WO2023006749A1 - Elektrisches antriebssystem für ein fahrzeug, sowie verfahren zum betreiben eines elektrischen antriebssystems - Google Patents

Elektrisches antriebssystem für ein fahrzeug, sowie verfahren zum betreiben eines elektrischen antriebssystems Download PDF

Info

Publication number
WO2023006749A1
WO2023006749A1 PCT/EP2022/070946 EP2022070946W WO2023006749A1 WO 2023006749 A1 WO2023006749 A1 WO 2023006749A1 EP 2022070946 W EP2022070946 W EP 2022070946W WO 2023006749 A1 WO2023006749 A1 WO 2023006749A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
charging
electric
phase
electrical energy
Prior art date
Application number
PCT/EP2022/070946
Other languages
English (en)
French (fr)
Inventor
Nathan Tröster
Markus Orner
Urs Boehme
Original Assignee
Mercedes-Benz Group AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercedes-Benz Group AG filed Critical Mercedes-Benz Group AG
Priority to CN202280052236.2A priority Critical patent/CN117813215A/zh
Publication of WO2023006749A1 publication Critical patent/WO2023006749A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/4505Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only having a rectifier with controlled elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to an electric drive system for a vehicle according to the preamble of patent claim 1.
  • the invention also relates to a method for operating an electric drive system of a vehicle according to the preamble of patent claim 5.
  • Electrically powered vehicles today have a voltage level of 800 volts. These vehicles have an 800-volt vehicle battery, with which an on-board network and/or an electric drive motor can be supplied with energy. For example, this is disclosed in DE 102019005621 A1 and DE 102009052680 A1.
  • an AC voltage is generated from a battery voltage of the vehicle battery by means of an inverter. For example, this is disclosed in DE 102018000488 A1.
  • DE 102018009848 A1 and DE 102018009840 A1 each disclose switching arrangements for motor vehicles.
  • an electrical machine of a vehicle is supplied with electrical energy by means of a power converter via a high-voltage battery of the vehicle.
  • a disadvantage of the charging options for an 800-volt vehicle at a 400-volt charging station is the increased additional expense for downward compatibility.
  • One object of the present invention is to be able to charge an electrical energy store of an at least partially electrically operated vehicle more simply and independently of the voltage level of a charging station. This object is achieved by an electric drive system and a method according to the independent patent claims. Useful developments result from the dependent claims.
  • One aspect of the invention relates to an electric drive system for a vehicle, with
  • An electrical energy storage device for supplying electricity to the first and second three-phase electrical machine while the vehicle is driving, a first inverter of the first three-phase electrical machine and a second inverter of the second three-phase electrical machine being coupled to the electrical energy storage device, and
  • a charging voltage of the on-board charging connection can be converted into a supply voltage for charging the electrical energy store.
  • the electric drive system of the vehicle in particular of an at least partially electrically driven vehicle, can have two electric drive machines or electric three-phase machines per drive axle exhibit.
  • two electrical machines can be arranged per drive axle or axle of the vehicle.
  • each wheel of the vehicle in particular each axle of the vehicle, can be driven and controlled individually with its own electric machine.
  • this offers the additional advantage that a mechanical differential gear can be dispensed with and this can be replaced by an electric differential, which is provided by the electric machine. In this way, in particular, weight savings and cost savings of the vehicle can be achieved.
  • One advantage of using several electrical machines per drive axle or axis is the implementation of "torque vectoring".
  • the two drive inverters of a vehicle axle of the vehicle are misused for the charging process.
  • these drive inverters fulfill the electrical supply of the electrical three-phase machines and in a secondary function the charging of the electrical energy store at a charging station with a voltage level that is lower than the voltage level of the vehicle is made possible.
  • the inductances of the electrical three-phase machines can be used for the charging process at the charging station, so that no additional installation space for large and heavy chokes is required to boost the lower voltage of the charging station.
  • EMC interference or electromagnetic interference in the direction of the DC charging source DC charging socket
  • the EMC filter is normally used to protect the charging station from interference or fluctuations.
  • one of the two inverters is used as a step-up converter when charging at a 400 volt charging station and the other inverter switches through the necessary current path, in particular clocked.
  • at least one inverter is used as a step-up converter to convert the 400 volts of the charging station to the 800 volts to raise the vehicle battery.
  • additional components for downward compatibility with a 400 volt charging process can also be omitted, since the inverters already in the vehicle are misused.
  • additional components can be dispensed with, since the inverters of the electric drive system have an additional functionality for charging at a 400-volt charging station in addition to their primary function.
  • Another aspect of the invention relates to a method for operating an electric drive system of a vehicle, wherein
  • At least one drive axle of the vehicle is driven by a first three-phase electric machine and a second three-phase electric machine, wherein
  • a first inverter of the first three-phase machine and a second inverter of the second three-phase machine are each electrically supplied with an electrical energy store, wherein
  • a vehicle-side charging connection of the vehicle is electrically coupled to the first and second electrical three-phase machine
  • a charging voltage of the vehicle-side charging connection is converted into a supply voltage for charging the electrical energy store.
  • an electric drive system can be used for a charging operation of the vehicle in addition to its primary function for driving the vehicle using electric three-phase machines, so that the electric drive system has a primary function for supplying the electric three-phase machine for driving a vehicle and a secondary function for charging a 800 volt vehicle to a 400 volt charging station.
  • the method just described can be carried out with an electric drive system according to the previous aspect or an advantageous embodiment thereof.
  • Advantageous configurations of the electric drive system are to be regarded as advantageous configurations of the method.
  • the electric drive system has to physical features which enable the method to be carried out or an advantageous embodiment thereof.
  • advantageous embodiments of one aspect are to be regarded as advantageous embodiments of the other aspect or vice versa.
  • FIG. 1 shows a schematic block diagram of a drive system of a vehicle during an 800V charging process of the vehicle
  • FIG. 2 shows a further schematic block diagram of the drive system from FIG. 1 during a 400V charging process of the vehicle.
  • FIG. 1 shows, for example, a schematic representation of an electric drive system 1 according to the invention of a vehicle.
  • This is an electric drive system of an electric vehicle or a hybrid vehicle.
  • the vehicle has a voltage level of 800 volts.
  • the voltage, in particular a battery voltage Ue att of an electrical energy store 2 of the vehicle is to be understood.
  • the battery voltage Ue att of the electrical energy store 2 has a voltage range of 770 volts to 830 volts.
  • the battery voltage Ue att depending on the state of charge of the electrical energy store 2 and / or a circuit structure of the electric drive system 1 and / or an operating state of the electric Drive system 1 fluctuate.
  • the electrical energy store has a battery voltage Ußatt with a voltage of essentially 800 volts.
  • “essentially” means a tolerance of +/- 5 percent, in particular +/- 10 percent. In particular, tolerances and/or measurement tolerances of 5%, in particular 10%, must be taken into account for the specified voltage values.
  • the electric drive system 1 means all components and/or systems that are required for driving or moving the vehicle.
  • the electric drive system 1 can include the vehicle body, the electric energy store 2, a vehicle-side charging connection 3, at least one drive axle 4, the electric energy store 2 and at least a first electric three-phase machine 5 and a second electric three-phase machine 6. Consequently, locomotion travel of the vehicle can be performed with the aid of the electric drive system 1 .
  • the electric drive system 1 has at least one drive axle 4 .
  • the vehicle or the electric drive system 1 can have multiple drive axles.
  • the vehicle can be a passenger car with one or two drive axles or a truck with several drive axles.
  • this at least one drive axle 4 has the two electric three-phase machines 5 , 6 . Consequently, each drive axle of the vehicle can have at least two electric three-phase machines.
  • each wheel of the drive axle can be driven with its own electric machine, ie the two three-phase machines 5, 6.
  • each tire of the vehicle can be driven or controlled by its own electric drive unit.
  • the first three-phase electric machine 5 and the second three-phase electric machine 6 can be arranged together or jointly on a rear axle or on a front axle as a drive axle.
  • two electric three-phase machines can be arranged per axis.
  • both the rear axle and the front axle can have two three-phase machines.
  • the two three-phase machines 5, 6 are arranged either on the rear axle or on the front axle, depending on whether the rear axle or the front axle is the drive axle of the vehicle.
  • a first wheel 7 of the drive axle 4 can be driven with the first three-phase machine 5 and a second wheel 8 of the drive axle 4 that is different from the first wheel 7 can be driven with the second electric three-phase machine 6 .
  • the two electrical three-phase machines 5, 6 can drive the drive axle 4, they are supplied or fed with energy by the electrical energy store 2. Since the battery voltage U ßatt is a DC voltage, but the electrical three-phase machines 5, 6 require an AC voltage, the electrical three-phase machines 5, 6 each have an inverter 9, 10. The first electric three-phase machine 5 has the first inverter 9 and the second electric three-phase machine 6 has the second inverter 10 .
  • the inverters 9, 10 are in particular a power converter, inverter or rotary converter. With the help of the inverters 9, 10, the battery voltage U ßatt can be converted or directed into an alternating voltage for supplying or operating the three-phase machines 5, 6.
  • the two inverters 9, 10 are connected or coupled to the electrical energy store 2.
  • the two inverters 9, 10 can each be connected to the electrical energy store 2 via their input sides. Both inverters 9, 10 can thus be supplied simultaneously, in particular with identical battery voltages Ußatt.
  • the inverters 9, 10 can be referred to as drive inverters.
  • the inverter 9, 10 can be an S3L inverter or a 3-level inverter.
  • the vehicle-side charging connection 3 is in particular a charging socket or a charging socket of the vehicle.
  • a vehicle-external charging unit 11 can be connected to the vehicle-side charging connection.
  • the vehicle-external charging unit 11 can be, for example, a charging station or trade a charging station.
  • the charging unit 11 is a DC charging source for providing a DC voltage.
  • the charging unit 11 provides a charging voltage UL to the charging connection 3 on the vehicle side.
  • the charging voltage UL has a voltage value that is essentially the same as the battery voltage U ßatt .
  • the battery voltage Ußatt and the charging voltage UL are 800 volts. Since this is not always the case, the two inverters 9, 10 and in particular the electric three-phase machines 5, 6 can be used for other purposes in the event that the charging unit 11 can only provide a charging voltage L of less than 500 volts. In this case, downward compatibility of the electric drive system 1 is therefore required.
  • the electrical three-phase machines 5, 6 and in particular the inverters 9, 10 are misused for this charging operation.
  • either the first inverter 9 or the second inverter 10 is operated as a step-up converter or step-up converter for the charging operation of the vehicle and in particular of the electrical energy store 2 .
  • the electrical energy store 2 can be, for example, a vehicle battery or a battery system or a number of partial batteries or a high-voltage battery.
  • the electrical drive system 1 can have a switching device 12 or switching device or switching matrix. With this switching device 12, either a direct charging process of the electrical energy store 2 by the charging unit 11 or indirectly via the inverters 9, 10 can be set or switched.
  • FIG. 1 now shows the case of 800 volt DC charging.
  • the switching device 12 is switched to a first switching position.
  • the vehicle-side charging connection 3 or the charging unit 11 is connected or coupled directly to the electrical energy store 2 so that the electrical energy store 2 can be charged using the charging voltage UL.
  • This direct 800 volt DC charging is shown in FIG. 1 with the arrow 13 showing the direction of current flow.
  • FIG. 2 a 400 volt DC charging process of the electrical energy store 2 is now shown as an example.
  • the explanations for the electric drive system are identical to those from FIG. 1.
  • the switching device 12 is switched to a second switching position that is different from the first switching position.
  • the vehicle-side charging connection 3 is electrically connected or coupled to the first and second electrical three-phase machine 5, 6 and the inverters 9, 10.
  • the charging voltage UL which in this case can be 400 volts, can be converted or stepped up into a supply voltage UV. Consequently, the voltage value of the charging voltage UL can be stepped up so that a voltage value of 800 volts is present as the supply voltage UV.
  • the electrical energy store 2 can now be charged with this supply voltage. For this purpose, for example, in FIG.
  • At least one of the two inverters 9, 10 is operated as a step-up converter.
  • the other inverter 9, 10 is operated in a clocked manner or as a clock generator.
  • the current flow of the clock-generating components is shown here with the current flow direction arrow 15 .
  • the current flow direction arrows 15 of clocked operation are shown in dashed lines.
  • the various semiconductor switches of the inverters 9, 10 can be controlled for the step-up operation and the clocking operation of the first and/or second inverter 9, 10.
  • the inverters 9, 10 can have IGBTs or MOSFETs for this purpose.

Abstract

Die Erfindung betrifft Elektrisches Antriebssystem (1) für ein Fahrzeug, mit - einer ersten elektrischen Drehstrommaschine (5) und einer zweiten elektrischen Drehstrommaschine (6) zum Antreiben zumindest einer Antriebsachse (4) des Fahrzeugs, - einem elektrischen Energiespeicher (2) zum elektrischen Versorgen der ersten und zweiten elektrischen Drehstrommaschine (5, 6) während eines Fahrbetriebs des Fahrzeugs, wobei ein erster Wechselrichter (9) der ersten elektrischen Drehstrommaschine (5) und ein zweiter Wechselrichter (10) der zweiten elektrischen Drehstrommaschine (6) jeweils mit dem elektrischen Energiespeicher (2) gekoppelt sind, und - einem fahrzeugseitigen Ladeanschluss (3) zum elektrischen Koppeln des elektrischen Energiespeichers (2) mit einer fahrzeugexternen Ladeeinheit (11), wobei - in Abhängigkeit von dem ersten und/oder zweiten Wechselrichter (9, 10) eine Ladespannung (UL) des fahrzeugseitigen Ladeanschlusses (3) in eine Versorgungsspannung (UV) zum Laden des elektrischen Energiespeichers (2)umwandelbar ist.Des Weiteren betrifft die Erfindung ein Verfahren.

Description

Mercedes-Benz Group AG
Elektrisches Antriebssystem für ein Fahrzeug, sowie Verfahren zum Betreiben eines elektrischen Antriebssystems
Die Erfindung betrifft ein elektrisches Antriebssystem für ein Fahrzeug gemäß dem Oberbegriff von Patentanspruch 1. Des Weiteren betrifft die Erfindung ein Verfahren zum Betreiben eines elektrischen Antriebssystems eines Fahrzeuges gemäß dem Oberbegriff von Patentanspruch 5.
Elektrisch angetriebene Fahrzeuge weisen heutzutage eine Spannungslage von 800 Volt auf. Dabei weisen diese Fahrzeuge eine 800-Volt-Fahrzeugbatterie auf, mit welcher ein Bordnetz und/oder eine elektrische Antriebsmaschine mit Energie versorgt werden kann. Beispielsweise ist dies in der DE 102019005621 A1 und der DE 102009052680 A1 offenbart. Damit die elektrische Maschine des Fahrzeuges das Fahrzeug antreiben kann, benötigt diese eine Wechselspannung. Diese Wechselspannung wird mittels eines Wechselrichters aus einer Batteriespannung der Fahrzeugbatterie erzeugt. Beispielsweise ist dies in der DE 102018000488 A1 offenbart.
Die DE 102018009848 A1 und DE 102018009840 A1 offenbaren jeweils Schaltanordnungen für Kraftfahrzeuge. Dabei wird jeweils eine elektrische Maschine eines Fahrzeuges mittels eines Stromrichters über eine Hochvolt-Batterie des Fahrzeuges mit elektrischer Energie versorgt.
Ein Nachteil bei den Lademöglichkeiten eines 800-Volt-Fahrzeuges an einer 400-Volt- Ladesäule ist der erhöhte Zusatzaufwand für die Abwärtskompatibilität.
Eine Aufgabe der vorliegenden Erfindung besteht darin, einen elektrischen Energiespeicher eines zumindest teilweise elektrisch betriebenen Fahrzeuges einfacher und unabhängiger von einer Spannungslage einer Ladestation laden zu können. Diese Aufgabe wird durch ein elektrisches Antriebssystem und ein Verfahren gemäß den unabhängigen Patentansprüchen gelöst. Sinnvolle Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.
Ein Aspekt der Erfindung betrifft ein elektrisches Antriebssystem für ein Fahrzeug, mit
- einer ersten elektrischen Drehstrommaschine und einer zweiten elektrischen Drehstrommaschine zum Antreiben zumindest einer Antriebsachse des Fahrzeugs,
- einem elektrischen Energiespeicher zum elektrischen Versorgen der ersten und zweiten elektrischen Drehstrommaschine während eines Fährbetriebs des Fahrzeugs, wobei ein erster Wechselrichter der ersten elektrischen Drehstrommaschine und ein zweiter Wechselrichter der zweiten elektrischen Drehstrommaschine jeweils mit dem elektrischen Energiespeicher gekoppelt sind, und
- einem fahrzeugseitigen Ladeanschluss zum elektrischen Koppeln des elektrischen Energiespeichers mit einer fahrzeugexternen Ladeeinheit, wobei
- in Abhängigkeit von dem ersten und/oder zweiten Wechselrichter eine Ladespannung des fahrzeugseitigen Ladeanschlusses in eine Versorgungsspannung zum Laden des elektrischen Energiespeichers umwandelbar ist.
Durch die Verwendung der beiden Wechselrichter des vorgeschlagenen elektrischen Antriebssystems können elektrisch betriebene Fahrzeuge mit einer Spannungslage von 800 Volt effizient und einfach an 400-Volt- oder 500-Volt-Ladestationen geladen werden. Folglich kann mithilfe des vorgeschlagenen elektrischen Antriebssystems die Abwärtskompatibilität eines elektrisch betriebenen Fahrzeuges verbessert werden, sodass ein elektrisch betriebenes Fahrzeug mit einer Batteriespannung von 800 Volt auch an Ladesäulen mit 400 Volt geladen werden kann. Durch die Verwendung der beiden Wechselrichter der elektrischen Drehstrommaschine können zusätzliche Spannungswandler oder anderweitige Schaltungsanordnungen für das Laden an einer 400-Volt-Ladesäule verzichtet werden. Somit können mithilfe des vorgeschlagenen elektrischen Antriebssystems elektrisch angetriebene Fahrzeuge auch bei einer im Vergleich zu einer Batteriespannung niedrigeren Spannungslage einer Ladestation effizient und einfach geladen werden. Durch den Verzicht von zusätzlichen Schaltanordnungen wird durch diese Abwärtskompatibilität eine Gewichtsreduzierung und Kostenreduzierung erreicht.
Mit anderen Worten kann das elektrische Antriebssystem des Fahrzeuges, insbesondere eines zumindest teilweise elektrisch angetriebenen Fahrzeugs, pro Antriebsachse zwei elektrische Antriebsmaschinen beziehungsweise elektrische Drehstrommaschinen aufweisen. Insbesondere können pro Antriebsachse beziehungsweise Achse des Fahrzeuges zwei elektrische Maschinen angeordnet sein. Somit kann insbesondere beispielsweise jedes Rad des Fahrzeugs, insbesondere jede Achse des Fahrzeuges, individuell mit einer eigenen elektrischen Maschine angetrieben und gesteuert werden. Dies bietet zum einen den zusätzlichen Vorteil, dass auf ein mechanisches Differentialgetriebe verzichtet werden kann und dieses durch ein elektrisches Differential, welches durch die elektrische Maschine bereitgestellt wird, ersetzt werden kann. Dadurch können insbesondere eine Gewichtseinsparung und Kosteneinsparung des Fahrzeuges erreicht werden. Ein Vorteil der Verwendung von mehreren elektrischen Maschinen pro Antriebsachse beziehungsweise Achse ist die Umsetzung des „Torque-Vectoring“.
Mit anderen Worten ausgedrückt, werden beispielsweise die beiden Antriebswechselrichter einer Fahrzeugachse des Fahrzeuges für den Ladevorgang zweckentfremdet. Somit erfüllen diese Antriebswechselrichter in ihrer Primärfunktion das elektrische Versorgen der elektrischen Drehstrommaschinen und in einer Sekundärfunktion wird das Laden des elektrischen Energiespeichers an einer Ladestation mit einer im Vergleich zu der Spannungslage des Fahrzeugs geringeren Spannungslage ermöglicht.
Des Weiteren können für den Ladevorgang an der Ladestation die Induktivitäten der elektrischen Drehstrommaschinen genutzt werden, sodass für das Hochsetzen der niedrigeren Spannung der Ladestation kein zusätzlicher Bauraum für große und schwere Drosseln benötigt werden. Durch den Einsatz der beiden elektrischen Antriebsdrehstrommaschinen für das Laden an einer Gleichstromladequelle können EMV- Störungen beziehungsweise elektromagnetische Störgrößen in Richtung der Gleichstromladequelle (DC-Ladedose) gering gehalten werden und das benötigte EMV- Filter in Richtung der DC-Ladedose kann kleiner und günstiger ausgelegt werden. Das EMV-Filter dient normalerweise dazu, die Ladesäule gegenüber Störgrößen beziehungsweise Schwankungen zu schützen. Durch die Verwendung der beiden Wechselrichterder Drehstrommaschinen und insbesondere Induktivitäten der Drehstrommaschinen kann auf ein solches EMV-Filter verzichtet werden. Somit ergibt sich eine zusätzliche Reduzierung an Kosten und Gewicht.
Besonders vorteilhaft ist, wenn einer der beiden Wechselrichter beim Laden an einer 400- Volt-Ladesäule als Hochsetzsteller verwendet wird und der andere Wechselrichter schaltet den notwendigen Strompfad, insbesondere getaktet, durch. Somit wird zumindest ein Wechselrichter als Hochsetzsteller verwendet, um die 400 Volt der Ladesäule auf die 800 Volt der Fahrzeugbatterie anzuheben. Somit können auch zusätzliche Komponenten für die Abwärtskompatibilität bei einem 400-Volt-Ladevorgang entfallen, da die bereits im Fahrzeug vorhandenen Wechselrichter zweckentfremdet werden. Folglich kann auf zusätzliche Komponenten verzichtet werden, da die Wechselrichter des elektrischen Antriebssystems neben ihrer Primärfunktion eine zusätzliche Funktionalität für das Laden an einer 400-Volt-Ladesäule aufweisen.
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zum Betreiben eines elektrischen Antriebssystems eines Fahrzeugs, wobei
- während eines Fährbetriebs des Fahrzeugs zumindest eine Antriebsachse des Fahrzeugs mit einer ersten elektrischen Drehstrommaschine und einer zweiten elektrischen Drehstrommaschine angetrieben wird, wobei
- ein erster Wechselrichter der ersten Drehstrommaschine und ein zweiter Wechselrichter der zweiten Drehstrommaschine jeweils mit einem elektrischen Energiespeicher elektrisch versorgt werden, wobei
- für einen Ladebetrieb des Fahrzeugs ein fahrzeugseitiger Ladeanschluss des Fahrzeugs mit der ersten und zweiten elektrischen Drehstrommaschine elektrisch gekoppelt wird, und
- in Abhängigkeit von dem ersten und zweiten Wechselrichter eine Ladespannung des fahrzeugseitigen Ladeanschlusses in eine Versorgungsspannung zum Laden des elektrischen Energiespeichers umgewandelt wird.
Durch das vorgeschlagene Verfahren kann ein elektrisches Antriebssystem neben seiner Primärfunktion für das Antreiben des Fahrzeuges mittels elektrischer Drehstrommaschinen für einen Ladebetrieb des Fahrzeuges zweckentfremdet werden, sodass das elektrische Antriebssystem eine Primärfunktion zum Versorgen der elektrischen Drehstrommaschine für das Antreiben eines Fahrzeuges und eine Sekundärfunktion für das Laden eines 800-Volt-Fahrzeuges an einer 400-Volt-Ladestation aufweist.
Insbesondere kann das soeben geschilderte Verfahren mit einem elektrischen Antriebssystem nach dem vorherigen Aspekt oder einer vorteilhaften Ausgestaltung davon durchgeführt werden.
Vorteilhafte Ausgestaltungsformen des elektrischen Antriebssystems sind als vorteilhafte Ausgestaltungsformen des Verfahrens anzusehen. Das elektrische Antriebssystem weist dazu gegenständliche Merkmale auf, welche eine Durchführung des Verfahrens oder eine vorteilhafte Ausgestaltungsform davon ermöglichen.
Insbesondere sind vorteilhafte Ausführungsformen eines Aspekts als vorteilhafte Ausführungsformen des anderen Aspekts oder umgekehrt anzusehen.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung(en). Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Dabei zeigen die nachfolgenden Figuren in:
Fig. 1 ein schematisches Blockschaltbild eines Antriebssystems eines Fahrzeugs bei einem 800V-Ladevorgang des Fahrzeugs; und
Fig. 2 ein weiteres schematisches Blockschaltbild des Antriebssystems aus Fig.1 bei einem 400V-Ladevorgang des Fahrzeugs.
In den Figuren sind funktionsgleiche Elemente mit denselben Bezugszeichen versehen.
Die Fig. 1 zeigt beispielsweise eine schematische Darstellung eines erfindungsgemäßen elektrischen Antriebssystems 1 eines Fahrzeugs. Dabei handelt es sich um ein elektrisches Antriebssystem eines Elektrofahrzeugs oder eines Hybridfahrzeugs. Beispielsweise weist das Fahrzeug eine Spannungslage von 800 Volt auf. Bei dieser Spannungslage ist die Spannung, insbesondere eine Batteriespannung Ueatt, eines elektrischen Energiespeichers 2 des Fahrzeuges zu verstehen. Dabei weist die Batteriespannung Ueatt des elektrischen Energiespeichers 2 einen Spannungsbereich von 770 Volt bis 830 Volt auf. Insbesondere kann die Batteriespannung Ueatt je nach Ladezustand des elektrischen Energiespeichers 2 und/oder eines Schaltungsaufbaus des elektrischen Antriebssystems 1 und/oder eines Betriebszustands des elektrischen Antriebssystems 1 schwanken. Insbesondere weist der elektrische Energiespeicher eine Batteriespannung Ußatt mit im Wesentlichen einer Spannung von 800 Volt auf.
Mit „im Wesentlichen“ ist in dieser Anmeldung eine Toleranz von +/- 5 Prozent, insbesondere +/- 10 Prozent, zu verstehen. Insbesondere sind bei den angegebenen Spannungswerten Toleranzen und/oder Messtoleranzen von 5%, insbesondere 10% zu berücksichtigen.
Insbesondere sind mit dem elektrischen Antriebssystem 1 alle Komponenten und/oder Systeme zu verstehen, welche für das Antreiben beziehungsweise Fortbewegen des Fahrzeuges benötigt werden. Insbesondere kann zu dem elektrischen Antriebssystem 1 das Fahrzeuggestellt, der elektrische Energiespeicher 2, ein fahrzeugseitiger Ladeanschluss 3, zumindest eine Antriebsachse 4, der elektrische Energiespeicher 2 und zumindest eine erste elektrische Drehstrommaschine 5 und eine zweite elektrische Drehstrommaschine 6 gehören. Folglich kann mithilfe des elektrischen Antriebssystems 1 eine Fortbewegungsfahrt des Fahrzeuges durchgeführt werden.
Insbesondere weist das elektrische Antriebssystem 1 zumindest eine Antriebsachse 4 auf. Dabei handelt es sich um die Achse, welche insbesondere von den elektrischen Drehstrommaschinen 5, 6 angetrieben werden. Insbesondere können das Fahrzeug beziehungsweise das elektrische Antriebssystem 1 mehrere Antriebsachsen aufweisen. Insbesondere kann es sich bei dem Fahrzeug um einen Personenkraftwagen mit einer oder zwei Antriebsachsen oder um einen Lastkraftwagen mit mehreren Antriebsachsen handeln.
Insbesondere weist diese zumindest eine Antriebsachse 4 die beiden elektrischen Drehstrommaschinen 5, 6 auf. Folglich kann jede Antriebsachse des Fahrzeuges zumindest zwei elektrische Drehstrommaschinen aufweisen. Anders ausgedrückt kann beispielsweise jedes Rad der Antriebsachse mit einer eigenen elektrischen Maschine, also die beiden Drehstrommaschinen 5, 6, angetrieben werden. Insbesondere kann jeder Reifen des Fahrzeuges durch eine eigene elektrische Antriebsmaschine angetrieben beziehungsweise gesteuert werden.
Beispielsweise können die erste elektrische Drehstrommaschine 5 und die zweite elektrische Drehstrommaschine 6 zusammen beziehungsweise gemeinsam an einer Hinterachse oder an einer Vorderachse als Antriebsachse angeordnet sein. Somit können beispielsweise pro Achse zwei elektrische Drehstrommaschinen angeordnet sein. Beispielsweise kann sowohl die Hinterachse als auch die Vorderachse zwei Drehstrommaschinen aufweisen. Insbesondere sind die beiden Drehstrommaschinen 5, 6 entweder an der Hinterachse oder an der Vorderachse angeordnet, je nachdem, ob es sich bei der Hinterachse oder bei der Vorderachse um die Antriebsachse des Fahrzeuges handelt. Dabei kann beispielsweise mit der ersten Drehstrommaschine 5 ein erstes Rad 7 der Antriebsachse 4 und mit der zweiten elektrischen Drehstrommaschine 6 ein zum ersten Rad 7 verschiedenes zweites Rad 8 der Antriebsachse 4 angetrieben werden.
Damit die beiden elektrischen Drehstrommaschinen 5, 6 die Antriebsachse 4 antreiben können, werden diese von dem elektrischen Energiespeicher 2 mit Energie versorgt beziehungsweise gespeist. Da es sich bei der Batteriespannung Ußatt um eine Gleichspannung handelt, aber die elektrischen Drehstrommaschinen 5, 6 eine Wechselspannung benötigen, weisen die elektrischen Drehstrommaschinen 5, 6 jeweils einen Wechselrichter 9, 10 auf. Dabei weist die erste elektrische Drehstrommaschine 5 den ersten Wechselrichter 9 und die zweite elektrische Drehstrommaschine 6 den zweiten Wechselrichter 10 auf. Bei den Wechselrichtern 9, 10 handelt es sich insbesondere um einen Stromrichter, Inverter oder Drehrichter. Mithilfe der Wechselrichter 9, 10 kann die Batteriespannung Ußatt jeweils in eine Wechselspannung zum Versorgen beziehungsweise Betreiben der Drehstrommaschinen 5, 6 umgewandelt beziehungsweise gerichtet werden.
Insbesondere sind die beiden Wechselrichter 9, 10 mit dem elektrischen Energiespeicher 2 verbunden beziehungsweise gekoppelt. Beispielsweise können hierzu die beiden Wechselrichter 9, 10 jeweils über ihre Eingangsseiten gemeinsam mit dem elektrischen Energiespeicher 2 verbunden werden. Somit können beide Wechselrichter 9, 10 gleichzeitig, insbesondere mit identischen, Batteriespannungen Ußatt versorgt werden.
Insbesondere können die Wechselrichter 9, 10 als Antriebswechselrichter bezeichnet werden. Insbesondere kann es sich bei dem Wechselrichter 9, 10 um S3L-Inverter oder 3- Level-Wechselrichter handeln.
Damit der elektrische Energiespeicher 2 aufgeladen werden kann, ist dieser mit dem fahrzeugseitigen Ladeanschluss 3 elektrisch gekoppelt. Bei dem fahrzeugseitigen Ladeanschluss 3 handelt es sich insbesondere um eine Ladedose beziehungsweise um eine Ladesteckdose des Fahrzeuges. An dem fahrzeugseitigen Ladeanschluss kann insbesondere eine fahrzeugexterne Ladeeinheit 11 angeschlossen werden. Bei der fahrzeugexternen Ladeeinheit 11 kann es sich beispielsweise um eine Ladestation oder eine Ladesäule handeln. Insbesondere handelt es sich bei der Ladeeinheit 11 um eine Gleichstromladequelle zum Bereitstellen einer Gleichspannung. Insbesondere wird mit der Ladeeinheit 11 eine Ladespannung UL dem fahrzeugseitigen Ladeanschluss 3 bereitgestellt.
Um nun den elektrischen Energiespeicher 2 effizient aufladen zu können, ist es vorteilhaft, wenn die Ladespannung UL einen im Wesentlichen gleichen Spannungswert wie die Batteriespannung Ußatt aufweist. Mit anderen Worten ist es von Vorteil, wenn die Batteriespannung Ußatt und die Ladespannung UL 800 Volt aufweisen. Da dies nicht immer der Fall ist, können die beiden Wechselrichter 9, 10 und insbesondere die elektrischen Drehstrommaschinen 5, 6 für den Fall zweckentfremdet werden, wenn mit der Ladeeinheit 11 nur eine Ladespannung L kleiner 500 Volt zur Verfügung gestellt werden kann. Somit wird in diesem Fall eine Abwärtskompatibilität des elektrischen Antriebssystems 1 benötigt. Damit nun hier auf zusätzliche Ladeeinheiten, wie Spannungswandler oder Bordlader, verzichtet werden kann, werden die elektrischen Drehstrommaschinen 5, 6 und insbesondere die Wechselrichter 9, 10 für diesen Ladebetrieb zweckentfremdet. Dabei wird für den Ladebetrieb des Fahrzeuges und insbesondere des elektrischen Energiespeichers 2 entweder der erste Wechselrichter 9 oder der zweite Wechselrichter 10 als Aufwärtswandler beziehungsweise Hochsetzsteller betrieben.
Bei dem elektrischen Energiespeicher 2 kann es sich beispielsweise um eine Fahrzeugbatterie oder um ein Batteriesystem oder mehrere Teilbatterien oder um eine Hochvolt-Batterie handeln.
Damit nun die Wechselrichter 9, 10 für den Ladebetrieb des elektrischen Energiespeichers 2 verwendet werden können, kann das elektrische Antriebssystem 1 eine Schaltvorrichtung 12 beziehungsweise Schalteinrichtung beziehungsweise Schaltmatrix aufweisen. Mit dieser Schaltvorrichtung 12 kann entweder ein direkter Ladevorgang des elektrischen Energiespeichers 2 durch die Ladeeinheit 11 oder indirekt über die Wechselrichter 9, 10 eingestellt beziehungsweise geschaltet werden.
In der Fig. 1 ist nun der Fall eines 800-Volt-DC-Ladens dargestellt. Hier ist die Schaltvorrichtung 12 in einer ersten Schaltstellung geschaltet. In diesem Fall ist der fahrzeugseitige Ladeanschluss 3 beziehungsweise die Ladeeinheit 11 direkt mit dem elektrischen Energiespeicher 2 verbunden beziehungsweise gekoppelt, sodass der elektrische Energiespeicher 2 mittels der Ladespannung UL aufgeladen werden kann. Dieses direkte 800-Volt-DC-Laden ist in der Fig. 1 mit dem Stromflussrichtungspfeil 13 dargestellt. In der nachfolgenden Fig. 2 ist nun beispielhaft ein 400-Volt-DC-Ladevorgang des elektrischen Energiespeichers 2 dargestellt. Dabei sind die Ausführungen zu dem elektrischen Antriebssystem identisch zu denen aus der Fig. 1.
In diesem Falle ist nun die Schaltvorrichtung 12 in eine zur ersten Schaltstellung verschiedene zweite Schaltstellung geschaltet. Somit ist in der zweiten Schaltstellung der fahrzeugseitige Ladeanschluss 3 mit der ersten und zweiten elektrischen Drehstrommaschine 5, 6 und den Wechselrichtern 9, 10 elektrisch verbunden beziehungsweise gekoppelt. In diesem Falle kann in Abhängigkeit von dem ersten und/oder zweiten Wechselrichter 9, 10 die Ladespannung UL, welche in diesem Fall 400 Volt betragen kann, in eine Versorgungsspannung UV umgewandelt beziehungsweise hochtransformiert werden. Folglich kann der Spannungswert der Ladespannung UL so hochtransformiert werden, dass als Versorgungsspannung UV ein Spannungswert von 800 Volt vorliegt. Mit dieser Versorgungsspannung kann nun der elektrische Energiespeicher 2 geladen werden. Hierzu ist beispielsweise in der Fig. 2 mit den Stromflussrichtungspfeilen 14 der Stromfluss von der Ladeeinheit 11 über die Drehstrommaschinen 5, 6 und die Wechselrichter 9, 10 zu dem elektrischen Energiespeicher 2 dargestellt. Insbesondere ist hierbei zumindest einer der beiden Wechselrichter 9, 10 als Hochsetzsteller betrieben. Der andere Wechselrichter 9, 10 wird hierbei taktend beziehungsweise als Taktvorgeber betrieben. Mit dem Stromflussrichtungspfeil 15 ist hier der Stromfluss der taktgebenden Bauelemente dargestellt. Die Stromflussrichtungspfeile 15 des getakteten Betriebs sind hierbei gestrichelt dargestellt.
Beispielsweise können für den Hochsetzbetrieb und den taktgebenden Betrieb des ersten und/oder zweiten Wechselrichters 9, 10 die verschiedenen Halbleiterschalter der Wechselrichter 9, 10 angesteuert werden. Beispielsweise können die Wechselrichter 9, 10 hierfür IGBTs oder MOSFETs aufweisen. Bezugszeichenliste
1 elektrisches Antriebssystem
2 elektrischer Energiespeicher
3 fahrzeugseitiger Ladeanschluss
4 Antriebsachse
5, 6 erste und zweite elektrische Drehstrommaschine 7, 8 erstes und zweites Rad 9, 10 erster und zweiter Wechselrichter 11 fahrzeugexterne Ladeeinheit 12 Schaltvorrichtung
13, 14, 15 Stromflussrichtungspfeil
UBatt Batteriespannung
UL Ladespannung
UV Versorgungsspannung

Claims

Mercedes-Benz Group AG Patentansprüche
1. Elektrisches Antriebssystem (1) für ein Fahrzeug, mit
- einer ersten elektrischen Drehstrommaschine (5) und einer zweiten elektrischen Drehstrommaschine (6) zum Antreiben zumindest einer Antriebsachse (4) des Fahrzeugs,
- einem elektrischen Energiespeicher (2) zum elektrischen Versorgen der ersten und zweiten elektrischen Drehstrommaschine (5, 6) während eines Fährbetriebs des Fahrzeugs, wobei ein erster Wechselrichter (9) der ersten elektrischen Drehstrommaschine (5) und ein zweiter Wechselrichter (10) der zweiten elektrischen Drehstrommaschine (6) jeweils mit dem elektrischen Energiespeicher (2) gekoppelt sind, und
- einem fahrzeugseitigen Ladeanschluss (3) zum elektrischen Koppeln des elektrischen Energiespeichers (2) mit einer fahrzeugexternen Ladeeinheit (11), dadurch gekennzeichnet, dass
- in Abhängigkeit von dem ersten und/oder zweiten Wechselrichter (9, 10) eine Ladespannung (UL) des fahrzeugseitigen Ladeanschlusses (3) in eine Versorgungsspannung (UV) zum Laden des elektrischen Energiespeichers (2) umwandelbar ist,
- wobei die erste elektrische Drehstrommaschine (5) und die zweite elektrische Drehstrommaschine (6) an einer Hinterachse des Fahrzeugs oder an einer Vorderachse des Fahrzeugs angeordnet sind und mit der ersten Drehstrommaschine (5) ein erstes Rad (7) der Vorderachse oder Hinterachse und mit der zweiten elektrischen Drehstrommaschine (6) ein zum ersten Rad (7) verschiedenes zweites Rad (8) der Vorderachse oder Hinterachse antreibbar ist.
2. Elektrisches Antriebssystem (1) nach Anspruch 1 , dadurch gekennzeichnet, dass für den Ladebetrieb des Fahrzeugs der erste Wechselrichter (9) oder der zweite Wechselrichter (10) als Aufwärtswandler betreibbar ist.
3. Elektrisches Antriebssystem (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das elektrische Antriebssystem (1) eine Schaltvorrichtung (12) zum elektrischen Koppeln des fahrzeugseitigen Ladeanschlusses (3) mit der ersten und zweiten elektrischen Drehstrommaschine (5, 6) für einen Ladebetrieb des Fahrzeugs aufweist, wobei in einer ersten Schaltstellung der Schaltvorrichtung (12) der fahrzeugseitige Ladeanschluss (3) direkt mit dem elektrischen Energiespeicher (2) und in einer zweiten Schaltstellung der Schaltvorrichtung (12) der fahrzeugseitige Ladeanschluss (3) mit dem ersten und zweiten elektrischen Drehstrommaschine (5, 6) elektrisch verbunden ist.
4. Elektrisches Antriebssystem (1) nach Anspruch 3, dadurch gekennzeichnet, dass in der ersten Schaltstellung der Schaltvorrichtung (12) der elektrische Energiespeicher (2) direkt mit der Ladespannung (UL) aufladbar ist und in zweiten Schaltstellung der Schaltvorrichtung (12) der elektrische Energiespeicher (2) mit der zur Ladespannung (UL) höheren Versorgungsspannung (UV) aufladbar ist.
5. Verfahren zum Betreiben eines elektrischen Antriebssystems (1) eines Fahrzeugs, wobei
- während eines Fährbetriebs des Fahrzeugs zumindest eine Antriebsachse (4) des Fahrzeugs mit einer ersten elektrischen Drehstrommaschine (5) und einer zweiten elektrischen Drehstrommaschine (6) angetrieben wird, wobei
- ein erster Wechselrichter (9) der ersten Drehstrommaschine (5) und ein zweiter Wechselrichter (10) der zweiten Drehstrommaschine (6) jeweils mit einem elektrischen Energiespeicher (2) elektrisch versorgt werden, dadurch gekennzeichnet, dass
- für einen Ladebetrieb des Fahrzeugs ein fahrzeugseitiger Ladeanschluss (3) des Fahrzeugs mit der ersten und zweiten elektrischen Drehstrommaschine (5, 6) elektrisch gekoppelt wird, und
- in Abhängigkeit von dem ersten und zweiten Wechselrichter (9, 10) eine Ladespannung (UL) des fahrzeugseitigen Ladeanschlusses (3) in eine Versorgungsspannung (UV) zum Laden des elektrischen Energiespeichers (2) umgewandelt wird,
- wobei die erste elektrische Drehstrommaschine (5) und die zweite elektrische Drehstrommaschine (6) an einer Hinterachse des Fahrzeugs oder an einer Vorderachse des Fahrzeugs derart angeordnet sind, dass mit der ersten Drehstrommaschine (5) ein erstes Rad (7) der Vorderachse oder Hinterachse und mit der zweiten elektrischen Drehstrommaschine (6) ein zum ersten Rad (7) verschiedenes zweites Rad (8) der Vorderachse oder Hinterachse angetrieben werden kann.
PCT/EP2022/070946 2021-07-27 2022-07-26 Elektrisches antriebssystem für ein fahrzeug, sowie verfahren zum betreiben eines elektrischen antriebssystems WO2023006749A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280052236.2A CN117813215A (zh) 2021-07-27 2022-07-26 用于车辆的电驱动系统以及用于运行电驱动系统的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021003882.7 2021-07-27
DE102021003882.7A DE102021003882A1 (de) 2021-07-27 2021-07-27 Elektrisches Antriebssystem für ein Fahrzeug, sowie Verfahren zum Betreiben eines elektrischen Antriebssystems

Publications (1)

Publication Number Publication Date
WO2023006749A1 true WO2023006749A1 (de) 2023-02-02

Family

ID=77389185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/070946 WO2023006749A1 (de) 2021-07-27 2022-07-26 Elektrisches antriebssystem für ein fahrzeug, sowie verfahren zum betreiben eines elektrischen antriebssystems

Country Status (3)

Country Link
CN (1) CN117813215A (de)
DE (1) DE102021003882A1 (de)
WO (1) WO2023006749A1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052680A1 (de) 2009-11-11 2011-05-12 Daimler Ag Ladevorrichtung zum Laden einer Batterie eines Kraftfahrzeugs mit Tiefsetzsteller
US20150231978A1 (en) * 2014-02-14 2015-08-20 Jabil Circuit, Inc. Charge transfer system
DE102018000488A1 (de) 2018-01-22 2018-07-12 Daimler Ag Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zu dessen Betrieb
DE102018009840A1 (de) 2018-12-14 2019-06-27 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
DE102018009848A1 (de) 2018-12-14 2019-06-27 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
DE102018207183A1 (de) * 2018-05-09 2019-11-14 Robert Bosch Gmbh Vorrichtung zum Laden eines Energiespeichers eines Elektrofahrzeugs
DE102019005621A1 (de) 2019-08-09 2020-04-16 Daimler Ag Bordnetz für ein elektrisch antreibbares Kraftfahrzeug
US20200298722A1 (en) * 2015-09-11 2020-09-24 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052680A1 (de) 2009-11-11 2011-05-12 Daimler Ag Ladevorrichtung zum Laden einer Batterie eines Kraftfahrzeugs mit Tiefsetzsteller
US20150231978A1 (en) * 2014-02-14 2015-08-20 Jabil Circuit, Inc. Charge transfer system
US20200298722A1 (en) * 2015-09-11 2020-09-24 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
DE102018000488A1 (de) 2018-01-22 2018-07-12 Daimler Ag Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zu dessen Betrieb
DE102018207183A1 (de) * 2018-05-09 2019-11-14 Robert Bosch Gmbh Vorrichtung zum Laden eines Energiespeichers eines Elektrofahrzeugs
DE102018009840A1 (de) 2018-12-14 2019-06-27 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
DE102018009848A1 (de) 2018-12-14 2019-06-27 Daimler Ag Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
DE102019005621A1 (de) 2019-08-09 2020-04-16 Daimler Ag Bordnetz für ein elektrisch antreibbares Kraftfahrzeug

Also Published As

Publication number Publication date
DE102021003882A1 (de) 2021-09-09
CN117813215A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
EP3479455B1 (de) Energiespeichereinrichtung für einen kraftwagen
EP3481675B1 (de) Batterieanordnung für ein kraftfahrzeug
DE102015006208A1 (de) Batterieanordnung für ein Kraftfahrzeug mit elektrischer Trenneinrichtung sowie Verfahren zum Betreiben einer Batterieanordnung
WO2013159887A1 (de) Kraftwagen mit einem hochvolt-energieversorgungssystem
WO2019141494A1 (de) Speichereinrichtung für ein kraftfahrzeug, insbesondere für ein elektrofahrzeug
EP3544844A1 (de) Betriebsverfahren für eine zweispannungsbatterie
DE102019008824A1 (de) Elektrisches Bordnetz für ein Fahrzeug, Verfahren zu dessen Betrieb und Fahrzeug
DE102016011238A1 (de) Schaltungsanordnung für ein Kraftfahrzeug, Kraftfahrzeug sowie Verfahren zum Betreiben einer Schaltungsanordnung für ein Kraftfahrzeug
WO2010079078A1 (de) Vorrichtung zur elektrischen versorgung elektrischer verbraucher in einem fahrzeug, insbesondere einem hybridfahrzeug
DE102015016651A1 (de) Ladeeinrichtung für ein Kraftfahrzeug und Verfahren zum Aufladen einer Batterie
EP3666585A1 (de) Elektrisch betriebenes fahrzeug und ladesystem
WO2023006729A1 (de) Elektrisches antriebssystem für ein fahrzeug und verfahren zum betreiben eines entsprechenden elektrischen antriebssystems
WO2023006749A1 (de) Elektrisches antriebssystem für ein fahrzeug, sowie verfahren zum betreiben eines elektrischen antriebssystems
WO2023006726A1 (de) Elektrisches antriebssystem für ein fahrzeug, fahrzeug mit einem entsprechenden elektrischen antriebssystem sowie verfahren zum betreiben eines entsprechenden elektrischen antriebssystems
DE102019003458A1 (de) Bordlader und Verfahren zum Laden einer Hochvoltbatterie eines Hochvoltbordnetzes oder einer Niedervoltbatterie eines Niedervoltbordnetzes
DE102021003851A1 (de) Elektrisches Antriebssystem für ein Fahrzeugs, sowie Verfahren zum Betreiben eines entsprechenden elektrischen Antriebssystems
DE102014008848A1 (de) Antriebsvorrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102021003831A1 (de) Elektrisches Bordnetz für ein Fahrzeug, Fahrzeug mit einem elektrischen Bordnetz und Verfahren zum Betreiben eines elektrischen Bordnetzes für ein Fahrzeug
DE102020006443A1 (de) Elektrisches Hochvoltbordnetz für ein Fahrzeug, Fahrzeug mit einem elektrischen Hochvoltbordnetz und Verfahren zum Betrieb eines elektrischen Hochvoltsbordnetzes für ein Fahrzeug
EP3184349A1 (de) Energieversorgungssystem für ein fahrzeug und fahrzeug elektrischem traktionssystem
DE102019003542A1 (de) Spannungsversorgungsvorrichtung für ein zumindest teilweise elektrisch betreibbares Kraftfahrzeug, wobei ein erster elektrischer und ein zweiter elektrischer Energiespeicher direkt mit einem Ladeanschluss gekoppelt sind, sowie Verfahren
DE102019209789A1 (de) Elektrischer Antriebsstrang für einen LKW, Einheit für einen Antriebsstrang für einen LKW und Verfahren zum Betrieb eines Antriebsstranges für einen LKW
DE102021109443B4 (de) Verfahren zum Durchführen eines Vorladevorgangs eines elektrischen Bordnetzes eines Fahrzeugs und elektrisches Bordnetz für ein Fahrzeug
DE102016010839A1 (de) Hochvoltbatteriesystem für ein Kraftfahrzeug sowie Verfahren zum Herstellen einer Mehrzahl von Betriebszuständen
DE102022207055A1 (de) Elektrifizierter Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22757562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022757562

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022757562

Country of ref document: EP

Effective date: 20240227