足目标电压转换模块和第一电压转换模块中开关器件的电流应力。
下面结合实施例以及图1所示的Boost电路结构,对上述控制器203调整目标电压转换模块负电流的两种方式进行详细介绍。其中,控制器203输出给第一开关的驱动信号可以视为第一驱动信号,控制器203输出给第二开关的驱动信号可以视为第二驱动信号,第一驱动信号和第二驱动信号构成控制器203输出给电压转换模块201的驱动信号。
实施例一、
如前,若目标电压转换模块上的平均电流大于第一电压转换模块的平均电流,为了实现两个模块之间电流平均,则需要降低目标电压转换模块的平均电流。本申请实施例中,控制器203可以通过调整第一驱动信号和/或第二驱动信号的波形,实现增大目标电压转换模块的负电流,降低目标电压转换模块的平均电流。下面以几个具体示例介绍增大目标电压转换模块负电流的几种方式。
示例一
在示例一中,为了增大目标电压转换模块的负电流,使目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,可以将目标电压转换模块中第一驱动信号的导通结束点向前偏移第一时长,保持第一驱动信号的导通起始点不变;将目标电压转换模块中第二驱动信号的导通起始点向前偏移第一时长,保持目标电压转换模块的导通结束点不变。
在一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为交错并联式电压转换模块,需要保持第一电压转换模块和目标电压转换模块的驱动信号周期一致,为了实现两个电压转换模块之间的驱动信号周期一致,则需要保持第一驱动信号和第二驱动信号的周期不变。为了实现第一驱动信号和第二驱动信号的周期不变,则需要保持第一驱动信号的关断结束时刻点不变,并将第一驱动信号的关断起始点向前偏移第一时长,以及保持第二驱动信号的关断起始点不变,第二驱动信号的关断结束点向前偏移第一时长。具体地,驱动信号的调整波形图可参见图3所示。其中,实线为原驱动信号波形,虚线为调整后的驱动信号波形。
参见图3,当第一驱动信号的导通结束点向前偏移第一时长,保持第一驱动信号的导通起始点不变,则第一开关Q1的导通时间缩减了第一时长。将目标电压转换模块中第二驱动信号的导通起始点向前偏移第一时长,保持目标电压转换模块的导通结束点不变,则第二开关Q2的导通时间增加了第一时长。由于第一开关Q1的导通时长缩减了第一时长,则第一电感L的储能时间减小第一时长,电感L1的存储电能减少,相应的目标电压转换模块的正电流峰值减小。在Q2的导通时长内,当电感L1存储的电能消耗完毕,第一电容C1存储的电能反相传输至电感L1,由于第二开关Q2的导通时长增加了第一时长,则第一电容C1反相向第一电感L1储能时间延长,电感L1的反相储能时间越长,目标电压转换模块的负电流数值越大,相应的增大了目标电压转换模块的负电流峰值。由于目标电压转换模块的正电流峰值减小,而负电流峰值增大,则目标电压转换模块的平均电流下降, 使其与第一电压转换模块的平均电流相近或者相等。其中,正电流峰值为电压转换装置正电流的最大值,负电流峰值为电压转换装置负电流的最大值。
在另一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为非交错并联式电压转换模块,目标电压转换模块的驱动信号周期可以与第一电压转换模块的驱动信号周期相同,也可以与第一电压转换模块的驱动信号周期不同。当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期相同时,需要保持目标电压转换模块的驱动信号周期不变,此时,保持第一驱动信号的关断结束时刻点不变,并将第一驱动信号的关断起始点向前偏移第一时长,以及保持第二驱动信号的关断起始点不变,第二驱动信号的关断结束点向前偏移第一时长;当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期不同时,目标电压转换模块的驱动信号周期发生变化,此时,可以保持第一驱动信号和第二驱动信号的关断时长不变。
应理解,当目标电压转换模块的驱动信号周期变化时,第一驱动信号和第二驱动信号的调整负电流的原理与目标电压转换模块的驱动信号周期不变时的负电流调整原理相同,只是第一驱动信号和第二驱动信号的周期发生变化,本申请这里不做重复介绍。
采用上述负电流调整方案时,第一时长可以根据目标电压转换模块与第一电压转换模块之间的平均电流之差以及目标电压转换模块的储能参数计算得到。
具体地,在确定目标电压转换模块和第一电压转换模块的平均电流之差和第一电感的电感值的情况下,利用电感电流计算公式,计算在当前电感值下调整平均电流之差所需要的第一时长。
在一种可能的实现方式中,若不确定目标电压转换模块中第一电感的电感值,为了增大目标电压转换模块的负电流,可以采用图4所示的闭环循环调整的方式,具体如下:
步骤401、将前一次发送给目标电压转换模块中的第一驱动信号的导通结束点向前偏移第二时长,保持第一驱动信号的导通起始点不变。
需要说明的是,当第一次调整目标电压转换模块的驱动信号时,前一次发送给目标电压转换模块的第一驱动信号为控制器初次发送的第一驱动信号。
步骤402、将前一次发送给目标电压转换模块中的第二驱动信号的导通起始点向前偏移第二时长,保持第二驱动信号的导通结束点不变。
需要说明的是,当第一次调整目标电压转换模块的驱动信号时,前一次发送给目标电压转换模块的第二驱动信号为控制器初次发送的第二驱动信号。
步骤403、向目标电压转换模块发送调整后的第一驱动信号和第二驱动信号。
步骤404、获取目标电压转换模块的输出电流,计算目标电压转换模块与第一电压转换模块之间的平均电流之差。
步骤405、判断本次计算的目标电压转换模块与第一电压转换模块之间的平均电流之差是否处于预设范围,若是执行步骤406;否则,返回执行步骤401。
实际使用时,步骤401和步骤402可以执行i次,直至满足步骤405的条件。其中,i为自然数。
步骤406、将当前最新的调整后的第一驱动信号和第二驱动信号作为目标电压转换模块的最新驱动信号。
控制器采用图4所示的闭环循环调整的方式调整目标模块的负电流时,可以根据每次调整驱动信号后目标电压转换模块的平均电流,以及目标电压转换模块与第一电压转换模 块之间的平均电流之差,确定是否进行第二次驱动信号调整,直至调整驱动后目标电压转换模块的平均电流与第一电压转换模块的平均电流之差处于预设区间。
需要说明的是,若第一电压转换模块和目标电压转换模块为交错并联式电压转换模块,则第一电压转换模块和目标电压转换模块的驱动信号之间存在固定相位差,在执图4所示的闭环循环调整的方案时,也可以将第一电压转换模块的驱动信号按照固定相位偏差调整后,作为目标电压转换模块的驱动信号进行调整。
应理解,闭环循环调整方案调整负电流的原理与目标电压转换模块的驱动信号周期不变时的负电流的调整原理相同,本申请这里不做重复介绍。
示例二
在示例二中,为了增大目标电压转换模块的负电流,使目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,可以将目标电压转换模块的第二驱动信号的导通结束点向后偏移第三时长,保持第二驱动信号的导通起始点不变。
在一种可能的实现方式中,若目标电压转换模块和第一电压转换模块为交错并联式电压转换模块,则需要保持第一驱动信号和第二驱动信号的周期不变。为了实现第一驱动信号和第二驱动信号的周期不变,则需要将第二驱动信号的关断结束时刻点向后前偏移第一时长。具体地,驱动信号的调整波形图可参见图5所示。其中,实线为原驱动信号波形,虚线为调整后的驱动信号波形。
参见图5,当第二驱动信号的导通结束点向后偏移第三时长,保持第二驱动信号的导通起始点不变,则第二开关Q2的导通时间增加了第三时长。由于第二开关Q2的导通时长延长了第三时长,则第一电容C1反相向第一电感L1储能时间延长,电感L1的反相储能时间越长,目标电压转换模块的负电流数值越大,相应的增大了目标电压转换模块的负电流峰值。由于目标电压转换模块的负电流峰值增大,则目标电压转换模块的平均电流下降,使其与第一电压转换模块的平均电流相近或者相等。
采用上述方案时,由于主要通过调整第二驱动信号实现增加负电流,因此,可以保持第一驱动信号不变。
在另一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为非交错并联式电压转换模块,目标电压转换模块的驱动信号周期可以与第一电压转换模块的驱动信号周期相同,也可以与第一电压转换模块的驱动信号周期不同。当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期相同时,需要保持目标电压转换模块的驱动信号周期不变,此时,将第二驱动信号的关断结束时刻点向后前偏移第一时长;当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期不同时,目标电压转换模块的驱动信号周期发生变化,则可以保持第一驱动信号的关断时长不变。
应理解,当目标电压转换模块的驱动信号周期变化时,通过第二驱动信号调整负电流的原理与目标电压转换模块的驱动信号周期不变时的负电流调整原理相同,只是延长了第二驱动信号的周期,本申请这里不做重复介绍。
示例三
在示例三中,为了增大目标电压转换模块的负电流,使目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,可以将目标电压转换模块的第一驱动信号的导通结束点向前偏移第四时长,保持第一驱动信号的导通起始点不变。
在一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为交错并联式电 压转换模块,需要保持目标电压转换模块与第一电压转换模块的驱动信号周期一致,为了实现两个电压转换模块之间的驱动信号周期一致,则需要保持第一驱动信号和第二驱动信号的周期不变。为了实现第一驱动信号和第二驱动信号的周期不变,则需要保持第一驱动信号的关断结束时刻点不变,并控制第一驱动信号的关断起始点向前偏移第四时长。具体地,驱动信号的调整波形图可参见图6所示。其中,实线为原驱动信号波形,虚线为调整后的驱动信号波形。
参见图6,由于第一驱动信号的导通结束点向前偏移第四时长,保持第一驱动信号的导通起始点不变,则第一开关Q1的导通时长减少了第四时长。由于第一开关Q1的导通时间减小了第四时长,则第一电感L1的储能时间减小第四时长,相应的目标电压转换模块的正电流峰值减小,由于电感L1的储能值减小,第二开关Q2导通时间内消耗电感L1存储电能所需时间减小,在第二开关Q2的导通时长不变的情况下,第一电容C1反相向第一电感L1储能时间的延长,电感L1的反相储能时间越长,目标电压转换模块的负电流数值越大,相应的增大了目标电压转换模块的负电流峰值。由于目标电压转换模块的正电流峰值减小,而负电流峰值增大,则目标电压转换模块的平均电流下降,使其与第一电压转换模块的平均电流相近或者相等。
采用上述方案,主要通过调整第一驱动信号实现增加负电流,因此,可以保持第二驱动信号不变。
在另一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为非交错并联式电压转换模块,目标电压转换模块的驱动信号周期可以与第一电压转换模块的驱动信号周期相同,也可以与第一电压转换模块的驱动信号周期不同。当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期相同时,需要保持目标电压转换模块的驱动信号周期不变,此时,保持第一驱动信号的关断结束时刻点不变,并控制第一驱动信号的关断起始点向前偏移第四时长;当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期不同时,目标电压转换模块的驱动信号周期发生变化,此时,可以保持第一驱动信号的关断时长不变。
应理解,当目标电压转换模块的驱动信号周期变化时,通过第一驱动信号调整负电流的原理与目标电压转换模块的驱动信号周期不变时的负电流调整原理相同,只是减小了第一驱动信号的周期,本申请这里不做重复介绍。
实际使用时,为了加快增大负电流的速度,可以将示例二和示例三的方案进行叠加,即将目标电压转换模块的第二驱动信号的导通结束点向后偏移第三时长,保持第二驱动信号的导通起始点不变,以及将目标电压转换模块的第一驱动信号的导通结束点向前偏移第四时长,保持第一驱动信号的导通起始点不变。具体地,驱动信号的调整波形图可参见图7所示。其中,实线为原驱动信号波形,虚线为调整后的驱动信号波形。
参见图7,目标电压转换模块的第一驱动信号的导通结束点向前偏移第四时长,保持第一驱动信号的导通起始点不变,则第一开关Q1的导通时间减小第四时长,第二驱动信号的导通结束点向后偏移第三时长,保持第二驱动信号的导通起始点不变,则第二开关Q2的导通时间增加第三时长。由于第一开关Q1的导通时长缩减了第一时长,第一电感L的储能时间减小第一时长,则电感L1的存储电能减少,相应的目标电压转换模块的正电流峰值减小。由于第二开关Q2的导通时长增加了第一时长,第一电容C1反相向第一电感L1储能时间延长,电感L1的反相储能时间越长,目标电压转换模块的负电流数值越大, 相应的增大了目标电压转换模块的负电流峰值。由于目标电压转换模块的正电流峰值减小,而负电流峰值增大,则目标电压转换模块的平均电流下降,使其与第一电压转换模块的平均电流相近或者相等。其中,正电流为第一电感L1上从电压转换装置200输入端向电压转换装置200输出端传输的电流,负电流为第一电感L1上从电压转换装置200输出端向电压转换装置200输入端传输的电流。
实施例二、
如前,若目标电压转换模块上的平均电流小于第一电压转换模块的平均电流,为了实现两个电压转换模块之间电流平均,则需要增加目标电压转换模块的平均电流本申请实施例中,控制器203可以通过调整第一驱动信号和/或第二驱动信号的波形,实现减小目标电压转换模块的负电流,增大目标电压转换模块的平均电流。下面以几个具体示例介绍减小目标电压转换模块负电流的几种方式。
示例一
在示例一中,为了减小目标电压转换模块的负电流,使目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,可以将目标电压转换模块中第一驱动信号的导通结束点向后偏移第五时长,并保持第一驱动信号的导通起始点不变;将目标电压转换模块中第二驱动信号的导通起始点向后偏移第五时长,并保持第二驱动信号的导通结束点不变。
在一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为交错并联式电压转换模块,则需要保持目标电压转换模块与第一电压转换模块的驱动信号周期一致,为了实现两个电压转换模块之间的驱动信号周期一致,则需要保持第一驱动信号和第二驱动信号的周期不变。为了实现第一驱动信号和第二驱动信号的周期不变,则需要保持第一驱动信号的关断结束时刻点不变,并将第一驱动信号的关断起始点向后偏移第五时长,以及保持第二驱动信号的关断起始点不变,并将第二驱动信号的关断结束点向后偏移第五时长。具体地,驱动信号的调整波形图可参见图8所示。其中,实线为原驱动信号波形,虚线为调整后的驱动信号波形。
参见图8,第一驱动信号的导通结束点向后偏移第五时长,并保持第一驱动信号的导通起始点不变,则第一开关Q1的导通时间增加了第五时长,第二驱动信号的导通起始点向后偏移第五时长,并保持第二驱动信号的导通结束点不变,则第二开关Q2的导通时间减少了第五时长。由于第一开关Q1的导通时长增加了第五时长,则第一电感L的储能时间增加第五时长,电感L1的存储的电能增大,相应的目标电压转换模块的正电流峰值增大。由于第二开关Q2的导通时长减少第五时长,第一电容C1反相向第一电感L1储能时间减少,电感L1的反相储能越短,目标电压转换模块的负电流数值越小,相应的减小了目标电压转换模块的负电流峰值。由于目标电压转换模块的正电流峰值增大,而负电流峰值减小,则目标电压转换模块的平均电流增大,使其与第一电压转换模块的平均电流相近或者相等。
在另一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为非交错并联式电压转换模块,目标电压转换模块的驱动信号周期可以与第一电压转换模块的驱动信号周期相同,也可以与第一电压转换模块的驱动信号周期不同。当目标电压转换模块得到驱动信号周期与第一电压转换模块的驱动信号周期相同时,需要保持目标电压转换模块的驱动信号周期不变,此时,保持第一驱动信号的关断结束时刻点不变,并将第一驱动信号的 关断起始点向后偏移第五时长,以及保持第二驱动信号的关断起始点不变,并将第二驱动信号的关断结束点向后偏移第五时长;当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期不同时,目标电压转换模块的驱动信号周期发生变化,此时,可以保持第一驱动信号和第二驱动信号的关断时长不变。
应理解,当目标电压转换模块的驱动信号周期发生变化时,第一驱动信号和第二驱动信号调整负电流的原理与目标电压转换模块的驱动信号周期不变时的负电流调整原理相同,只是第一驱动信号的周期增大,第二驱动信号的周期减小,本申请这里不做重复介绍。
采用上述负电流调整方案时,第一时长根据目标电压转换模块与第一电压转换模块之间的平均电流之差以及目标电压转换模块的电感值确定。
具体地,在确定目标电压转换模块和第一电压转换模块的平均电流之差和第一电感的电感值的情况下,利用电感电流计算公式,计算调整该平均电流之差所需要的第五时长。
在一种可能的实现方式中,若不确定目标电压转换模块中第一电感的储能参数,为了减小目标电压转换模块的负电流,可以采用图9所示的闭环循环调整的方式,具体如下:
步骤901、将前一次发送给目标电压转换模块中的第一驱动信号的导通结束点向后偏移第六时长,并保持第一驱动信号的导通起始点不变。
需要说明的是,当第一次调整目标电压转换模块的驱动信号时,前一次发送给目标电压转换模块的第一驱动信号为控制器初次发送的第一驱动信号。
步骤902、将前一次发送给目标电压转换模块中的第二驱动信号的导通起始点向后偏移第六时长,并保持第一驱动信号的导通结束点不变。
需要说明的是,当第一次调整目标电压转换模块的驱动信号时,前一次发送给目标电压转换模块的第二驱动信号为控制器初次发送的第二驱动信号。
步骤903、向目标电压转换模块发送调整后的第一驱动信号和第二驱动信号。
步骤904、获取目标电压转换模块的输出电流,计算目标电压转换模块与第一电压转换模块之间的平均电流之差。
步骤905、判断本次计算的目标电压转换模块与第一电压转换模块之间的平均电流之差是否处于预设范围,若是执行步骤906;否则,返回执行步骤901。
实际使用时,步骤401和步骤402可以执行j次,直至满足步骤405的条件。其中,j为自然数。
步骤906、将当前最新的调整后的第一驱动信号和第二驱动信号作为目标电压转换模块的最新驱动信号。
需要说明的是,若第一电压转换模块和目标电压转换模块为交错并联式电压转换模块,则第一电压转换模块和目标电压转换模块的驱动信号之间存在固定相位差,在执图4所示的闭环循环调整的方案时,也可以将第一电压转换模块的驱动信号按照固定相位偏差调整后,作为目标电压转换模块的驱动信号进行调整。
应理解,闭环循环调整方案调整负电流的原理与目标电压转换模块的驱动信号周期不变时的负电流调整原理相同,本申请这里不做重复介绍。
示例二
在示例二中,为了减小目标电压转换模块的负电流,使目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,可以将第一驱动信号的导通结束点向后偏移第七时长,并保持第一驱动信号的导通起始点不变,调整后的第一驱动信号的导通结束 点与第二驱动信号的导通起始点之间相差第一预设阈值。需要说明的是,为了避免两个开关同时导通,调整后的第一驱动信号的导通结束点与第二驱动信号的导通起始点之间相差第一预设阈值。
在一种可能的实现方式中,若目标电压转换模块和第一电压转换模块为交错并联式电压转换模块,则需要保持第一电压转换模块和目标电压转换模块的驱动信号周期一致,为了实现两个电压转换模块之间的驱动信号周期一致,则需要保持第一驱动信号和第二驱动信号的周期不变。为了实现第一驱动信号和第二驱动信号的周期不变,则需要将第一驱动信号的关断结束时刻点向后前偏移第七时长。具体地,驱动信号的调整波形图可参见图10所示。其中,实线为原驱动信号波形,虚线为调整后的驱动信号波形。
参见图10,当第一驱动信号的导通结束点向后偏移第七时长,保持第一驱动信号的导通起始点不变,则第一开关Q1的导通时间增加了第七时长。由于第二开关Q2的导通时长延长了第七时长,第一电感L1的储能时间增加了第七时长,电感L1上存储值增大,相应的增大了目标电压转换模块的正电流峰值。由于正电流峰值增大,第二开关Q2导通时间内消耗电感L1存储电能所需时间延长,在第二开关Q2的导通时长不变的情况下,第一电容C1反相向第一电感L1储能的时间减少,电感L1的反相存储时间越短,目标电压转换模块的负电流数值越小,相应的减小了目标电压转换模块的负电流峰值。由于目标电压转换模块的正电流峰值增大,负电流峰值减小,则目标电压转换模块的平均电流增大,使其与第一电压转换模块的平均电流相近或者相等。
采用上述方案时,由于主要通过调整第一驱动信号实现增加负电流,因此,可以保持第二驱动信号不变。
在另一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为非交错并联式电压转换模块,目标电压转换模块的驱动信号周期可以与第一电压转换模块的驱动信号周期相同,也可以与第一电压转换模块的驱动信号周期不同。当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期相同时,需要保持目标电压转换模块的驱动信号周期不变,此时,将第一驱动信号的关断结束时刻点向后前偏移第七时长;当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期不同时,目标电压转换模块的驱动信号周期发生变化,可以保持第一驱动信号的关断时长不变。
应理解,当目标电压转换模块的驱动信号周期变化时,通过第一驱动信号调整负电流的原理与目标电压转换模块的驱动信号周期不变时的负电流调整原理相同,只是延长了第一驱动信号的周期,本申请这里不做重复介绍。
示例三
在示例三中,为了减小目标电压转换模块的负电流,使目标电压转换模块的平均电流与第一电压转换模块的平均电流相等或者相近,可以将目标电压转换模块的第二驱动信号的导通结束点向前偏移第八时长,并保持第二驱动信号的导通起始点不变。需要说明的是,为了避免两个开关同时导通,调整后的第二驱动信号的导通起始点与第一驱动信号的导通结束点之间相差第二预设阈值。
在一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为交错并联式电压转换模块,则需要保持目标电压转换模块与第一电压转换模块的驱动信号周期一致,为了实现两个电压转换模块之间的驱动信号周期一致,则需要保持第一驱动信号和第二驱动信号的周期不变。为了实现第一驱动信号和第二驱动信号的周期不变,则需要保持第二驱 动信号的关断结束时刻点不变,并控制第一驱动信号的关断起始点向前偏移第八时长。具体地,驱动信号的调整波形图可参见图11所示。其中,实线为原驱动信号波形,虚线为调整后的驱动信号波形。
参见图11,由于第二驱动信号的导通结束点向前偏移第八时长,保持第二驱动信号的导通起始点不变,则第二开关Q2的导通时长减少了第八时长。由于第二开关Q2的导通时间减少了第八时长,第一电容C1反相向第一电感L1储能时间减少,电感L1的反相存储时间越短,目标电压转换模块的负电流数值越小,相应的减小了目标电压转换模块的负电流峰值。由于目标电压转换模块的正电流峰值不变,而负电流峰值减小,则目标电压转换模块的平均电流增大,使其与第一电压转换模块的平均电流相近或者相等。
采用上述方案,主要通过调整第二驱动信号实现减小负电流,因此,可以保持第一驱动信号不变。
在另一种可能的实现方式中,若第一电压转换模块和目标电压转换模块为非交错并联式电压转换模块,目标电压转换模块的驱动信号周期可以与第一电压转换模块的驱动信号周期相同,也可以与第一电压转换模块的驱动信号周期不同。当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期相同时,需要保持目标电压转换模块的驱动信号周期不变,此时,保持第二驱动信号的关断结束时刻点不变,并控制第一驱动信号的关断起始点向前偏移第八时长;当目标电压转换模块的驱动信号周期与第一电压转换模块的驱动信号周期不同时,目标电压转换模块的驱动信号周期发生变化,此时,可以保持第二驱动信号的关断时长不变。
应理解,当目标电压转换模块的驱动信号周期发生变化时,通过第二驱动信号调整负电流的原理与目标电压转换模块的驱动信号周期不变时的负电流调整原理相同,只是减小了第二驱动信号的周期,本申请这里不做重复介绍。
实际使用时,为了加快减小负电流的速度,可以将示例二和示例三的方案进行叠加,即将目标电压转换模块的第一驱动信号的导通结束点向后偏移第七时长,并保持第一驱动信号的导通起始点不变,以及将目标电压转换模块的第二驱动信号的导通结束点向前偏移第八时长,并保持第二驱动信号的导通起始点不变。具体地,驱动信号的调整波形图可参见图12所示。其中,实线为原驱动信号波形,虚线为调整后的驱动信号波形。
参见图12,目标电压转换模块的第一驱动信号的导通结束点向后偏移第七时长,并保持第一驱动信号的导通起始点不变,则第一开关Q1的导通时间增加第七时长。目标电压转换模块的第二驱动信号的导通结束点向前偏移第八时长,并保持第二驱动信号的导通起始点不变,则第二开关Q2的导通时间减小第八时长。由于第一开关Q1的导通时长增加了第七时长,则第一电感L的储能时间增加第七时长,电感L1的存储电能增大,相应的目标电压转换模块的正电流峰值增大。由于第二开关Q2的导通时长减小了第八时长,则第一电容C1反相向第一电感L1储能时间减小,电感L1的反相储能时间越短,目标电压转换模块的负电流数值越小,相应的减小了目标电压转换模块的负电流峰值。由于目标电压转换模块的正电流峰值增大,而负电流峰值减小,则目标电压转换模块的平均电流上升,使其与第一电压转换模块的平均电流相近或者相等。
基于同一发明构思,本申请实施例还提供了一种电压转换装置的均流方法,该方法应用于电压转换装置上,该电压转换装置中包括多个并联的电压转换模块。应理解,该电压转换装置可以是图2所示的电压转换装置。具体的,参见图13,该方法具体包括以下步骤:
步骤1301、检测每个电压转换模块的电流。具体地,该电压转换模块的电流可以由电压转换装置的监控系统中获取,也可以单独配置检测装置进行获取。
步骤1302、根据每个电压转换模块的电流,计算每个电压转换模块的平均电流。
步骤1303、在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出预设区间时,调整目标电压转换模块的负电流,以使目标电压转换模块与第一电压转换模块之间的平均电流之差处于预设区间。其中,第一电压转换模块是根据每个电压转换模块的电流确定的,目标电压转换模块为多个电压转换模块中除第一电压转换模块外的任意一个电压转换模块。
具体地,根据每个电压转换模块的电流,计算每个电压转换模块的平均电流,并根据每个电压转换模块的平均电流,确定第一电压转换模块。其中,第一电压转换模块可以是多个电压转换模块中输出最小平均电流,也可以是输出最大平均电流的模块,也可以是其它电压转换模块。
具体实施时,调整目标电压转换模块的负电流,包括:调整输出给目标电压转换模块的驱动信号,以调整目标电压转换模块的负电流。
具体地,电压转换模块的结构如图可参见图1所示,本申请这里不做重复介绍。
在一种可能的实现方式中,若目标电压转换模块的平均电流大于第一电压转换模块的平均电流,调整目标电压转换模块的负电流,包括:调整目标电压转换模块的驱动信号,以增大目标电压转换模块的负电流。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:将目标电压转换模块中第一驱动信号的导通结束点向前偏移第一时长,保持第一驱动信号的导通起始点不变;将目标电压转换模块中第二驱动信号的导通起始点向前偏移第一时长,保持目标电压转换模块的导通结束点不变。
在一种可能的实现方式中,第一时长根据目标电压转换模块与第一电压转换模块之间的平均电流之差以及目标电压转换模块的电感值确定。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将前一次发送给目标电压转换模块的第一驱动信号的导通结束点向前偏移i次第二时长,保持第一驱动信号的导通起始点不变;将前一次发送给目标电压转换模块的第二驱动信号的导通起始点向前偏移i次第二时长,保持第二驱动信号的导通结束点不变;其中,i为正整数;将调整后的第一驱动信号和第二驱动信号发送给目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与第一电压转换模块之间的平均电流之差处于预设区间。
其中,当i为1时,前一次发送给目标电压转换模块的第一驱动信号为控制器初次发送的第一驱动信号,前一次发送给目标电压转换模块的第二驱动信号为控制器初次发送的第二驱动信号。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:将目标电压转换模块的第二驱动信号的导通结束点向后偏移第三时长,保持第二驱动信号的导通起始点不变。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:将目标电压转换模块的第一驱动信号的导通结束点向前偏移第四时长,保持第一驱动信号的导通起始点不变。
在一种可能的实现方式中,若目标电压转换模块的平均电流小于第一电压转换模块的平均电流、且第一电压转换模块输出的平均电流小于预设阈值,调整目标电压转换模块的负电流,包括:调整目标电压转换模块的驱动信号,以减小目标电压转换模块的负电流。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:将目标电压转换模块中第一驱动信号的导通结束点向后偏移第五时长,并保持第一驱动信号的导通起始点不变;将目标电压转换模块中第二驱动信号的导通起始点向后偏移第五时长,并保持第二驱动信号的导通结束点不变。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:
将前一次发送给目标电压转换模块的第一驱动信号的导通结束点向后偏移j次第六时长,并保持第一驱动信号的导通起始点不变;将前一次发送给目标电压转换模块的第二驱动信号的导通起始点向后偏移j次第六时长,并保持第一驱动信号的导通结束点不变;j为正整数;将调整后的第一驱动信号和第二驱动信号发送给目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与第一电压转换模块之间的平均电流之差处于预设区间。
其中,当j为1时,前一次发送给目标电压转换模块的第一驱动信号为控制器初次发送的第一驱动信号,前一次发送给目标电压转换模块的第二驱动信号为控制器初次发送的第二驱动信号。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:将目标电压转换模块的第一驱动信号的导通结束点向后偏移第七时长,并保持第一驱动信号的导通起始点不变,调整后的第一驱动信号的导通结束点与第二驱动信号的导通起始点之间相差第一预设阈值。
在一种可能的实现方式中,调整目标电压转换模块的驱动信号,包括:将目标电压转换模块的第二驱动信号的导通结束点向前偏移第八时长,并保持第二驱动信号的导通起始点不变,调整后的第二驱动信号的导通起始点与第一驱动信号的导通结束点之间相差第二预设阈值。
需要说明的是,上述实现方式,若第一电压转换模块和目标电压转换模块为交错并联式电压转换模块,第一驱动信号和第二驱动信号的周期保持不变。
具体地,第一驱动信号和第二驱动信号周期不变时,第一驱动信号和第二驱动信号调整的波形变化图可参见图3-11所示,本申请这里不做重复介绍。
基于以上实施例本申请实施例还提供了一种电压转换装置的均流装置,装置可以应用于如图2所示的电压转换装置中,用于实现上述电压转换装置的均流方法。参阅图14所示,装置1400中包括:通信模块1401、处理器1402,以及存储器1403。
通信模块1401和存储器1403与处理器1402之间相互连接。可选的,通信模块1401和存储器1003与处理器1402之间可以通过总线相互连接;总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信模块1401用于与其他设备通信。示例性的,通信模块1401中可以包含通信接口和无线通信模块。其中,通信接口用于与电压转换装置中的其他部件通信。
处理器1402用于实现如图13所示的实施例提供的电压转换装置的均流方法,具体可 以参见上述实施例中的描述,此处不再赘述。可选的,处理器1402可以是中央处理器(central processing unit,CPU),数字信号处理器(digital signal processor,DSP)或者其他硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器1402在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
存储器1403用于存放程序指令和数据等。示例性的,在本申请实施例中,存储器1403中存储有程序指令和数据。具体地,程序指令可以包括程序代码,该程序代码包括计算机操作的指令。存储器1403可能包含随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器1402执行存储器1403所存放的程序,并通过上述各个部件,实现上述功能,从而最终实现以上实施例提供的电压转换装置均流方法。
可以理解,本申请图14中的存储器1403可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,计算机程序被计算机执行时,使得计算机执行以上实施例提供的电压转换装置的均流方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种具备均流的电压转换装置,其特征在于,包括并联的多个电压转换模块、检测单元和控制器;
    每个所述电压转换模块的一端均与所述电压转换装置的输入端连接,每个所述电压转换模块的另一端均与所述电压转换装置的输出端连接,每个所述电压转换模块用于接收所述控制器发送的驱动信号,并根据所述驱动信号将所述电压转换装置的输入电压转换为第一电压,并对所述电压转换装置的输入电流进行分流;
    所述检测单元用于检测每个所述电压转换模块的电流,并将检测的电流输出给所述控制器;
    所述控制器与每个所述电压转换模块连接,所述控制器用于为每个所述电压转换模块输出驱动信号,并根据所述检测单元检测的电流,在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出所述预设区间时,调整所述目标电压转换模块的负电流;所述第一电压转换模块是根据所述检测单元检测的电流确定的,所述目标电压转换模块为所述多个电压转换模块中除所述第一电压转换模块外的任意一个电压转换模块。
  2. 如权利要求1所述的电压转换装置,其特征在于,每个所述电压转换模块包括:第一电感、第一开关和第二开关;
    所述第一电感的第一端与所述电压转换装置输入端的第一端点连接,所述第一电感的第二端分别与所述第一开关的第一电极和所述第二开关的第二电极连接;
    所述第一开关的第二电极分别与所述电压转换装置输入端的第二端点和所述电压转换装置输出端的第二端点连接;
    所述第二开关的第一电极与所述电压转换装置输出端的第一端点连接;
    所述控制器用于向所述第一开关输出第一驱动信号,以及向所述第二开关输出第二驱动信号,所述第一驱动信号和所述第二驱动信号构成所述电压转换模块的驱动信号。
  3. 如权利要求2所述的电压转换装置,其特征在于,若所述目标电压转换模块的平均电流大于所述第一电压转换模块的平均电流,在确定所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差超出所述预设区间时,控制器用于调整输出给所述目标电压转换模块的驱动信号。
  4. 如权利要求3所述的电压转换装置,其特征在于,所述控制器用于:在确定所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差超出所述预设区间时,将所述目标电压转换模块中第一驱动信号的导通结束点向前偏移第一时长,保持所述第一驱动信号的导通起始点不变;
    将所述目标电压转换模块中第二驱动信号的导通起始点向前偏移所述第一时长,保持所述目标电压转换模块的导通结束点不变。
  5. 如权利要求4所述的电压转换装置,其特征在于,所述第一时长根据所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差以及所述目标电压转换模块的电感值确定。
  6. 如权利要求3所述的电压转换装置,其特征在于,所述控制器在确定所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差超出所述预设区间时,将前一次发送给所述目标电压转换模块的第一驱动信号的导通结束点向前偏移i次第二时长,保持所 述第一驱动信号的导通起始点不变;
    将前一次发送给所述目标电压转换模块的第二驱动信号的导通起始点向前偏移i次所述第二时长,保持所述第二驱动信号的导通结束点不变;其中,i为正整数;
    将调整后的第一驱动信号和第二驱动信号发送给所述目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与所述第一电压转换模块之间的平均电流之差处于所述预设区间;
    其中,当i为1时,所述前一次发送给所述目标电压转换模块的第一驱动信号为所述控制器初次发送的第一驱动信号,所述前一次发送给所述目标电压转换模块的第二驱动信号为所述控制器初次发送的第二驱动信号。
  7. 如权利要求3所述的电压转换装置,其特征在于,所述控制器用于:在确定所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差超出所述预设区间时,将所述目标电压转换模块的第二驱动信号的导通结束点向后偏移第三时长,保持所述第二驱动信号的导通起始点不变。
  8. 如权利要求3或7所述的电压转换装置,其特征在于,所述控制器用于:将所述目标电压转换模块的第一驱动信号的导通结束点向前偏移第四时长,保持所述第一驱动信号的导通起始点不变。
  9. 如权利要求2所述的电压转换装置,其特征在于,若所述目标电压转换模块的平均电流小于所述第一电压转换模块的平均电流、且所述第一电压转换模块输出的平均电流小于预设阈值,当所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差超出所述预设区间时,所述控制器用于调整输出给所述目标电压转换模块的驱动信号,所述预设阈值为所述目标电压转换模块的电流应力。
  10. 如权利要求9所述的电压转换装置,其特征在于,所述控制器用于:在确定所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差超出所述预设区间时,将所述目标电压转换模块中第一驱动信号的导通结束点向后偏移第五时长,并保持所述第一驱动信号的导通起始点不变;
    将所述目标电压转换模块中第二驱动信号的导通起始点向后偏移所述第五时长,并保持所述第二驱动信号的导通结束点不变。
  11. 如权利要求9所述的电压转换装置,其特征在于,所述控制器在确定所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差超出所述预设区间时,将前一次发送给所述目标电压转换模块的第一驱动信号的导通结束点向后偏移j次第六时长,并保持所述第一驱动信号的导通起始点不变;
    将前一次发送给所述目标电压转换模块的第二驱动信号的导通起始点向后偏移j次所述第六时长,并保持所述第一驱动信号的导通结束点不变;j为正整数;
    将调整后的第一驱动信号和第二驱动信号发送给所述目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与第一电压转换模块之间的平均电流之差处于所述预设区间;
    其中,当j为1时,所述前一次发送给所述目标电压转换模块的第一驱动信号为所述控制器初次发送的第一驱动信号,所述前一次发送给所述目标电压转换模块的第二驱动信号为所述控制器初次发送的第二驱动信号。
  12. 如权利要求9所述的电压转换装置,其特征在于,所述控制器用于:在确定所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差超出所述预设区间时,将所述目标电压转换模块的第一驱动信号的导通结束点向后偏移第七时长,并保持所述第一驱动信号的导通起始点不变,调整后的第一驱动信号的导通结束点与所述第二驱动信号的导通起始点之间相差第一预设阈值。
  13. 如权利要求9或12所述的电压转换装置,其特征在于,所述控制器用于:将所述目标电压转换模块的第二驱动信号的导通结束点向前偏移第八时长,并保持所述第二驱动信号的导通起始点不变,调整后的第二驱动信号的导通起始点与所述第一驱动信号的导通结束点之间相差第二预设阈值。
  14. 如权利要求2-13中任一项所述的电压转换装置,其特征在于,若所述第一电压转换模块和所述目标电压转换模块为交错并联式电压转换模块,所述第一驱动信号和所述第二驱动信号的周期保持不变。
  15. 一种电压转换装置的均流方法,其特征在于,应用于电压转换装置中,所述电压转换装置包括多个并联的电压转换模块,所述方法包括:
    检测每个所述电压转换模块的电流;
    根据每个所述电压转换模块的电流,计算每个所述电压转换模块的平均电流;
    在确定目标电压转换模块与第一电压转换模块之间的平均电流之差超出所述预设区间时,调整所述目标电压转换模块的负电流;所述第一电压转换模块是根据每个所述电压转换模块的平均电流确定的,所述目标电压转换模块为所述多个电压转换模块中除所述第一电压转换模块外的任意一个电压转换模块。
  16. 如权利要求15所述的方法,其特征在于,所述调整所述目标电压转换模块的负电流,包括:
    调整输出给所述目标电压转换模块的驱动信号;
    所述每个所述电压转换模块包括第一电感、第一开关和第二开关;
    所述第一电感的第一端与所述电压转换装置输入端的第一端点连接,所述第一电感的第二端分别与所述第一开关的第一电极和所述第二开关的第二电极连接;
    所述第一开关的第二电极分别与所述电压转换装置输入端的第二端点和所述电压转换装置输出端的第二端点连接;
    所述第二开关的第一电极与所述电压转换装置输出端的第一端点连接;
    所述第一开关接收的第一驱动信号和所述第二开关接收的第二驱动信号构成所述电压转换模块的驱动信号。
  17. 如权利要求16所述的方法,其特征在于,若所述目标电压转换模块的平均电流大于所述第一电压转换模块的平均电流,所述调整所述目标电压转换模块的负电流,包括:
    调整所述目标电压转换模块的驱动信号。
  18. 如权利要求17所述的方法,其特征在于,所述调整所述目标电压转换模块的驱动信号,包括:
    将所述目标电压转换模块中第一驱动信号的导通结束点向前偏移第一时长,保持所述第一驱动信号的导通起始点不变;
    将所述目标电压转换模块中第二驱动信号的导通起始点向前偏移所述第一时长,保持所述目标电压转换模块的导通结束点不变。
  19. 如权利要求18所述的方法,其特征在于,所述第一时长根据所述目标电压转换模块与所述第一电压转换模块之间的平均电流之差以及所述目标电压转换模块的电感值确定。
  20. 如权利要求17所述的方法,其特征在于,所述调整所述目标电压转换模块的驱动信号,包括:
    将前一次发送给所述目标电压转换模块的第一驱动信号的导通结束点向前偏移i次第二时长,保持所述第一驱动信号的导通起始点不变;
    将前一次发送给所述目标电压转换模块的第二驱动信号的导通起始点向前偏移i次所述第二时长,保持所述第二驱动信号的导通结束点不变;其中,i为正整数;
    将调整后的第一驱动信号和第二驱动信号发送给所述目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与所述第一电压转换模块之间的平均电流之差处于所述预设区间;
    其中,当i为1时,所述前一次发送给所述目标电压转换模块的第一驱动信号为所述控制器初次发送的第一驱动信号,所述前一次发送给所述目标电压转换模块的第二驱动信号为所述控制器初次发送的第二驱动信号。
  21. 如权利要求17所述的方法,其特征在于,所述调整所述目标电压转换模块的驱动信号,包括:
    将所述目标电压转换模块的第二驱动信号的导通结束点向后偏移第三时长,保持所述第二驱动信号的导通起始点不变。
  22. 如权利要求17所述的方法,其特征在于,所述调整所述目标电压转换模块的驱动信号,包括:
    将所述目标电压转换模块的第一驱动信号的导通结束点向前偏移第四时长,保持所述第一驱动信号的导通起始点不变。
  23. 如权利要求17所述的方法,其特征在于,若所述目标电压转换模块的平均电流小于所述第一电压转换模块的平均电流,所述调整所述目标电压转换模块的负电流,包括:
    调整所述目标电压转换模块的驱动信号。
  24. 如权利要求23所述的方法,其特征在于,所述调整所述目标电压转换模块的驱动信号,包括:
    将所述目标电压转换模块中第一驱动信号的导通结束点向后偏移第五时长,并保持所述第一驱动信号的导通起始点不变;
    将所述目标电压转换模块中第二驱动信号的导通起始点向后偏移所述第五时长,并保持所述第二驱动信号的导通结束点不变。
  25. 如权利要求23所述的方法,其特征在于,所述调整所述目标电压转换模块的驱动信号,包括:
    将前一次发送给所述目标电压转换模块的第一驱动信号的导通结束点向后偏移j次第六时长,并保持所述第一驱动信号的导通起始点不变;
    将前一次发送给所述目标电压转换模块的第二驱动信号的导通起始点向后偏移j次所述第六时长,并保持所述第一驱动信号的导通结束点不变;j为正整数;
    将调整后的第一驱动信号和第二驱动信号发送给所述目标电压转换模块,调整第一驱动信号和第二驱动信号后的目标电压转换模块与第一电压转换模块之间的平均电流之差 处于所述预设区间;
    其中,当j为1时,所述前一次发送给所述目标电压转换模块的第一驱动信号为所述控制器初次发送的第一驱动信号,所述前一次发送给所述目标电压转换模块的第二驱动信号为所述控制器初次发送的第二驱动信号。
  26. 如权利要求23所述的方法,其特征在于,所述调整所述目标电压转换模块的驱动信号,包括:
    将所述目标电压转换模块的第一驱动信号的导通结束点向后偏移第七时长,并保持所述第一驱动信号的导通起始点不变,调整后的第一驱动信号的导通结束点与所述第二驱动信号的导通起始点之间相差第一预设阈值。
  27. 如权利要求23所述的方法,其特征在于,所述调整所述目标电压转换模块的驱动信号,包括:
    将所述目标电压转换模块的第二驱动信号的导通结束点向前偏移第八时长,并保持所述第二驱动信号的导通起始点不变,调整后的第二驱动信号的导通起始点与所述第一驱动信号的导通结束点之间相差第二预设阈值。
  28. 如权利要求16-27中任一项所述的方法,其特征在于,若所述第一电压转换模块和所述目标电压转换模块为交错并联式电压转换模块,所述第一驱动信号和所述第二驱动信号的周期保持不变。
  29. 一种电压转换装置的均流装置,其特征在于,包括:
    存储器,用于存储程序指令;
    通信模块,用于接收和发送数据;
    处理器,用于调用存储在所述存储器中的所述程序指令,执行如权利要求15-28任一项所述的方法。
  30. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行如权利要求15-28任一项所述的方法。
PCT/CN2021/112283 2021-08-12 2021-08-12 一种具备均流的电压转换装置、均流方法、装置和介质 WO2023015523A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099574.7A CN117501607A (zh) 2021-08-12 2021-08-12 一种具备均流的电压转换装置、均流方法、装置和介质
PCT/CN2021/112283 WO2023015523A1 (zh) 2021-08-12 2021-08-12 一种具备均流的电压转换装置、均流方法、装置和介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112283 WO2023015523A1 (zh) 2021-08-12 2021-08-12 一种具备均流的电压转换装置、均流方法、装置和介质

Publications (1)

Publication Number Publication Date
WO2023015523A1 true WO2023015523A1 (zh) 2023-02-16

Family

ID=85199763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112283 WO2023015523A1 (zh) 2021-08-12 2021-08-12 一种具备均流的电压转换装置、均流方法、装置和介质

Country Status (2)

Country Link
CN (1) CN117501607A (zh)
WO (1) WO2023015523A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050185429A1 (en) * 2004-02-24 2005-08-25 Patrizio Vinciarelli Adaptively configured voltage transformation module array
CN104980015A (zh) * 2015-07-03 2015-10-14 哈尔滨工业大学深圳研究生院 输入串联输出并联的dc/dc变换器的电流差控制方法
CN105406719A (zh) * 2015-12-02 2016-03-16 中国电子科技集团公司第四十一研究所 应用于程控直流电源模块并联均流的装置及其均流方法
CN107769556A (zh) * 2017-11-01 2018-03-06 广州金升阳科技有限公司 同步整流boost变换器、同步整流控制电路及方法
CN112511005A (zh) * 2021-02-03 2021-03-16 深圳市正浩创新科技有限公司 双向dc/dc变换器及储能系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050185429A1 (en) * 2004-02-24 2005-08-25 Patrizio Vinciarelli Adaptively configured voltage transformation module array
CN104980015A (zh) * 2015-07-03 2015-10-14 哈尔滨工业大学深圳研究生院 输入串联输出并联的dc/dc变换器的电流差控制方法
CN105406719A (zh) * 2015-12-02 2016-03-16 中国电子科技集团公司第四十一研究所 应用于程控直流电源模块并联均流的装置及其均流方法
CN107769556A (zh) * 2017-11-01 2018-03-06 广州金升阳科技有限公司 同步整流boost变换器、同步整流控制电路及方法
CN112511005A (zh) * 2021-02-03 2021-03-16 深圳市正浩创新科技有限公司 双向dc/dc变换器及储能系统

Also Published As

Publication number Publication date
CN117501607A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US9473017B2 (en) Control circuit, control method used in PFC circuit and power source system thereof
US9438115B2 (en) Power supply system
US9479079B2 (en) Control method for inverter device, and inverter device
US11121634B2 (en) Bidirectional DC-to-DC converter with inrush current suppression
JP6185860B2 (ja) 双方向コンバータ
US10601343B1 (en) Power conversion system with PWM carrier transition smoothing and autotuning
JP6334336B2 (ja) 電力変換装置
JP6065753B2 (ja) Dc/dcコンバータおよびバッテリ充放電装置
US10256744B2 (en) Controller device with adaptive synchronous rectification
JP2021013259A (ja) ゲート駆動装置及び電力変換装置
US20230104049A1 (en) Motor control unit, control method, and power assembly
US20150009732A1 (en) Control unit for an inverter loaded by a resonant load network
WO2023015523A1 (zh) 一种具备均流的电压转换装置、均流方法、装置和介质
US10177685B2 (en) Switching converter with improved power density
JP2004312913A (ja) 降圧型dc−dcコンバータ
CN215682129U (zh) 智能功率模块ipm及家用电器
JP6288202B2 (ja) 定出力電圧を得るための改善されたdc−dc変圧装置
US9917516B2 (en) DC-DC converter with input voltage responsive lookup table control
US11539348B1 (en) Open loop reactance matching circuitry
US20140009989A1 (en) High-efficiency Switching Power converter and method for enhancing switching power conversion efficiency
JP2019129687A (ja) 多相コンバータ
JP2019068526A (ja) コンバータシステム
JP4848856B2 (ja) デジタル・アナログ変換器
CN112398359B (zh) 辅助谐振换流极变换器的控制电路、控制方法
WO2016155651A1 (zh) 一种电池两线放电电路的控制方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953141

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099574.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE