WO2023008247A1 - 積層セラミック電子部品及び積層セラミック電子部品の製造方法 - Google Patents

積層セラミック電子部品及び積層セラミック電子部品の製造方法 Download PDF

Info

Publication number
WO2023008247A1
WO2023008247A1 PCT/JP2022/028001 JP2022028001W WO2023008247A1 WO 2023008247 A1 WO2023008247 A1 WO 2023008247A1 JP 2022028001 W JP2022028001 W JP 2022028001W WO 2023008247 A1 WO2023008247 A1 WO 2023008247A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
multilayer ceramic
electronic component
ceramic electronic
laminate
Prior art date
Application number
PCT/JP2022/028001
Other languages
English (en)
French (fr)
Inventor
大介 濱田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020247002937A priority Critical patent/KR20240023660A/ko
Priority to JP2023538449A priority patent/JPWO2023008247A1/ja
Priority to CN202280046415.5A priority patent/CN117597752A/zh
Publication of WO2023008247A1 publication Critical patent/WO2023008247A1/ja
Priority to US18/404,937 priority patent/US20240145168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a laminated ceramic electronic component and a method for manufacturing the laminated ceramic electronic component.
  • a laminated ceramic capacitor is known as a laminated ceramic electronic component obtained by firing a laminated body having a plurality of ceramic-containing insulator layers and a plurality of internal electrode layers.
  • a laminated ceramic electronic component obtained by firing a laminated body having a plurality of ceramic-containing insulator layers and a plurality of internal electrode layers.
  • Patent Document 1 describes a nickel powder that can prevent the internal electrode layers from being interrupted.
  • Patent Document 1 discloses that it is preferable to use nickel powder containing chromium and magnesium in addition to nickel in order to prevent electrode breakage of the internal electrode layers.
  • a laminate is produced by laminating a plurality of green sheets coated with a conductor paste, which will be internal electrode layers, and fired at the firing temperature of the ceramics forming the green sheets.
  • the sintering temperature of nickel contained in the conductor paste is lower than the firing temperature in the firing process, so nickel tends to be oversintered in the firing process and become spherical.
  • Spherical nickel tends to cause electrode disconnection, and the probability of electrode disconnection is particularly high when nickel particles with a small particle size are used.
  • nickel particles having a large particle size it is possible to prevent electrode breakage due to oversintering to some extent.
  • the thickness of the internal electrode layer cannot be reduced when nickel particles having a large particle size are used, and the demand for thinning the internal electrode layer cannot be met.
  • the present invention has been made to solve the above-described problems, and the multilayer ceramic electronic component capable of preventing the occurrence of electrode discontinuity and thinning the internal electrode layers, and the manufacture of the multilayer ceramic electronic component.
  • the purpose is to provide a method.
  • a laminated ceramic electronic component of the present invention is a laminated ceramic electronic component comprising a laminate having a plurality of ceramic-containing insulator layers and a plurality of internal electrode layers, wherein metal grains constituting the internal electrode layers are has an aspect ratio of 1.8 or more.
  • the metal grains constituting the internal electrode layers of the multilayer ceramic electronic component of the present invention have a flat shape that is thin in the thickness direction of the laminate and elongated in the length and width directions of the laminate. particles.
  • the aspect ratio is used as an indicator of the flat shape of the metal grains.
  • the aspect ratio is calculated as the ratio of the shape of the metal grain (width direction of the laminate/thickness direction of the laminate), and the larger this value, the flatter the particle.
  • a large aspect ratio leads to a small size of the metal grains in the thickness direction, which is preferable from the viewpoint of thinning the internal electrode layers.
  • a large aspect ratio leads to the fact that the metal grains are stretched in the width direction without breaking, and this is preferable from the viewpoint of preventing electrode breakage.
  • the thickness T ( ⁇ m) of the internal electrode layers and the volume V (mm 3 ) of the laminate satisfy the following relational expression (1).
  • a method for manufacturing a laminated ceramic electronic component according to the present invention includes a lamination step of laminating a plurality of ceramic green sheets each having an internal electrode pattern for forming an internal electrode layer to produce a laminated block, and cutting the laminated block. a step of cutting to obtain a plurality of chips; a heat treatment step of passing the chips through a furnace set at a furnace temperature of 1200° C. to 1600° C. for a residence time of 30 seconds or less; On the other hand, it includes a main firing step in which the temperature is raised from 900° C. to the maximum temperature at a rate of temperature increase of 5° C./min or more and main firing is performed.
  • the heat treatment step and the main firing step are performed, the occurrence of electrode discontinuity in the main firing step can be prevented, and a multilayer ceramic electronic component can be obtained in which the internal electrode layers are thinned and the electrode discontinuity is prevented. .
  • the multilayer ceramic electronic component of the present invention and the manufacturing method of the multilayer ceramic electronic component of the present invention, it is possible to prevent the occurrence of electrode discontinuity and reduce the thickness of the internal electrode layers.
  • FIG. 1 is a perspective view schematically showing an example of a laminate constituting a laminated ceramic capacitor, which is an example of the laminated ceramic electronic component of the present invention
  • FIG. 1 is a perspective view schematically showing an example of a laminated ceramic capacitor, which is an example of a laminated ceramic electronic component of the present invention
  • FIG. 1 is a cross-sectional view schematically showing an example of a WT cross section of a multilayer ceramic capacitor
  • FIG. 1 is a cross-sectional view schematically showing an example of an LT cross section of a multilayer ceramic capacitor
  • FIG. It is a SIM observation image of the FIB-processed surface of the multilayer ceramic capacitor. It is an image obtained by image processing on the SIM observation image.
  • FIG. 5 is a graph schematically showing a method of determining the cross-sectional area of a metal grain when the cumulative cross-sectional area of the metal grain reaches 50% of the total area. It is an SEM observation image of a laminated ceramic capacitor. It is an image obtained by image processing for an SEM observation image.
  • FIG. 2 is a diagram showing the relationship between the aspect ratio of metal grains and the thickness of internal electrode layers for multilayer ceramic capacitors manufactured in Examples and Comparative Examples.
  • FIG. 5 is a diagram showing the relationship between the volume of the laminate and the thickness of the internal electrode layers for the multilayer ceramic capacitors manufactured in Examples 3 to 5 and 10; 5 is an SIM observation image of the FIB-processed surface of the multilayer ceramic capacitor produced in Comparative Example 2.
  • FIG. 2 is a diagram showing the relationship between the aspect ratio of metal grains and the thickness of internal electrode layers for multilayer ceramic capacitors manufactured in Examples and Comparative Examples.
  • FIG. 5 is a diagram showing the relationship between the volume of the laminate and the thickness of the internal electrode layers for
  • a laminated ceramic electronic component and a method for producing a laminated ceramic electronic component according to the present invention will be described below with reference to the drawings.
  • the present invention is not limited to the following configurations, and can be appropriately modified and applied without changing the gist of the present invention. It should be noted that a combination of two or more of the individual preferred configurations of the invention described below is also the invention.
  • the laminated ceramic electronic component and the method for manufacturing the laminated ceramic electronic component according to the present invention will be described below using a laminated ceramic capacitor as an example of the laminated ceramic electronic component.
  • a multilayer ceramic capacitor includes a laminate and a plurality of external electrodes provided on part of the surface of the laminate.
  • FIG. 1 is a perspective view schematically showing an example of a laminate constituting a laminated ceramic capacitor, which is an example of the laminated ceramic electronic component of the present invention
  • FIG. 2 is an example of the laminated ceramic electronic component of the present invention.
  • 1 is a perspective view schematically showing an example of a laminated ceramic capacitor;
  • the laminated ceramic capacitor 1 shown in FIG. 2 has external electrodes 110 and 120 provided on a part of the surface of the laminate 10 shown in FIG.
  • the length direction, width direction, and lamination direction are defined by double arrows L, W, and T in the laminate 10 shown in FIG. 1 and the laminated ceramic capacitor 1 shown in FIG. 2, respectively.
  • the length direction, the width direction, and the stacking direction are orthogonal to each other.
  • the lamination direction is the direction in which the plurality of dielectric layers 20 and the plurality of internal electrode layers 30 forming the laminate 10 are stacked.
  • the laminate 10 has a substantially rectangular parallelepiped shape having six surfaces, and includes a first main surface 11 and a second main surface 12 facing each other in the lamination direction, and a first side surface 13 and a second main surface facing each other in the width direction. It has a side surface 14, a first end surface 15 and a second end surface 16 which are longitudinally opposed to each other.
  • the substantially rectangular parallelepiped shape of the laminate includes a rectangular parallelepiped shape with rounded corners and ridge lines, and also includes a shape with unevenness formed on the surface.
  • an external electrode 110 is provided on the first end face 15 of the laminated body 10 and an external electrode 120 is provided on the second end face 16 of the laminated body 10 .
  • the portion where each external electrode is provided is the portion where the internal electrode layer is pulled out from the end surface of the laminate.
  • a dielectric layer is an insulator layer containing ceramic.
  • Dielectric ceramics containing barium titanate, calcium titanate, strontium titanate, barium calcium titanate, calcium zirconate, or the like as a main component can be used as the dielectric material forming the dielectric layer.
  • subcomponents such as Mg compounds, Mn compounds, Si compounds, Al compounds, V compounds, and Ni compounds, which are less in content than the main components, may be added to these main components.
  • the average thickness of the dielectric layers sandwiched between the internal electrode layers is preferably 0.2 ⁇ m or more, and preferably 2 ⁇ m or less.
  • the dielectric layer includes an outer layer portion and an inner layer portion.
  • the outer layers are dielectric layers positioned on both main surface sides of the laminate and positioned between the main surface and the internal electrode closest to the main surface.
  • the area sandwiched between the outer layers is the inner layer.
  • the thickness of the outer layer portion is preferably 5 ⁇ m or more on one side, and preferably 200 ⁇ m or less.
  • the external electrodes provided on the first end surface of the laminate further extend from the first end surface to the first side surface, the second side surface, the first main surface and the second main surface.
  • the external electrodes arranged on the second end surface of the laminate also extend from the second end surface to the first side surface, the second side surface, the first main surface and the second main surface.
  • the external electrode preferably includes a base electrode layer and a plated layer disposed on the base electrode layer.
  • the underlying electrode layer preferably includes at least one layer selected from the group consisting of a baked electrode layer, a resin electrode layer, a thin film layer, and the like.
  • the baked electrode layer contains glass and metal.
  • the glass a BaO--SrO--B 2 O 3 --SiO 2 -based glass frit or the like can be used.
  • the metal preferably contains at least one metal selected from the group consisting of Cu, Ni, Ag, Pd, Ag—Pd alloy, Au, and the like.
  • the baked electrode layer may be provided in a plurality of layers.
  • the thickness (thickest portion) of the baked electrode layer is preferably 5 ⁇ m or more and preferably 150 ⁇ m or less.
  • the resin electrode layer may contain conductive particles and a thermosetting resin. When the resin electrode layer is formed, it may be formed directly on the laminate without forming the baked electrode layer. Moreover, the resin electrode layer may be provided in multiple layers.
  • the thin film layer is a layer having a thickness of 1 ⁇ m or less, which is formed by a thin film formation method such as a sputtering method or a vapor deposition method, and in which metal particles are deposited.
  • the plated layer is preferably a layer containing at least one metal selected from the group consisting of Cu, Ni, Ag, Pd, Ag—Pd alloy, Au, Sn, and the like.
  • the plating layer may be formed of multiple layers. A two-layer structure of a Ni-plated layer and a Sn-plated layer is preferred.
  • the Ni plating layer can suppress erosion of the base electrode layer by solder when mounting the multilayer ceramic capacitor.
  • the Sn plating layer can improve the wettability of solder when mounting the multilayer ceramic capacitor and facilitate mounting.
  • the average thickness of the Ni plating layer is preferably 1 ⁇ m or more, and preferably 15 ⁇ m or less.
  • the average thickness of the Sn plating layer is preferably 1 ⁇ m or more, and preferably 15 ⁇ m or less.
  • the plurality of internal electrode layers includes first internal electrode layers and second internal electrode layers.
  • the internal electrode layers contain metal grains made of, for example, metals such as Ni, Cu, Ag, Pd, and Au, or alloys such as Ag--Pd alloys, Ni--Sn alloys, and Ni alloys.
  • the internal electrode layers may further contain dielectric particles having the same composition as the dielectric ceramic contained in the dielectric layers.
  • the number of laminated internal electrode layers is preferably 3 or more, and preferably 2000 or less.
  • the aspect ratio of the metal grains forming the internal electrode layers is 1.8 or more.
  • a method of measuring and defining the aspect ratio of metal grains will be described.
  • the aspect ratio of metal grains is obtained by the following formula (2).
  • the WT cross section of the multilayer ceramic capacitor "the cross-sectional area of the metal grains when the cross-sectional area reaches 50% of the total cross-sectional area by accumulating from the smaller one". , it is necessary to measure the "average thickness of the internal electrode layers".
  • WT cross section of the multilayer ceramic capacitor corresponds to the BB line cross-sectional view of the multilayer ceramic capacitor 1 shown in FIG. It is a cross section cutting the main surface of.
  • FIG. 3A is a cross-sectional view schematically showing an example of the WT cross section of the laminated ceramic capacitor
  • FIG. 3B is a cross-sectional view schematically showing an example of the LT cross section of the laminated ceramic capacitor.
  • the LT cross section of the laminated ceramic capacitor shown in FIG. 3B corresponds to the AA line sectional view of the laminated ceramic capacitor 1 shown in FIG. 2 is a cross section cutting the main surface of FIG.
  • FIG. 3A shows a first internal electrode layer 35 and a second internal electrode layer 36 as internal electrode layers.
  • FIG. 3B shows a first internal electrode layer 35 and a second internal electrode layer 36 as internal electrode layers.
  • the first internal electrode layer 35 includes a first counter electrode portion facing the second internal electrode layer 36 and an external electrode 110 extending from the first counter electrode portion to the first end surface 15 of the laminate 10 . and a first extraction electrode portion connected to the .
  • the second internal electrode layer 36 includes a second counter electrode portion facing the first internal electrode layer 35 and an external electrode 120 extending from the second counter electrode portion to the second end face 16 of the laminate 10 . and a second extraction electrode portion connected to the .
  • FIG. 3B also shows a baked electrode layer 60, a Ni plating layer 61, and a Sn plating layer 62 as the configurations of the external electrodes 110 and 120. As shown in FIG.
  • the "cross-sectional area of the metal grain when the cross-sectional area reaches 50% of the total cross-sectional area by accumulating the cross-sectional areas from the smallest" necessary for measuring the aspect ratio of the metal grain is measured as follows. First, the laminate or laminated ceramic capacitor is polished so that its WT cross section is exposed to expose the internal electrode layers as shown in FIG. 3A. Further, FIB processing (focused ion beam processing) is performed at an angle of 45° with respect to the exposed surface of the internal electrode layer in the WT cross section. Then, observation is performed with a SIM (scanning ion microscope) from an angle of 90° with respect to the FIB processed surface. Single crystal regions of metal grains can be visualized by SIM observation. FIG.
  • FIG. 5 is an image obtained by image processing on the SIM observation image.
  • the image processing for drawing lines on the boundaries of metal grains can be performed manually by an observer.
  • each region divided by lines is the cross-sectional area of each metal grain, so the area of each region is measured.
  • the area can be measured using image processing software (eg, WinROOF manufactured by Mitani Shoji Co., Ltd.). Then, by accumulating the cross-sectional areas from the smallest one, the cross-sectional area of the metal grain when reaching 50% of the total area is obtained.
  • FIG. 6 is a graph schematically showing a method of obtaining the cross-sectional area of a metal grain when the cumulative cross-sectional area of the metal grain reaches 50% of the total area.
  • the point indicated by the arrow in FIG. 6 is the point where the cumulative cross-sectional area of the metal particles reaches 50% of the total area, and the cross-sectional area of the metal particles at that point is about 0.19 ⁇ m 2 .
  • the "average thickness of the internal electrode layers" required to measure the aspect ratio of the metal grains is measured as follows. First, the laminated body or laminated ceramic capacitor is buried in a polishing resin, and polished so that the WT cross section is exposed (preferably rough cutting with abrasive grains of about #1000 and mirror finishing with fine colloidal silica), and FIG. to expose the internal electrode layers as shown in . This internal electrode layer is observed with a SEM (scanning electron microscope).
  • FIG. 7 is an SEM observation image of a multilayer ceramic capacitor. In this image, the dark gray portion is the dielectric layer, and the light gray band portion is the internal electrode layer.
  • FIG. 8 is an image obtained by image processing of the SEM observation image.
  • the image processing for drawing lines on the boundaries of the internal electrode layers can be performed manually by an observer.
  • the average value of the thicknesses of the regions separated by lines in this image can be obtained as the "average thickness value of the internal electrode layers".
  • the average thickness can be measured using image processing software (eg, WinROOF manufactured by Mitani Shoji Co., Ltd.).
  • the aspect ratio of the metal grain is obtained.
  • the fact that the aspect ratio of the metal grains is 1.8 or more means that the metal grains have a thin thickness and a long length, that is, flat-shaped metal grains.
  • the aspect ratio of the metal particles is preferably 1.9 or more, more preferably 2.3 or more. Also, the aspect ratio of the metal particles is preferably 30 or less.
  • the aspect ratio of the metal grains is measured from the WT cross section of the multilayer ceramic electronic component, it can be said that the aspect ratio is the ratio of the length in the W direction/the length in the T direction of the metal grains.
  • the aspect ratio when the aspect ratio of the metal grain is similarly measured in the LT cross section can be said to be the ratio of the length in the L direction/the length in the T direction of the metal grain, and this aspect ratio is also 1.8. It is preferable that it is above.
  • both the aspect ratio measured by the LT cross section and the aspect ratio measured by the WT cross section are 1.8 or more, it can be said that the metal grain has a three-dimensionally flat (flat plate shape) shape.
  • the multilayer ceramic electronic component of the present invention by setting the aspect ratio of the metal grains constituting the internal electrode layers to 1.8 or more, it is possible to prevent the occurrence of electrode discontinuity and reduce the thickness of the internal electrode layers.
  • the thickness of the layer is preferably 0.15 ⁇ m or more and 0.80 ⁇ m or less, more preferably 0.20 ⁇ m or more and 0.50 ⁇ m or less.
  • the coverage is an index indicating the ratio of the area where the internal electrode layers are actually present to the area where the internal electrode layers are to be formed, and the higher this index is, the less electrode discontinuity occurs. Therefore, high coverage is preferred.
  • the coverage is preferably 80% or more, more preferably 84% or more, even more preferably 88% or more.
  • the coverage is defined by the length of the portion where the internal electrode layers are connected in the direction parallel to the W direction and the length of the portion where the internal electrode layers It can be obtained by the following formula (3) from the length of the cut portion.
  • a laminate that constitutes a multilayer ceramic electronic component can have thin internal electrode layers while maintaining high coverage.
  • the coverage can be 80% or more and the thickness of the internal electrode layer can be 0.80 ⁇ m or less. Therefore, it is possible to reduce the thickness of the entire laminate by increasing the coverage to 80% or more.
  • the preferred thickness of the internal electrode layer varies depending on the number of green sheets (internal electrode layers) laminated in the laminate, it is preferably 0.35 ⁇ m or less when the number of laminates is 270, and 0 when the number of laminates is 540. 0.47 ⁇ m or less is preferred.
  • the laminate includes a side portion (W gap) of the laminate positioned between the first and second counter electrode portions and the side surface, and a laminate portion positioned between the first and second counter electrode portions and the end face. , end portions (L gaps) of the laminate including lead electrode portions of the first and second internal electrodes.
  • the average length of the L gap in the L direction is preferably 20 ⁇ m or more, and preferably 120 ⁇ m or less.
  • the average length of the W gap in the W direction is preferably 5 ⁇ m or more, and preferably 100 ⁇ m or less.
  • the thickness T ( ⁇ m) of the internal electrode layers and the volume V (mm 3 ) of the laminate satisfy the following relational expression (1).
  • the thickness T of the internal electrode layers and the volume V of the laminate preferably satisfy the following relational expression (4), and more preferably satisfy the following relational expression (5).
  • the multilayer ceramic capacitor 1 shown in FIG. 2 is a two-terminal capacitor in which external electrodes are provided on both end surfaces of the multilayer body. Any laminated ceramic capacitor may be used, and the capacitor is not limited to a two-terminal capacitor. For example, a three-terminal capacitor in which external electrodes are provided on the end surfaces and side surfaces of the laminate, or a capacitor in which external electrodes are provided only on the side surfaces of the laminate may be used.
  • a ceramic green is formed by applying a ceramic slurry, which is a mixture of a dielectric layer ceramic, an organic substance, a solvent, etc., onto a carrier film such as a PET film in the form of a sheet by a method such as spray coating, die coating, or screen printing. get a sheet.
  • a conductive paste for forming internal electrode layers is prepared, which is composed of metal particles such as Ni powder, a solvent, a dispersant, a binder, and the like.
  • a conductive paste for forming internal electrode layers is printed on the ceramic green sheets by a method such as screen printing or gravure printing to form internal electrode patterns.
  • green sheets with internal electrode patterns formed thereon are prepared.
  • a laminated sheet is obtained by laminating a plurality of ceramic green sheets having internal electrode patterns formed thereon.
  • a laminated block is obtained by pressurizing the laminated sheet by a rigid press, a hydrostatic press, or the like (lamination step).
  • a plurality of chips are obtained by dividing the laminated block by press-cutting, dicing, or the like (cutting step).
  • a degreasing process is performed on this chip.
  • treatment is performed at a maximum temperature of 300° C. or less.
  • Tar is removed by the degreasing process.
  • the degreasing step is preferably performed in a nitrogen atmosphere.
  • a heat treatment process is performed on the chips that have undergone the degreasing process.
  • the chips are passed through a furnace set at a temperature of 1200° C. to 1600° C. for a residence time of 30 seconds or less.
  • a firing step main firing step
  • the chip that has undergone the heat treatment step is heated from 900° C. to the maximum temperature at a rate of 5° C./min or more, preferably 10° C./min or more, and main sintering is performed. It is preferable that the heating rate is 50° C./min or higher. Thereby, the internal electrodes or the dielectric layers are respectively fired.
  • the residence time is preferably 30 seconds or less, but may be 30 minutes.
  • the maximum temperature is preferably 1150° C. or higher and 1300° C. or lower, for example.
  • the holding time at the highest temperature is preferably 50 seconds or more and 200 seconds or less.
  • a conductive paste which will become external electrodes, is applied to the laminate by, for example, an immersion method.
  • the conductive paste becomes a baked electrode layer which is a part of the external electrode.
  • a plated layer is formed on the baked electrode layer by plating.
  • Example 1 A polyvinyl butyral-based binder, a plasticizer, and ethanol as an organic solvent were added to BaTiO 3 as a ceramic raw material, and these were wet-mixed by a ball mill to prepare a ceramic slurry. Next, this ceramic slurry was formed into a sheet by a lip method to obtain a rectangular ceramic green sheet. Next, a conductive paste containing Ni was screen-printed on the ceramic green sheets to form internal electrode patterns containing Ni as a main component. The coating thickness of the conductive paste was 0.20 ⁇ m. The thickness of the ceramic green sheet was such that the thickness of the dielectric layer in the finished product was 0.59 ⁇ m.
  • a mother block was obtained by laminating a plurality of ceramic green sheets on which internal electrode patterns were formed while shifting them in the width direction, and laminating ceramic green sheets on which no internal electrode patterns were printed.
  • the obtained mother block was pressed in the stacking direction by a hydrostatic press.
  • the number of lamination was 270 layers.
  • a raw ceramic protective layer was formed by attaching a ceramic protective layer green sheet to one cut side surface of the green chip.
  • the composition of the ceramic protective layer green sheet is the same as the composition of the ceramic green sheet.
  • a raw ceramic protective layer was formed in the same manner as above on the other cut side surface of the green chip. This gave a raw part body.
  • the obtained multilayer ceramic capacitor is 0603 size (0.6 mm ⁇ 0.3 mm).
  • Examples 2-8 A multilayer ceramic capacitor was produced in the same manner as in Example 1, except that each condition was changed from Example 1 as shown in Tables 1 and 2.
  • Example 1 The coating thickness of the conductive paste was changed to 0.30 ⁇ m, the heat treatment process was changed to a degreasing process at 800° C., and the main firing process was performed in the same manner as in Example 1 to fabricate a multilayer ceramic capacitor.
  • Example 2 A multilayer ceramic capacitor was produced in the same manner as in Example 1, except that the heat treatment step was not performed.
  • the multilayer ceramic capacitors of the examples in which the aspect ratio of the metal grains is 1.8 or more have a high coverage of 79% or more, and the thickness of the internal electrode layer is And it can be seen that the thickness of the laminate can be reduced.
  • the aspect ratio of the metal particles is 1.7.
  • the coverage can be increased to 85% by increasing the coating thickness of the conductive paste, the thickness of the internal electrode layers and the thickness of the laminate are increased.
  • the aspect ratio of the metal grains was 1.6, the coverage was as low as 70%, and the thickness of the internal electrode layer was also thick.
  • Example 10 A laminated ceramic capacitor was produced in the same manner as in Example 9.
  • Example 3 The coating thickness of the conductive paste was changed to 0.32 ⁇ m, the number of layers was changed to 492, the heat treatment process was changed to a degreasing process at 850° C., and the main firing process was performed in the same manner as in Example 9. A multilayer ceramic capacitor was produced.
  • the multilayer ceramic capacitors of Examples 9 and 10 in which the aspect ratio of the metal grains is 1.8 or more, both have a high coverage of 80% or more, and the internal electrode layers It can be seen that the thickness and the thickness of the laminate can be reduced.
  • the aspect ratio of the metal particles is 1.6.
  • the coverage can be increased to 80% or more by increasing the coating thickness of the conductive paste, the thickness of the internal electrode layer is increased.
  • the reason why the thickness of the laminate is the same as in Examples 9 and 10 is that the number of laminated layers is reduced in order to obtain a 1005 size laminated ceramic capacitor. Since the number of layers is small, it is considered that the capacitance becomes small.
  • the aspect ratio of the metal grains is 1.6, the coverage is as low as 71%, and the thickness of the internal electrode layer is also thick.
  • FIG. 9 is a diagram showing the relationship between the aspect ratio of metal grains and the thickness of internal electrode layers for multilayer ceramic capacitors manufactured in Examples and Comparative Examples. Examples 4 and 5, in which the aspect ratio of metal grains is large, are excluded from the plot. From this figure, it can be seen that when the aspect ratio of the metal grains is 1.8 or more, the thickness of the internal electrode layer is reduced when comparing multilayer ceramic capacitors of the same size.
  • FIG. 10 is a diagram showing the relationship between the volume of the laminate and the thickness of the internal electrode layers for the multilayer ceramic capacitors manufactured in Examples 3 to 5 and 10.
  • FIG. 10 From Examples 3 and 10, expressions within preferable ranges are derived for the volume V (mm 3 ) of the laminate and the thickness T ( ⁇ m) of the internal electrode layers.
  • This formula is the following relational formula (1) described in the specification. T ⁇ 0.0552 ⁇ lnV+0.5239 (1)
  • This formula (1) is a formula showing the upper limit of the preferable range of the thickness T of the internal electrode layer with respect to the volume V of the laminate.
  • the following Relational Equation (5) is obtained.
  • This formula (5) is a formula showing the lower limit value of the preferable range of the thickness T of the internal electrode layer with respect to the volume V of the laminate. Plots corresponding to each example are located in the area sandwiched between the lines of equations (1) and (5).
  • FIG. 11 is an SIM observation image of the FIB-processed surface of the multilayer ceramic capacitor produced in Comparative Example 2.
  • FIG. 4 shown above is an SIM observation image of the FIB-processed surface of the multilayer ceramic capacitor produced in Example 1.
  • FIG. Comparing these two images it can be understood that the multilayer ceramic capacitor produced in Example 1 has thin internal electrode layers. The thinness of the internal electrode layers is related to the large aspect ratio of the metal grains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

電極途切れの発生を防止して、内部電極層を薄層化することができる積層セラミック電子部品を提供する。積層セラミック電子部品は、セラミックを含有する複数の絶縁体層と複数の内部電極層とを有する積層体を備える積層セラミック電子部品であって、上記内部電極層を構成する金属粒のアスペクト比が1.8以上である。この積層セラミック電子部品によれば、電極途切れの発生を防止して、内部電極層を薄層化することができる。

Description

積層セラミック電子部品及び積層セラミック電子部品の製造方法
 本発明は、積層セラミック電子部品及び積層セラミック電子部品の製造方法に関する。
 セラミックを含有する複数の絶縁体層と複数の内部電極層とを有する積層体を焼成して得られる積層セラミック電子部品として、積層セラミックコンデンサが知られている。積層セラミックコンデンサでは、小型大容量化の要求が大きく、グリーンシート及び内部電極層の薄層化、多層化が進んでいる。
 内部電極層の薄層化が進むと、内部電極層が途切れてしまうことがあるが、特許文献1には、内部電極層の電極途切れを防止しうるニッケル粉末について記載されている。
特開2010-59467号公報
 特許文献1では、内部電極層の電極途切れを防止するために、ニッケルに加えてクロム及びマグネシウムを含有させたニッケル粉末を使用することが好ましいことが開示されている。
 積層セラミックコンデンサの製造工程においては、内部電極層となる導体ペーストを塗布したグリーンシートを複数枚積層して積層体を作製し、グリーンシートを構成するセラミックの焼成温度での焼成を行う。
 焼成の際に、導体ペーストに含まれるニッケルの焼結温度が焼成工程における焼成温度より低いので、焼成工程においてニッケルが過焼結となり、球形化しようとする傾向がある。ニッケルが球形化してしまうと電極途切れが生じやすく、とくに粒径の小さいニッケル粒子を使用した場合に電極途切れの発生確率が高くなっていた。
 一方、粒径の大きいニッケル粒子を使用した場合、過焼結による電極途切れの発生をある程度防止することができる。しかし、粒径の大きなニッケル粒子を使用すると内部電極層の厚さを薄くできないという問題があり、内部電極層の薄層化の要請に応えることができない。
 特許文献1に記載のニッケル粉末を使用したとしても、上記のような理由による過焼結、球形化に起因する電極途切れの発生を充分に防止して内部電極層の薄層化の要請に応えることは難しかった。
 本発明は、上記の課題を解決するためになされたものであり、電極途切れの発生を防止して、内部電極層を薄層化することができる積層セラミック電子部品及び該積層セラミック電子部品の製造方法を提供することを目的とする。
 本発明者らは、電極途切れの発生を防止し、かつ、内部電極層を薄層化することのできる手段について検討したところ、内部電極層を構成する金属粒の形状を扁平形状にすることが有効であることを見出し、本発明に想到した。
 すなわち、本発明の積層セラミック電子部品は、セラミックを含有する複数の絶縁体層と複数の内部電極層とを有する積層体を備える積層セラミック電子部品であって、上記内部電極層を構成する金属粒のアスペクト比が1.8以上である。
 本発明の積層セラミック電子部品の内部電極層を構成する金属粒は、その形状が積層体の厚さ方向に対して薄く、積層体の長さ方向及び幅方向に対して伸びている扁平形状の粒子となっている。金属粒が扁平形状になっていることの指標としてアスペクト比を用いる。
 アスペクト比は、金属粒の形状の(積層体の幅方向/積層体の厚さ方向)の比として算出され、この値が大きいほど扁平な形状の粒子であることを意味している。アスペクト比が大きいということは、金属粒の厚さ方向の寸法が小さいことに繋がり、これは内部電極層の薄層化の観点から好ましい。また、アスペクト比が大きいということは金属粒が切れることなく幅方向に伸びていることにつながり、これは電極途切れの発生を防止する観点から好ましい。
 本発明の積層セラミック電子部品においては、上記内部電極層の厚さT(μm)と上記積層体の体積V(mm)が下記関係式(1)を満たすことが好ましい。
T≦0.0552×lnV+0.5239  (1)
この関係式が満たされるとき、積層体の体積に対して内部電極層の厚さが薄い積層セラミック電子部品が得られていることを意味している。
 本発明の積層セラミック電子部品の製造方法は、内部電極層形成用の内部電極パターンが形成されたセラミックグリーンシートを複数枚積層して積層ブロックを作製する積層工程と、前記積層ブロックを切断して複数のチップを得る切断工程と、前記チップを、炉内温度が1200℃~1600℃の温度に設定された炉体内に30秒以下の滞留時間で通過させる熱処理工程と、熱処理工程を経たチップに対し、900℃~最高温度まで5℃/min以上の昇温速度で昇温して本焼成を行う本焼成工程と、を含む。
 上記工程では、熱処理工程と本焼成工程を行うと、本焼成工程における電極途切れの発生が防止され、内部電極層が薄層化されて電極途切れが防止された積層セラミック電子部品を得ることができる。
 本発明の積層セラミック電子部品及び本発明の積層セラミック電子部品の製造方法によると、電極途切れの発生を防止して、内部電極層を薄層化することができる。
本発明の積層セラミック電子部品の一例である積層セラミックコンデンサを構成する積層体の一例を模式的に示す斜視図である。 本発明の積層セラミック電子部品の一例である積層セラミックコンデンサの一例を模式的に示す斜視図である。 積層セラミックコンデンサのWT断面の一例を模式的に示す断面図である。 積層セラミックコンデンサのLT断面の一例を模式的に示す断面図である。 積層セラミックコンデンサのFIB加工面に対するSIM観察画像である。 SIM観察画像に対する画像処理により得られた画像である。 金属粒の断面積を累積して全面積の50%に到達したときの金属粒の断面積を求める方法を模式的に示すグラフである。 積層セラミックコンデンサのSEM観察画像である。 SEM観察画像に対する画像処理により得られた画像である。 実施例及び比較例で製造した積層セラミックコンデンサについて、金属粒のアスペクト比と内部電極層の厚さの関係を示した図である。 実施例3~5及10で製造した積層セラミックコンデンサについて、積層体の体積と内部電極層の厚さの関係を示した図である。 比較例2で作製した積層セラミックコンデンサのFIB加工面に対するSIM観察画像である。
 以下、図面を参照して、本発明の積層セラミック電子部品及び積層セラミック電子部品の製造方法について説明する。しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
 以下、積層セラミック電子部品として積層セラミックコンデンサを例にして本発明の積層体セラミック電子部品及び積層セラミック電子部品の製造方法について説明する。
 積層セラミックコンデンサは、積層体と、積層体の表面の一部に設けられた複数の外部電極とを備える。図1は、本発明の積層セラミック電子部品の一例である積層セラミックコンデンサを構成する積層体の一例を模式的に示す斜視図であり、図2は、本発明の積層セラミック電子部品の一例である積層セラミックコンデンサの一例を模式的に示す斜視図である。図2に示す積層セラミックコンデンサ1は、図1に示す積層体10の表面の一部に外部電極110、外部電極120を設けてなる。
 積層セラミックコンデンサ及び積層体では、長さ方向、幅方向、積層方向を、図1に示す積層体10及び図2に示す積層セラミックコンデンサ1においてそれぞれ両矢印L、W、Tで定める方向とする。ここで、長さ方向と幅方向と積層方向とは互いに直交する。積層方向は、積層体10を構成する複数の誘電体層20と複数の内部電極層30が積み上げられていく方向である。
 積層体10は、6面を有する略直方体状であり、積層方向に互いに相対する第1の主面11及び第2の主面12、幅方向に互いに相対する第1の側面13及び第2の側面14、長さ方向に互いに相対する第1の端面15及び第2の端面16を有する。積層体の略直方体形状は、直方体の角や稜線が丸められた形状を含み、また、表面に凹凸が形成された形状も含む。
 図2に示す積層セラミックコンデンサ1では、積層体10の第1の端面15に外部電極110が設けられ、積層体10の第2の端面16に外部電極120が設けられてなる。各外部電極が設けられている部分は、積層体の端面から内部電極層が引き出されている部分である。
 誘電体層は、セラミックを含有する絶縁体層である。誘電体層を構成する誘電体材料としては、例えば、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムカルシウム、またはジルコン酸カルシウムなどの主成分を含む誘電体セラミックを用いることができる。また、これらの主成分にMg化合物、Mn化合物、Si化合物、Al化合物、V化合物、Ni化合物などの主成分よりも含有量の少ない副成分を添加したものを用いてもよい。
 内部電極層に挟まれた誘電体層の平均厚みは0.2μm以上であることが好ましく、2μm以下であることが好ましい。
 誘電体層は、外層部と内層部を含む。外層部は、積層体の両主面側に位置し、主面と最も主面に近い内部電極との間に位置する誘電体層である。両外層部に挟まれた領域が内層部である。外層部の厚みは、片側5μm以上であることが好ましく、200μm以下であることが好ましい。
 積層体の第1の端面に設けられる外部電極は、さらに、第1の端面から第1の側面、第2の側面、第1の主面および第2の主面に延びている。積層体の第2の端面に配置される外部電極も、さらに、第2の端面から第1の側面、第2の側面、第1の主面および第2の主面に延びている。
 外部電極は、下地電極層と、下地電極層上に配置されためっき層とを含むことが好ましい。そして、下地電極層は、焼付け電極層、樹脂電極層、薄膜層等からなる群から選ばれる少なくとも1つの層を含むことが好ましい。
 焼付け電極層は、ガラスと金属とを含む。ガラスとしては、BaO-SrO-B-SiO系ガラスフリット等を使用することができる。金属としては、例えば、Cu、Ni、Ag、Pd、Ag-Pd合金及びAu等からなる群から選ばれる少なくとも1つの金属を含むことが好ましい。また、焼付け電極層は、複数層設けられていてもよい。
 焼付け電極層の厚み(最も厚い部分)は、5μm以上であることが好ましく、150μm以下であることが好ましい。
 樹脂電極層は、導電性粒子と熱硬化性樹脂を含んでもよい。樹脂電極層を形成する場合は、焼付け電極層を形成せずに積層体上に直接形成してもよい。また、樹脂電極層は、複数層設けられていてもよい。
 薄膜層は、スパッタ法または蒸着法等の薄膜形成法により形成され、金属粒子が堆積された厚み1μm以下の層である。
 めっき層としては、例えば、Cu、Ni、Ag、Pd、Ag-Pd合金、Au、Sn等からなる群から選ばれる少なくとも1つの金属を含む層であることが好ましい。
 めっき層は複数層により形成されていてもよい。好ましくは、Niめっき層、Snめっき層の2層構造である。Niめっき層は、下地電極層が積層セラミックコンデンサを実装する際のはんだによって侵食されることを抑制することができる。Snめっき層は、積層セラミックコンデンサを実装する際のはんだの濡れ性を向上させ、実装を容易にすることができる。
 Niめっき層の平均厚みは、1μm以上であることが好ましく、15μm以下であることが好ましい。Snめっき層の平均厚みは、1μm以上であることが好ましく、15μm以下であることが好ましい。
 複数の内部電極層は、第1の内部電極層と第2の内部電極層を含む。
 内部電極層は、例えば、Ni、Cu、Ag、Pd、Auなどの金属、またはAg-Pd合金、Ni-Sn合金、Ni合金などの合金、からなる金属粒を含有している。内部電極層は、さらに誘電体層に含まれる誘電体セラミックと同一組成系の誘電体粒子を含んでいても良い。内部電極層の積層枚数は、3枚以上であることが好ましく、2000枚以下であることが好ましい。
 本発明の積層セラミック電子部品では、内部電極層を構成する金属粒のアスペクト比が1.8以上である。金属粒のアスペクト比の測定方法及び定義について説明する。
 金属粒のアスペクト比は、下記式(2)によって求められる。
Figure JPOXMLDOC01-appb-M000001
上記式により金属粒のアスペクト比を求めるためには、積層セラミックコンデンサのWT断面から、「断面積を小さい方から累積して全断面積の50%に到達したときの金属粒の断面積」と、「内部電極層の厚さ平均値」を測定する必要がある。以下にこれらの測定方法について説明する。
 なお、積層セラミックコンデンサのWT断面とは、図2に示す積層セラミックコンデンサ1のB-B線断面図にあたり、積層セラミックコンデンサの第1の側面、第2の側面、第1の主面及び第2の主面を切断する断面である。
 図3Aは、積層セラミックコンデンサのWT断面の一例を模式的に示す断面図であり、図3Bは、積層セラミックコンデンサのLT断面の一例を模式的に示す断面図である。図3Bに示す積層セラミックコンデンサのLT断面は、図2に示す積層セラミックコンデンサ1のA-A線断面図にあたり、積層セラミックコンデンサの第1の端面、第2の端面、第1の主面及び第2の主面を切断する断面である。
 図3Aには、内部電極層として第1の内部電極層35及び第2の内部電極層36を示している。
 図3Bには、内部電極層として第1の内部電極層35及び第2の内部電極層36を示している。第1の内部電極層35は、第2の内部電極層36と対向する第1の対向電極部と、第1の対向電極部から積層体10の第1の端面15に引き出され、外部電極110と接続される第1の引出電極部を備えている。
 第2の内部電極層36は、第1の内部電極層35と対向する第2の対向電極部と、第2の対向電極部から積層体10の第2の端面16に引き出され、外部電極120と接続される第2の引出電極部を備えている。
 なお、図3Bには、外部電極110及び外部電極120の構成として、焼付け電極層60、Niめっき層61及びSnめっき層62も示している。
 金属粒のアスペクト比を測定するために必要な、「断面積を小さい方から累積して全断面積の50%に到達したときの金属粒の断面積」は以下のように測定する。
 まず、積層体又は積層セラミックコンデンサをそのWT断面が露出するように研磨して、図3Aに示すような内部電極層を露出させる。
 さらに、WT断面に内部電極層が露出した面に対して45°の角度でFIB加工(集束イオンビーム加工)を行う。そして、FIB加工面に対して90°の角度からSIM(走査型イオン顕微鏡)での観察を行う。SIM観察により金属粒の単結晶領域の可視化を行うことができる。
 図4は、積層セラミックコンデンサのFIB加工面に対するSIM観察画像である。この画像は、後述する実施例1で作製した積層セラミックコンデンサのFIB加工面に対するSIM観察画像でもある。この画像において均一な黒色(灰色)になっている部分が誘電体層であり、薄い灰色~黒までの帯になっている部分が内部電極層である。SIM観察画像においては、金属粒が多結晶となっていてその結晶の向きが異なることに起因して内部電極層を構成する各金属粒の色が異なって見える。
 このようにして得られたSIM観察画像に対して画像処理を行い、金属粒の境界に線を引く。図5は、SIM観察画像に対する画像処理により得られた画像である。金属粒の境界に線を引く画像処理は観察者がマニュアル操作により行うことができる。
 この画像において線で区切られた各領域が各金属粒の断面積となるので、各領域の面積を測定する。面積の測定は画像処理ソフト(例えば、三谷商事株式会社製WinROOF等)を用いて行うことができる。
 そして、断面積を小さい方から累積して、全面積の50%に到達したときの金属粒の断面積を求める。図6は、金属粒の断面積を累積して全面積の50%に到達したときの金属粒の断面積を求める方法を模式的に示すグラフである。図6中に矢印で示した箇所が、金属粒の断面積を累積して全面積の50%に到達した点であり、その点における金属粒の断面積は約0.19μmである。
 次に、金属粒のアスペクト比を測定するために必要な、「内部電極層の厚さ平均値」は以下のように測定する。
 まず、積層体又は積層セラミックコンデンサを研磨用樹脂に埋めて、そのWT断面が露出するように研磨(#1000程度の砥粒による粗削り及び微粒のコロイダルシリカによる鏡面仕上げが好ましい)して、図3Aに示すような内部電極層を露出させる。
 この内部電極層に対してSEM(走査型電子顕微鏡)での観察を行う。図7は、積層セラミックコンデンサのSEM観察画像である。この画像において濃い灰色になっている部分が誘電体層であり、薄い灰色の帯になっている部分が内部電極層である。
 このようにして得られたSEM観察画像に対して画像処理を行い、内部電極層の境界に線を引く。図8は、SEM観察画像に対する画像処理により得られた画像である。内部電極層の境界に線を引く画像処理は観察者がマニュアル操作により行うことができる。
 この画像において線で区切られた領域の厚さの平均値を「内部電極層の厚さ平均値」として求めることができる。厚さの平均値の測定は画像処理ソフト(例えば、三谷商事株式会社製WinROOF等)を用いて行うことができる。
 そして、上記式(2)に「内部電極層の厚さ平均値(μm)」「断面積を小さい方から累積して全断面積の50%に到達したときの金属粒の断面積(μm)」を代入することにより、金属粒のアスペクト比が得られる。
 この値は、金属粒の「面積/厚さ×厚さ」に相当し、「面積/厚さ×厚さ」=(長さ×厚さ/厚さ×厚さ)=長さ/厚さ と読み替えることができるので、金属粒の長さと厚さの比を表している。
 金属粒のアスペクト比が1.8以上であるということは、厚さが薄く長さが長い、すなわち扁平形状の金属粒であることを意味している。また、金属粒のアスペクト比は1.9以上であることが好ましく、2.3以上であることがより好ましい。また、金属粒のアスペクト比は30以下であることが好ましい。
 金属粒のアスペクト比は、積層セラミック電子部品のWT断面から測定されるので、アスペクト比は金属粒のW方向の長さ/T方向の長さの比であるともいえる。
 ちなみに、LT断面で同様に金属粒のアスペクト比を測定した場合のアスペクト比は、金属粒のL方向の長さ/T方向の長さの比であるともいえるが、このアスペクト比も1.8以上であることが好ましい。
 LT断面で測定されるアスペクト比とWT断面で測定されるアスペクト比がともに1.8以上であると、3次元的に扁平(平板状ともいえる)な形状の金属粒であるといえる。
 本発明の積層セラミック電子部品では、内部電極層を構成する金属粒のアスペクト比を1.8以上とすることによって電極途切れの発生を防止して内部電極層を薄くすることができるが、内部電極層の厚さとしては、0.15μm以上、0.80μm以下とすることが好ましく、0.20μm以上、0.50μm以下とすることがより好ましい。
 また、積層セラミック電子部品における電極途切れの発生の程度を示す指標として、カバレッジという指標がある。カバレッジは、内部電極層が形成されるべき面積のうち内部電極層が実際に存在する面積の割合を示す指標であり、この指標が高いほど電極途切れが生じていないことを意味する。そのため、カバレッジが高いことが好ましい。
 本発明の積層セラミック電子部品では、カバレッジが80%以上であることが好ましく、84%以上であることがより好ましく、88%以上であることがさらに好ましい。
 カバレッジは、上記「内部電極層の厚さ平均値(μm)」の測定で使用したSEM観察画像において、W方向に平行な向きにおいて内部電極層が繋がっている部分の長さと、内部電極層が切れている部分の長さから、下記式(3)により求めることができる。
Figure JPOXMLDOC01-appb-M000002
 積層セラミック電子部品を構成する積層体は、カバレッジを高く保ったままで内部電極層の厚さを薄くすることができる。具体的には、カバレッジを80%以上として内部電極層の厚さを0.80μm以下とすることができる。そのため、カバレッジを80%以上にして積層体全体の厚さを薄くすることができる。
 好ましい内部電極層の厚さは積層体におけるグリーンシート(内部電極層)の積層枚数によって異なるが、積層枚数が270枚の場合0.35μm以下であることが好ましく、積層枚数が540枚の場合0.47μm以下であることが好ましい。
 また、積層体は、第1および第2の対向電極部と側面との間に位置する積層体の側部(Wギャップ)、第1および第2の対向電極部と端面との間に位置し、第1及び第2の内部電極の引出電極部を含む積層体の端部(Lギャップ)を含む。
 LギャップのL方向の平均長さは、20μm以上であることが好ましく、120μm以下であることが好ましい。WギャップのW方向の平均長さは、5μm以上であることが好ましく、100μm以下であることが好ましい。
 本発明の積層セラミック電子部品では、内部電極層の厚さT(μm)と積層体の体積V(mm)が下記関係式(1)を満たすことが好ましい。
T≦0.0552×lnV+0.5239  (1)
この関係式が満たされるとき、積層体の体積に対して内部電極層の厚さが薄い積層セラミック電子部品が得られていることを意味している。
 また、内部電極層の厚さTと積層体の体積Vについては、下記関係式(4)を満たすことも好ましく、下記関係式(5)を満たすことがより好ましい。
0.0552×lnV+0.3336≦T  (4)
0.0552×lnV+0.3856≦T  (5)
 なお、図2に示した積層セラミックコンデンサ1は積層体の両端面に外部電極が設けられた2端子コンデンサであるが、複数の誘電体層と複数の内部電極層とを有する積層体を備えた積層セラミックコンデンサであればよく、2端子コンデンサに限定されるものではない。例えば、積層体の端面及び側面に外部電極が設けられた3端子コンデンサや、積層体の側面にのみ外部電極が設けられたコンデンサであってもよい。
 続いて、本発明の積層セラミック電子部品を製造する方法の一例について説明する。積層セラミック電子部品として、積層セラミックコンデンサを製造する場合を例にして説明する。
 誘電体層となるセラミックと有機物および溶媒等が混合されたセラミックスラリーを、PETフィルム等のキャリアフィルム上に、スプレーコーティング、ダイコーティング、スクリーン印刷等の方法によってシート状に塗布することによって、セラミックグリーンシートを得る。
 続いて、Ni粉等の金属粒、溶剤、分散剤及びバインダ等からなる、内部電極層形成用の導電ペーストを調製する。内部電極層形成用の導電ペーストをセラミックグリーンシート上にスクリーン印刷、グラビア印刷などの方法で印刷し、内部電極パターンを形成する。
 このようにして、内部電極パターンが形成されたグリーンシートが準備される。
 内部電極パターンが形成されたセラミックグリーンシートを複数枚積層して、積層シートを得る。積層シートを剛体プレス又は静水圧プレス等により加圧することで成形し、積層ブロックを得る(積層工程)。積層ブロックを押し切り又はダイシング等により分割することにより、複数のチップが得られる(切断工程)。
 このチップに対し、脱脂工程を行う。脱脂工程では、例えば最高温度300℃以下での処理を行う。脱脂工程によりタールが除去される。脱脂工程は窒素雰囲気で行うことが好ましい。
 続いて、脱脂工程を経たチップに対して熱処理工程を行う。熱処理工程では、チップを炉内温度が1200℃~1600℃の温度に設定された炉体内に滞留時間30秒以下で通過させる処理を行う。
 さらに、冷却した後に焼成工程(本焼成工程)を行う。焼成工程では、熱処理工程を経たチップに対し、900℃~最高温度まで、5℃/min以上、好ましくは10℃/min以上、の昇温速度で昇温して本焼成を行う。昇温速度は50℃/min以上であることが好ましい。これにより、内部電極もしくは誘電体層をそれぞれ焼成させる。滞留時間は30秒以下であることが好ましいが、30分でもよい。最高温度は、例えば1150℃以上1300℃以下とすることが好ましい。最高温度での保持時間は50秒以上、200秒以下とすることが好ましい。
 また、H-N-HOガスからなる還元性雰囲気中での焼成を行うことが好ましい。
 上記方法によると、アスペクト比が1.8以上である金属粒を含む内部電極層が形成されるとともに、積層体が得られる。
 続いて、積層体に外部電極となる導電性ペーストを、たとえば浸漬方法などにより付与する。導電性ペーストが付与された積層体を焼成することにより、導電性ペーストが外部電極の一部である焼付け電極層となる。焼付け電極層の上に、めっき処理により、めっき層を形成する。これらの工程を経て、積層セラミックコンデンサを製造することができる。
 以下、本発明の積層セラミック電子部品をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。
[積層セラミックコンデンサの作製]
(実施例1)
 セラミック原料としてのBaTiOに、ポリビニルブチラール系バインダ、可塑剤及び有機溶剤としてのエタノールを加え、これらをボールミルにより湿式混合し、セラミックスラリーを作製した。次いで、このセラミックスラリーをリップ方式によりシート成形し、矩形のセラミックグリーンシートを得た。次に、上記セラミックグリーンシート上に、Niを含有する導電性ペーストをスクリーン印刷し、Niを主成分とする内部電極パターンを形成した。導電性ペーストの塗布厚さは0.20μmとした。なお、セラミックグリーンシートの厚さは完成品の誘電体層の厚さが0.59μmとなるようにした。
 内部電極パターンが形成されたセラミックグリーンシートを幅方向にずらしながら複数枚積層し、その上下に内部電極パターンが印刷されていないセラミックグリーンシートを積層することにより、マザーブロックを得た。得られたマザーブロックを、静水圧プレスにより積層方向にプレスした。積層数は270層とした。
 プレスされたマザーブロックをチップ形状に切断することにより、個々の内部電極が両端面及び両側面に露出したグリーンチップを得た。
 グリーンチップの一方の切断側面に対して、セラミック保護層用グリーンシートを貼り付けることにより、生のセラミック保護層を形成した。セラミック保護層用グリーンシートの組成は、セラミックグリーンシートの組成と同じである。
 グリーンチップの他方の切断側面に対しても、上記と同様に生のセラミック保護層を形成した。これにより、生の部品本体を得た。
 本焼成工程後、導電性ペーストの塗布及び焼付けによって、外部電極を形成し、実施例1の積層セラミックコンデンサを作製した。得られた積層セラミックコンデンサは0603サイズ(0.6mm×0.3mm)である。
(実施例2~8)
 表1及び2に示すように各条件を実施例1から変更した他は実施例1と同様にして積層セラミックコンデンサを作製した。
(比較例1)
 導電性ペーストの塗布厚さを0.30μmに変更し、熱処理工程を800℃の脱脂工程に変更し、実施例1と同様にして本焼成工程を行い、積層セラミックコンデンサを作製した。
(比較例2)
 熱処理工程を行わなかった他は実施例1と同様にして積層セラミックコンデンサを作製した。
 本明細書に示した方法で、積層体のカバレッジ、内部電極層の厚さ、金属粒のアスペクト比を算出した。また、積層体の寸法と積層体の体積を測定した。これらの結果をまとめて下記表1及び2に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 これらの表1及び2からは、金属粒のアスペクト比が1.8以上である各実施例の積層セラミックコンデンサではいずれもカバレッジが79%以上と高くなっており、かつ、内部電極層の厚さ及び積層体の厚さを薄くすることができていることがわかる。
 比較例1では金属粒のアスペクト比が1.7である。導電性ペーストの塗布厚さを厚くしたことによりカバレッジは85%と高くすることができているが、内部電極層の厚さ及び積層体の厚さは厚くなっている。
 比較例2では金属粒のアスペクト比が1.6であり、カバレッジが70%と低くなっていて、内部電極層の厚さも厚くなっている。
(実施例9)
 実施例9では、1005サイズ(1.0mm×0.5mm)の積層セラミックコンデンサを作製した。製造工程は実施例1とほぼ同様であるが、条件をいくつか変更しており、導電性ペーストの塗布厚さを0.25μm、積層数を540層とした。
(実施例10)
 実施例9と同様にして積層セラミックコンデンサを作製した。
(比較例3)
 導電性ペーストの塗布厚さを0.32μmに変更し、積層数を492層とし、熱処理工程を850℃の脱脂工程に変更し、実施例9と同様にして本焼成工程を行い。積層セラミックコンデンサを作製した。
(比較例4)
 熱処理工程を850℃の脱脂工程に変更し、実施例9と同様にして本焼成工程を行い、積層セラミックコンデンサを作製した。
 本明細書に示した方法で、積層体のカバレッジ、内部電極層の厚さ、金属粒のアスペクト比を算出した。また、積層体の寸法と積層体の体積を測定した。これらの結果をまとめて下記表3及び4に示した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらの表3及び4からは、金属粒のアスペクト比が1.8以上である実施例9、10の積層セラミックコンデンサではいずれもカバレッジが80%以上と高くなっており、かつ、内部電極層の厚さ及び積層体の厚さを薄くすることができていることがわかる。
 比較例3では金属粒のアスペクト比が1.6である。導電性ペーストの塗布厚さを厚くしたことによりカバレッジは80%以上と高くすることができているが、内部電極層の厚さは厚くなっている。積層体の厚さが実施例9、10と同様となっているのは1005サイズの積層セラミックコンデンサとするために積層枚数を減らしていることに起因している。積層枚数が少ないので静電容量が小さくなってしまうと考えられる。
 比較例4では金属粒のアスペクト比が1.6であり、カバレッジが71%と低くなっていて、内部電極層の厚さも厚くなっている。
 図9は、実施例及び比較例で製造した積層セラミックコンデンサについて、金属粒のアスペクト比と内部電極層の厚さの関係を示した図である。金属粒のアスペクト比が大きい実施例4、5はプロットから除いている。
 この図から、同じサイズの積層セラミックコンデンサで比較すると、金属粒のアスペクト比が1.8以上となっている場合に内部電極層の厚さが薄くなることが分かる。
 図10は、実施例3~5及び10で製造した積層セラミックコンデンサについて、積層体の体積と内部電極層の厚さの関係を示した図である。
 実施例3及び10から、積層体の体積V(mm)と内部電極層の厚さT(μm)について好ましい範囲の式が導かれる。この式が明細書中に記載した下記関係式(1)である。
T≦0.0552×lnV+0.5239  (1)
この式(1)は積層体の体積Vに対する内部電極層の厚さTの好ましい範囲の上限値を示す式である。
 一方、式(1)と同じ傾きで実施例5のプロットを通る線を引くと、下記関係式(5)が得られる。
0.0552×lnV+0.3856≦T  (5)
この式(5)は積層体の体積Vに対する内部電極層の厚さTの好ましい範囲の下限値を示す式である。
 各実施例に対応するプロットはこの式(1)と式(5)の線で挟まれた領域に位置している。
 図11は、比較例2で作製した積層セラミックコンデンサのFIB加工面に対するSIM観察画像である。
 一方、先に示した図4は、実施例1で作製した積層セラミックコンデンサのFIB加工面に対するSIM観察画像である。
 この2つの画像を比較すると、実施例1で作製した積層セラミックコンデンサでは内部電極層の厚さが薄いことが理解できる。そして、内部電極層の厚さが薄いことは金属粒のアスペクト比が大きいことと関連している。
 1 積層セラミックコンデンサ
 10 積層体
 11 第1の主面
 12 第2の主面
 13 第1の側面
 14 第2の側面
 15 第1の端面
 16 第2の端面
 20 誘電体層
 30 内部電極層
 35 第1の内部電極層
 36 第2の内部電極層
 60 焼付け電極層
 61 Niめっき層
 62 Snめっき層
 110、120 外部電極

Claims (3)

  1.  セラミックを含有する複数の絶縁体層と複数の内部電極層とを有する積層体を備える積層セラミック電子部品であって、
     前記内部電極層を構成する金属粒のアスペクト比が1.8以上である、
    積層セラミック電子部品。
  2.  前記内部電極層の厚さT(μm)と前記積層体の体積V(mm)が下記関係式(1)を満たす、請求項1に記載の積層セラミック電子部品。
    T≦0.0552×lnV+0.5239  (1)
  3.  請求項1又は2に記載の積層セラミック電子部品の製造方法であって、
     前記セラミックを含有する複数の絶縁体層と前記複数の内部電極とをそれぞれ焼結させる工程を備える、
    積層セラミック電子部品の製造方法。
PCT/JP2022/028001 2021-07-30 2022-07-19 積層セラミック電子部品及び積層セラミック電子部品の製造方法 WO2023008247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247002937A KR20240023660A (ko) 2021-07-30 2022-07-19 적층 세라믹 전자부품 및 적층 세라믹 전자부품의 제조 방법
JP2023538449A JPWO2023008247A1 (ja) 2021-07-30 2022-07-19
CN202280046415.5A CN117597752A (zh) 2021-07-30 2022-07-19 层叠陶瓷电子部件以及层叠陶瓷电子部件的制造方法
US18/404,937 US20240145168A1 (en) 2021-07-30 2024-01-05 Multilayer ceramic electronic component and method for producing multilayer ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021125895 2021-07-30
JP2021-125895 2021-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/404,937 Continuation US20240145168A1 (en) 2021-07-30 2024-01-05 Multilayer ceramic electronic component and method for producing multilayer ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2023008247A1 true WO2023008247A1 (ja) 2023-02-02

Family

ID=85087563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028001 WO2023008247A1 (ja) 2021-07-30 2022-07-19 積層セラミック電子部品及び積層セラミック電子部品の製造方法

Country Status (5)

Country Link
US (1) US20240145168A1 (ja)
JP (1) JPWO2023008247A1 (ja)
KR (1) KR20240023660A (ja)
CN (1) CN117597752A (ja)
WO (1) WO2023008247A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084055A (ja) * 2002-06-28 2004-03-18 Toyo Aluminium Kk 積層セラミックコンデンサ電極用ニッケルフレーク
JP2011091083A (ja) * 2009-10-20 2011-05-06 Murata Mfg Co Ltd 積層セラミック電子部品およびその製造方法、積層セラミック電子部品用の扁平状導電性微粉末ならびに積層セラミック電子部品用の扁平状導電性微粉末分散液
JP2013232627A (ja) * 2012-03-30 2013-11-14 Taiyo Yuden Co Ltd 積層セラミックコンデンサ及びその製造方法
JP2021019101A (ja) * 2019-07-19 2021-02-15 株式会社村田製作所 積層型電子部品および積層型電子部品の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206246B2 (ja) 2008-09-03 2013-06-12 住友金属鉱山株式会社 ニッケル粉末およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084055A (ja) * 2002-06-28 2004-03-18 Toyo Aluminium Kk 積層セラミックコンデンサ電極用ニッケルフレーク
JP2011091083A (ja) * 2009-10-20 2011-05-06 Murata Mfg Co Ltd 積層セラミック電子部品およびその製造方法、積層セラミック電子部品用の扁平状導電性微粉末ならびに積層セラミック電子部品用の扁平状導電性微粉末分散液
JP2013232627A (ja) * 2012-03-30 2013-11-14 Taiyo Yuden Co Ltd 積層セラミックコンデンサ及びその製造方法
JP2021019101A (ja) * 2019-07-19 2021-02-15 株式会社村田製作所 積層型電子部品および積層型電子部品の製造方法

Also Published As

Publication number Publication date
CN117597752A (zh) 2024-02-23
US20240145168A1 (en) 2024-05-02
KR20240023660A (ko) 2024-02-22
JPWO2023008247A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
US10734159B2 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
US8867188B2 (en) Multilayer ceramic electronic component and fabricating method thereof
US20140022689A1 (en) Multi-layered ceramic electronic component and method of manufacturing the same
US11557435B2 (en) Multilayer ceramic electronic component and method for manufacturing the same
US11094462B2 (en) Multilayer ceramic electronic component
JP2023052913A (ja) 積層セラミックキャパシタ及びその製造方法
US10586652B1 (en) Multilayer ceramic capacitor
US20140022698A1 (en) Laminated ceramic electronic component and method of fabricating the same
US11201015B2 (en) Multilayer type electronic component
US10497517B2 (en) Multilayer ceramic capacitor
JP7296744B2 (ja) 積層セラミックコンデンサ及びその製造方法
JP2024069636A (ja) 積層セラミックコンデンサおよび積層セラミックコンデンサの実装構造
JP4688326B2 (ja) セラミック積層体およびその製法
US20190031565A1 (en) Ceramic electronic component and method of producing a ceramic electronic component
CN112242255B (zh) 层叠型电子部件及层叠型电子部件的制造方法
WO2023008247A1 (ja) 積層セラミック電子部品及び積層セラミック電子部品の製造方法
US11721482B2 (en) Method of producing ceramic electronic component and ceramic electronic component
JP7209072B2 (ja) 積層セラミックコンデンサ
US11315730B2 (en) Multilayer electronic component
KR100379205B1 (ko) 도전성 페이스트, 적층 세라믹 커패시터 및 이것의 제조방법
JP6935707B2 (ja) 積層セラミックコンデンサ
JP2016192477A (ja) 積層セラミック電子部品
WO2024101307A1 (ja) セラミック電子部品およびその製造方法
WO2023171394A1 (ja) 電子部品
US20230099467A1 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538449

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280046415.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247002937

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002937

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE