WO2019141494A1 - Speichereinrichtung für ein kraftfahrzeug, insbesondere für ein elektrofahrzeug - Google Patents

Speichereinrichtung für ein kraftfahrzeug, insbesondere für ein elektrofahrzeug Download PDF

Info

Publication number
WO2019141494A1
WO2019141494A1 PCT/EP2018/086535 EP2018086535W WO2019141494A1 WO 2019141494 A1 WO2019141494 A1 WO 2019141494A1 EP 2018086535 W EP2018086535 W EP 2018086535W WO 2019141494 A1 WO2019141494 A1 WO 2019141494A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrical
electrical voltage
charging
switching state
Prior art date
Application number
PCT/EP2018/086535
Other languages
English (en)
French (fr)
Inventor
Urs Boehme
André Haspel
Oliver Lehmann
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2019141494A1 publication Critical patent/WO2019141494A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Storage device for a motor vehicle in particular for an electric vehicle
  • the invention relates to a storage device for a motor vehicle, in particular for an electric vehicle, according to the preamble of patent claim 1.
  • the memory device comprises at least one, for example, as a battery, in particular as a high-voltage battery (HV battery), formed energy storage, which has at least two sub-strands for storing electrical energy or electric current.
  • HV battery high-voltage battery
  • the storage device has at least one
  • the power source is for example a charging station and can provide electrical energy so that the sub-strands can be supplied via the charging connection with electrical energy provided by the current source. As a result, the partial strands and thus the energy storage can be charged with electrical energy.
  • a switching device which can be switched between at least one first switching state and at least one second switching state.
  • the first switching state the partial strands are connected in series, so that a first electrical voltage of the energy store is set or so that the energy store has or provides a first electrical voltage.
  • the second switching state the partial strands are connected in parallel, as a result of which, compared to the first electrical voltage, a lower second electrical voltage of the first
  • Energy storage is set.
  • the energy store has a second electrical voltage or the energy store sets a second electrical voltage in the second switching state ready, which is lower than the first electrical voltage.
  • the sub-strands are selectively switchable in series or in parallel by means of the switching device.
  • DE 10 2016 002 459 A1 discloses an electrical system for an electrically driven motor vehicle.
  • Object of the present invention is to develop a memory device of the type mentioned in such a way that the memory device can be charged particularly advantageous with electrical energy.
  • Patent claim 1 solved.
  • the memory device comprises an on-board charger, which has a galvanically insulating voltage converter.
  • the on-board charger can be connected, at least in the second switching state, via the charging connection to an external power source with respect to the storage device and can thus be supplied with a third electrical voltage provided by the current source and corresponding to the second electrical voltage.
  • the third electrical voltage can be converted into a fourth electrical voltage corresponding to the first electrical voltage, wherein at least one of the energy storage different auxiliary consumers in the second switching state via the on-board charger with the fourth electrical voltage can be supplied.
  • the partial strands can be supplied with the third electrical voltage corresponding to the second electrical voltage, so that, for example, in the second switching state
  • Energy storage by means of the third voltage supplied with electric power or electrical energy and can be charged.
  • the energy store can be completely charged with electrical energy, if the power source only provides the second electrical voltage corresponding third electrical voltage, which is lower than the first electrical
  • the power source third convert electrical voltage by means of the on-board charger in the first electrical voltage corresponding fourth electrical voltage, so that the at least one secondary consumers with respect to the third electrical voltage larger fourth electrical voltage can be supplied while the energy storage is charged by means of the third electrical voltage.
  • Secondary consumers are operated by means of the fourth electrical voltage, while the energy storage is charged by means of the third electrical voltage and although the power source provides or can provide only the third or maximum electrical voltage.
  • the invention is based in particular on the knowledge that, for example, a battery formed as an energy storage can not be charged or at least not completely, if its example, also referred to as an electrical voltage voltage depends on a state of charge
  • Output voltage is the maximum that can be provided by a respect to the energy storage external power source such as a charging station.
  • This problem can be solved by means of the memory device according to the invention by the second switching state is set, that is, by the partial strands are connected in parallel. Then, the energy store on the opposite to the first electrical voltage lower second electrical voltage, so that, for example, when a charging station can not provide the first electrical voltage, but the second electrical voltage as the output voltage, the energy storage can be fully charged.
  • the switching device which comprises, for example, a plurality of switches, it is thus possible to set a set in the first switching state
  • Output voltage of the example designed as a charging station power source are fully charged.
  • the voltage converter is that of the power source provided third electrical voltage in the first electrical voltage corresponding fourth electrical voltage converted, by means of which, for example, the at least one auxiliary consumers can be operated during the
  • Energy storage is charged by means of the third electrical voltage.
  • the voltage converter is preferably designed to be unidirectional, but may optionally be designed to be bidirectional in order, for example, to enable the functionality of bidirectional charging.
  • disconnectors are preferably provided in the on-board charger to DC charging lines. This avoids insulation design of the entire HV system for increased isolation.
  • the advantage can be realized that the energy store can also be completely charged by means of such external current sources, which provide at most a lower output voltage than the first electrical voltage. Furthermore, a multiple use of the galvanically isolating voltage converter can be realized in the on-board loader, so that the number of parts and thus the weight, the space requirement and the cost of
  • Storage device can be kept very low.
  • Fig. 1 is a schematic representation of an inventive
  • FIG. 2 shows a further schematic representation of the memory device in a first switching state
  • FIG. 3 shows a further schematic representation of the memory device in a second switching state
  • Fig. 4 is a further schematic representation of the memory device at a
  • Fig. 1 shows a schematic representation of a generally designated 10 memory device for a motor vehicle, in particular for a motor vehicle such as a passenger car.
  • the motor vehicle is designed for example as a hybrid vehicle or particularly preferably as an electric vehicle and thus has at least one electric machine by means of which the motor vehicle is electrically driven.
  • the motor vehicle is designed for example as a hybrid vehicle or particularly preferably as an electric vehicle and thus has at least one electric machine by means of which the motor vehicle is electrically driven.
  • Memory device 10 is used to supply the electric machine with electrical energy or with electric current, whereby the electric machine can be operated as an electric motor. By means of the electric motor, the motor vehicle can then be driven electrically.
  • the memory device 10 comprises at least one energy store 12, which is designed as a battery, in particular as a high-voltage battery (HV battery).
  • HV battery high-voltage battery
  • Energy storage 12 includes at least two sub-strands 14 for storing electrical energy or electric current.
  • the memory device 10 comprises a first charging port 16, which as
  • DC voltage connection is formed.
  • external power sources such as charging stations are connected to provide the sub-strands 14 with provided by the power source electrical energy or electrical current through the charging port 16 and thereby load .
  • the respective power source provides, for example, an electrical voltage or electrical energy also called output voltage
  • the output voltage is for example one
  • the memory device 10 comprises at least one second in addition to the charging port 16 provided
  • Charging terminal 18 which is designed as an AC voltage connection.
  • the sub-strands 14 and thus the energy storage 12 with such, for example, designed as charging stations and with respect to the
  • Memory device 10 external power sources are connected, which provide a respective AC voltage as an output voltage for charging the energy storage device 12 with electrical energy.
  • a so-called AC charging can be performed, in the context of the energy storage 12 can be charged by means of the respective AC voltage of the respective power source with electrical energy or electrical current.
  • the memory device 10 further comprises a switching device 20 with switches S1, S2 and S3.
  • the switching device 20 and thus the switches S1, S2 and S3 can be switched between at least one first switching state and at least one second switching state.
  • the first switching state the partial strands 14 by means of
  • Switching device 20 are connected in series, so that the energy storage device 12 has a provided or provided by the partial strands 14 or provided first electrical voltage, wherein the first electrical voltage is also referred to as the first battery voltage.
  • the first electrical voltage is also referred to as the first battery voltage.
  • the switching device 20 a series connection of the partial strands 14, whereby the first battery voltage of the energy storage device 12 is set.
  • the first battery voltage is for example 800 volts.
  • the partial strands 14 are connected in parallel by means of the switching device 20 and thus by means of the switches S1, S2 and S3, so that in the second switching state by means of the switching device 20, a parallel connection of the partial strands 14 causes or is set.
  • this parallel circuit is compared to the first electrical voltage lower and caused by the partial strands 14 provided or provided second electrical voltage of the energy store 12, wherein the second electrical voltage is also referred to as the second battery voltage, the second battery voltage is for example 400 volts.
  • the energy storage 12 could be fully charged only by such external power sources whose respective output voltage corresponds to the first battery voltage and thus is 800 volts.
  • the switching device 20 it is now possible by means of the switching device 20 to set either the first battery voltage or the second battery voltage, so that it is possible to charge the energy store 12 very quickly by current sources whose respective output voltage is 800 volts.
  • the memory device 10 comprises an on-board charger 22 which has a galvanically insulating voltage converter 24 and, for example, a rectifier 26, in particular as a power factor correction filter.
  • the on-board charger 22 can be supplied, at least in the second switching state, via the first charging connection 16 with a third electrical voltage provided by a current source and corresponding to the second electrical voltage, which is convertible by the on-board charger 22 into a fourth electrical voltage corresponding to the first electrical voltage which at least one of the energy storage device 12 different and simply referred to as consumers auxiliary consumers 28 can be supplied.
  • the energy storage device 12 via the first
  • Charging port 16 connected to a trained example as a charging station power source, which output voltage as a maximum of 400 volts DC
  • Charging port 16 is supplied with the output voltage of the electrically connected to the charging port 16 power source, so that the on-board charger 22 is supplied with 400 volts DC.
  • the on-board charger 22 in particular by means of the voltage converter 24, the third electrical voltage provided by the current source, that is The 400 volts DC, converted into the fourth electrical voltage.
  • the fourth electrical voltage corresponds to the first electrical voltage
  • the fourth electrical voltage is 800 volts DC.
  • Voltage is provided by the on-board charger 22 such that the auxiliary load 28 is supplied with the fourth electrical voltage provided by the on-board charger 22.
  • the auxiliary load 28 is operated by means of the fourth electric voltage provided by the on-board charger 22, while the energy store 12 is charged by means of the third electric voltage, that is, while a DC charging is performed with 400 V DC.
  • the secondary consumer 28 can be supplied with 800 volts DC and powered by 800 volts DC, while DC charging the energy storage 12 is performed at 400 volts.
  • the secondary consumer 28 is, for example, a cooling device for cooling the energy store 12.
  • the auxiliary consumer 28 is arranged for example in a vehicle electrical system 30, which is supplied by the on-board charger 22 with the fourth electrical voltage or is supplied.
  • the fourth electrical voltage results from the third electrical voltage, which is converted by means of the on-board charger 22 in the fourth electrical voltage.
  • Fig. 2 shows the DC charging with 800 volts DC.
  • the switch S3 is closed while the switches S1 and S2 are open.
  • arrows illustrate an electric current with 800 volts DC.
  • the switching device 20 further comprises further switches S4, S5, S6 and S7. In the DC charging with 800 volts, the switches S4, S5, S6 and S7 are closed.
  • the on-board charger 22 also has internal switches 32 which are open at 800 volts DC charging. Further, the DC voltage converter is inactive with 800 volts inactive, and the
  • Fig. 3 illustrates a 400 volt DC charging.
  • the switch S3 is open, while the switches S1 and S2 are closed.
  • the switches S6 and S7 is closed while the switches S4 and S5 are open. Furthermore, in the
  • solid arrows indicate an electrical current of 800 volts DC
  • dashed arrows indicate an electrical current of 400 volts DC
  • FIG. 4 illustrates an AC charging of the energy storage device 12 via the second charging port 18.
  • the switches S4 and S5 are closed while the switches S6 and S7 are open.
  • the internal switches 32 of the on-board charger 22 are open, and the internal voltage converter 24 is active.
  • a dotted arrow illustrates an electrical current with, for example, 230 volts or 400 volts AC, which is provided, for example, by a corresponding charging source or current source.
  • Alternating voltage can be easily transferred to driving or on a trip of the motor vehicle, which is electrically driven during its travel by means of the electric machine.

Abstract

Die Erfindung betrifft eine Speichereinrichtung (10) für ein Kraftfahrzeug, mit wenigstens einem Energiespeicher (12), welcher wenigstens zwei Teilstränge (14) zum Speichern von elektrischer Energie aufweist, mit wenigstens einem Ladeanschluss (16), über welchen die Teilstränge (14) mit einer Stromquelle verbindbar und mit von der Stromquelle bereitgestellter elektrischer Energie versorgbar und dadurch zu laden sind, und mit einer Schalteinrichtung (20), welche zwischen wenigstens einem ersten Schaltzustand, in welchem zum Einstellen einer ersten elektrischen Spannung des Energiespeichers (12) die Teilstränge (14) in Reihe geschaltet sind, und wenigstens einem zweiten Schaltzustand umschaltbar ist, in welchem zum Einstellen einer gegenüber der ersten elektrischen Spannung geringeren zweiten elektrischen Spannung des Energiespeichers (12) die Teilstränge (14) parallel geschaltet sind, wobei ein einen galvanisch isolierenden Spannungswandler (24) umfassender Bordlader (22) vorgesehen ist.

Description

Speichereinrichtung für ein Kraftfahrzeug, insbesondere für ein Elektrofahrzeug
Die Erfindung betrifft eine Speichereinrichtung für ein Kraftfahrzeug, insbesondere für ein Elektrofahrzeug, gemäß dem Oberbegriff von Patentanspruch 1.
Eine solche Speichereinrichtung für ein beispielsweise als Elektrofahrzeug ausgebildetes Kraftfahrzeug ist bereits der DE 10 2016 008 052 A1 als bekannt zu entnehmen. Die Speichereinrichtung umfasst wenigstens einen beispielsweise als Batterie, insbesondere als Hochvolt-Batterie (HV-Batterie), ausgebildeten Energiespeicher, welcher wenigstens zwei Teilstränge zum Speichern von elektrischer Energie beziehungsweise elektrischem Strom aufweist. Außerdem weist die Speichereinrichtung wenigstens einen
Ladeanschluss auf, über welchen die Teilstränge mit einer bezüglich der
Speichereinrichtung externen Stromquelle verbindbar sind. Die Stromquelle ist beispielsweise eine Ladesäule und kann elektrische Energie bereitstellen, sodass die Teilstränge über den Ladeanschluss mit von der Stromquelle bereitgestellter elektrischer Energie versorgbar sind. Dadurch können die Teilstränge und somit der Energiespeicher insgesamt mit elektrischer Energie geladen werden.
Der Weiteren ist eine Schalteinrichtung vorgesehen, welche zwischen wenigstens einem ersten Schaltzustand und wenigstens einem zweiten Schaltzustand umschaltbar ist. In dem ersten Schaltzustand sind die Teilstränge in Reihe geschaltet, sodass eine erste elektrische Spannung des Energiespeichers eingestellt ist beziehungsweise sodass der Energiespeicher eine erste elektrische Spannung aufweist oder bereitstellt. In dem zweiten Schaltzustand sind die Teilstränge parallel geschaltet, wodurch eine gegenüber der ersten elektrischen Spannung geringere zweite elektrische Spannung des
Energiespeichers eingestellt ist. Mit anderen Worten weist der Energiespeicher in dem zweiten Schaltzustand eine zweite elektrische Spannung auf beziehungsweise der Energiespeicher stellt in dem zweiten Schaltzustand eine zweite elektrische Spannung bereit, welcher geringer als die erste elektrische Spannung ist. Somit sind die Teilstränge mittels der Schalteinrichtung wahlweise in Reihe oder parallel schaltbar.
Des Weiteren offenbart die DE 10 2016 002 459 A1 eine elektrische Anlage für ein elektrisch antreibbare Kraftfahrzeug.
Aufgabe der vorliegenden Erfindung ist es, eine Speichereinrichtung der eingangs genannten Art derart weiterzuentwickeln, dass die Speichereinrichtung besonders vorteilhaft mit elektrischer Energie geladen werden kann.
Diese Aufgabe wird durch eine Speichereinrichtung mit den Merkmalen des
Patenanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen
Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.
Um eine Speichereinrichtung der im Oberbegriff des Patentanspruchs 1 angegebenen Art derart weiterzuentwickeln, dass die Speichereinrichtung besonders vorteilhaft mit elektrischer Energie beziehungsweise elektrischem Strom geladen werden kann, ist es erfindungsgemäß vorgesehen, dass die Speichereinrichtung einen Bordlader umfasst, welcher einen galvanisch isolierenden Spannungswandler aufweist. Der Bordlader ist zumindest in dem zweiten Schaltzustand über den Ladeanschluss mit einer bezüglich der Speichereinrichtung externen Stromquelle verbindbar und somit mit einer von der Stromquelle bereitgestellten und der zweiten elektrischen Spannung entsprechenden dritten elektrischen Spannung versorgbar. Mittels des Bordladers, insbesondere mittels des Spannungswandlers, kann die dritte elektrische Spannung in eine der ersten elektrischen Spannung entsprechende vierte elektrische Spannung umgewandelt werden, wobei wenigstens ein von dem Energiespeicher unterschiedlicher Nebenverbraucher in dem zweiten Schaltzustand über den Bordlader mit der vierten elektrischen Spannung versorgbar ist. Auf diese Weise können im zweiten Schaltzustand die Teilstränge mit der der zweiten elektrischen Spannung entsprechenden dritten elektrischen Spannung versorgt werden, sodass beispielsweise in dem zweiten Schaltzustand der
Energiespeicher mittels der dritten Spannung mit elektrischem Strom beziehungsweise mit elektrischer Energie versorgt und dadurch geladen werden kann. Dadurch kann beispielsweise der Energiespeicher vollständig mit elektrischer Energie geladen werden, wenn die Stromquelle lediglich die der zweiten elektrischen Spannung entsprechende dritte elektrische Spannung bereitstellt, welche geringer als die erste elektrische
Spannung ist. Während dieses Ladens des Energiespeichers in dem zweiten
Schaltzustand ist es jedoch möglich, die von der Stromquelle bereitgestellte dritte elektrische Spannung mittels des Bordladers in die der ersten elektrischen Spannung entsprechende vierte elektrische Spannung umzuwandeln, sodass der wenigstens eine Nebenverbraucher mit der gegenüber der dritten elektrischen Spannung größeren vierten elektrischen Spannung versorgt werden kann, während der Energiespeicher mittels der dritten elektrischen Spannung geladen wird. Dadurch kann beispielsweise der
Nebenverbraucher mittels der vierten elektrischen Spannung betrieben werden, während der Energiespeicher mittels der dritten elektrischen Spannung geladen wird und obwohl die Stromquelle lediglich beziehungsweise maximal die dritte elektrische Spannung bereitstellt beziehungsweise bereitstellen kann.
Der Erfindung liegt dabei insbesondere die Erkenntnis zugrunde, dass beispielsweise ein als Batterie ausgebildeter Energiespeicher gar nicht oder zumindest nicht vollständig geladen werden kann, wenn dessen beispielsweise auch als Energiespannung bezeichnete elektrische Spannung abhängig von einem Ladezustand des
Energiespeichers vollständig oder teilweise oberhalb einer elektrischen
Ausgangsspannung liegt, die maximal von einer bezüglich des Energiespeichers externen Stromquelle wie beispielsweise einer Ladesäule bereitgestellt werden kann. Dieses Problem kann mittels der erfindungsgemäßen Speichereinrichtung gelöst werden, indem der zweite Schaltzustand eingestellt wird, das heißt indem die Teilstränge parallel geschaltet werden. Dann weist der Energiespeicher die gegenüber der ersten elektrischen Spannung geringere zweite elektrische Spannung auf, sodass beispielsweise dann, wenn eine Ladesäule zwar nicht die erste elektrische Spannung, jedoch die zweite elektrische Spannung als Ausgangsspannung bereitstellen kann, der Energiespeicher vollständig geladen werden kann. Mittels der Schalteinrichtung, welche beispielsweise mehrere Schalter umfasst, ist es somit möglich, eine im ersten Schaltzustand eingestellte
Reihenschaltung der Teilstränge in eine Parallelschaltung zu überführen, in dem der zweite Schaltzustand eingestellt wird. Hierdurch kann der Energiespeicher mittels der dritten Spannung geladen werden, welche geringer als die erste Spannung ist. Mit anderen Worten kann durch die Parallelschaltung der Teilstränge der Energiespeicher auch bei gegenüber der ersten elektrischen Spannung deutlich geringerer
Ausgangsspannung der beispielsweise als Ladesäule ausgebildeten Stromquelle vollständig geladen werden.
Die Erfindung berücksichtigt jedoch auch die Versorgung von etwaigen
Nebenverbrauchern mit elektrischer Energie während des Ladens des Energiespeichers. Hierzu wird beispielsweise der galvanisch isolierende Spannungswandler in dem
Bordlader verwendet. Mittels des Spannungswandlers wird die von der Stromquelle bereitgestellte dritte elektrische Spannung in die der ersten elektrischen Spannung entsprechende vierte elektrische Spannung umgewandelt, mittels welcher beispielsweise der wenigstens eine Nebenverbraucher betrieben werden kann, während der
Energiespeicher mittels der dritten elektrischen Spannung geladen wird.
Der Spannungswandler ist vorzugsweise nur unidirektional ausgeführt, kann jedoch optional bidirektional ausgeführt sein, um beispielsweise die Funktionalität eines bidirektionalen Ladens zu ermöglichen. Zur Vermeidung von DC-Fehlerströmen im Falle eines Isolationsfehlers in einem HV-System (Hochvolt-System) des Kraftfahrzeugs, der einen AC-Fehlerstromschalter in der Haustechnik unwirksam machen würde, sind vorzugsweise Trennschalter im Bordlader zu DC-Ladeleitungen vorgesehen. Dadurch wird eine Isolationsauslegung des gesamten HV-Systems auf eine verstärkte Isolation vermieden.
Insgesamt kann mittels der erfindungsgemäßen Speichereinrichtung der Vorteil realisiert werden, dass der Energiespeicher auch mittels solcher externer Stromquellen vollständig geladen werden kann, welche maximal eine gegenüber der ersten elektrischen Spannung geringere Ausgangsspannung bereitstellen. Ferner kann eine Mehrfachnutzung des galvanisch trennenden Spannungswandlers im Bordlader realisiert werden, sodass die Teileanzahl und somit das Gewicht, der Bauraumbedarf und die Kosten der
Speichereinrichtung besonders gering gehalten werden können.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und
Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnung zeigt in:
Fig. 1 eine schematische Darstellung einer erfindungsgemäßen
Speichereinrichtung für ein Kraftfahrzeug; Fig. 2 eine weitere schematische Darstellung der Speichereinrichtung in einem ersten Schaltzustand;
Fig. 3 eine weitere schematische Darstellung der Speichereinrichtung in einem zweiten Schaltzustand; und
Fig. 4 eine weitere schematische Darstellung der Speichereinrichtung bei einem
Wechselstromladen.
In den Fig. sind gleiche oder funktionsgleiche Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt in einer schematischen Darstellung eine im Ganzen mit 10 bezeichnete Speichereinrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen wie beispielsweise einen Personenkraftwagen. Das Kraftfahrzeug ist beispielsweise als Hybrid-Fahrzeug oder besonders vorzugsweise als Elektrofahrzeug ausgebildet und weist somit wenigstens eine elektrische Maschine auf, mittels welcher das Kraftfahrzeug elektrisch antreibbar ist. Wie im Folgenden noch genauer erläutert wird, wird die
Speichereinrichtung 10 genutzt, um die elektrische Maschine mit elektrischer Energie beziehungsweise mit elektrischem Strom zu versorgen, wodurch die elektrische Maschine als Elektromotor betrieben werden kann. Mittels des Elektromotors kann dann das Kraftfahrzeug elektrisch angetrieben werden.
Die Speichereinrichtung 10 umfasst wenigstens einen Energiespeicher 12, welcher als Batterie, insbesondere als Hochvolt-Batterie (HV-Batterie), ausgebildet ist. Der
Energiespeicher 12 umfasst wenigstens zwei Teilstränge 14 zum Speichern von elektrischer Energie beziehungsweise elektrischem Strom. Außerdem umfasst die Speichereinrichtung 10 einen ersten Ladeanschluss 16, welcher als
Gleichspannungsanschluss ausgebildet ist. Über den Ladeanschluss 16 können der Energiespeicher 12 und somit die Teilstränge 14 mit bezüglich der Speichereinrichtung 10 externen Stromquellen wie beispielsweise Ladesäulen verbunden werden, um über den Ladeanschluss 16 die Teilstränge 14 mit von der Stromquelle bereitgestellter elektrischer Energie beziehungsweise elektrischem Strom versorgen und dadurch laden zu können. Die jeweilige Stromquelle stellt beispielsweise eine auch als Ausgangsspannung bezeichnete elektrische Spannung beziehungsweise elektrische Energie mit der
Ausgangsspannung bereit. Die Ausgangsspannung ist beispielsweise eine
Gleichspannung, sodass über den Ladeanschluss 16 ein so genanntes Gleichspannungsladen des Energiespeichers 12 durchgeführt werden kann. Im Rahmen des Gleichspannungsladens werden der Energiespeicher 12 und somit die Teilstränge 14 mittels der von der jeweiligen Stromquelle bereitgestellten Gleichspannung geladen.
Wie im Folgenden noch genauer erläutert wird, umfasst die Speichereinrichtung 10 wenigstens einen zusätzlich zu dem Ladeanschluss 16 vorgesehenen zweiten
Ladeanschluss 18, welcher als Wechselspannungsanschluss ausgebildet ist. Über den Ladeanschluss 18 können die Teilstränge 14 und somit der Energiespeicher 12 mit solchen, beispielsweise als Ladesäulen ausgebildeten und bezüglich der
Speichereinrichtung 10 externen Stromquellen verbunden werden, die zum Laden des Energiespeichers 12 mit elektrischer Energie eine jeweilige Wechselspannung als Ausgangsspannung bereitstellen. Somit kann über den Ladeanschluss 18 ein so genanntes Wechselspannungsladen durchgeführt werden, in dessen Rahmen der Energiespeicher 12 mittels der jeweiligen Wechselspannung der jeweiligen Stromquelle mit elektrischer Energie beziehungsweise mit elektrischem Strom geladen werden kann.
Die Speichereinrichtung 10 umfasst ferner eine Schalteinrichtung 20 mit Schaltern S1 , S2 und S3. Die Schalteinrichtung 20 und somit die Schalter S1 , S2 und S3 sind zwischen wenigstens einem ersten Schaltzustand und wenigstens einem zweiten Schaltzustand umschaltbar. In dem ersten Schaltzustand sind die Teilstränge 14 mittels der
Schalteinrichtung 20 in Reihe geschaltet sind, sodass der Energiespeicher 12 eine durch die Teilstränge 14 bewirkte beziehungsweise bereitgestellte erste elektrischen Spannung aufweist beziehungsweise bereitstellt, wobei die erste elektrische Spannung auch als erste Batteriespannung bezeichnet wird. Mit anderen Worten ist in dem ersten
Schaltzustand durch die Schalteinrichtung 20 eine Reihenschaltung der Teilstränge 14 eingestellt, wodurch die erste Batteriespannung des Energiespeichers 12 eingestellt ist. Die erste Batteriespannung beträgt beispielsweise 800 Volt.
In dem zweiten Schaltzustand sind die Teilstränge 14 mittels der Schalteinrichtung 20 und somit mittels der Schalter S1 , S2 und S3 parallel geschaltet, sodass in dem zweiten Schaltzustand mittels der Schalteinrichtung 20 eine Parallelschaltung der Teilstränge 14 bewirkt beziehungsweise eingestellt ist. Durch diese Parallelschaltung ist eine gegenüber der ersten elektrischen Spannung geringere und durch die Teilstränge 14 bewirkte beziehungsweise bereitgestellte zweite elektrische Spannung des Energiespeichers 12 eingestellt, wobei die zweite elektrische Spannung auch als zweite Batteriespannung bezeichnet wird die zweite Batteriespannung beträgt beispielsweise 400 Volt. Könnte nun beispielsweise lediglich beziehungsweise ausschließlich der erste Schaltzustand eingestellt werde, sodass lediglich die erste Batteriespannung eingestellt werden könnte beziehungsweise sodass die Batterie lediglich die erste Batteriespannung aufweist, so könnte der Energiespeicher 12 nur durch solche externen Stromquellen vollständig aufgeladen werden, deren jeweilige Ausgangsspannung der ersten Batteriespannung entspricht und somit 800 Volt beträgt. Durch die Schalteinrichtung 20 ist es nun jedoch möglich, wahlweise die erste Batteriespannung oder die zweite Batteriespannung einzustellen, sodass es möglich ist, den Energiespeicher 12 durch Stromquellen besonders schnell aufzuladen, deren jeweilige Ausgangsspannung 800 Volt beträgt. Ferner ist es möglich, den Energiespeicher 12 durch solche Stromquellen vollständig aufzuladen, deren jeweilige Ausgangsspannung lediglich 400 Volt beträgt. Auf diese Weise ist es möglich, über den Ladeanschluss 16 in dem ersten Schaltzustand ein Gleichspannungsladen mit 800 Volt Gleichspannung durchzuführen. Ferner ist es möglich, über den Ladeanschluss 16 in dem zweiten Schaltzustand ein
Gleichspannungsladen mit 400 Volt Gleichspannung durchzuführen.
Um nun die Speichereinrichtung 10 besonders vorteilhaft laden zu können, umfasst die Speichereinrichtung 10 einen Bordlader 22, welcher einen galvanisch isolierenden Spannungswandler 24 und beispielsweise einen Gleichrichter 26, insbesondere als Leistungsfaktorkorrekturfilter, aufweist. Der Bordlader 22 ist zumindest in dem zweiten Schaltzustand über den ersten Ladeanschluss 16 mit einer von einer Stromquelle bereitgestellten und der zweiten elektrischen Spannung entsprechenden dritten elektrischen Spannung versorgbar, welche mittels des Bordladers 22 in eine der ersten elektrischen Spannung entsprechende vierte elektrische Spannung umwandelbar ist, mit welcher wenigstens ein von dem Energiespeicher 12 unterschiedlicher und einfach auch als Verbraucher bezeichneter Nebenverbraucher 28 versorgbar ist.
Mit anderen Worten, wird beispielsweise der Energiespeicher 12 über den ersten
Ladeanschluss 16 mit einer beispielsweise als Ladesäule ausgebildeten Stromquelle verbunden, welche als Ausgangsspannung maximal 400 Volt Gleichspannung
bereitstellen kann, so ist es auf die beschriebene Weise möglich, den Energiespeicher 12 mittels dieser Ausgangsspannung vollständig aufzuladen. Hierzu wird der zweite
Schaltzustand eingestellt. Während des Ladens des Energiespeichers 12 und somit während der zweite Schaltzustand eingestellt ist wird der Bordlader 22 über den
Ladeanschluss 16 mit der Ausgangsspannung der elektrisch mit dem Ladeanschluss 16 verbundenen Stromquelle versorgt, sodass der Bordlader 22 mit 400 Volt Gleichspannung versorgt wird. Mittels der Bordladers 22, insbesondere mittels des Spannungswandlers 24, wird die von der Stromquelle bereitgestellte dritte elektrische Spannung, das heißt werden die 400 Volt Gleichspannung, in die vierte elektrische Spannung umgewandelt.
Da die vierte elektrische Spannung der ersten elektrischen Spannung entspricht, beträgt die vierte elektrische Spannung 800 Volt Gleichspannung. Die vierte elektrische
Spannung wird von dem Bordlader 22 bereitgestellt, derart, dass der Nebenverbraucher 28 mit der von dem Bordlader 22 bereitgestellten vierten elektrischen Spannung versorgt wird. Auf diese Weise ist es beispielsweise möglich, den Nebenverbraucher 28 mittels der von dem Bordlader 22 bereitgestellten vierten elektrischen Spannung zu betreiben, während der Energiespeicher 12 mittels der dritten elektrischen Spannung geladen wird, das heißt während ein Gleichspannungsladen mit 400 Volt Gleichspannung durchgeführt wird. Wieder mit anderen Worten ausgedrückt kann der Nebenverbraucher 28 mit 800 Volt Gleichspannung versorgt und mittels 800 Volt Gleichspannung betrieben werden, während ein Gleichspannungsladen des Energiespeichers 12 mit 400 Volt durchgeführt wird.
Der Nebenverbraucher 28 ist beispielsweise eine Kühleinrichtung zum Kühlen des Energiespeichers 12. Somit ist es möglich, den Energiespeicher 12 effizient und effektiv mittels der Kühleinrichtung zu kühlen, während der Energiespeicher 12 mittels 400 Volt Gleichspannung geladen wird. Der Nebenverbraucher 28 ist beispielsweise in einem Bordnetz 30 angeordnet, welches mittels des Bordladers 22 mit der vierten elektrischen Spannung versorgbar ist beziehungsweise versorgt wird. Die vierte elektrische Spannung resultiert dabei aus der dritten elektrischen Spannung, welche mittels des Bordladers 22 in die vierte elektrische Spannung umgewandelt wird.
Fig. 2 zeigt das Gleichspannungsladen mit 800 Volt Gleichspannung. Um die erste Batteriespannung einzustellen, ist der Schalter S3 geschlossen, während die Schalter S1 und S2 offen sind. Dabei veranschaulichen in Fig. 2 Pfeile einen elektrischen Strom mit 800 Volt Gleichspannung. Die Schalteinrichtung 20 umfasst ferner weitere Schalter S4, S5, S6 und S7. Bei dem Gleichspannungsladen mit 800 Volt sind die Schalter S4, S5, S6 und S7 geschlossen. Der Bordlader 22 weist darüber hinaus interne Schalter 32 auf, welche beim Gleichspannungsladen mit 800 Volt geöffnet sind. Ferner ist der interne Spannungswandler beim Gleichstromladen mit 800 Volt inaktiv, und der
Nebenverbraucher 28 in dem Bordnetz 30 wird über den Ladeanschluss 16 von der Stromquelle mit elektrischer Energie beziehungsweise elektrischer Spannung versorgt.
Fig. 3 veranschaulicht ein Gleichspannungsladen mit 400 Volt. Um die zweite
Batteriespannung einzustellen, ist der Schalter S3 offen, während die Schalter S1 und S2 geschlossen sind. Bei dem Gleichspannungsladen mit 400 Volt sind die Schalter S6 und S7 geschlossen, während die Schalter S4 und S5 offen sind. Ferner sind bei dem
Gleichspannungsladen mit 400 Volt Gleichspannung beide internen Schalter 32 des Bordladers 22 geschlossen, und der interne Spannungswandler 24 ist aktiv, um den Nebenverbraucher 28 in dem Bordnetz 30 mit 800 Volt Gleichspannung, das heißt mit der vierten elektrischen Spannung zu versorgen. Dabei veranschaulichen in Fig. 3
durchgezogene Pfeile einen elektrischen Strom mit 800 Volt Gleichspannung, während gestrichelte Pfeile einen elektrischen Strom mit 400 Volt Gleichspannung
veranschaulichen.
Schließlich veranschaulicht Fig. 4 ein Wechselspannungsladen des Energiespeichers 12 über den zweiten Ladeanschluss 18. Bei dem Wechselspannungsladen sind die Schalter S4 und S5 geschlossen, während die Schalter S6 und S7 offen sind. Die internen Schalter 32 des Bordladers 22 sind geöffnet, und der interne Spannungswandler 24 ist aktiv.
Während in Fig. 4 durchgezogene Pfeile einen elektrischen Strom mit 800 Volt
Gleichspannung veranschaulichen, veranschaulicht in Fig. 4 ein gestrichelter Pfeil einen elektrischen Strom mit beispielsweise 230 Volt oder 400 Volt Wechselspannung, welche beispielsweise von einer entsprechenden Ladequelle beziehungsweise Stromquelle bereitgestellt wird. Die vorherigen und folgenden Ausführungen zum
Wechselspannungsladen können ohne weiteres auch auf ein Fahren beziehungsweise auf eine Fahrt des Kraftfahrzeugs übertragen werden, welches während seiner Fahrt mittels der elektrischen Maschine elektrisch angetrieben wird.
Bezugszeichenliste
Speichereinrichtung
Energiespeicher
Teilstränge
erster Ladeanschluss zweiter Ladeanschluss
Schalteinrichtung
Bordlader
Spannungswandler Gleichrichter
Nebenverbraucher Bord netz
Schalter

Claims

Patentansprüche
1. Speichereinrichtung (10) für ein Kraftfahrzeug, mit wenigstens einem
Energiespeicher (12), welcher wenigstens zwei Teilstränge (14) zum Speichern von elektrischer Energie aufweist, mit wenigstens einem Ladeanschluss (16), über welchen die Teilstränge (14) mit einer Stromquelle verbindbar und mit von der Stromquelle bereitgestellter elektrischer Energie versorgbar und dadurch zu laden sind, und mit einer Schalteinrichtung (20), welche zwischen wenigstens einem ersten Schaltzustand, in welchem zum Einstellen einer ersten elektrischen
Spannung des Energiespeichers (12) die Teilstränge (14) in Reihe geschaltet sind, und wenigstens einem zweiten Schaltzustand umschaltbar ist, in welchem zum Einstellen einer gegenüber der ersten elektrischen Spannung geringeren zweiten elektrischen Spannung des Energiespeichers (12) die Teilstränge (14) parallel geschaltet sind,
gekennzeichnet durch
einen einen galvanisch isolierenden Spannungswandler (24) umfassenden
Bordlader (22), welcher zumindest in dem zweiten Schaltzustand über den
Ladeanschluss (16) mit einer von einer Stromquelle bereitgestellten und der zweiten elektrischen Spannung entsprechenden dritten elektrischen Spannung versorgbar ist, welche mittels des Bordladers (22) in eine der ersten elektrischen Spannung entsprechende vierte elektrische Spannung umwandelbar ist, mit welcher wenigstens ein von dem Energiespeicher (12) unterschiedlicher Nebenverbraucher (28) versorgbar ist.
2. Speichereinrichtung (10) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
der Ladeanschluss (16) als Gleichspannungsanschluss ausgebildet ist.
3. Speichereinrichtung (10) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Speichereinrichtung (10) einen zusätzlich zu dem Ladeanschluss (16) vorgesehenen und als Wechselspannungsanschluss ausgebildeten zweiten Ladeanschluss (18) aufweist, über welchen der Bordlader (22) mit einer von einer Stromquelle bereitgestellten Wechselspannung versorgbar ist, wobei der der Bordlader (22) einen Gleichrichter (26) aufweist, mittels welchem die
Wechselspannung in eine der ersten Spannung entsprechende Gleichspannung umwandelbar ist, mit welcher sowohl die Teilstränge (14) als auch der wenigstens eine Nebenverbraucher (28) in dem ersten Schaltzustand versorgbar sind.
PCT/EP2018/086535 2018-01-22 2018-12-21 Speichereinrichtung für ein kraftfahrzeug, insbesondere für ein elektrofahrzeug WO2019141494A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018000491.1 2018-01-22
DE102018000491.1A DE102018000491A1 (de) 2018-01-22 2018-01-22 Speichereinrichtung für ein Kraftfahrzeug, insbesondere für ein Elektrofahrzeug

Publications (1)

Publication Number Publication Date
WO2019141494A1 true WO2019141494A1 (de) 2019-07-25

Family

ID=62636785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/086535 WO2019141494A1 (de) 2018-01-22 2018-12-21 Speichereinrichtung für ein kraftfahrzeug, insbesondere für ein elektrofahrzeug

Country Status (2)

Country Link
DE (1) DE102018000491A1 (de)
WO (1) WO2019141494A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020007866A1 (de) 2020-12-21 2022-01-27 Daimler Ag Elektrisches Bordnetzsystem für ein elektrisch angetriebenes Fahrzeug, sowie Verfahren zum Betreiben eines entsprechenden elektrischen Bordnetzsystems, sowie Fahrzeug

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070293B2 (ja) 2018-09-27 2022-05-18 トヨタ自動車株式会社 充電装置
DE102020204336B4 (de) * 2020-04-03 2022-01-13 Vitesco Technologies GmbH Fahrzeugseitige Hochvolt-Ladeschaltung und Fahrzeugbordnetz
FR3119119A1 (fr) * 2021-01-28 2022-07-29 Psa Automobiles Sa Systeme de module de chargeur a bord comprenant un controleur de securisation
DE102021209389B3 (de) 2021-08-26 2023-03-02 Audi Aktiengesellschaft Bordnetz für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102022001418A1 (de) 2022-04-25 2022-06-15 Mercedes-Benz Group AG Ladeeinrichtung für ein Fahrzeug zum Laden eines elektrischen Energiespeichers des Fahrzeugs aus einer Wechselspannung, sowie Verfahren zum Betreiben einer solchen Ladeeinrichtung
DE102022124285A1 (de) 2022-09-21 2024-03-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Schaltung für ein Hochvoltnetz eines Fahrzeugs

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488283A (en) * 1993-09-28 1996-01-30 Globe-Union, Inc. Vehicle battery system providing battery back-up and opportunity charging
EP2541724A1 (de) * 2010-02-26 2013-01-02 Toyota Jidosha Kabushiki Kaisha Fahrzeug
EP2965935A2 (de) * 2014-06-17 2016-01-13 FERRARI S.p.A. Stromsystem eines fahrzeugs mit elektrischem antrieb
DE102016002459A1 (de) 2016-03-01 2016-09-29 Daimler Ag Elektrische Anlage für ein elektrisch antreibbares Kraftfahrzeug
DE102015214732A1 (de) * 2015-08-03 2017-02-09 Audi Ag Verfahren zum Betrieb einer Energiespeichereinrichtung sowie Kraftfahrzeug mit einer Energiespeichereinrichtung
DE102016008052A1 (de) 2016-07-01 2017-02-16 Daimler Ag Energiespeichereinrichtung für einen Kraftwagen
DE102016008265A1 (de) * 2016-07-08 2017-02-16 Daimler Ag Verfahren zum Betreiben eines Kraftfahrzeugs mit einem umschaltbaren elektrischen Energiespeicher und entsprechende Schaltungsanordnung
DE102016223470A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Ladeschaltung und Ladeverfahren für ein elektrisches Energiespeichersystem
DE102016200769A1 (de) * 2016-01-21 2017-07-27 Bayerische Motoren Werke Aktiengesellschaft Verbesserte Stromquellenanordnung mit mehreren Stromquellen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488283A (en) * 1993-09-28 1996-01-30 Globe-Union, Inc. Vehicle battery system providing battery back-up and opportunity charging
EP2541724A1 (de) * 2010-02-26 2013-01-02 Toyota Jidosha Kabushiki Kaisha Fahrzeug
EP2965935A2 (de) * 2014-06-17 2016-01-13 FERRARI S.p.A. Stromsystem eines fahrzeugs mit elektrischem antrieb
DE102015214732A1 (de) * 2015-08-03 2017-02-09 Audi Ag Verfahren zum Betrieb einer Energiespeichereinrichtung sowie Kraftfahrzeug mit einer Energiespeichereinrichtung
DE102016223470A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Ladeschaltung und Ladeverfahren für ein elektrisches Energiespeichersystem
DE102016200769A1 (de) * 2016-01-21 2017-07-27 Bayerische Motoren Werke Aktiengesellschaft Verbesserte Stromquellenanordnung mit mehreren Stromquellen
DE102016002459A1 (de) 2016-03-01 2016-09-29 Daimler Ag Elektrische Anlage für ein elektrisch antreibbares Kraftfahrzeug
DE102016008052A1 (de) 2016-07-01 2017-02-16 Daimler Ag Energiespeichereinrichtung für einen Kraftwagen
DE102016008265A1 (de) * 2016-07-08 2017-02-16 Daimler Ag Verfahren zum Betreiben eines Kraftfahrzeugs mit einem umschaltbaren elektrischen Energiespeicher und entsprechende Schaltungsanordnung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020007866A1 (de) 2020-12-21 2022-01-27 Daimler Ag Elektrisches Bordnetzsystem für ein elektrisch angetriebenes Fahrzeug, sowie Verfahren zum Betreiben eines entsprechenden elektrischen Bordnetzsystems, sowie Fahrzeug

Also Published As

Publication number Publication date
DE102018000491A1 (de) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2019141494A1 (de) Speichereinrichtung für ein kraftfahrzeug, insbesondere für ein elektrofahrzeug
EP3479455A1 (de) Energiespeichereinrichtung für einen kraftwagen
DE102017222192A1 (de) HV-Batterieanordnung für ein Kraftfahrzeug, Bordnetz, Kraftfahrzeug und Verfahren zum Steuern einer HV-Batterieanordnung
WO2019141493A1 (de) Speichereinrichtung für ein kraftfahrzeug, insbesondere für ein elektrofahrzeug
DE102016008263A1 (de) Batterieanordnung für ein Kraftfahrzeug
DE102018009848A1 (de) Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
DE102009052680A1 (de) Ladevorrichtung zum Laden einer Batterie eines Kraftfahrzeugs mit Tiefsetzsteller
DE102009007737A1 (de) Energiewandlervorrichtung für ein Kraftfahrzeug und entsprechendes Ladegerät
DE102018009840A1 (de) Schaltungsanordnung für ein Kraftfahrzeug, insbesondere für ein Hybrid- oder Elektrofahrzeug
DE102019102030A1 (de) Stationäre Ladevorrichtung mit integriertem Batteriespeicher zum Bereitstellen von elektrischer Energie entweder aus einem Stromnetz oder aus dem Batteriespeicher an einem Ladeanschluss für ein elektrisch antreibbar ausgestaltetes Kraftfahrzeug sowie entsprechendes Betriebsverfahren für die Ladevorrichtung
DE102019007868A1 (de) Speichereinrichtung für ein elektrisch betriebenes Fahrzeug, sowie entsprechendes Verfahren zum Betreiben solch einer Speichereinrichtung
DE102019008824A1 (de) Elektrisches Bordnetz für ein Fahrzeug, Verfahren zu dessen Betrieb und Fahrzeug
DE102017206497B4 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs, sowie Kraftfahrzeug
DE102016015314A1 (de) Elektrisches Antriebssystem für ein Fahrzeug und Verfahren zu dessen Betrieb
DE102015007264B4 (de) Schnelles Übertragen von elektrischer Energie von einer Ladestation zu einem Verbraucher
DE102016012876A1 (de) Elektrisches Antriebssystem für ein Fahrzeug
WO2023006726A1 (de) Elektrisches antriebssystem für ein fahrzeug, fahrzeug mit einem entsprechenden elektrischen antriebssystem sowie verfahren zum betreiben eines entsprechenden elektrischen antriebssystems
DE102020204336B4 (de) Fahrzeugseitige Hochvolt-Ladeschaltung und Fahrzeugbordnetz
DE102019212930B3 (de) Fahrzeugbordnetz und Verfahren zum Betreiben eines Fahrzeugbordnetzes
DE102020007869A1 (de) Elektrisches Bordnetzsystem für ein elektrisch angetriebenes Fahrzeug und dazugehöriges Verfahren
WO2022084141A1 (de) Ladeschaltung mit einem gleichstromanschluss und einem wechselstromanschluss sowie bordnetz mit einer ladeschaltung
DE102017001470A1 (de) Elektrische Anlage für ein elektrisch antreibbares Fahrzeug
DE102021109442A1 (de) Elektrisches Bordnetz für ein Fahrzeug, Fahrzeug mit einem elektrischen Bordnetz, sowie Verfahren zum Betreiben eines elektrischen Bordnetzes für ein Fahrzeug
WO2019001943A1 (de) Ladevorrichtung zum laden eines energiespeichers eines fahrzeugs, sowie fahrzeug mit einer solchen ladevorrichtung
DE102019123403A1 (de) Verfahren zum Betreiben einer Hochvoltbatterie, Steuereinrichtung, Bordnetz sowie Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18826706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18826706

Country of ref document: EP

Kind code of ref document: A1