WO2023008163A1 - 鋼板およびその製造方法 - Google Patents
鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2023008163A1 WO2023008163A1 PCT/JP2022/027274 JP2022027274W WO2023008163A1 WO 2023008163 A1 WO2023008163 A1 WO 2023008163A1 JP 2022027274 W JP2022027274 W JP 2022027274W WO 2023008163 A1 WO2023008163 A1 WO 2023008163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- less
- steel plate
- ferrite
- cooling
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 170
- 239000010959 steel Substances 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 68
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 35
- 239000006104 solid solution Substances 0.000 claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 239000000126 substance Substances 0.000 claims abstract description 20
- 239000010451 perlite Substances 0.000 claims abstract description 17
- 235000019362 perlite Nutrition 0.000 claims abstract description 16
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims description 71
- 229910001562 pearlite Inorganic materials 0.000 claims description 49
- 238000010438 heat treatment Methods 0.000 claims description 36
- 239000002344 surface layer Substances 0.000 claims description 32
- 238000005096 rolling process Methods 0.000 claims description 22
- 238000005098 hot rolling Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 12
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 10
- 238000007670 refining Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000009749 continuous casting Methods 0.000 claims description 6
- 238000005496 tempering Methods 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract 2
- 230000007797 corrosion Effects 0.000 description 78
- 238000005260 corrosion Methods 0.000 description 78
- 230000000694 effects Effects 0.000 description 20
- 239000010779 crude oil Substances 0.000 description 17
- 239000010410 layer Substances 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 229910052718 tin Inorganic materials 0.000 description 14
- 229910052750 molybdenum Inorganic materials 0.000 description 13
- 239000010802 sludge Substances 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000004580 weight loss Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 229910001567 cementite Inorganic materials 0.000 description 4
- 238000004993 emission spectroscopy Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000010191 image analysis Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000009614 chemical analysis method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- CUPCBVUMRUSXIU-UHFFFAOYSA-N [Fe].OOO Chemical group [Fe].OOO CUPCBVUMRUSXIU-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- -1 is mass % Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to a steel plate and a manufacturing method thereof.
- crude oil tanks that transport or store crude oil, such as crude oil tankers or above-ground or underground crude oil tanks (hereinafter collectively referred to as "crude oil tanks")
- welded structures with excellent strength and weldability steel is used.
- steel used for crude oil tanks is required to have excellent corrosion resistance against corrosive gas components, salt content, and the like contained in crude oil (see, for example, Patent Document 1).
- Patent Document 1 for crude oil corrosion that occurs in steel oil tanks, it is excellent in suppressing general corrosion that corrodes uniformly on the steel plate surface and localized corrosion that occurs locally on the steel plate surface, and furthermore, corrosion generation including solid S
- a crude oil tank steel for welded structures capable of suppressing sludge formation, a method of manufacturing the crude oil tank steel, a crude oil tank, and a method of preventing corrosion of the crude oil tank are disclosed.
- Patent Document 1 contains a predetermined amount or more of Mo and W in a solid solution state, so it has excellent corrosion resistance.
- Mo and W in a solid solution state
- An object of the present invention is to solve the above problems and to provide a steel sheet that has excellent corrosion resistance to corrosive gas components, salt content, etc. contained in crude oil, and a method for manufacturing the same.
- Containing Cu, Sn and Mo can be considered as a method for improving the corrosion resistance of steel sheets.
- the steel containing these elements if the steel contains a pearlite structure, which is a mixed structure of ferrite and cementite, and a bainite structure, local cells are formed due to the difference in C concentration between ferrite and cementite, causing corrosion. occurs.
- the metal structure of the steel is ferrite single phase, the above problem does not occur, but there is a problem that sufficient strength cannot be secured.
- the present invention has been made based on the above findings, and the gist thereof is the following steel plate and method for manufacturing the same.
- the chemical composition of the steel sheet is % by mass, C: 0.030 to 0.200%, Si: 0.050 to 0.500%, Mn: 0.50-2.00%, P: 0.030% or less, S: 0.010% or less, Al: 0.001 to 0.100%, N: 0.0005 to 0.0080%, O: 0.0005 to 0.0080%, Ti: 0.001 to 0.050%, Nb: 0.001 to 0.050%, Cu: 0.01-0.50%, Mo: 0.01-0.10%, Sn: 0.01 to 0.30%, balance: Fe and impurities,
- the total content of solid solution Mo and solid solution Sn in the surface layer of the steel sheet is 0.005% or more by mass, In the cross section of the steel plate in the rolling direction, when the thickness of the steel plate is t, The metal structure at a position 1/4 t from the surface of the steel plate is area%, Perlite: 5-30%, Bainite: 10% or less, Remainder: ferrite, The metal structure at a position 1/10t from
- the chemical composition of the steel sheet is % by mass, C: 0.030 to 0.200%, Si: 0.050 to 0.500%, Mn: 0.50-2.00%, P: 0.030% or less, S: 0.010% or less, Al: 0.001 to 0.100%, N: 0.0005 to 0.0080%, O: 0.0005 to 0.0080%, Ti: 0.001 to 0.050%, Nb: 0.001 to 0.050%, Cu: 0.01-0.50%, Mo: 0.01-0.10%, Sn: 0.01 to 0.30%, W: 0 to 0.20%, Sb: 0 to 0.30%, Pb: 0 to 0.30%, As: 0 to 0.30%, Bi: 0 to 0.30%, Ni: 0 to 0.50%, Cr: 0 to 0.10%, V: 0 to 0.100%, B: 0 to 0.0050%, Ta: 0 to 0.50%, Zr: 0 to 0.50%, Ca: 0 to 0.0080%, Mg: 0-0
- the chemical composition instead of part of the Fe, is mass %, Ni: 0.05 to 0.50%, Cr: 0.01 to 0.10%, V: 0.010 to 0.100%, B: 0.0003 to 0.0050%, Ta: 0.005-0.50%, and Zr: 0.005-0.50%, It contains at least one or more selected from the group consisting of The steel plate according to (2) or (3) above.
- (6) a refining process for producing molten steel;
- An accelerated cooling step of water-cooling the steel plate after standing to cool
- the heating step the steel billet is heated to a heating temperature of 950 to 1300° C.
- the hot rolling step rolling is completed when the surface temperature of the steel slab is in the temperature range of Ar 3 to Trex ,
- the surface temperature of the billet is set to Ar 3 ⁇ 100 to Ar 3 ⁇ 30° C.
- a tempering step of heating to a temperature range of 350 to 650 ° C. is further performed.
- C 0.030-0.200% C is an element effective in forming pearlite and increasing strength. On the other hand, if the C content is excessive, it becomes difficult to ensure weldability and joint toughness. Therefore, the C content should be 0.030 to 0.200%.
- the C content is preferably 0.050% or more, 0.070% or more or 0.100% or more, and preferably 0.180% or less or 0.160% or less.
- Si 0.050-0.500% Si is effective as an inexpensive deoxidizing element and strengthening element. On the other hand, an excessive Si content deteriorates weldability and joint toughness. Therefore, the Si content should be 0.050 to 0.500%.
- the Si content is preferably 0.100% or more, more preferably 0.150% or more. Also, the Si content is preferably 0.450% or less, more preferably 0.400% or less.
- Mn 0.50-2.00% Mn is effective as an element that improves the strength and toughness of the base material. On the other hand, an excessive Mn content degrades weldability and joint toughness. Therefore, the Mn content should be 0.50 to 2.00%.
- the Mn content is preferably 0.80% or more, more preferably 0.90% or more. Also, the Mn content is preferably 1.60% or less, more preferably 1.50% or less.
- P 0.030% or less
- P is an element contained in steel as an impurity, and is made 0.030% or less in order to ensure corrosion resistance.
- the P content is preferably as small as possible, preferably 0.015% or less. It is not necessary to set a lower limit for the P content, and it may be 0%, but excessive reduction causes an increase in cost, so it may be 0.003% or more.
- S 0.010% or less
- S is an element contained in steel as an impurity, and is made 0.010% or less in order to ensure corrosion resistance.
- the S content is preferably as small as possible, and the S content is preferably 0.003% or less. It is not necessary to set a lower limit for the S content, and it may be 0%.
- Al 0.001-0.100%
- Al is an important deoxidizing element.
- the Al content is set to 0.001 to 0.100%.
- the Al content is preferably 0.005% or more or 0.010% or more, and preferably 0.080% or less or 0.050% or less.
- N 0.0005 to 0.0080% N forms nitrides together with Al to improve joint toughness.
- the N content should be 0.0005 to 0.0080%.
- the N content is preferably 0.0010% or more or 0.0020% or more, preferably 0.0070% or less, more preferably 0.0060% or less.
- O 0.0005 to 0.0080% O forms an oxide together with Ca, Mg, and REM, which will be described later. If the O content is excessive, the oxide coarsens and the toughness decreases. On the other hand, the smaller the O content is, the better it is, but in order to reduce it excessively, for example, the reflux operation in the RH vacuum degassing device will take a long time, which is not realistic. Therefore, the O content should be 0.0005 to 0.0080%.
- Ti 0.001-0.050% A small amount of Ti contributes to the improvement of toughness through microstructural refinement of the base metal and weld zone. On the other hand, if the Ti content is excessive, the weld zone is hardened and the toughness is significantly deteriorated. Therefore, the Ti content should be 0.001 to 0.050%.
- the Ti content is preferably 0.003% or more or 0.005% or more, and preferably 0.040% or less or 0.030% or less.
- Nb 0.001-0.050%
- Nb is an element that contributes to refinement of the structure when added in a small amount and is effective in ensuring the strength of the base material.
- the Nb content is set to 0.001 to 0.050%.
- the Nb content is preferably 0.003% or more or 0.005% or more, and preferably 0.040% or less or 0.030% or less.
- Cu 0.01-0.50%
- Cu is an element effective in improving not only general corrosion resistance but also local corrosion resistance. Furthermore, it also has the effect of suppressing the formation of solid S derived from corrosive gas components. On the other hand, if the Cu content is excessive, adverse effects such as promotion of surface cracking of steel billets and deterioration of joint toughness become apparent. Therefore, the Cu content is set to 0.01 to 0.50%.
- the Cu content is preferably 0.03% or more, preferably 0.40% or less, and more preferably less than 0.20%.
- Mo 0.01-0.10% Mo is an element effective in improving local corrosion resistance. On the other hand, if the Mo content is excessive, the local corrosion resistance decreases, and the weldability and toughness deteriorate. Therefore, the Mo content is set to 0.01 to 0.10%.
- the Mo content is preferably 0.02% or more, more preferably 0.03% or more. Also, the Mo content is preferably 0.08% or less, more preferably 0.07% or less.
- Sn 0.01-0.30% Sn has the effect of further suppressing the progress of local corrosion. On the other hand, even if the Sn content exceeds 0.30%, the effect is saturated, and there is concern that other characteristics may be adversely affected. Therefore, in consideration of economy, the Sn content is set to 0.01 to 0.30%.
- the Sn content is preferably 0.03% or more or 0.05% or more, and preferably 0.25% or less or 0.20% or less.
- W 0-0.20% Since W is an element effective in improving local corrosion resistance, it may be contained as necessary. On the other hand, if the W content is excessive, the local corrosion resistance decreases, and the weldability and toughness deteriorate. Therefore, the W content is set to 0.20% or less.
- the W content is preferably 0.15% or less, more preferably 0.10% or less, and even more preferably less than 0.05%. In order to obtain the above effects more reliably, the W content is preferably 0.01% or more.
- Sb 0-0.30% Since Sb has the effect of further suppressing the progress of localized corrosion, it may be contained as necessary. On the other hand, even if the Sb content exceeds 0.30%, the effect is saturated, and there is concern that other characteristics may be adversely affected. Therefore, taking economic efficiency into consideration, the Sb content is set to 0.30% or less.
- the Sb content is preferably 0.25% or less or 0.20% or less. To obtain the above effects more reliably, the Sb content is preferably 0.03% or more or 0.05% or more.
- Pb 0-0.30% As: 0-0.30% Bi: 0-0.30%
- Pb, As and Bi have the effect of further suppressing the progress of localized corrosion, so they may be contained as necessary.
- the contents of Pb, As and Bi are all set to 0.30% or less.
- the content of any element is preferably 0.15% or less.
- Ni 0-0.50% Ni is effective for securing strength and improving toughness, and thus may be contained as necessary. On the other hand, an excessive Ni content increases the cost. Therefore, the Ni content is set to 0.50% or less. In order to obtain the above effects more reliably, the Ni content is preferably 0.05% or more.
- the Cr content is set to 0.10% or less. In order to obtain the above effect more reliably, the Cr content is preferably 0.01% or more.
- V 0-0.100% V contributes to increase in strength by precipitation strengthening, so it may be contained as necessary. On the other hand, excessive V content may impair joint toughness. Therefore, the V content is set to 0.100% or less. In order to obtain the above effects more reliably, the V content is preferably 0.010% or more.
- B 0 to 0.0050% B, when added in a small amount, enhances the hardenability and contributes to the improvement of the strength of the base material. On the other hand, an excessive B content degrades joint toughness. Therefore, the B content is set to 0.0050% or less. To obtain the above effects more reliably, the B content is preferably 0.0003% or more.
- Ta and Zr are elements effective in increasing the strength of steel in small amounts, and may be contained as needed mainly for strength adjustment. On the other hand, when any content exceeds 0.50%, toughness deterioration becomes remarkable. Therefore, the contents of both Ta and Zr are set to 0.50% or less. To obtain the above effect, it is preferable to contain one or two selected from Ta: 0.005% or more and Zr: 0.005% or more.
- the total content of these elements is preferably 0.0005% or more. Also, from the viewpoint of preventing deterioration of toughness properties due to coarse oxides or sulfides, the total content of these elements is preferably 0.0080% or less. The total content is more preferably 0.0010% or more, even more preferably 0.0015% or more. Further, the total content is more preferably 0.0060% or less, even more preferably 0.0040% or less.
- REM refers to a total of 17 elements of Sc, Y and lanthanoids, and the REM content means the total content of these elements.
- lanthanoids are industrially added in the form of misch metals.
- the balance is Fe and impurities.
- impurities refers to components mixed in by various factors in raw materials such as ores, scraps, etc., and in the manufacturing process when steel sheets are manufactured industrially. means something
- Total content of solid solution Mo and solid solution Sn in the steel sheet surface layer 0.005% or more
- the amount of Sn is ensured to be equal to or greater than a predetermined value.
- the total content of solid solution Mo and solid solution Sn in the surface layer of the steel sheet is set to 0.005% or more by mass %.
- the total content of solid solution Mo and solid solution Sn in the surface layer of the steel sheet is preferably 0.010% or more, more preferably 0.020% or more.
- the upper limit of the total content of Mo and Sn contained in steel is 0.40%, which is a substantial upper limit.
- the steel plate surface portion refers to a region from the surface of the steel plate to a position of 1 mm in the depth direction.
- the total content (% by mass) of solid solution Mo and solid solution Sn is measured by the following procedure. First, two test pieces with a thickness of 1 mm are cut out from the surface of the steel plate. Then, for one of the test pieces, the contents of Mo and Sn in the test piece are measured by using a known chemical analysis method (for example, ICP emission spectrometry).
- Mo and Sn in the test piece are considered to be Mo precipitates
- Mo and Sn in the extraction residue are considered to be Mo precipitates and Sn precipitates.
- the content of solid solution Mo and solid solution Sn is determined by determining the difference in the content of Mo and Sn in the extraction residue from the content of Mo and Sn in the test piece.
- Ceq defined by the following formula (iv) may be within the range of 0.20 to 0.50%.
- Ceq C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 (iv)
- the element symbol in the above formula represents the content (% by mass) of each element contained in the steel sheet, and 0 shall be substituted when it is not contained.
- Ceq is preferably 0.22% or more, more preferably 0.24% or more, and still more preferably 0.26% or more. Also, Ceq is preferably 0.48% or less, more preferably 0.46% or less, and even more preferably 0.45% or less.
- the inner layer position and the surface layer position of the steel sheet each have the metal structure shown below.
- the metallographic structure of the inner layer position and the surface layer position of the steel sheet will be explained respectively.
- the metal structure at the inner layer position of the steel plate refers to the structure at a position 1/4 t from the surface of the steel plate, where t is the thickness of the steel plate. Further, the metal structure at the surface layer position of the steel plate refers to the structure at a position of 1/10t from the surface of the steel plate.
- (B-1) Metal structure at inner layer position of steel plate Perlite: 5 to 30%
- the area ratio of pearlite is set to 5 to 30%.
- the perlite area ratio is preferably 10 to 20%.
- Bainite 10% or less
- the metal structure is mainly composed of ferrite and contains a predetermined amount of pearlite. Even if the bainite content is 10% or less, the above effects are not impaired, but if the bainite area ratio is excessive, the toughness deteriorates. Therefore, the area ratio of bainite is set to 10% or less, preferably 5% or less. Bainite may not be contained, that is, the area ratio of bainite may be 0%.
- Ferrite Ferrite is a structure with excellent toughness. Structures other than pearlite and bainite are ferrite. That is, the area ratio of ferrite is 60% or more. On the other hand, from the viewpoint of securing strength characteristics, the area ratio of ferrite is preferably 90% or less, more preferably less than 80%.
- the area ratio of pearlite and bainite be as low as possible.
- the area ratio of pearlite is preferably 10% or less, more preferably 5% or less.
- the area ratio of bainite is preferably 3% or less, more preferably 1% or less. Bainite may not be contained, that is, the area ratio of bainite may be 0%.
- the rest is ferrite. That is, the area ratio of ferrite is 75% or more.
- the area fraction of ferrite is preferably greater than 85%, preferably greater than 95%.
- the substantial upper limit of the area ratio of ferrite is 99%.
- the average grain size of ferrite is 5 to 50 ⁇ m
- the average grain size of ferrite is set to 50 ⁇ m or less.
- the finer the ferrite grains the better, but the lower limit is set to 5 ⁇ m because it is industrially difficult to achieve a grain size of less than 5 ⁇ m.
- the average grain size of ferrite is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
- the average grain size of pearlite is set to 30 ⁇ m or less.
- (B-3) Metallographic relationship between inner layer position and surface layer position As described above, in the present invention, the area ratio of ferrite is increased at the surface layer position of the steel sheet, and the composite containing ferrite and pearlite is set at the inner layer position of the steel sheet. Corrosion resistance and strength are both achieved by using a phase structure. If the metallographic structures of the inner layer position and the surface layer position of the steel sheet respectively satisfy the conditions described above, both corrosion resistance and strength can be achieved. Therefore, it is not necessary to particularly limit the relationship between the metallographic structure of the inner layer position and the surface layer position. It is preferably higher than the area ratio of ferrite.
- the sample is etched with nital, and after etching, it is observed with an optical microscope at a magnification of 500 in a field of view of 300 ⁇ m ⁇ 300 ⁇ m. Then, an image analysis is performed on the obtained micrograph of the structure, and the area ratio of each of the white ferrite and the black pearlite is determined.
- perlite also includes pseudo-perlite.
- the area ratio of bainite is obtained from the area ratio of the balance. Bainite is gray in observation under the above conditions.
- the average grain size of ferrite and pearlite at the surface layer position is measured by microscopic observation as described above. Specifically, the area of each grain of ferrite and pearlite contained in the field of view is determined by image analysis, and the diameter of a circle equal to this area is determined to determine the crystal grain size of ferrite and pearlite. Then, the average grain size of ferrite and pearlite is determined by calculating the average diameter of all ferrite and pearlite in the field of view. When obtaining the average grain size of ferrite and pearlite, the minimum grain size to be analyzed is 1 ⁇ m.
- the steel sheet according to the present invention preferably has the strength necessary for use as, for example, a crude oil tank. Specifically, it is preferable that the yield stress (YS) is 235 MPa or more and the tensile strength (TS) is 400 to 620 MPa. The reason why the upper limit of the preferred tensile strength range is set is that if the tensile strength is excessive, the toughness may deteriorate.
- the tensile strength (TS) and yield stress (YS) were measured using No. 1B tensile test pieces sampled in the direction perpendicular to the rolling direction based on JIS Z 2241:2011.
- the yield stress (YS) is the yield strength of the elongation set method at 0.2% elongation set.
- Heating step The steel slab is heated in order to subject the steel slab to hot rolling.
- the steel slab having the chemical composition described above is heated to a heating temperature of 950-1300.degree.
- the heating step is preferably performed in a heating furnace.
- heating the steel slab to 950 to 1300 ° C. means heating so that the average temperature of the whole thickness of the steel slab when extracted from the heating furnace is in the range of 950 to 1300 ° C.
- the total thickness average temperature of the steel billet is called the heating temperature of the steel billet.
- the total thickness average temperature can be calculated from the temperature in the heating furnace, the heating time, and the surface temperature of the steel slab.
- the heating temperature is less than 950°C, hot rolling becomes difficult.
- the heating temperature is preferably 1200° C. or lower, more preferably 1100° C. or lower.
- the holding time when heating the steel slab there is no particular limitation on the holding time when heating the steel slab, and it can be, for example, 120 minutes or less.
- the holding time is preferably 80 minutes or less or 60 minutes or less.
- the holding time is the total time when the steel billet is heated in the temperature range of 950 to 1300°C.
- Hot Rolling Step the billet is hot rolled into a steel plate. At this time, the rolling is finished when the surface temperature of the steel slab is in the temperature range of Ar 3 to Trex . Formation of elongated ferrite can be suppressed by ending the rolling at Ar 3 or higher. In addition, by ending rolling in the non-recrystallized region below Trex , it is possible to suppress coarsening of ferrite and pearlite grains at the surface layer position and to optimize the pearlite area ratio at the inner layer position. Become.
- Ar 3 is the temperature at which ferrite transformation starts when the steel is cooled, and is determined by the following formula (i).
- Ar 3 910 ⁇ 310 ⁇ C+65 ⁇ Si ⁇ 80 ⁇ Mn ⁇ 20 ⁇ Cu ⁇ 55 ⁇ Ni ⁇ 15 ⁇ Cr ⁇ 80 ⁇ Mo (i)
- the element symbol in the above formula represents the content (% by mass) of each element.
- Trex means a recrystallization start temperature at which new austenite crystal grains start to occur and grow, and is obtained by the following formula (ii).
- Formula (ii) is an empirical formula. By heating at a low temperature, some Nb is not dissolved, so [Nb*] in the formula (ii) is the theoretical amount of dissolved Nb calculated using the amount of Nb in the steel and the heating temperature. (% by mass) is corrected in consideration of the amount of Nb in the steel, and this [Nb*] is used to calculate Trex .
- T rex ⁇ 91900 [Nb*] 2 +9400 [Nb*]+770 (ii)
- [Nb*] is the solid-solution Nb amount obtained by the following formula (iii), sol.
- Nb is Nb ⁇ sol.
- [Nb*] sol.
- Nb is the solid-solution Nb amount obtained by the following formula (iii), sol.
- Cooling Step In the cooling step, the rolled steel plate is allowed to cool. At this time, under the condition that the average cooling rate from the start of cooling to the end of cooling is 3 ° C./s or less, the surface temperature of the billet is cooled to the cooling end temperature of Ar 3 -100 to Ar 3 -30 ° C. do. By setting the average cooling rate to 3° C./second or less, it is possible to suppress pearlite transformation and bainite transformation at the surface layer position of the steel sheet. In addition, in the present invention, the surface temperature of the billet at the end of the cooling is managed as the finishing temperature of the cooling.
- the steel piece by allowing the steel piece to cool until the surface temperature of the steel piece reaches Ar 3 ⁇ 30° C. or lower, it is possible to secure a sufficient area ratio of ferrite in the metal structure at the surface layer position.
- the cooling end temperature in the cooling step to Ar 3 ⁇ 100° C. or more, the temperature at the inner layer position of the steel sheet is prevented from becoming less than Ar 3 during cooling, and the metal structure at the inner layer position Predetermined perlite can be generated.
- (f) Accelerated Cooling Step the steel sheet after standing to cool is water-cooled. At this time, water cooling is performed to an accelerated cooling end temperature of 350 to 650° C. under the condition that the average cooling rate from the start of accelerated cooling to the end of accelerated cooling exceeds 3° C./second and is 30° C./second or less.
- water cooling to an accelerated cooling end temperature of 350 to 650 ° C. at an average cooling rate of more than 3 ° C./sec and 30 ° C./sec or less a predetermined area % of pearlite is generated in the metal structure at the inner layer position. can be done.
- the surface temperature of the steel slab when water cooling is completed and the surface temperature of the steel slab has finished recovering is managed as the accelerated cooling end temperature.
- tempering step of heating to a temperature range of 350 to 650°C may be further provided after the accelerated cooling step.
- the cooling stop temperature in the accelerated cooling process is high, the self-tempering effect is obtained, so the tempering process does not have to be performed.
- a steel plate with a thickness of 5 to 50 mm was prototyped under the manufacturing conditions in Table 2 using a steel billet having the chemical composition in Table 1.
- the metal structure of the obtained steel plate was observed, and the area ratio of each structure was measured. Specifically, first, in the cross section of the steel sheet in the rolling direction, when the thickness of the steel sheet is t, a test piece for metallographic observation is taken from a position of 1/4 t and a position of 1/10 t from the surface of the steel sheet. cut out.
- the cross section in the rolling direction (so-called L-direction cross section) of the above test piece was etched with nital, and after etching, it was observed with an optical microscope at a magnification of 500 in a field of view of 300 ⁇ m ⁇ 300 ⁇ m.
- the area ratios of ferrite, pearlite, and bainite were determined by image analysis of the obtained structure photographs. More specifically, ferrite is white and pearlite is black, and the area ratio of each is determined. From the area percentage of the remainder, the area percentage of bainite is determined.
- the average grain size of ferrite and pearlite at the surface layer position was measured by the following procedure.
- the area of each grain of ferrite and pearlite contained in the field of view was determined by image analysis, and the diameter of a circle equal to this area was determined to determine the crystal grain size of ferrite and pearlite.
- the average grain size of ferrite and pearlite was determined by calculating the average diameter of all ferrite and pearlite in the field of view.
- the minimum grain size to be analyzed was set to 1 ⁇ m.
- the total content (% by mass) of solid solution Mo and solid solution Sn in the surface layer of the steel sheet was measured according to the following procedure. First, two test pieces having a thickness of 1 mm were cut out from the surface of the steel plate, and the content of Mo and Sn in the test piece was measured for one of the test pieces by using ICP emission spectrometry.
- the content of solid solution Mo and solid solution Sn was obtained by calculating the difference in the content of Mo and Sn in the extraction residue from the content of Mo and Sn in the test piece.
- tensile strength (TS) and yield stress (YS) were measured based on JIS Z 2241:2011.
- the test piece was measured using a No. 1B tensile test piece whose longitudinal direction was the direction (width direction) perpendicular to the rolling direction.
- Yield stress (YS) is the yield strength of the elongation set method when the elongation set is 0.2%.
- test piece having a length of 60 mm in the rolling direction, a length of 25 mm in the width direction, and a length of 5 mm in the thickness direction was taken from the surface of the steel plate. All six surfaces of the test piece were polished with emery abrasive paper No. 600 to obtain a test piece in which the base iron was exposed on all surfaces of the test piece.
- the test piece was immersed in a 10 mass % NaCl aqueous solution adjusted to pH 0.85 with hydrochloric acid. The immersion conditions were a liquid temperature of 30° C. and an immersion time of 72 hours. The test solution was replaced with a new one every 24 hours. The volume of the test liquid was 25 cc/cm 2 in terms of the surface area ratio of the test piece.
- the composition of the corrosive solution simulates the environmental conditions when localized corrosion occurs in an actual steel structure, and the progress rate of localized corrosion in the actual environment increases according to the reduction in the corrosion rate in the corrosion test. reduced.
- the weight loss due to corrosion was determined by subtracting the mass of the test piece from which corrosion products had been removed by pickling after the corrosion test from the mass of the test piece before the corrosion test.
- Test piece having a length of 60 mm in the rolling direction, a length of 25 mm in the width direction, and a length of 5 mm in the thickness direction was taken from the surface of the steel plate.
- the surface of the test piece was polished with No. 600 emery polishing paper.
- the cut surface (other than the surface) was coated with paint to prepare a test piece in which only the surface of the steel plate of 60 mm ⁇ 25 mm was exposed to the base iron. Test pieces were prepared for measurement after 21 cycles, 49 cycles, 77 cycles and 98 cycles.
- a glass container containing distilled water in the lower one-third portion was prepared, and the open upper end of the glass container was sealed with an acrylic lid having a gas supply port attached to the bottom surface of which the sampled test piece was attached.
- the glass container after sealing is placed in a constant temperature bath, and the distilled water temperature is 30 ° C., and the test piece temperature is 50 ° C. x 19 hours ⁇ temperature decrease x 1 hour ⁇ 25 ° C. x 3 hours ⁇ temperature increase x 1 hour ⁇
- a temperature cycle was applied at four levels of 21, 49, 77 and 98 cycles.
- a gas having the following composition was blown into the gas phase portion in the glass container from the gas supply port.
- the composition of the gas used is CO 2 : 13% by volume, H 2 S: 500 ppm, O 2 : 4% by volume, SO 2 : 100 ppm, N 2 : balance.
- the corrosion weight loss after 21 cycles, 49 cycles, 77 cycles, and 98 cycles was measured, and the corrosion rate was evaluated from their relationship.
- the composition of the corrosive solution simulates the environmental conditions under which general corrosion occurs in an actual steel structure. reduced.
- the weight loss due to corrosion was determined by subtracting the mass of the test piece from which corrosion products had been removed by pickling after the corrosion test from the mass of the test piece before the corrosion test.
- ⁇ Corrosion test 3> A test piece having a length of 40 mm in the rolling direction, a length of 40 mm in the width direction, and a length of 4 mm in the thickness direction was taken from the surface of the steel plate. The cut surface (other than the surface) was coated with paint, and the surface was wet-polished with No. 600 to remove iron oxide (scale) on the surface of the steel plate, and a test piece was obtained in which the base iron was exposed only on the surface of the 40 mm ⁇ 40 mm steel plate. Then, using the test piece, the corrosion rate and the generation rate of sludge mainly composed of solid S were evaluated by the following procedure.
- an NaCl aqueous solution was applied to the surface of the test piece so that the amount of NaCl adhered was 1000 mg/m 2 , dried, and placed horizontally on a constant temperature heater plate in the test chamber. Afterwards, gas adjusted to a constant dew point (30° C.) was sent into the test chamber.
- the gas used has a composition of CO 2 : 12% by volume, H 2 S: 500 ppm, O 2 : 5% by volume, N 2 : balance.
- the corrosion rate was evaluated from the corrosion weight loss, and the sludge generation rate was evaluated from the amount of product generated on the surface of the test piece.
- the product is iron oxyhydroxide (iron rust) and solid S by chemical analysis and X-ray analysis.
- the amount of the product was obtained from the difference in mass before and after removing the corrosion product by pickling.
- the corrosion weight loss was obtained by subtracting the weight of the test piece after pickling from the weight of the test piece before the corrosion test.
- Relative corrosion rate (corrosion rate of each test number/corrosion rate of test number 45) x 100
- Relative sludge production speed (Sludge production speed of each test number / Sludge production speed of test number 45) ⁇ 100 is.
- Table 3 shows the relative corrosion rate and relative sludge formation rate for each corrosion test. In this example, when both the relative corrosion rate and the relative sludge generation rate are 40% or less, the corrosion resistance is judged to be excellent.
- Test No. In 28, 31 to 38 and 40 corrosion resistance was inferior. Specifically, Test No. In No. 28, since the C content was excessive, the area ratio of pearlite exceeded the specified range, and the corrosion resistance deteriorated. Test no. In Nos. 31 and 32, the corrosion resistance deteriorated due to excessive P and S contents, respectively. Test no. In No. 33, corrosion resistance deteriorated due to excessive Mo content. Test no. In No. 34, since Sn and Sb were not contained, corrosion resistance deteriorated.
- Test No. 35 the heating temperature in the heating step was too high, so that the ferrite grains and pearlite grains at the surface layer position became coarse, and the area ratios of ferrite and pearlite at the inner layer position were out of the specified range.
- Test no. in No. 36 since the rolling end temperature in the hot rolling step was too low, ferrite transformation occurred before dislocations were sufficiently introduced, and the ferrite grains and pearlite grains at the surface layer position could not be refined.
- Test No. In No. 37 since the rolling end temperature in the hot rolling process was too high, dislocations decreased due to recrystallization, sufficient dislocations could not be secured during ferrite transformation, and ferrite grains and pearlite grains at the surface layer position became coarse.
- Test No. 38 the average cooling rate in the standing cooling process was too high.
- No. 40 the area ratio of pearlite and bainite became excessive at the surface layer position because the cooling end temperature in the cooling step was too high.
- test No. 42 the average cooling rate in the accelerated cooling process was too high, and test no. In No. 43, the accelerated cooling end temperature in the accelerated cooling step was too low, so the area ratio of bainite became excessive at the inner layer position. Therefore, in these examples, the corrosion resistance, which is the subject of the present invention, was good, but the strength was excessive and did not satisfy the preferred conditions.
- the steel sheet according to the present invention it is possible to obtain a steel sheet with excellent corrosion resistance to corrosive gas components, salt content, etc. contained in crude oil. Therefore, the steel sheet according to the present invention can be suitably used for crude oil tanks.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
C :0.030~0.200%、
Si:0.050~0.500%、
Mn:0.50~2.00%、
P :0.030%以下、
S :0.010%以下、
Al:0.001~0.100%、
N :0.0005~0.0080%、
O :0.0005~0.0080%、
Ti:0.001~0.050%、
Nb:0.001~0.050%、
Cu:0.01~0.50%、
Mo:0.01~0.10%、
Sn:0.01~0.30%、
残部:Feおよび不純物であり、
前記鋼板の表層部における固溶Moおよび固溶Snの合計含有量が、質量%で、0.005%以上であり、
前記鋼板の圧延方向断面において、前記鋼板の厚さをtとした時に、
前記鋼板の表面から1/4tの位置における金属組織が、面積%で、
パーライト:5~30%、
ベイナイト:10%以下、
残部:フェライトであり、
前記鋼板の表面から1/10tの位置における金属組織が、面積%で、
パーライト:1~20%、
ベイナイト:5%以下、
残部:フェライトであり、
前記鋼板の表面から1/10tの位置におけるフェライトの平均粒径が5~50μmであり、
前記鋼板の表面から1/10tの位置におけるパーライトの平均粒径が30μm以下である、
鋼板。
C :0.030~0.200%、
Si:0.050~0.500%、
Mn:0.50~2.00%、
P :0.030%以下、
S :0.010%以下、
Al:0.001~0.100%、
N :0.0005~0.0080%、
O :0.0005~0.0080%、
Ti:0.001~0.050%、
Nb:0.001~0.050%、
Cu:0.01~0.50%、
Mo:0.01~0.10%、
Sn:0.01~0.30%、
W :0~0.20%、
Sb:0~0.30%、
Pb:0~0.30%、
As:0~0.30%、
Bi:0~0.30%、
Ni:0~0.50%、
Cr:0~0.10%、
V :0~0.100%、
B :0~0.0050%、
Ta:0~0.50%、
Zr:0~0.50%、
Ca:0~0.0080%、
Mg:0~0.0080%、
REM:0~0.0080%、
残部:Feおよび不純物であり、
前記鋼板の表層部における固溶Moおよび固溶Snの合計含有量が、質量%で、0.005%以上であり、
前記鋼板の圧延方向断面において、前記鋼板の厚さをtとした時に、
前記鋼板の表面から1/4tの位置における金属組織が、面積%で、
パーライト:5~30%、
ベイナイト:10%以下、
残部:フェライトであり、
前記鋼板の表面から1/10tの位置における金属組織が、面積%で、
パーライト:1~20%、
ベイナイト:5%以下、
残部:フェライトであり、
前記鋼板の表面から1/10tの位置におけるフェライトの平均粒径が5~50μmであり、
前記鋼板の表面から1/10tの位置におけるパーライトの平均粒径が30μm以下である、
鋼板。
W :0.01~0.20%、
Sb:0.03~0.30%、
Pb:0.01~0.30%、
As:0.01~0.30%、および
Bi:0.01~0.30%、
からなる群から選択される1種または2種を含有するものである、
上記(2)に記載の鋼板。
Ni:0.05~0.50%、
Cr:0.01~0.10%、
V :0.010~0.100%、
B :0.0003~0.0050%、
Ta:0.005~0.50%、および
Zr:0.005~0.50%、
からなる群から選択される少なくとも1種以上を含有するものである、
上記(2)または(3)に記載の鋼板。
Ca、MgおよびREMからなる群から選択される少なくとも1種以上を、合計で0.0005~0.0080%含有するものである、
上記(2)から(4)までのいずれか1項に記載の鋼板。
前記溶鋼を連続鋳造して、上記(1)から(5)までのいずれか1項に記載の化学組成を有する鋼片を製造する連続鋳造工程と、
得られた前記鋼片を加熱する加熱工程と、
加熱後の鋼片に対して熱間圧延を施して鋼板とする熱間圧延工程と、
熱間圧延後の前記鋼板を放冷する放冷工程と、
放冷後の前記鋼板を水冷する加速冷却工程と、を備え、
前記加熱工程では、前記鋼片を950~1300℃の加熱温度まで加熱し、
前記熱間圧延工程では、前記鋼片の表面温度がAr3~Trexの温度範囲で圧延終了し、
前記放冷工程では、放冷開始から放冷終了までの平均冷却速度が3℃/秒以下となる条件で、前記鋼片の表面温度をAr3-100~Ar3-30℃の放冷終了温度まで放冷し、
前記加速冷却工程では、加速冷却開始から加速冷却終了までの平均冷却速度が3℃/秒を超えて30℃/秒以下となる条件で、前記鋼片の表面温度を350~650℃の加速冷却終了温度まで水冷する、
鋼板の製造方法。
但し、Ar3は、下記(i)式で求められ、Trexは、下記(ii)式で求められる。なお、下記式中の元素記号は各元素の含有量(質量%)を表す。
Ar3=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo ・・・(i)
Trex=-91900[Nb*]2+9400[Nb*]+770 ・・・(ii)
但し、下記(iii)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
Nb<sol.Nbの場合は、[Nb*]=Nb
とする。
sol.Nb=(10(-6770/(T+273)+2.26))/(C+12×N/14) ・・・(iii)
なお、上記式中のTは鋼片の加熱温度(℃)を表す。
上記(6)に記載の鋼板の製造方法。
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値および上限値として含む意味で使用される。
Cは、パーライトを形成して強度を高めるのに有効な元素である。一方、C含有量が過剰であると、溶接性および継手靭性の確保が困難となる。そのため、C含有量は0.030~0.200%とする。C含有量は0.050%以上、0.070%以上または0.100%以上であるのが好ましく、0.180%以下または0.160%以下であるのが好ましい。
Siは、安価な脱酸元素および強化元素として有効である。一方、Si含有量が過剰であると、溶接性および継手靭性を劣化させる。そのため、Si含有量は0.050~0.500%とする。Si含有量は0.100%以上であるのが好ましく、0.150%以上であるのがより好ましい。また、Si含有量は0.450%以下であるのが好ましく、0.400%以下であるのが好ましい。
Mnは、母材の強度および靭性を向上させる元素として有効である。一方、Mn含有量が過剰であると、溶接性および継手靭性を劣化させる。そのため、Mn含有量は0.50~2.00%とする。Mn含有量は0.80%以上であるのが好ましく、0.90%以上であるのがより好ましい。また、Mn含有量は1.60%以下であるのが好ましく、1.50%以下であるのがより好ましい。
Pは、不純物として鋼中に含まれる元素であり、耐食性を確保するためには、0.030%以下とする。また、靭性を確保するためには、P含有量は少ないほど望ましく、0.015%以下であるのが好ましい。なお、P含有量に下限を設ける必要はなく、0%であってもよいが、過度の低減はコストの増加を招くことから、0.003%以上としてもよい。
Sは、不純物として鋼中に含まれる元素であり、耐食性を確保するためには、0.010%以下とする。また、靭性を確保するためには、S含有量は少ないほど望ましく、S含有量は0.003%以下であるのが好ましい。なお、S含有量に下限を設ける必要はなく、0%であってもよいが、過度の低減はコストの増加を招くことから、0.001%以上としてもよい。
Alは、重要な脱酸元素である。一方、Al含有量が過剰であると、鋼片の表面品位を損ない、靭性に有害な介在物を形成する。そのため、Al含有量は0.001~0.100%とする。Al含有量は0.005%以上または0.010%以上であるのが好ましく、0.080%以下または0.050%以下であるのが好ましい。
Nは、Alと共に窒化物を形成し継手靭性を向上させる。一方、N含有量が過剰であると、固溶Nによる脆化が生じる。そのため、N含有量は0.0005~0.0080%とする。N含有量は0.0010%以上または0.0020%以上であるのが好ましく、0.0070%以下であるのが好ましく、0.0060%以下であるのがより好ましい。
Oは、後述するCa、Mg、REMとともに酸化物を形成する。O含有量が過剰であると、酸化物が粗大化して靭性が低下する。一方、O含有量は少ないほどよいが、過度に低減するためには、例えば、RH真空脱ガス装置での還流作業が長時間となり現実的ではない。そのため、O含有量は0.0005~0.0080%とする。
Tiは、微量の含有により母材および溶接部の組織微細化を通じて靭性向上に寄与する。一方、Ti含有量が過剰であると、溶接部を硬化させ著しく靭性を劣化させる。そのため、Ti含有量は0.001~0.050%とする。Ti含有量は0.003%以上または0.005%以上であるのが好ましく、0.040%以下または0.030%以下であるのが好ましい。
Nbは、微量の添加により組織微細化に寄与し、母材強度確保に有効な元素である。一方、Nb含有量が過剰であると、溶接部を硬化させて著しく靭性を劣化させる。そのため、Nb含有量は0.001~0.050%とする。Nb含有量は0.003%以上または0.005%以上であるのが好ましく、0.040%以下または0.030%以下であるのが好ましい。
Cuは耐全面腐食性だけでなく、耐局部腐食性の向上に有効な元素である。さらに、腐食性ガス成分に由来するSが、固体Sとして生成するのを抑制する効果もある。一方、Cu含有量が過剰であると、鋼片の表面割れの助長、継手靭性の劣化等、悪影響も顕在化する。そのため、Cu含有量は0.01~0.50%とする。Cu含有量は0.03%以上であるのが好ましく、0.40%以下であるのが好ましく、0.20%未満であるのがより好ましい。
Moは、耐局部腐食性の向上に有効な元素である。一方、Mo含有量が過剰であると、耐局部腐食性が逆に低下し、かつ溶接性および靭性を劣化させる。そのため、Mo含有量は0.01~0.10%とする。Mo含有量は0.02%以上であるのが好ましく、0.03%以上であるのがより好ましい。また、Mo含有量は0.08%以下であるのが好ましく、0.07%以下であるのがより好ましい。
Snは、局部腐食の進展をさらに抑制する効果を有する。一方、Sn含有量が0.30%を超えても効果は飽和し、他の特性への悪影響の懸念もある。そのため、経済性も考慮して、Sn含有量は0.01~0.30%とする。Sn含有量は0.03%以上または0.05%以上であるのが好ましく、0.25%以下または0.20%以下であるのが好ましい。
Wは、耐局部腐食性の向上に有効な元素であるため、必要に応じて含有させてもよい。一方、W含有量が過剰であると、耐局部腐食性が逆に低下し、かつ溶接性および靭性を劣化させる。そのため、W含有量は0.20%以下とする。W含有量は0.15%以下であるのが好ましく、0.10%以下であるのがより好ましく、0.05%未満であるのがさらに好ましい。上記の効果をより確実に得たい場合には、W含有量は0.01%以上であるのが好ましい。
Sbは、局部腐食の進展をさらに抑制する効果を有するため、必要に応じて含有させてもよい。一方、Sb含有量が0.30%を超えても効果は飽和し、他の特性への悪影響の懸念もある。そのため、経済性も考慮して、Sb含有量は0.30%以下とする。Sb含有量は0.25%以下または0.20%以下であるのが好ましい。上記の効果をより確実に得たい場合には、Sb含有量は0.03%以上または0.05%以上であるのが好ましい。
As:0~0.30%
Bi:0~0.30%
Pb、AsおよびBiは、局部腐食の進展をさらに抑制する効果を有するため、必要に応じて含有させてもよい。一方、いずれの含有量が0.30%を超えても効果は飽和し、他の特性への悪影響の懸念もある。そのため、経済性も考慮して、Pb、AsおよびBiの含有量は、いずれも0.30%以下とする。また、いずれの元素の含有量も0.15%以下であるのが好ましい。上記の効果を得たい場合には、Pb:0.01%以上、As:0.01%以上およびBi:0.01%以上から選択される1種以上を含有させることが好ましい。
Niは、強度確保および靭性向上に有効であるため、必要に応じて含有させてもよい。一方、Ni含有量が過剰であると、コストが上昇する。そのため、Ni含有量は0.50%以下とする。上記の効果をより確実に得たい場合には、Ni含有量は0.05%以上であるのが好ましい。
Crは、焼入れ性を向上させ、高強度化に有効であるため、必要に応じて含有させてもよい。一方、Cr含有量が過剰であると、継手の硬さが上昇して靭性が低下することがある。そのため、Cr含有量は0.10%以下とする。上記の効果をより確実に得たい場合には、Cr含有量は0.01%以上であるのが好ましい。
Vは、析出強化により強度上昇に寄与するため、必要に応じて含有させてもよい。一方、V含有量が過剰であると、継手靭性を損なうことがある。そのため、V含有量は0.100%以下とする。上記の効果をより確実に得たい場合には、V含有量は0.010%以上であるのが好ましい。
Bは、微量添加により焼き入れ性を高め母材強度向上に寄与するため、必要に応じて含有させてもよい。一方、B含有量が過剰であると、継手靭性を劣化させる。そのため、B含有量は0.0050%以下とする。上記の効果をより確実に得たい場合には、B含有量は0.0003%以上であるのが好ましい。
Zr:0~0.50%
TaおよびZrは、微量で鋼の強度を高めるのに有効な元素であり、主に強度調整のため、必要に応じて含有させてもよい。一方、いずれの含有量が0.50%を超えると、靭性劣化が顕著となる。そのため、TaおよびZrの含有量はいずれも0.50%以下とする。上記の効果を得たい場合には、Ta:0.005%以上およびZr:0.005%以上から選択される1種または2種を含有させることが好ましい。
Mg:0~0.0080%
REM:0~0.0080%
Ca、MgおよびREMは、いずれも硫化物を形成することで粗大な介在物(延伸MnS等)の生成を抑制し靱性を向上させるため、必要に応じて含有させてもよい。一方、いずれの含有量が0.0080%を超えても効果は飽和し、粗大な酸化物または硫化物を形成して靭性を劣化させる。そのため、Ca、MgおよびREMの含有量は、いずれも0.0080%以下とする。
Mo、Snは固溶状態で存在する方がより一層耐食性に好ましいため、鋼板表層部における固溶Moおよび固溶Snの量を所定値以上確保する。具体的には、鋼板表層部における固溶Moおよび固溶Snの合計含有量を、質量%で、0.005%以上とする。鋼板表層部における固溶Moおよび固溶Snの合計含有量は、0.010%以上であるのが好ましく、0.020%以上であるのがより好ましい。固溶Moおよび固溶Snの合計含有量に上限を設ける必要はないが、鋼中に含まれるMoおよびSnの合計含有量の上限である0.40%が実質的な上限となる。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・(iv)
但し、上記式中の元素記号は、鋼板中に含まれる各元素の含有量(質量%)を表し、含有されない場合は0を代入するものとする。
本発明においては、鋼板の内層位置と表層位置とにおいて、それぞれ、以下に示す金属組織を有する。鋼板の内層位置および表層位置の金属組織について、それぞれ説明する。
パーライト:5~30%
強度特性である降伏応力および引張強さを確保するためには、パーライトの面積率は5~30%とする。パーライトの面積率は10~20%であるのが好ましい。
本発明において、金属組織はフェライトが主体であって、所定量のパーライトを含む。10%以下のベイナイトが含まれていても上述した効果を阻害しないが、ベイナイトの面積率が過剰であると靱性が劣化する。そのため、ベイナイトの面積率は10%以下とし、5%以下であることが好ましい。ベイナイトは含まれていなくてもよく、すなわち、ベイナイトの面積率は0%であってもよい。
フェライトは靱性に優れた組織である。パーライトおよびベイナイト以外の組織はフェライトである。すなわち、フェライトの面積率は60%以上となる。一方、強度特性を確保する観点からは、フェライトの面積率は90%以下であることが好ましく、80%未満であることがより好ましい。
パーライト:1~20%
ベイナイト:5%以下
残部:フェライト
金属組織中にはパーライトは不可避的に含まれる。また、ベイナイトも混入する可能性がある。ただし、上述のように、腐食環境下において、鋼板の表層領域にパーライト組織およびベイナイト組織を多量に含む場合には、フェライトとセメンタイトとの間で局部電池を形成し、腐食が発生する。そのため、表層位置でのパーライトおよびベイナイトの面積率を低減する必要がある。そのような観点から、パーライトの面積率は1~20%とし、ベイナイトの面積率は5%以下とする。
表層位置の金属組織において、フェライト粒を微細化することで、靱性を向上させることが可能となる。そのため、フェライトの平均粒径は50μm以下とする。また、フェライト粒は細粒であるほど好ましいが5μm未満は工業上実現が難しいため、下限を5μmとした。フェライトの平均粒径は40μm以下であるのが好ましく、30μm以下であるのがより好ましい。
表層位置の金属組織において、パーライトの平均粒径が微細なほど、カソードサイトとなるセメンタイトも微細となり、局部腐食が低減される。そのため、パーライトの平均粒径を30μm以下とする。
上述のように、本発明においては、鋼板の表層位置ではフェライトの面積率を高くし、鋼板の内層位置においてフェライトおよびパーライトを含む複相組織とすることで、耐食性と強度とを両立することとしている。鋼板の内層位置および表層位置の金属組織が、それぞれ前記した条件を満足すれば、耐食性と強度との両立は達成される。そのため、内層位置と表層位置との金属組織の関係について、特に制限する必要はないが、耐食性および強度の双方をより向上させるためには、表層位置でのフェライトの面積率が、内層位置でのフェライトの面積率より高いことが好ましい。
本発明において、金属組織の面積率は以下のように求める。上述のように、まず鋼板の表面から1/4tの位置および1/10tの位置からそれぞれ試料を採取する。そして、該試料の圧延方向断面(いわゆるL方向断面)を観察する。なお、上記の「圧延方向」は、仕上圧延における圧延方向を意味する。
機械的特性については特に制限はないが、本発明に係る鋼板は、例えば、原油油槽として用いるのに必要な強度を有することが好ましい。具体的には、降伏応力(YS)が235MPa以上で、引張強さ(TS)が400~620MPaであることが好ましい。なお、好適な引張強さの範囲に上限を設けているのは、引張強さが過剰であると、靱性が悪化する場合があるためである。
本発明に係る鋼板の製造条件について特に制限はないが、後述する精錬工程、連続鋳造工程、加熱工程、熱間圧延工程、放冷工程、および加速冷却工程を順に行うことで製造することができる。各工程について説明する。
精錬工程において溶鋼を製造する。精錬工程については公知の方法を採用すればよく、特に制限はない。
連続鋳造工程において溶鋼を連続鋳造し、上述した化学組成を有する鋼片を製造する。連続鋳造工程についても公知の方法を採用すればよく特に制限はない。
鋼片に対して熱間圧延を施すために、鋼片を加熱する。加熱工程においては、上述した化学組成を有する鋼片を950~1300℃の加熱温度まで加熱する。加熱工程は加熱炉で行うとよい。なお、鋼片を950~1300℃に加熱するとは、加熱炉から抽出する際の鋼片の全厚平均温度が、950~1300℃の範囲になるように加熱することであり、本明細書では、この鋼片の全厚平均温度を鋼片の加熱温度と称する。また、全厚平均温度は、加熱炉内の温度、加熱時間、鋼片の表面温度から計算で求めることが可能である。
熱間圧延工程において、鋼片に対して熱間圧延を施して鋼板とする。この際、鋼片の表面温度がAr3~Trexの温度範囲で圧延を終了する。圧延をAr3以上で終了することで、延伸したフェライトの形成を抑制できる。また、圧延をTrex以下の未再結晶域で終了することで、表層位置でのフェライトおよびパーライト粒の粗大化を抑制するとともに、内層位置でのパーライトの面積率を適正化することが可能となる。
Ar3=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo ・・・(i)
但し、上記式中の元素記号は各元素の含有量(質量%)を表す。
Trex=-91900[Nb*]2+9400[Nb*]+770 ・・・(ii)
Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
Nb<sol.Nbの場合は、[Nb*]=Nb
とする。
sol.Nb=(10(-6770/(T+273)+2.26))/(C+12×N/14) ・・・(iii)
なお、上記式中のTは鋼片の加熱温度(℃)を表す。
放冷工程では、圧延が終了した鋼板を放冷する。この際、放冷開始から放冷終了までの平均冷却速度が3℃/秒以下となる条件で、鋼片の表面温度をAr3-100~Ar3-30℃の放冷終了温度まで放冷する。平均冷却速度を3℃/秒以下とすることで、鋼板の表層位置において、パーライト変態およびベイナイト変態するのを抑制することが可能となる。なお、本発明においては、放冷が終了した時の鋼片の表面温度を、放冷終了温度として管理する。
加速冷却工程では、放冷後の鋼板を水冷する。この際、加速冷却開始から加速冷却終了までの平均冷却速度が3℃/秒を超えて30℃/秒以下となる条件で、350~650℃の加速冷却終了温度まで水冷する。3℃/秒を超えて30℃/秒以下の平均冷却速度で、350~650℃の加速冷却終了温度まで水冷することで、内層位置の金属組織中に所定の面積%のパーライトを生成させることができる。なお、本発明においては、水冷が終了し鋼片の表面温度が復熱し終えた時の鋼片の表面温度を、加速冷却終了温度として管理する。
加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに備えてもよい。なお、加速冷却工程における冷却停止温度が高い場合には、自己焼戻し効果が得られるため、焼戻し工程を行わなくてもよい。
圧延方向に長さ60mm、幅方向に長さ25mm、厚さ方向に長さ5mmの試験片を鋼板の表面から採取した。試験片の6面すべての表面をエメリー研磨紙600番で研磨し、試験片のすべての表面で地鉄が露出した試験片とした。試験片を、塩酸でpH0.85に調整した10質量%NaCl水溶液中に浸漬した。浸漬条件は、液温30℃、浸漬時間72時間で実施した。なお、試験液は24時間毎に新しいものと交換した。試験液の体積は試験片の表面積比で25cc/cm2とした。
圧延方向に長さ60mm、幅方向に長さ25mm、厚さ方向に長さ5mmの試験片を鋼板の表面から採取した。試験片の表面はエメリー研磨紙600番で研磨した。切断面(表面以外)は塗料で被覆し、60mm×25mmの鋼板の表面だけ地鉄が露出した試験片とした。なお、試験片は21サイクル、49サイクル、77サイクルおよび98サイクル後測定用にそれぞれ用意した。
圧延方向に長さ40mm、幅方向に長さ40mm、厚さ方向に長さ4mmの試験片を鋼板の表面から採取した。切断面(表面以外)は塗料で被覆し、表面は600番の湿式研磨により、鋼板表面の酸化鉄(スケール)を取り除き、40mm×40mmの鋼板の表面だけ地鉄が露出した試験片とした。そして、当該試験片を用いて、腐食速度および固体Sを主体とするスラッジの生成速度を以下の手順で評価した。
相対腐食速度=(各試験番号の腐食速度/試験番号45の腐食速度)×100
相対スラッジ生成速度=(各試験番号のスラッジ生成速度/試験番号45のスラッジ生成速度)×100
である。
Claims (7)
- 鋼板の化学組成が、質量%で、
C :0.030~0.200%、
Si:0.050~0.500%、
Mn:0.50~2.00%、
P :0.030%以下、
S :0.010%以下、
Al:0.001~0.100%、
N :0.0005~0.0080%、
O :0.0005~0.0080%、
Ti:0.001~0.050%、
Nb:0.001~0.050%、
Cu:0.01~0.50%、
Mo:0.01~0.10%、
Sn:0.01~0.30%、
残部:Feおよび不純物であり、
前記鋼板の表層部における固溶Moおよび固溶Snの合計含有量が、質量%で、0.005%以上であり、
前記鋼板の圧延方向断面において、前記鋼板の厚さをtとした時に、
前記鋼板の表面から1/4tの位置における金属組織が、面積%で、
パーライト:5~30%、
ベイナイト:10%以下、
残部:フェライトであり、
前記鋼板の表面から1/10tの位置における金属組織が、面積%で、
パーライト:1~20%、
ベイナイト:5%以下、
残部:フェライトであり、
前記鋼板の表面から1/10tの位置におけるフェライトの平均粒径が5~50μmであり、
前記鋼板の表面から1/10tの位置におけるパーライトの平均粒径が30μm以下である、
鋼板。 - 鋼板の化学組成が、質量%で、
C :0.030~0.200%、
Si:0.050~0.500%、
Mn:0.50~2.00%、
P :0.030%以下、
S :0.010%以下、
Al:0.001~0.100%、
N :0.0005~0.0080%、
O :0.0005~0.0080%、
Ti:0.001~0.050%、
Nb:0.001~0.050%、
Cu:0.01~0.50%、
Mo:0.01~0.10%、
Sn:0.01~0.30%、
W :0~0.20%、
Sb:0~0.30%、
Pb:0~0.30%、
As:0~0.30%、
Bi:0~0.30%、
Ni:0~0.50%、
Cr:0~0.10%、
V :0~0.100%、
B :0~0.0050%、
Ta:0~0.50%、
Zr:0~0.50%、
Ca:0~0.0080%、
Mg:0~0.0080%、
REM:0~0.0080%、
残部:Feおよび不純物であり、
前記鋼板の表層部における固溶Moおよび固溶Snの合計含有量が、質量%で、0.005%以上であり、
前記鋼板の圧延方向断面において、前記鋼板の厚さをtとした時に、
前記鋼板の表面から1/4tの位置における金属組織が、面積%で、
パーライト:5~30%、
ベイナイト:10%以下、
残部:フェライトであり、
前記鋼板の表面から1/10tの位置における金属組織が、面積%で、
パーライト:1~20%、
ベイナイト:5%以下、
残部:フェライトであり、
前記鋼板の表面から1/10tの位置におけるフェライトの平均粒径が5~50μmであり、
前記鋼板の表面から1/10tの位置におけるパーライトの平均粒径が30μm以下である、
鋼板。 - 前記化学組成が、前記Feの一部に代えて、質量%で、
W :0.01~0.20%、
Sb:0.03~0.30%、
Pb:0.01~0.30%、
As:0.01~0.30%、および
Bi:0.01~0.30%、
からなる群から選択される1種または2種を含有するものである、
請求項2に記載の鋼板。 - 前記化学組成が、前記Feの一部に代えて、質量%で、
Ni:0.05~0.50%、
Cr:0.01~0.10%、
V :0.010~0.100%、
B :0.0003~0.0050%、
Ta:0.005~0.50%、および
Zr:0.005~0.50%、
からなる群から選択される少なくとも1種以上を含有するものである、
請求項2または請求項3に記載の鋼板。 - 前記化学組成が、前記Feの一部に代えて、質量%で、
Ca、MgおよびREMからなる群から選択される少なくとも1種以上を、合計で0.0005~0.0080%含有するものである、
請求項2から請求項4までのいずれか1項に記載の鋼板。 - 溶鋼を製造する精錬工程と、
前記溶鋼を連続鋳造して、請求項1から請求項5までのいずれか1項に記載の化学組成を有する鋼片を製造する連続鋳造工程と、
得られた前記鋼片を加熱する加熱工程と、
加熱後の鋼片に対して熱間圧延を施して鋼板とする熱間圧延工程と、
熱間圧延後の前記鋼板を放冷する放冷工程と、
放冷後の前記鋼板を水冷する加速冷却工程と、を備え、
前記加熱工程では、前記鋼片を950~1300℃の加熱温度まで加熱し、
前記熱間圧延工程では、前記鋼片の表面温度がAr3~Trexの温度範囲で圧延終了し、
前記放冷工程では、放冷開始から放冷終了までの平均冷却速度が3℃/秒以下となる条件で、前記鋼片の表面温度をAr3-100~Ar3-30℃の放冷終了温度まで放冷し、
前記加速冷却工程では、加速冷却開始から加速冷却終了までの平均冷却速度が3℃/秒を超えて30℃/秒以下となる条件で、前記鋼片の表面温度を350~650℃の加速冷却終了温度まで水冷する、
鋼板の製造方法。
但し、Ar3は、下記(i)式で求められ、Trexは、下記(ii)式で求められる。なお、下記式中の元素記号は各元素の含有量(質量%)を表す。
Ar3=910-310×C+65×Si-80×Mn-20×Cu-55×Ni-15×Cr-80×Mo ・・・(i)
Trex=-91900[Nb*]2+9400[Nb*]+770 ・・・(ii)
但し、下記(iii)式で求められる固溶Nb量(質量%)を、sol.Nbとした時に、
Nb≧sol.Nbの場合は、[Nb*]=sol.Nb
Nb<sol.Nbの場合は、[Nb*]=Nb
とする。
sol.Nb=(10(-6770/(T+273)+2.26))/(C+12×N/14) ・・・(iii)
なお、上記式中のTは鋼片の加熱温度(℃)を表す。 - 前記加速冷却工程の後に、350~650℃の温度範囲まで加熱する焼戻し工程をさらに施す、
請求項6に記載の鋼板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022569464A JP7277862B1 (ja) | 2021-07-27 | 2022-07-11 | 鋼板およびその製造方法 |
KR1020237033968A KR20230155516A (ko) | 2021-07-27 | 2022-07-11 | 강판 및 그 제조 방법 |
CN202280032170.0A CN117242201A (zh) | 2021-07-27 | 2022-07-11 | 钢板及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-122158 | 2021-07-27 | ||
JP2021122158 | 2021-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023008163A1 true WO2023008163A1 (ja) | 2023-02-02 |
Family
ID=85086744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/027274 WO2023008163A1 (ja) | 2021-07-27 | 2022-07-11 | 鋼板およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7277862B1 (ja) |
KR (1) | KR20230155516A (ja) |
CN (1) | CN117242201A (ja) |
WO (1) | WO2023008163A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004204344A (ja) * | 2002-06-19 | 2004-07-22 | Nippon Steel Corp | 原油油槽用鋼およびその製造方法、原油油槽およびその防食方法 |
JP2010196166A (ja) * | 2009-01-30 | 2010-09-09 | Jfe Steel Corp | 原油タンク用耐食鋼材とその製造方法ならびに原油タンク |
CN105821314A (zh) * | 2016-04-26 | 2016-08-03 | 江苏省沙钢钢铁研究院有限公司 | 一种原油船货油舱内底板用耐腐蚀钢板及其生产方法 |
WO2019176112A1 (ja) * | 2018-03-16 | 2019-09-19 | 日本製鉄株式会社 | 石炭・鉱石運搬船ホールド用鋼板 |
WO2020184683A1 (ja) * | 2019-03-14 | 2020-09-17 | 日本製鉄株式会社 | 鋼板およびその製造方法 |
-
2022
- 2022-07-11 WO PCT/JP2022/027274 patent/WO2023008163A1/ja active Application Filing
- 2022-07-11 KR KR1020237033968A patent/KR20230155516A/ko unknown
- 2022-07-11 JP JP2022569464A patent/JP7277862B1/ja active Active
- 2022-07-11 CN CN202280032170.0A patent/CN117242201A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004204344A (ja) * | 2002-06-19 | 2004-07-22 | Nippon Steel Corp | 原油油槽用鋼およびその製造方法、原油油槽およびその防食方法 |
JP2010196166A (ja) * | 2009-01-30 | 2010-09-09 | Jfe Steel Corp | 原油タンク用耐食鋼材とその製造方法ならびに原油タンク |
CN105821314A (zh) * | 2016-04-26 | 2016-08-03 | 江苏省沙钢钢铁研究院有限公司 | 一种原油船货油舱内底板用耐腐蚀钢板及其生产方法 |
WO2019176112A1 (ja) * | 2018-03-16 | 2019-09-19 | 日本製鉄株式会社 | 石炭・鉱石運搬船ホールド用鋼板 |
WO2020184683A1 (ja) * | 2019-03-14 | 2020-09-17 | 日本製鉄株式会社 | 鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20230155516A (ko) | 2023-11-10 |
JP7277862B1 (ja) | 2023-05-19 |
JPWO2023008163A1 (ja) | 2023-02-02 |
CN117242201A (zh) | 2023-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7201068B2 (ja) | 鋼板およびその製造方法 | |
JP5838796B2 (ja) | 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法 | |
US9109275B2 (en) | High-strength galvanized steel sheet and method of manufacturing the same | |
KR101335069B1 (ko) | 성형성이 우수한 고강도 냉연 강판, 고강도 용융 아연 도금 강판 및 그들의 제조 방법 | |
JP6238474B2 (ja) | 加工性に優れた溶融Zn−Al−Mg系めっき鋼板及びその製造方法 | |
CN109563580A (zh) | 钢板及镀覆钢板 | |
JP5321671B2 (ja) | 強度と加工性の均一性に優れた高張力熱延鋼板およびその製造方法 | |
KR20140103340A (ko) | 고강도 열연 강판 및 그 제조 방법 | |
JP2012012701A (ja) | 伸びフランジ性および耐疲労特性に優れた高強度熱延鋼板およびその製造方法 | |
JP6589903B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP5505572B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP4501699B2 (ja) | 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法 | |
JP5482162B2 (ja) | 伸びおよび伸びフランジ特性に優れた引張強度が780MPa以上の高強度熱延鋼板およびその製造方法 | |
JP2007070662A (ja) | 耐食性と成形性に優れた溶融亜鉛めっき高強度鋼板および合金化溶融亜鉛めっき高強度鋼板、およびそれらの製造方法 | |
JP2009167475A (ja) | 高強度鋼板およびその製造方法 | |
JP5644964B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
CN115443344B (zh) | 钢板及其制造方法 | |
CN111108225B (zh) | 钢板及其制造方法 | |
CN110402297B (zh) | 高强度热轧镀敷钢板 | |
JP7277862B1 (ja) | 鋼板およびその製造方法 | |
JP5971281B2 (ja) | 加工性および靭性に優れた高強度熱延鋼板の製造方法 | |
JP5556157B2 (ja) | 伸びおよび伸びフランジ特性に優れた引張強度が780MPa以上の高強度熱延鋼板の製造方法 | |
TWI648412B (zh) | Steel plate and plated steel plate | |
JP7127751B2 (ja) | 鋼板およびその製造方法 | |
WO2009041703A1 (ja) | 原油タンク用熱間圧延形鋼およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022569464 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22849227 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20237033968 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237033968 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280032170.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22849227 Country of ref document: EP Kind code of ref document: A1 |