WO2023004950A1 - 一种绝缘热缩管嵌套装置、机器人系统及方法 - Google Patents

一种绝缘热缩管嵌套装置、机器人系统及方法 Download PDF

Info

Publication number
WO2023004950A1
WO2023004950A1 PCT/CN2021/117502 CN2021117502W WO2023004950A1 WO 2023004950 A1 WO2023004950 A1 WO 2023004950A1 CN 2021117502 W CN2021117502 W CN 2021117502W WO 2023004950 A1 WO2023004950 A1 WO 2023004950A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
nesting
shrinkable tube
workpiece
shrinkable
Prior art date
Application number
PCT/CN2021/117502
Other languages
English (en)
French (fr)
Inventor
鲁守银
姜哲
高焕兵
高诺
王涛
Original Assignee
山东建筑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东建筑大学 filed Critical 山东建筑大学
Publication of WO2023004950A1 publication Critical patent/WO2023004950A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/42Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/08Feeding of the material to be moulded, e.g. into a mould cavity of preforms to be moulded, e.g. tablets, fibre reinforced preforms, extruded ribbons, tubes or profiles; Manipulating means specially adapted for feeding preforms, e.g. supports conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/08Feeding of the material to be moulded, e.g. into a mould cavity of preforms to be moulded, e.g. tablets, fibre reinforced preforms, extruded ribbons, tubes or profiles; Manipulating means specially adapted for feeding preforms, e.g. supports conveyors
    • B29C31/085Feeding of the material to be moulded, e.g. into a mould cavity of preforms to be moulded, e.g. tablets, fibre reinforced preforms, extruded ribbons, tubes or profiles; Manipulating means specially adapted for feeding preforms, e.g. supports conveyors combined with positioning the preforms according to predetermined patterns, e.g. positioning extruded preforms on conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/16Straightening or flattening
    • B29C53/20Straightening or flattening of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0004Component parts, details or accessories; Auxiliary operations

Definitions

  • the present disclosure relates to the field of industrial robots, in particular to a nesting device for insulating heat-shrinkable tubes, a robot system and a method.
  • Insulating heat-shrinkable tubes are widely used in the fields of automobile wiring harness protection, highway, ballastless track construction, etc.
  • the nesting of insulating heat-shrinkable tubes has a decisive impact on product quality.
  • the position of the heat-shrinkable tube and the position of the workpiece are likely to change, affecting the heat-shrinkable tube.
  • the accuracy of the layout on the workpiece is difficult to meet the requirements for the insulation position of the workpiece during construction.
  • the purpose of the present disclosure is to address the defects in the prior art, and to provide a nesting device, robot system and method for insulating heat shrinkable tubes.
  • the clamps are inserted into the heat shrinkable tubes to clamp the side walls, and the heat shrinkable tubes after cutting are matched with the airflow.
  • the position of the deformed cut is corrected, and the heat-shrinkable tube in the expanded state can be conveniently sleeved on the workpiece.
  • the end of the heat-shrinkable tube that is not affected by the airflow can restore the flat structure and snap on the outer wall of the workpiece.
  • the position is fixed to reduce the position change during the conveying process.
  • the first purpose of the present disclosure is to provide a nesting device for insulating heat-shrinkable tubes, which adopts the following technical solutions:
  • the nesting fixture of the nesting mechanism includes arc-shaped plate-shaped jaws, which can partially penetrate into the inside of the heat shrinkable tube to clamp the side wall of the heat shrinkable tube;
  • the retractable roller, the working part for the workpiece is formed between the cutting piece and the air nozzle, the air nozzle is used to output the air flow to expand the cut heat shrinkable tube to maintain the cylindrical shape;
  • the nesting mechanism is used to clamp the cut heat shrinkable tube and Nested on the artifact.
  • the nesting fixture further includes a fixed rod, the jaws adapt to the curvature of the heat-shrinkable tube, one jaw is installed at the end of the fixed rod, and the other jaw is slidably mounted on the fixed rod, and the two jaws form a clamping portion. By sliding to change the distance between the two jaws, the jaw at the end can penetrate into the heat shrinkable tube.
  • the output end of the air nozzle faces the working part, and the nesting mechanism is used to drive the heat-shrinkable tube to be sleeved on the outside of the workpiece from one end of the workpiece; the retractable roller is wound with a heat-shrinkable tube, and the retractable roller can Release or rewind the heat shrink tubing.
  • the clamping mechanism includes a clamping mechanical arm and a workpiece fixture connected to the end of the clamping mechanical arm, and the nesting mechanism further includes a nesting mechanical arm, and the nesting fixture is installed at the end of the nesting mechanical arm.
  • the second object of the present disclosure is to provide a robot system for nesting insulating heat-shrinkable tubes, which utilizes the above-mentioned nesting device for insulating heat-shrinkable tubes.
  • the workpiece conveying mechanism includes a conveyor belt and multiple sets of positioning blocks, and multiple sets of positioning blocks are arranged on the conveyor belt at intervals in sequence, and each set of positioning blocks is suitable for the structural arrangement of the workpiece to be transported;
  • the heating conveying mechanism is equipped with a heating furnace, which is used to carry and transport the workpieces nested with heat-shrinkable tubes into the heating furnace.
  • the heating furnace is provided with a heating chamber, and the conveyor belt of the heating conveying mechanism passes through the heating chamber, driving the workpieces nested with heat-shrinkable tubes to enter and leave the heating furnace.
  • the third object of the present disclosure is to provide a method for nesting insulating heat-shrinkable tubes, using the above-mentioned nesting device for insulating heat-shrinkable tubes, including the following steps:
  • the nesting fixture clamps the heat-shrinkable tube from the position of the retracting roller and pulls the set length to cut the heat-shrinkable tube;
  • the heat-shrinkable tube is sleeved on the workpiece from the end of the workpiece clamped by the clamping mechanism, the air flow is suspended, the heat-shrinkable tube is pulled to the set position, and the nesting fixture is withdrawn to complete the nesting of the heat-shrinkable tube at this position.
  • the workpiece is provided with a plurality of heat-shrinkable tube nesting positions, the end of the workpiece is arranged coaxially with the output end of the nozzle, and a plurality of heat-shrinkable tubes are sequentially installed along the direction away from the nozzle.
  • the opening at the end of the heat-shrinkable tube returns to the flat shape after cutting to be fixed on the workpiece.
  • the probe-in fixture structure is adopted, which can be clamped from one side of the heat-shrinkable tube, and will not be blocked during the process of airflow expansion of the heat-shrinkable tube and the process of setting the workpiece, reducing the interference between the nested fixture, the workpiece and the airflow;
  • the nested fixture is adapted to the arc-shaped plate structure of the heat-shrinkable tube. During the clamping process, it can adapt to the arc-shaped surface of the heat-shrinkable tube, improve the stability of the clamping, and avoid affecting the airflow during the clamping process. Tube shape correction effect;
  • Fig. 1 is a schematic diagram of the layout position of nesting devices in Embodiments 1, 2, and 3 of the present disclosure
  • FIG. 2 is a schematic diagram of the control layout of the nesting device in Embodiments 1, 2, and 3 of the present disclosure
  • FIG. 3 is a schematic diagram of workpiece nesting operation points in Embodiments 1, 2, and 3 of the present disclosure
  • FIG. 4 is a schematic structural view of the workpiece conveying mechanism in Embodiments 1, 2, and 3 of the present disclosure
  • Fig. 5 is a schematic diagram of the transport and cutting of heat-shrinkable tubes in Embodiments 1, 2, and 3 of the present disclosure
  • Fig. 6 is a schematic diagram of cooperation between the supply mechanism and the workpiece in Embodiments 1, 2, and 3 of the present disclosure
  • FIG. 7 is a schematic diagram of the nesting mechanism grabbing the heat-shrinkable tube in Embodiments 1, 2, and 3 of the present disclosure
  • FIG. 8 is a schematic structural view of the nesting fixture of the nesting mechanism in Embodiments 1, 2, and 3 of the present disclosure
  • FIG. 9 is a schematic diagram of the working flow of the nesting device in Embodiments 1, 2, and 3 of the present disclosure.
  • FIGS. 1-9 a nesting device for insulating heat-shrinkable tubes is provided.
  • the clamping mechanism is equipped with a corresponding workpiece fixture to clamp the workpiece and adjust the position of the workpiece through the clamping mechanism;
  • the nesting mechanism is configured with The corresponding nesting fixture holds the heat-shrinkable tube and adjusts the position of the heat-shrinkable tube through the nesting mechanism to realize the action of nesting the heat-shrinkable tube on the workpiece;
  • the supply mechanism is equipped with an air nozzle, retractable roller and cutting parts , The heat-shrinkable tube is wound on the unwinding roller, the cutting piece cuts the released heat-shrinkable tube, the air nozzle outputs the air flow, and the oval mouth formed after the heat-shrinkable tube is cut is expanded to form a circular port for nesting .
  • the nesting fixture of the nesting mechanism includes arc-shaped plate-shaped jaws, which are used to probe into the inside of the heat-shrinkable tube to clamp the side wall;
  • the supply mechanism includes a retractable roller, a cutting piece and an air nozzle arranged in sequence, and the cutting piece and the air nozzle A working part for accommodating the workpiece is formed between them, and the air nozzle is used to output the air flow to expand the cut heat-shrinkable tube to maintain a cylindrical shape;
  • the nesting mechanism is used to clamp the cut heat-shrinkable tube and nest it on the workpiece.
  • the heat-shrinkable tube is a coiled hose.
  • the coiled heat-shrinkable tube can be installed on the take-up roller, and one end is extended, so that it is gradually released under the action of pulling. Under the clamping of the nesting mechanism, it is sleeved on the workpiece.
  • the workpiece is a bent steel bar, as shown in Figure 3 and Figure 5, there are multiple nested working points, and a plurality of heat shrinkable tubes are set correspondingly on the working points of the workpiece in sequence, After heating, the heat shrink tube is fixed at the desired working point.
  • the input end of the air nozzle is connected to the air source, and the pressure of the air source is obtained to output the air flow, blowing the cut heat-shrinkable tube to expand the oval port formed at the cutting position of the heat-shrinkable tube to form a circular port with a diameter larger than the workpiece, from one end of the workpiece Enter the sleeve outside the workpiece.
  • the nesting fixture includes a fixed rod and jaws, which are clamped as an arc-shaped plate, which can adapt to the curvature of the heat shrinkable tube.
  • a jaw is installed at the end of the fixed rod to detect into the inside of the heat-shrinkable tube and bonded to the inner wall of the heat-shrinkable tube; the other jaw is slidably installed on the fixed rod, arranged opposite to the clamping claw, can slide axially along the fixed rod, and can be bonded to the outer wall of the heat-shrinkable tube;
  • the two clamping jaws form a clamping portion, and the distance between the two clamping jaws is changed by sliding, so that the clamping jaws can be used to clamp or release the heat shrinkable tube.
  • the penetrating fixture structure can clamp the side wall of the heat shrinkable tube, and make the whole body on the side of the axis of the heat shrinkable tube. Blocking, reducing interference between nested fixtures, workpieces, and airflow.
  • the arc-shaped plate structure of the clamping jaw compared with the clamping jaw structure forming a flat clamping part, it can adapt to the arc surface of the heat shrinkable tube, improve the stability of the clamping, and avoid the impact of airflow on the heat shrinkage during the clamping process. Effect of tube shape correction.
  • the output end of the air nozzle faces the working part, and the nesting mechanism is used to drive the heat-shrinkable tube to be sleeved on the outside of the workpiece from one end of the workpiece; the retractable roller is wound with a heat-shrinkable tube, and the retractable roller can Release or rewind the heat shrink tubing under action.
  • the nesting mechanism clamps the heat-shrinkable tube and pulls it, so that the heat-shrinkable tube reaches the position of the cutting piece, and cuts the heat-shrinkable tube through the cutting piece after reaching the required length; under the action of the air nozzle, the heat-shrinkable tube can be kept
  • the circular state ensures that the nesting mechanism drives the heat-shrinkable tube to be nested stably at one end of the workpiece.
  • the cutting cylinders are controlled to drive the cutters to complete the cutting of the heat-shrinkable tubes.
  • a flat cross section is formed at the interface of the insulating heat shrinkable tube.
  • an elliptical cross section is formed due to its recovery function, and can be restored to a circular state under the action of airflow.
  • the cutting cylinder and air nozzle are all connected to the air pressure source to obtain high-pressure air flow and perform actions.
  • the clamping mechanism includes a clamping mechanical arm and a workpiece fixture connected to the end of the clamping mechanical arm.
  • the nesting mechanism also includes a nesting mechanical arm, and the nesting fixture is installed on the nesting mechanical arm. end.
  • the gripper is driven by the mechanical arm structure, and the position of the gripper is driven to change to realize the required action execution.
  • the robotic arm Through the cooperative cooperation of the robotic arm, the loading, nesting and unloading of the workpiece are completed.
  • the clamp penetrates into the heat-shrinkable tube to clamp the side wall, and corrects the position of the cutout of the heat-shrinkable tube after cutting with the airflow.
  • the heat-shrinkable tube in the expanded state can be conveniently set on the workpiece and reach the designated position.
  • the end of the heat-shrinkable tube that is not affected by the airflow can restore the flat structure, snap on the outer wall of the workpiece, and fix the position to reduce the position change during the transportation process.
  • the circular shape can be restored after the airflow expands, and the heat-shrinkable tube nested on the workpiece can stabilize its position and facilitate subsequent transfer work.
  • the traditional direct correction of nesting It is easy to loose the problem of position change, which reduces the operation process and effectively improves the accuracy of nesting position.
  • a robot system for nesting insulating heat-shrinkable tubes is provided, using the nesting device for insulating heat-shrinkable tubes as described in Example 1.
  • the workpiece conveying mechanism includes a conveyor belt and multiple sets of positioning blocks, and multiple sets of positioning blocks are arranged on the conveyor belt at intervals in sequence, and each set of positioning blocks is suitable for the structural arrangement of the workpiece to be transported;
  • the heating conveying mechanism is equipped with a heating furnace, which is used to carry and transport the workpieces nested with heat shrinkable tubes into the heating furnace;
  • the heating furnace is provided with a heating chamber, and the conveyor belt of the heating conveying mechanism passes through the heating chamber, driving the workpieces nested with heat-shrinkable tubes to enter and leave the heating furnace.
  • the system mainly includes a main control system 101, a steel bar conveyor 102 to be processed, a heat shrinkable tube conveying and cutting device 103, a heat melting furnace 104, a steel bar to be processed in place detection sensor 105, and a heat shrinkable tube in place Detection sensor 106, palletizing pallet in-position detection sensor 107, human body protection device based on infrared sensor 108, finished product palletizing pallet 109, nesting processing work area 110, steel bar grabbing position 111 to be processed, nesting robot 1201, nesting Robot control cabinet 1202, steel bar handling robot 1301, steel bar handling robot control cabinet 1302.
  • the main control system 101 is a nesting control system S20, which is mainly composed of a steel bar handling robot control system S201, a nesting robot control system S202, and a main control system S203.
  • the steel bar handling robot control system S201 completes the handling of the steel bars to be processed S2011, transports the nested steel bars to complete the melting S2012, and stacks the finished steel bars S2013; the nesting robot control system S202 completes the cutting of the heat shrinkable tube S2021, heat shrinkable tube Nesting S2022; the main control system S203 completes the delivery of steel bars to be processed S2031, the cutting of heat-shrinkable tubes S2032, the scanning of heat-shrinkable tube detection devices S2033, the scanning of palletizing pallet detection devices S2034, and the scanning of infrared sensor protection devices S2035.
  • the nested layout point distribution of reinforcement work point A, work point B, work point C, and work point D.
  • the distance between working point A and working point D is m.
  • the distance between working point B and working point C is n.
  • the fixed block includes a first fixed block 401, a second fixed block 402, a third fixed block 403, and a fourth fixed block 404 are connected to the conveyor belt of the product to be processed, and the fixed blocks are used as a group to ensure that the steel bar is transported by the belt. There will be no deviation in the relative position between the center and the belt.
  • the position of the fixed block relative to the synchronous belt has adjustment space, which can match steel bars of different shapes.
  • L1 and L2 represent the movement displacement of the belt.
  • the schematic diagrams of the high-pressure gas-assisted heat-shrinkable tube delivery and cutting device mainly include a high-pressure gas source 501 , driven rollers, heat-shrinkable tubes to be cut 505 , and steel bars to be processed 506 .
  • the driven rollers used include the first driven roller 502, the second driven roller 503, and the third driven roller 504 to assist the nesting robot to complete the transportation of the insulating heat shrinkable tube.
  • the used high-pressure gas source 501 outputs airflow through the nozzle, and the high-pressure gas source can drive the cutting device to work.
  • the gas outlet of the high-pressure gas device is on the same axis as the insulating heat shrinkable tube 505 and the steel bar 506 to be processed, so that before cutting , After the insulating heat shrink tube restores and maintains a circular shape.
  • a schematic diagram of a nested robot grabbing a heat-shrinkable tube mainly includes a heat-shrinkable tube 701 , a nesting fixture 704 , a fixed jaw 702 , and a movable jaw 703 .
  • the process of the nesting robot grabbing and pulling the heat-shrinkable tube is as follows. First, the fixed jaw 702 of the nesting fixture used by the nesting robot enters the inside of the heat-shrinkable tube. After entering, the nesting robot controls the moving jaw 703 to carry out Move and gradually close the two jaws to complete the grabbing of the heat shrinkable tube.
  • a schematic diagram of a nesting robot gripper device mainly includes a nesting gripper body, a fixed gripper 702 , and a movable gripper 703 .
  • Both the fixed jaw 702 and the movable jaw 703 are structures adapted to the heat-shrinkable tube.
  • a thin plate having the same curvature as the heat-shrinkable tube is used to maintain the shape of the heat-shrinkable tube during the pulling process. effect.
  • An insulating heat-shrinkable tube nesting system including a high-pressure gas-assisted heat-shrinkable tube conveying and cutting device 103, a main control system 101, a heat-shrinkable tube cutting and nesting robot system, a steel bar handling robot system, a conveyor for steel bars to be processed 102, an infrared ray Temperature sensing device 107 .
  • the insulating heat-shrinkable tube is a coil-shaped hose.
  • the insulating heat-shrinkable tube is fixedly installed on the heat-shrinkable tube delivery and cutting device 103 , and the end of the insulating sleeve is connected to the high-pressure gas 501 .
  • the main control system 101 controls the steel bar conveyor 102 to transport the steel bar to be processed to the grabbing position 111 of the steel bar handling robot.
  • the steel bar handling robot 1301 transports the steel bars to be processed to the nested processing work area 110 .
  • the nesting robot 1201 pulls the insulating heat-shrinkable tube so that the heat-shrinkable tube enters the side of the steel bar to be nested. Since the insulating heat-shrinkable tube is connected with high-pressure gas, the circular state of the insulating heat-shrinkable tube can be maintained, thereby ensuring The nesting robot 1201 can stably and efficiently pull the heat-shrinkable tube.
  • the main control system 101 controls the cutting cylinder on the heat-shrinkable tube conveying and cutting device 103 to complete the cutting of the insulating heat-shrinkable tube. After cutting, an elliptical cross-section will be formed at the interface of the insulating heat-shrinkable tube. Since the insulating heat-shrinkable tube is connected to a high-pressure gas source 501, the high-pressure airflow will output the elliptical cross-section to return to a circular state immediately.
  • the nesting robot 1201 pulls the cut casing to the casing placement positions working point A, working point B, working point C, and working point D on the steel bar.
  • the steel bar handling robot 1301 transports the nested steel bars to the melting furnace 104 for heating and solidification. Further, the steel bar handling robot 1301 system performs finished steel bar palletizing 109 .
  • the high-pressure gas-assisted heat-shrinkable tube conveying and cutting device 103 includes a cutting device controlled by a cylinder, driven rollers for auxiliary insulating heat-shrinking tube conveying, and a high-pressure gas device 501.
  • the high-pressure gas device 501 and the cutting device are used in one pipeline , so that the insulating heat shrinkable tube before and after cutting restores and maintains a circular shape.
  • the main control system 101 includes a display module, a control module, a digital input and output module, an analog input and output module, and a DP communication module.
  • the digital input module is respectively connected with the detection sensor 105 for steel bars to be processed, the detection sensor 106 for the heat shrinkable tube, and the detection sensor 107 for the palletizing pallet.
  • the digital output module is connected with the heat shrinkable tube cutting cylinder, and the analog input module is connected with the infrared temperature
  • the detection sensor 108 is connected, and the analog quantity output module is connected with the belt motor frequency converter of the unprocessed steel bar.
  • the main control system 101 is used for the logic control of the system, and the display module is used for the manual control of the high-pressure gas-assisted heat-shrinkable tube conveying and cutting device 103, the steel bar conveyor 111 to be processed, the nesting robot 1201, and the steel bar handling robot 1301. Display of working status, display of alarm information, etc.
  • the digital input module is used to collect signals of unprocessed steel bars, heat-shrinkable tubes and pallets in place, the analog input signal is used to collect temperature information of moving objects in the area, and the digital output module is used to cut cylinders
  • the action signal is given, and the analog output module is used to set the running frequency of the belt motor to control the steel bar conveyor to be processed.
  • the DP communication module is used to complete data transmission with the nesting robot system and the steel bar handling robot system.
  • the main control system controls the feeding belt motor of the product to be processed to realize step-by-step feeding; the auxiliary nesting robot 1201 completes the cutting of the heat-shrinkable tube; scans the detection sensor for the steel bar to be processed to ensure that the unprocessed steel bar reaches the grabbing position 111; Scan the heat-shrinkable tube detection sensor to ensure that the heat-shrinkable tube is ready; scan the palletizing pallet detection sensor to ensure that the palletizing pallet is ready to be in place; scan the infrared temperature sensor to realize the protection of personnel by controlling the start and stop of the robot; control the temperature of the hot-melt area Start and stop, and complete the working steps of heat shrinking.
  • the steel bar handling robot system includes a robot control module, a digital input and output module, a DP communication module, and a fixture. It is characterized in that the clamp includes a cylinder for clamping the steel bar, an actuator driven by the cylinder, a solenoid valve for controlling the cylinder, a magnetic detection sensor for detecting the position of the cylinder for clamping the steel bar, a sensor for grasping the steel bar in place, a digital input module and the described
  • the clamping cylinder magnetic detection sensor of the clamp is connected to the steel bar in-position sensor of the clamp, and the digital output module is connected to the solenoid valve of the clamp.
  • the steel bar handling robot is equipped with various clamps in order to meet the needs of different shapes of steel bars nested with insulating heat shrinkable tubes.
  • the nesting robot and the steel bar handling robot establish different tool coordinate systems for it, and select different operating programs according to the nesting requirements of different shapes of steel bars.
  • the system can realize the production demand of various products.
  • the steel bar handling robot system control module is used for logic control of the steel bar handling robot, the digital input module is used for collecting the in-position signal of the clamping cylinder and the in-position signal of the clamping steel bar, and the digital output module is used for the clamping of the cylinder Action signal given.
  • the nested robot system includes robot control module, digital input and output module, DP communication module and fixture. It is characterized in that the fixture includes a cylinder for clamping the heat-shrinkable tube, an actuator driven by the cylinder, a solenoid valve for controlling the cylinder, a magnetic detection sensor for detecting the position of the cylinder for clamping the heat-shrinkable tube, a sensor for grabbing the heat-shrinkable tube in place, and a digital
  • the quantity input module is connected with the clamping cylinder magnetic detection sensor of the clamp and the heat shrink tube in-position sensor of the clamp, and the digital quantity output module is connected with the solenoid valve of the clamp.
  • the nesting robot system control module is used for the logic control of the nesting robot
  • the digital input module is used for collecting the in-position signal of the clamping cylinder and the in-position signal of the clamping heat shrinkable tube
  • the digital output module is used for clamping The setting of the action signal of the cylinder.
  • a robot nesting system based on an insulating heat-shrinkable tube includes the following steps:
  • the main control system starts the nesting robot and the steel bar handling robot.
  • the main control system cyclically scans the automatic operation signal Main_C_DI_DBX1.0 of the nesting robot, the alarm signal Main_C_DI_DBX1.1 of the nesting robot, the automatic operation signal Main_C_DI_DBX0.3 of the steel bar handling robot, and the main_C_DI_DBX0.4 alarm signal of the steel bar handling robot. If an abnormal state is detected during scanning, immediately stop or suspend the operation of the system.
  • the main control system controls the belt motor to transport the steel bar to be processed to the steel bar grabbing position P 0 , where the grabbing point position P 0 is ahead of time Teach the gripping point of the saved steel bar to be processed.
  • a steel bar arrival detection sensor is installed at the steel bar grasping position P 0 , and the detection signal is connected to the main control system to confirm whether the steel bar has accurately reached the designated position P 0 and whether the steel bar has been grabbed.
  • the steel bar handling robot completes the grabbing of the steel bar to be processed. After grabbing, it can be confirmed whether the steel bar is clamped according to the state of the steel bar in-position sensor installed on the gripper. When the jaws clamp the steel bar, the steel bar in-position sensor is triggered and remains in the triggered state. At this time, it is judged that the grabbing is completed, and the grabbing completion signal Transport_R_DO_DBX0.0 of the steel bar to be processed is sent. Otherwise, if the grasping still cannot be completed within t seconds, the robot sends out an alarm and displays it on the display module of the main control system.
  • the main control system obtains the Main_C_DI_DBX0.0 signal of the grabbing completion of the steel bar to be processed, and at the same time, confirms whether the grabbing of the steel bar is completed according to the status of the steel bar arrival detection sensor.
  • the main control system controls the movement of the belt motor, and continues to transport the steel bar to be processed to the grasping position P 0 of the steel bar to be processed, so as to be ready for the next grasping.
  • the zero-seeking program is adjusted, and the belt moves a displacement L1, so that the steel bar reaches the taught steel bar grabbing point P 0 .
  • the belt moves a displacement length L2, so that the steel bar to be processed steps to the grabbing position P 0 .
  • the values of L1 and L2 can be changed to match steel bars of different shapes.
  • f is the power frequency (Hertz);
  • P is the number of pole pairs of the rotating magnetic field of the motor.
  • N is the motor speed
  • M is the reduction ratio
  • R is the pulley radius
  • t is the set motion time
  • the steel bar handling robot grabs the steel bar to be processed, it moves to the working area wrapped with heat shrinkable tube. Once in place, send the nested robot allow placement signal Transport_R_DO_DBX1.3.
  • the nesting robot pulls the heat-shrinkable tube for a moving distance L3 according to the taught grabbing point of the heat-shrinkable tube, so that the heat-shrinkable tube enters one side of the steel bar to be nested.
  • moving the distance L3 according to the state of the heat shrinkable tube in-position sensor installed on the gripper, it can be confirmed whether the heat shrinkable tube has moved completely. Otherwise, if the completion is still unable to be confirmed for a duration of t seconds, the nested robot will send out an alarm and display it on the display module of the main control system.
  • the main control system After the main control system receives the signal Main_C_DI_DBX1.0 of capturing the heat-shrinkable tube, it controls the cylinder to complete the cutting of the heat-shrinkable tube. After the heat-shrinkable tube is cut, the main control system sends the cutting completion signal Main_C_DO_DBX1.4.
  • an elliptical cross-section will be formed at the interface of the insulating heat-shrinkable tube. Since the insulating heat-shrinkable tube is connected with a high-pressure gas with a pressure ⁇ 0.8 MPa, the elliptical cross-section will immediately return to a circular state, which is ready for the next grab be prepared.
  • the nesting robot scans to the heat shrinkable tube cutting completion signal Nest_R_DI_DBX0.4, allowing to place the signal
  • R d is the attitude information of point D in the nested robot tool coordinate system T0
  • X d , Y d , and Z d are the X, Y, and Z coordinate values of the work point D in the tool coordinate system T0 of the nested robot.
  • R c is the attitude information of point C in the nested robot tool coordinate system T0
  • X c , Y c , and Z c are the X, Y, and Z coordinate values of the operating point C in the tool coordinate system T0 of the nested robot.
  • R b R c
  • R b is the attitude information of point B in the nested robot tool coordinate system T0
  • P b is the position information of point B in the tool coordinate system T0 of the nested robot
  • X c , Y c -n, and Z c are the X, Y, and Z coordinate values of the work point B in the tool coordinate system T0 of the nested robot.
  • R a R d
  • R a is the posture information of the operating point A in the tool coordinate system T0 of the nested robot
  • P a is the position information of the operation point C in the nested robot tool coordinate system T0
  • X d , Y d -m, Z d are the X, Y, Z axis coordinates of the operation point A in the nested robot tool coordinate system T0 value.
  • the nested robot moves to the placement pose of the teaching point D of the steel bar according to the planned path Control the cylinder for clamping the heat-shrinkable tube to complete the placement of the heat-shrinkable tube at operation point D.
  • the trigger state of the heat-shrinkable tube in-position sensor assembled on the gripper of the nesting robot disappears, confirming that the heat-shrinkable tube has been placed.
  • the nested robot completes the placement of heat-shrinkable tubes at operating points C, B, and A in sequence.
  • the nesting robot After the nesting robot completes the nesting operation of operation points A, B, C, and D in sequence, it sends the nesting robot four placement completion signals Nest_R_DO_DBX1.4.
  • the steel bar handling robot scans the nesting robot's four placement completion signals Transport_R_DI_DBX1.4, and the steel bar handling robot moves the steel bars of the nested heat shrinkable tube to the hot melt area. After the melting time is t seconds, the processing is completed. Then, the processed steel bars are placed on finished pallets by the steel bar handling robot.
  • the main control system confirms the completion of the pallet placement through the palletizing pallet detection device.
  • main control system sends a signal of Main_C_DO_DBX0.5 that the palletizing tray is ready to be completed, and the steel bar handling robot starts to place the finished steel bars again.
  • a protection device 108 based on an infrared sensor is installed externally to detect moving objects in the robot's nested processing work area.
  • the lower limit of the temperature threshold is set to T 1 degree Celsius
  • the upper limit of the temperature threshold is T 2 degrees Celsius.
  • FIGS. 1-9 a method for nesting insulating heat-shrinkable tubes is provided.
  • the nesting fixture clamps the heat-shrinkable tube from the position of the retracting roller and pulls the set length to cut the heat-shrinkable tube;
  • the heat-shrinkable tube is sleeved on the workpiece from the end of the workpiece clamped by the clamping mechanism, the air flow is suspended, the heat-shrinkable tube is pulled to the set position, and the nesting fixture is withdrawn to complete the nesting of the heat-shrinkable tube at this position.
  • the workpiece needs to be equipped with different insulation positions according to its usage scenarios.
  • there are multiple nested working points of heat shrinkable tubes on the workpiece and the end of the workpiece is coaxial with the output end of the nozzle, so that the airflow can be normal.
  • One end of the heat-shrinkable tube is opened, so that the oval opening formed at the cutting position can be temporarily corrected to a circular shape, and can be smoothly inserted into the outside of the workpiece after correction;
  • the clamping mechanism clamps the end of the workpiece away from the nozzle, and the first installed heat-shrinkable tube is gradually inserted into the workpiece from the other end of the workpiece, and moves along the workpiece to the position where it contacts the clamping mechanism, that is, reaches the working point A. Location;
  • the clamping mechanism clamps the end of the workpiece, and the second installed heat-shrinkable tube is gradually inserted into the workpiece from one end of the workpiece, and moves along the workpiece to the position of the working point B, so as to insert the heat-shrinkable tube at the working point C.
  • Sleeve process Since the working points B and C are not coaxially arranged with the other end of the workpiece, they will not be affected by the air flow and move their positions;
  • the clamping mechanism clamps the end of the workpiece, and the last installed heat-shrinkable tube is gradually inserted into the workpiece from one end of the workpiece.
  • the nozzle suspends the output airflow, and the last heat-shrinkable tube is adjusted by the nesting mechanism From the position of working point D to the position of working point D, the nesting of heat shrinkable tubes on all working points is completed.
  • the jaws of the nesting mechanism it is an arc-shaped plate structure, which can adapt to the curvature of the inner and outer walls of the heat-shrinkable tube, so that it can maintain the shape of the heat-shrinkable tube during the grabbing and pulling process, and facilitate its movement along the workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

一种绝缘热缩管嵌套装置、机器人系统及方法,涉及工业机器人领域,包括夹持机构、嵌套机构和供应机构;嵌套机构的嵌套夹具包括弧形板状夹爪,用于探入热缩管内部夹持侧壁;供应机构包括依次设置的收放辊、裁剪件和气嘴,裁剪件和气嘴之间形成容纳工件的工作部,气嘴用于输出气流扩充裁剪后的热缩管维持圆筒状;嵌套机构用于夹持裁剪后的热缩管并嵌套在工件上;通过夹具探入热缩管内夹持侧壁,配合气流对裁剪后的热缩管形变切口位置进行纠正,扩充状态下的热缩管能够方便的套设在工件上,到达指定位置后,不受气流作用的热缩管端部能够恢复扁平结构,卡合在工件外壁上,进行位置固定,减少输送过程中的位置变化。

Description

一种绝缘热缩管嵌套装置、机器人系统及方法 技术领域
本公开涉及工业机器人领域,特别涉及一种绝缘热缩管嵌套装置、机器人系统及方法。
背景技术
绝缘热缩管在汽车线束防护、高速公路、无砟轨道建设等领域有广泛的应用,绝缘热缩管嵌套的好坏对产品质量有决定性的影响。
在建筑施工领域,对于杆件、管件等外部套设热缩管的工作,由于热缩管多是成盘使用,在释放后呈扁平状,即使是圆筒状的热缩管,由于材质较软易发生形变,在经过裁剪后,也会使端部开口形变为扁平状,而难以进行自动嵌套,目前多由人工来完成;先对热缩管进行裁剪把裁剪完成的热缩管嵌套在钢筋上,然后移动钢筋到热熔区域,完成热缩管对钢筋的贴合。另一方面,若是对热缩管口部进行完全纠正后嵌套,热缩管整体直径大于工件直径,在嵌套后输送过程中,热缩管位置与工件位置容易发生变化,影响热缩管在工件上布置的精度,难以满足施工时对工件绝缘位置的需求。
发明内容
本公开的目的是针对现有技术存在的缺陷,提供一种绝缘热缩管嵌套装置、机器人系统及方法,通过夹具探入热缩管内夹持侧壁,配合气流对裁剪后的热缩管形变切口位置进行纠正,扩充状态下的热缩管能够方便的套设在工件上,到达指定位置后,不受气流作用的热缩管端部能够恢复扁平结构,卡合在工件外壁上,进行位置固定,减少输送过程中的位置变化。
本公开的第一目的是提供一种绝缘热缩管嵌套装置,采用以下技术方案:
包括用于夹持工件的夹持机构、用于夹持热缩管的嵌套机构和用于热缩管供给的供应机构;
嵌套机构的嵌套夹具包括弧形板状夹爪,能够部分探入热缩管内部以夹持热缩管侧壁;供应机构包括依次设置的气嘴、裁剪件和用于收纳热缩管的收放辊,裁剪件和气嘴之间形成容纳工件的工作部,气嘴用于输出气流扩充裁剪后的热缩管维持圆筒状;嵌套机构用于夹持裁剪后的热缩管并嵌套在工件上。
进一步地,所述嵌套夹具还包括固定杆,夹爪适应热缩管曲率,一个夹爪安装在固定杆末端,另一个夹爪滑动安装在固定杆上,两个夹爪形成夹持部,通过滑动改变两个夹爪之间的 间距,位于端部的夹爪能够探入热缩管内部。
进一步地,所述气嘴的输出端朝向工作部,嵌套机构用于带动热缩管从工件一端套设在工件外部;收放辊上卷绕有热缩管,收放辊能够在外力作用下释放或收卷热缩管。
进一步地,所述夹持机构包括夹持机械臂和连接夹持机械臂末端的工件夹具,嵌套机构还包括嵌套机械臂,嵌套夹具安装在嵌套机械臂末端。
本公开的第二目的是提供一种绝缘热缩管嵌套机器人系统,利用如上所述的绝缘热缩管嵌套装置。
进一步地,还包括:
工件输送机构,包括输送带和多组定位块,多组定位块依次间隔布置在输送带上,每组定位块均适应待输送工件结构布置;
加热输送机构,配合有加热炉,用于承载并输送嵌套热缩管后的工件进入加热炉。
进一步地,所述加热炉设有加热腔,加热输送机构的输送带穿过加热腔,带动嵌套热缩管后的工件进入和离开加热炉。
本公开的第三目的是提供一种绝缘热缩管嵌套方法,利用如上所述的绝缘热缩管嵌套装置,包括以下步骤:
包括以下步骤:
嵌套夹具从收放辊位置夹取热缩管并牵拉设定长度,裁剪热缩管;
夹持热缩管端部并接受气嘴输出气流作用,扩充热缩管裁切位置保持圆形;
热缩管从夹持机构所夹持工件一端套设在工件后,暂停气流,牵拉热缩管到设定位置,撤回嵌套夹具,完成此位置热缩管嵌套。
进一步地,工件上设有多个热缩管嵌套位置,工件端部与喷嘴输出端同轴设置,沿远离喷嘴方向依次安装多个热缩管。
进一步地,热缩管移动至工件上的设定位置后,热缩管端部开口恢复裁剪后的扁平状以固定在工件上。
与现有技术相比,本公开具有的优点和积极效果是:
(1)通过夹具探入热缩管内夹持侧壁,配合气流对裁剪后的热缩管形变切口位置进行纠正,扩充状态下的热缩管能够方便的套设在工件上,到达指定位置后,不受气流作用的热缩管端部能够恢复扁平结构,卡合在工件外壁上,进行位置固定,减少输送过程中的位置变化;
(2)采用探入式夹具结构,能够从热缩管一侧夹持,在气流扩充热缩管过程中和套设工 件过程中均不会阻挡,减少嵌套夹具与工件、气流的干涉;嵌套夹具为适应热缩管的弧形板结构,在其夹持过程中,能够适应热缩管的圆弧面,提高夹持的稳定性,并能够避免夹持过程中影响气流对热缩管形状纠正效果;
(3)通过机械臂的协作配合,完成工件的上料、嵌套和下料工作,利用热缩管裁切后的端部扁平结构,气流扩充后能够恢复圆形状,嵌套在工件上的热缩管能够稳定其位置,方便后续的转运工作,相较于传统的直接纠正嵌套容易松动发生位置变化的问题,减少了操作流程并有效提高了嵌套位置的精度。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为本公开实施例1、2、3中嵌套装置布局位置示意图;
图2为本公开实施例1、2、3中嵌套装置控制布局示意图;
图3为本公开实施例1、2、3中工件嵌套作业点的示意图;
图4为本公开实施例1、2、3中工件输送机构的结构示意图;
图5为本公开实施例1、2、3中热缩管输送裁剪示意图;
图6为本公开实施例1、2、3中供应机构与工件的配合示意图;
图7为本公开实施例1、2、3中嵌套机构抓取热缩管的示意图;
图8为本公开实施例1、2、3中嵌套机构的嵌套夹具的结构示意图;
图9为本公开实施例1、2、3中嵌套装置工作流程示意图。
图中,101、主控制系统,102、待加工钢筋输送机,103、热缩管输送裁剪装置,104、热熔炉,105、待加工钢筋到位检测传感器,106、热缩管到位检测传感器,107、码垛托盘到位检测传感器,108、人体保护装置,109、成品码垛垛盘,110、工作区,111、待加工钢筋抓取位置,1201、嵌套机器人,1202、嵌套机器人控制柜,1301、钢筋搬运机器人,1302、钢筋搬运机器人控制柜,401、第一固定块,402、第二固定块,403、第三固定块,404、第四固定块,501、高压气源,502、第一从动滚轮,503、第二从动滚轮,504、第三从动滚轮,505、待裁剪热缩管,506、待加工钢筋,701、热缩管,702、固定夹爪,703、移动夹爪,704、嵌套夹具。
具体实施方式
实施例1
本公开的一种典型的实施方式中,如图1-图9所示,提供一种绝缘热缩管嵌套装置。
如图3-图7所示,主要包括夹持机构、嵌套机构和供应机构,夹持机构配置有相应的工件夹具,夹持工件并通过夹持机构进行工件位置调整;嵌套机构配置有相应的嵌套夹具,夹持热缩管并通过嵌套机构进行热缩管位置的调整,实现将热缩管嵌套至工件上的动作;供应机构配置有气嘴、收放辊和裁剪件,收放辊上卷绕有热缩管,裁剪件对释放后的热缩管进行裁剪,气嘴输出气流,将热缩管裁剪后形成的椭圆形口进行扩充,形成圆形端口方便嵌套。
具体的,嵌套机构的嵌套夹具包括弧形板状夹爪,用于探入热缩管内部夹持侧壁;供应机构包括依次设置的收放辊、裁剪件和气嘴,裁剪件和气嘴之间形成容纳工件的工作部,气嘴用于输出气流扩充裁剪后的热缩管维持圆筒状;嵌套机构用于夹持裁剪后的热缩管并嵌套在工件上。
热缩管为成盘的软管,可以将成盘的热缩管安装在收放辊上,一端延伸,从而在牵拉作用下逐渐释放,经过裁剪件裁剪后从收放辊上脱离,并在嵌套机构的夹持下套设在工件上。
在本实施例中,所述的工件为弯折钢筋,如图3、图5所示,设有多个嵌套工作点,将多个热缩管依次对应套设在工件的工作点位置,进行加热后使热缩管固定在所需的工作点位置。
气嘴输入端连接气压源,获取气压源压力从而输出气流,吹动裁剪后的热缩管,使热缩管裁剪位置形成的椭圆形端口扩充,形成直径大于工件的圆形端口,从工件一端进入套设在工件外。
对于嵌套机构,如图7、图8所示,嵌套夹具包括固定杆、夹爪,夹住为弧形板件,能够适应热缩管曲率,一个夹爪安装在固定杆末端,能够探入热缩管内部,并与热缩管内壁贴合;另一个夹爪滑动安装在固定杆上,与夹爪相对布置,能够沿固定杆轴向滑动,能够与热缩管外壁贴合;
两个夹爪形成夹持部,通过滑动改变两个夹爪之间的间距,从而实现利用夹爪对热缩管的夹持或释放。
可以理解的是,探入式的夹具结构能够对热缩管侧壁进行夹持,并使整体位于热缩管轴线一侧,在气流扩充热缩管过程中和套设工件过程中均不会阻挡,减少嵌套夹具与工件、气流的干涉。
对于夹爪的弧形板结构,相较于形成平面夹持部的夹爪结构,能够适应热缩管的圆弧面,提高夹持的稳定性,并能够避免夹持过程中气流对热缩管形状纠正的影响。
在工作时,所述气嘴的输出端朝向工作部,嵌套机构用于带动热缩管从工件一端套设在 工件外部;收放辊上卷绕有热缩管,收放辊能够在外力作用下释放或收卷热缩管。
嵌套机构夹持热缩管后进行牵拉,使得热缩管到达裁剪件位置,在达到所需长度后通过裁剪件进行热缩管裁剪;在气嘴的作用下,能够保持热缩管的圆形状态,从而保证嵌套机构带动热缩管稳定套设在工件一端。
对于裁剪件,包括刀具和裁剪气缸,控制裁剪气缸带动刀具动作,完成热缩管的裁剪。在裁剪时,绝缘热缩管接口处形成扁平截面,在裁剪后,由于其恢复作用形成椭圆形的截面,并能够在气流作用下恢复成为圆形状态。
可以理解的是,所述裁切气缸、气嘴均接入气压源,获取高压气流并进行执行动作。
为了实现夹持机构、嵌套机构的动作,夹持机构包括夹持机械臂和连接夹持机械臂末端的工件夹具,嵌套机构还包括嵌套机械臂,嵌套夹具安装在嵌套机械臂末端。
通过机械臂结构对夹具进行驱动,带动夹具进行位置变化,实现所需的动作执行。通过机械臂的协作配合,完成工件的上料、嵌套和下料工作。
需要指出的是,夹具探入热缩管内夹持侧壁,配合气流对裁剪后的热缩管形变切口位置进行纠正,扩充状态下的热缩管能够方便的套设在工件上,到达指定位置后,不受气流作用的热缩管端部能够恢复扁平结构,卡合在工件外壁上,进行位置固定,减少输送过程中的位置变化。
利用热缩管裁切后的端部扁平结构,气流扩充后能够恢复圆形状,嵌套在工件上的热缩管能够稳定其位置,方便后续的转运工作,相较于传统的直接纠正嵌套容易松动发生位置变化的问题,减少了操作流程并有效提高了嵌套位置的精度。
实施例2
本公开的另一种典型的实施方式中,如图1-图9所示,提供一种绝缘热缩管嵌套机器人系统,利用如实施例1中所述的绝缘热缩管嵌套装置。
还包括:
工件输送机构,包括输送带和多组定位块,多组定位块依次间隔布置在输送带上,每组定位块均适应待输送工件结构布置;
加热输送机构,配合有加热炉,用于承载并输送嵌套热缩管后的工件进入加热炉;
加热炉设有加热腔,加热输送机构的输送带穿过加热腔,带动嵌套热缩管后的工件进入和离开加热炉。
具体的,结合图1-图9,该系统主要包括主控制系统101、待加工钢筋输送机102、热缩 管输送裁剪装置103、热熔炉104、待加工钢筋到位检测传感器105、热缩管到位检测传感器106、码垛托盘到位检测传感器107、基于红外线传感器的人体保护装置108、成品码垛垛盘109、嵌套加工工作区110、待加工钢筋抓取位置111、嵌套机器人1201、嵌套机器人控制柜1202、钢筋搬运机器人1301、钢筋搬运机器人控制柜1302。
如图2所示,主控制系统101为嵌套控制系统S20,主要由钢筋搬运机器人控制系统S201、嵌套机器人控制系统S202、主控制系统S203组成。
钢筋搬运机器人控制系统S201完成待加工钢筋的搬运S2011、搬运嵌套后的钢筋完成热熔S2012、成品钢筋的码垛S2013;嵌套机器人控制系统S202完成了热缩管的裁剪S2021、热缩管的嵌套S2022;主控制系统S203完成了待加工钢筋的输送S2031、热缩管的裁剪S2032、扫描热缩管检测装置S2033、扫描码垛托盘检测装置S2034、扫描红外传感器保护装置S2035。
参见图3,钢筋的嵌套布局点分布:工作点A、工作点B、工作点C、工作点D。工作点A与工作点D之间的距离为m。工作点B与工作点C之间的距离为n。
参见图4,固定块包括第一固定块401、第二固定块402、第三固定块403、第四固定块404与待加工产品输送皮带连接,固定块作为一组,保障钢筋在皮带输送过程中与皮带的相对位置不会出现偏移,优选的,固定块相对于同步带位置,具有调整空间,可以匹配不同形状的钢筋。L1、L2代表皮带运动位移。
参见图5、图6,高压气体辅助的热缩管输送裁剪装置示意图,主要包含高压气源501、从动滚轮、待裁剪热缩管505、待加工钢筋506。所用的从动滚轮包括第一从动滚轮502、第二从动滚轮503、第三从动滚轮504辅助嵌套机器人完成绝缘热缩管输送。所用的高压气源501通过喷嘴输出气流,高压气源能够驱动裁剪装置工作,嵌套过程中,高压气体装置的出气口与绝缘热缩管505、待加工钢筋506处于同一轴线上,使得裁剪前、后的绝缘热缩管恢复并保持圆形形态。
参见图7,嵌套机器人抓取热缩管示意图,主要包括热缩管701、嵌套夹具704、固定夹爪702,移动夹爪703。嵌套机器人对热缩管进行抓取、牵引的过程如下,首先,所用的嵌套机器人嵌套夹具的固定夹爪702进入热缩管内部,进入完成后,嵌套机器人控制移动夹爪703进行移动,将两个夹爪逐渐合拢,完成对热缩管的抓取。
参见图8,嵌套机器人夹爪装置示意图,主要包括嵌套夹具本体、固定夹爪702、移动夹爪703。固定夹爪702和移动夹爪703均为适应热缩管的结构,在本实施例中,采用与热缩管有相同曲率弧度的薄板,起到在抓取牵引过程中保持热缩管形态的作用。
参见表1、2、3,嵌套机器人Nest_R、钢筋搬运机器人Transport_R和主控制系统Main_C之间的Profibus-DP协议内容如表所示。
表1主控制系统(Main_C)Profibus-DP协议的定义
Figure PCTCN2021117502-appb-000001
表2钢筋搬运机器人(Transport_R)Profibus-DP协议的定义
Figure PCTCN2021117502-appb-000002
Figure PCTCN2021117502-appb-000003
表3嵌套机器人(Nest_R)Profibus-DP协议的定义
Figure PCTCN2021117502-appb-000004
Figure PCTCN2021117502-appb-000005
一种绝缘热缩管嵌套系统,包括高压气体辅助的热缩管输送裁剪装置103、主控制系统101、热缩管裁剪嵌套机器人系统、钢筋搬运机器人系统、待加工钢筋输送机102、红外线温度传感装置107。
绝缘热缩管是一种盘型的软管,在准备阶段,把绝缘热缩管固定装在所述的热缩管输送裁剪装置103上,绝缘套管的末端连接高压气体501。完成热缩管的准备工作之后,所述的主控制系统101控制待加工钢筋输送机102,把待加工钢筋输送至钢筋搬运机器人的抓取位置111。所述的钢筋搬运机器人1301将待加工钢筋搬运至嵌套加工工作区域110。所述的嵌套机器人1201扯动绝缘热缩管,使得热缩管进入待嵌套钢筋的一侧,由于绝缘热缩管连接有高压气体,可以保持绝缘热缩管的圆形状态,从而保障嵌套机器人1201能够稳定高效的完成热缩管的扯动。
进一步的,所述的主控制系统101控制热缩管输送裁剪装置103上的裁剪气缸,完成绝缘热缩管的裁剪。裁剪后,绝缘热缩管接口处会形成一个椭圆的截面,由于绝缘热缩管连接有高压气源501,输出高压气流使得椭圆的截面立刻恢复成圆形状态。嵌套机器人1201把裁剪下来的套管牵引到钢筋上的套管放置位置工作点A、工作点B、工作点C、工作点D。嵌套机器人1201依次完成钢筋的热缩管嵌套之后,钢筋搬运机器人1301将嵌套完成的钢筋搬运至热熔炉104,进行加热固化。进一步的,所述的钢筋搬运机器人1301系统进行成品钢筋码垛109。
高压气体辅助的热缩管输送裁剪装置103包含由气缸控制的裁剪装置、辅助绝缘热缩管输送的从动滚轮、高压气体装置501,所用的高压气体装置501与裁剪装置共用于一个管路中,使得裁剪前、后的绝缘热缩管恢复并保持圆形形态。
主控制系统101包括显示模块,控制模块,数字量输入输出模块,模拟量输入输出模块,DP通讯模块。数字量输入模块分别与待加工钢筋到位检测传感器105、热缩管到位检测传感器106、码垛托盘到位检测传感器107连接,数字量输出模块与热缩管裁剪气缸连接,模拟量输入模块与红外线温度检测传感器108连接,模拟量输出模块与未加工钢筋的皮带电机变频器连接。
主控制系统101用于系统的逻辑控制,所述的显示模块用于高压气体辅助的热缩管输送裁剪装置103、待加工钢筋输送机111的手动控制,嵌套机器人1201、钢筋搬运机器人1301的工作状态显示,报警信息的显示等。所述的数字量输入模块用于采集未加工钢筋到位信号、热缩管到位信号、码垛托盘到位信号,模拟量输入信号用于采集区域内移动物体温度信息,数 字量输出模块用于裁剪气缸的动作信号的给定,模拟量输出模块用于皮带电机运行频率的给定,控制待加工钢筋输送机。所述的DP通讯模块,用于与嵌套机器人系统、钢筋搬运机器人系统完成数据传输。
主控制系统控制待加工产品上料皮带电机,实现步进式上料;辅助嵌套机器人1201完成热缩管的裁剪工作;扫描待加工钢筋到位检测传感器,保证未加工钢筋到达抓取位置111;扫描热缩管检测传感器,确保热缩管准备到位;扫描码垛托盘检测传感器,确保码垛托盘准备到位;扫描红外线温度传感器,通过控制机器人启停,实现对人员的保护;控制热熔区域的启动停止,完成热缩的工作步骤。
钢筋搬运机器人系统包括机器人控制模块、数字量输入输出模块、DP通讯模块、夹具。其特征在于,其中夹具包括夹取钢筋的气缸、气缸带动的执行机构、控制气缸的电磁阀、检测夹取钢筋的气缸位置的磁性检测传感器、钢筋抓取到位传感器,数字量输入模块与所述夹具的夹取气缸磁性检测传感器和所述夹具的钢筋到位传感器连接,数字量输出模块与所述夹具电磁阀连接。优选的,为了应对不同形状钢筋嵌套绝缘热缩管的需求,钢筋搬运机器人配备多种夹具。对应每种夹具,嵌套机器人和钢筋搬运机器人为其建立不同的工具坐标系,根据不同形状钢筋的嵌套需求,选择不同的运行程序。系统可以实现多种产品的生产需求。钢筋搬运机器人301工作载荷:80-100公斤;工作范围:2500-3300mm;重复定位精度≤0.1mm。
所述的钢筋搬运机器人系统控制模块用于钢筋搬运机器人的逻辑控制,所述的数字量输入模块用于采集夹取气缸到位信号、夹取钢筋到位信号,数字量输出模块用于夹取气缸的动作信号的给定。
嵌套机器人系统包括机器人控制模块、数字量输入输出模块、DP通讯模块、夹具。其特征在于,其中夹具包括夹取热缩管的气缸、气缸带动的执行机构、控制气缸的电磁阀、检测夹取热缩管的气缸位置的磁性检测传感器、热缩管抓取到位传感器,数字量输入模块与所述夹具的夹取气缸磁性检测传感器和所述夹具的热缩管到位传感器连接,数字量输出模块与所述夹具电磁阀连接。嵌套机器人201工作载荷:20-40公斤;工作范围:2000-2200mm;重复定位精度≤0.1mm。
所述的嵌套机器人系统控制模块用于嵌套机器人的逻辑控制,所述的数字量输入模块用于采集夹取气缸到位信号、夹取热缩管到位信号,数字量输出模块用于夹取气缸的动作信号的给定。
基于一种绝缘热缩管机器人嵌套系统,包括以下步骤:
系统启动后,主控制系统启动嵌套机器人和钢筋搬运机器人。系统运行期间,主控制系统循环扫描嵌套机器人自动运行信号Main_C_DI_DBX1.0、嵌套机器人报警信号Main_C_DI_DBX1.1、钢筋搬运机器人自动运行信号Main_C_DI_DBX0.3、钢筋搬运机器人报警信号Main_C_DI_DBX0.4。若扫描到异常状态,立刻停止或暂停系统的运行。
进一步的,根据待加工的钢筋输送装置皮带电机配备的编码器的反馈值,主控制系统控制皮带电机,把待加工的钢筋输送到钢筋抓取位置P 0,其中抓取点位置P 0为提前示教保存的待加工钢筋的抓取点。同时,钢筋抓取位置P 0处装有钢筋到位检测传感器,检测信号接入主控制系统,可以确认钢筋是否准确到达指定位置P 0、钢筋是否被抓取。
钢筋搬运机器人完成对待加工钢筋的抓取。抓取后,根据夹爪上装配的钢筋到位传感器的状态,可以确认钢筋是否被夹住。在夹爪夹住钢筋的情况下,钢筋到位传感器被触发并一直保持触发状态,此时,判定抓取完成,并发出待加工钢筋抓取完成信号Transport_R_DO_DBX0.0。否则,持续时间t秒,仍然无法完成抓取,则机器人发出报警,并显示在主控制系统的显示模块上。
进一步的,主控制系统得到待加工钢筋抓取完成Main_C_DI_DBX0.0信号,同时,根据钢筋到位检测传感器的状态,来确认钢筋是否抓取完成。
进一步的,主控制系统控制皮带电机运动,继续把待加工的钢筋输送到待加工钢筋的抓取位置P 0,为下一次的抓取做好准备。当系统第一次启动时,调动寻零程序,皮带运动一个位移L1,使得钢筋到达示教好的钢筋抓取点P 0。之后,每一次得到机器人的抓取完成信号Main_C_DI_DBX0.0并且根据到位检测传感器来确认钢筋抓取完成的情况下,皮带运动一个位移长度L2,使得待加工的钢筋步进至抓取位置P 0。优选的,L1和L2的数值可以更改,用来匹配不同形状的钢筋。
电机转速(转/分):N=60f/P
式中,f为电源频率(赫兹);P为电机旋转磁场的极对数。
皮带运动位移:L=2π·N·M·R·t
式中,N为电机转速;M为减速比;R为皮带轮半径;t为设定的运动时间。
进一步的,钢筋搬运机器人抓取待加工的钢筋后,移动到热缩管包裹工作区域。移动到位后,发出嵌套机器人允许放置信号Transport_R_DO_DBX1.3。
进一步的,在热缩管放置区,嵌套机器人根据示教的热缩管抓取点,拉扯热缩皮管移动距离L3,使得热缩管进入待嵌套钢筋的一侧。移动距离L3后,根据夹爪上装配的热缩管到位 传感器的状态,可以确认热缩管是否移动完毕。否则,持续时间t秒,仍然无法确认完成,则嵌套机器人发出报警,并显示在主控制系统的显示模块上。确认移动完毕后,发送热缩管抓取完成信号Nest_R_DO_DBX0.0。由于绝缘热缩管连接有高压气体,可以保持绝缘热缩管的圆形状态,从而保障嵌套机器人能够稳定高效的完成热缩管的扯动。
进一步的,主控制系统得到热缩管抓取完成信号Main_C_DI_DBX1.0之后,控制气缸,完成对热缩管的裁剪。热缩管拆剪之后,主控制系统发送裁剪完成信号Main_C_DO_DBX1.4。优选的,裁剪后,绝缘热缩管接口处会形成一个椭圆的截面,由于绝缘热缩管连接有压力≥0.8MPa的高压气体,使得椭圆的截面立刻恢复成圆形状态,为下次抓取做好准备。
嵌套机器人扫描到热缩管裁剪完成信号Nest_R_DI_DBX0.4、允许放置信号
Nest_R_DI_DBX1.3后,会进行一次热缩管的放置。
进一步的,作业点D在嵌套机器人工具坐标系T0下示教完成的结果为
Figure PCTCN2021117502-appb-000006
其中,R d为D点在嵌套机器人工具坐标系T0下的姿态信息,
Figure PCTCN2021117502-appb-000007
为D点在嵌套机器人工具坐标系T0下的位置信息,X d、Y d、Z d是作业点D在嵌套机器人工具坐标系T0下X、Y、Z轴坐标值。作业点C在嵌套机器人工具坐标系T0下示教完成的结果为
Figure PCTCN2021117502-appb-000008
其中,R c为C点在嵌套机器人工具坐标系T0下的姿态信息,
Figure PCTCN2021117502-appb-000009
为C点在嵌套机器人工具坐标系T0下的位置信息,X c、Y c、Z c是作业点C在嵌套机器人工具坐标系T0下X、Y、Z轴坐标值。作业点B在嵌套机器人工具坐标系T0下示教完成的结果为
Figure PCTCN2021117502-appb-000010
其中,R b=R c,R b为B点在嵌套机器人工具坐标系T0下的姿态信息,
Figure PCTCN2021117502-appb-000011
P b为B点在嵌套机器人工具坐标系T0下的位置信息,X c、Y c-n、Z c是作业点B在嵌套机器人工具坐标系T0下X、Y、Z轴坐标值。作业点A在嵌套机器人工具坐标系T0下示教完成的结果为
Figure PCTCN2021117502-appb-000012
其中,R a=R d,R a为作业点A点在嵌套机器人工具坐标系T0下的姿态信息,
Figure PCTCN2021117502-appb-000013
P a为作业点C点在嵌套机器人工具坐标系T0下的位置信息,X d、Y d-m、Z d是作业点A在嵌套机器人工具坐标系T0下X、Y、Z轴坐标值。
进一步的,嵌套机器人根据规划的路径,移动到示教好的钢筋的作业点D的放置位姿
Figure PCTCN2021117502-appb-000014
处,控制夹取热缩管的气缸,完成作业点D的热缩管的放置,放置后,嵌套机器人夹爪上装配的热缩管到位传感器的触发状态消失,确认热缩管放置完成。作业点D热缩管放置完成后,嵌套机器人依次完成作业点C、B、A的热缩管放置工作。
进一步的,嵌套机器人依次完成作业点A、B、C、D的嵌套操作后,发送嵌套机器人四次放置完成信号Nest_R_DO_DBX1.4。
进一步的,钢筋搬运机器人通过扫描到嵌套机器人四次放置完成信号Transport_R_DI_DBX1.4,钢筋搬运机器人搬运嵌套完成热缩管的钢筋移动至热熔区域。热熔时间t秒后,加工完成。然后,由钢筋搬运机器人把处理好的钢筋放置到成品托盘上。
进一步的,当成品托盘上的钢筋达到设定值q之后,由叉车完成对成品托盘的转移,并放置好空托盘。放置完成后,主控制系统通过码垛托盘检测装置,确认托盘放置完成。
进一步的,主控制系统发出码垛垛盘准备完成Main_C_DO_DBX0.5信号,钢筋搬运机器人重新开始放置成品钢筋。
优选的,外设基于红外线传感器的保护装置108,对机器人嵌套加工工作区域内移动物体进行检测。根据人体温度设定温度阀值下限为T 1摄氏度、温度阀值上限为T 2摄氏度。系统开始工作之后,启动测量。当检测装置检测到在嵌套加工工作区域内物体温度T∈(T 1,T 2)时,主控制系统控制嵌套机器人和钢筋搬运机器人停止并报警。直到人工复位,系统继续运行。
实施例3
本公开的再一种典型的实施方式中,如图1-图9所示,提供一种绝缘热缩管嵌套方法。
利用如实施例1中所述的热缩管嵌套装置,并包括以下步骤:
嵌套夹具从收放辊位置夹取热缩管并牵拉设定长度,裁剪热缩管;
夹持热缩管端部并接受气嘴输出气流作用,扩充热缩管裁切位置保持圆形;
热缩管从夹持机构所夹持工件一端套设在工件后,暂停气流,牵拉热缩管到设定位置,撤回嵌套夹具,完成此位置热缩管嵌套。
工件根据其使用场景不同,需要配置不同的绝缘位置,如图3所示,工件上设置有多个热缩管嵌套工作点,工件端部与喷嘴输出端同轴设置,从而使得气流能够正对热缩管一端开口,使得裁剪位置形成的椭圆形开口能够暂时纠正为圆形,在纠正后能够顺利套入工件外部;
沿远离喷嘴方向上,进行热缩管的安装,根据工作位置,依次安装多个热缩管。
具体的,夹持机构夹持工件远离喷嘴的一端,第一个安装的热缩管从工件另一端逐渐套入工件内,并沿工件移动至接触夹持机构的位置,即到达工作点A的位置;
夹持机构夹持工件端部,第二个安装的热缩管从工件一端逐渐套入工件内,并沿工件移动至工作点B的位置,并以此进行工作点C位置热缩管的嵌套过程;由于工作点B和C均与工件另一端非同轴布置,因此,不会受到气流的影响而移动位置;
加持机构夹持工件端部,最后一个安装的热缩管从工件一端逐渐套入工件内,在扩张热缩管套入工件后,喷嘴暂停输出气流,并由嵌套机构调整最后一个热缩管的位置至工作点D位置,完成所有工作点上热缩管的嵌套。
需要特别指出的是,由于热缩管在气流作用下的扩张开口为暂时扩张,在不受气流影响后,热缩管端部开口恢复扁平状从而固定在工件上。
对于嵌套机构的夹爪,其为弧形板件结构,能够适应热缩管内外壁的弧度,从而在抓取牵引过程中能够保持热缩管的形态,方便其沿工件的移动。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种绝缘热缩管嵌套装置,其特征在于,包括用于夹持工件的夹持机构、用于夹持热缩管的嵌套机构和用于热缩管供给的供应机构;
    嵌套机构的嵌套夹具包括弧形板状夹爪,能够部分探入热缩管内部以夹持热缩管侧壁;供应机构包括依次设置的气嘴、裁剪件和用于收纳热缩管的收放辊,裁剪件和气嘴之间形成容纳工件的工作部,气嘴用于输出气流扩充裁剪后的热缩管维持圆筒状;嵌套机构用于夹持裁剪后的热缩管并嵌套在工件上。
  2. 如权利要求1所述的绝缘热缩管嵌套装置,其特征在于,所述嵌套夹具还包括固定杆,夹爪适应热缩管曲率,一个夹爪安装在固定杆末端,另一个夹爪滑动安装在固定杆上,两个夹爪形成夹持部,通过滑动改变两个夹爪之间的间距,位于端部的夹爪能够探入热缩管内部。
  3. 如权利要求1所述的绝缘热缩管嵌套装置,其特征在于,所述气嘴的输出端朝向工作部,嵌套机构用于带动热缩管从工件一端套设在工件外部;收放辊上卷绕有热缩管,收放辊能够在外力作用下释放或收卷热缩管。
  4. 如权利要求1所述的绝缘热缩管嵌套装置,其特征在于,所述夹持机构包括夹持机械臂和连接夹持机械臂末端的工件夹具,嵌套机构还包括嵌套机械臂,嵌套夹具安装在嵌套机械臂末端。
  5. 一种绝缘热缩管嵌套机器人系统,其特征在于,包括如权利要求1-4任一项所述的绝缘热缩管嵌套装置。
  6. 如权利要求5所述的绝缘热缩管嵌套机器人系统,其特征在于,还包括:
    工件输送机构,包括输送带和多组定位块,多组定位块依次间隔布置在输送带上,每组定位块均适应待输送工件结构布置;
    加热输送机构,配合有加热炉,用于承载并输送嵌套热缩管后的工件进入加热炉。
  7. 如权利要求6所述的绝缘热缩管嵌套机器人系统,其特征在于,所述加热炉设有加热腔,加热输送机构的输送带穿过加热腔,带动嵌套热缩管后的工件进入和离开加热炉。
  8. 一种绝缘热缩管嵌套方法,利用如权利要求1-4任一项所述的绝缘热缩管嵌套装置,其特征在于,包括以下步骤:
    嵌套夹具从收放辊位置夹取热缩管并牵拉设定长度,裁剪热缩管;
    夹持热缩管端部并接受气嘴输出气流作用,扩充热缩管裁切位置保持圆形;
    热缩管从夹持机构所夹持工件一端套设在工件后,暂停气流,牵拉热缩管到设定位置,撤回嵌套夹具,完成此位置热缩管嵌套。
  9. 如权利要求8所述的绝缘热缩管嵌套方法,其特征在于,工件上设有多个热缩管嵌套位置,工件端部与喷嘴输出端同轴设置,沿远离喷嘴方向依次安装多个热缩管。
  10. 如权利要求8所述的绝缘热缩管嵌套方法,其特征在于,热缩管移动至工件上的设定位置后,热缩管端部开口恢复裁剪后的扁平状以固定在工件上。
PCT/CN2021/117502 2021-07-30 2021-09-09 一种绝缘热缩管嵌套装置、机器人系统及方法 WO2023004950A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110872180.2A CN113771355B (zh) 2021-07-30 2021-07-30 一种绝缘热缩管嵌套装置、机器人系统及方法
CN202110872180.2 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023004950A1 true WO2023004950A1 (zh) 2023-02-02

Family

ID=78836636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117502 WO2023004950A1 (zh) 2021-07-30 2021-09-09 一种绝缘热缩管嵌套装置、机器人系统及方法

Country Status (2)

Country Link
CN (1) CN113771355B (zh)
WO (1) WO2023004950A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117227161A (zh) * 2023-11-16 2023-12-15 山东豪迈机械制造有限公司 一种套管装置
CN117565384A (zh) * 2024-01-16 2024-02-20 四川富生电器有限责任公司 一种隧道式热缩套管成型装置
CN118061517A (zh) * 2024-04-18 2024-05-24 立讯精密工业(盐城)有限公司 一种汽车线束端部热缩管热缩设备及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307823A (ja) * 2007-06-15 2008-12-25 Sumitomo Electric Fine Polymer Inc 熱収縮性チューブの製造方法およびその製造装置
CN103949875A (zh) * 2014-04-28 2014-07-30 安徽大学 一种将热缩管套在中央空调毛细管上的方法及装置
CN104616839A (zh) * 2015-02-12 2015-05-13 惠州庞德智能科技有限公司 一种自动套热缩套管的装置及加工方法
CN107799238A (zh) * 2017-09-12 2018-03-13 中国科学院长春光学精密机械与物理研究所 一种导线束穿套热缩管方法
CN207190265U (zh) * 2017-09-22 2018-04-06 昆山恩能聚新能源科技有限公司 一种热塑管快速套装工装
CN108262897A (zh) * 2018-02-08 2018-07-10 上海发那科机器人有限公司 一种用于油管束热缩的结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653387B2 (ja) * 1985-11-12 1994-07-20 株式会社フジクラ 熱収縮チユ−ブの製造方法
CN102079132A (zh) * 2009-11-27 2011-06-01 深圳市宏商材料科技股份有限公司 热缩管正压连续扩张方法及装置
CN202213200U (zh) * 2011-08-12 2012-05-09 大连联合高分子材料有限公司 一种热缩管扩张模具及应用该模具的扩张装置
CN108621436A (zh) * 2017-03-23 2018-10-09 泰科电子(上海)有限公司 组装系统
CN107803981B (zh) * 2017-10-27 2019-12-06 蓝思科技(长沙)有限公司 一种杆件套胶管方法及杆件套胶管系统
CN109038175B (zh) * 2018-08-21 2023-12-01 东莞市多为智能科技有限公司 全自动穿热缩管方法及采用该方法的全自动穿热缩管机
CN212287763U (zh) * 2020-04-26 2021-01-05 聚多光电(昆山)有限公司 一种用于热缩套的高效裁切装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307823A (ja) * 2007-06-15 2008-12-25 Sumitomo Electric Fine Polymer Inc 熱収縮性チューブの製造方法およびその製造装置
CN103949875A (zh) * 2014-04-28 2014-07-30 安徽大学 一种将热缩管套在中央空调毛细管上的方法及装置
CN104616839A (zh) * 2015-02-12 2015-05-13 惠州庞德智能科技有限公司 一种自动套热缩套管的装置及加工方法
CN107799238A (zh) * 2017-09-12 2018-03-13 中国科学院长春光学精密机械与物理研究所 一种导线束穿套热缩管方法
CN207190265U (zh) * 2017-09-22 2018-04-06 昆山恩能聚新能源科技有限公司 一种热塑管快速套装工装
CN108262897A (zh) * 2018-02-08 2018-07-10 上海发那科机器人有限公司 一种用于油管束热缩的结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117227161A (zh) * 2023-11-16 2023-12-15 山东豪迈机械制造有限公司 一种套管装置
CN117565384A (zh) * 2024-01-16 2024-02-20 四川富生电器有限责任公司 一种隧道式热缩套管成型装置
CN117565384B (zh) * 2024-01-16 2024-04-09 四川富生电器有限责任公司 一种隧道式热缩套管成型装置
CN118061517A (zh) * 2024-04-18 2024-05-24 立讯精密工业(盐城)有限公司 一种汽车线束端部热缩管热缩设备及其使用方法

Also Published As

Publication number Publication date
CN113771355B (zh) 2023-03-28
CN113771355A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023004950A1 (zh) 一种绝缘热缩管嵌套装置、机器人系统及方法
KR100522653B1 (ko) 로봇 핸들링 장치
US20090025199A1 (en) Flexible workpiece assembling method
US11560728B2 (en) Tool, a system and a method for manufacturing of a reinforcement bar structure
WO2017036127A1 (zh) 一种同步通板动态跟随激光切割的方法及其系统
EP3280552B1 (en) A stacking line system, and a method for stacking blanks which are outputted from a blanking shear or press
EP1366833A1 (en) A method for removing a bent tube from a tube bending apparatus
WO2018107328A1 (zh) 柔性补偿机器人自动上下料系统
JP2011131300A (ja) ロボットシステム、その制御装置及び方法
JP2010069587A (ja) ロボットシステム
JP2002145448A (ja) 反転積み重ね装置
JP5096177B2 (ja) 生産装置、及び生産システム
CN219626619U (zh) 一种晶圆移载装置及晶圆清洗设备
JP2018058172A (ja) ロボットシステム及びその運転方法
CN116038261A (zh) 一种异形管接头生产线及工艺
JP3446900B2 (ja) 鉄骨仕口部の自動溶接装置
JP5707517B2 (ja) 棒材の移し変え方法及び搬送装置
WO2018066601A1 (ja) ロボットシステム及びその運転方法
JP2013233650A (ja) ロボットシステム
JP2010023128A (ja) ロボットシステム
GB2621648A (en) Bricklaying method, bricklaying apparatus, bricklaying device, and building system
CN111959865A (zh) 一种产品输送方法以及系统
CN113927579B (zh) 基于工业机器人用智能制造设备
WO2021241397A1 (ja) ロボットシステム
CN213010688U (zh) 砂芯转运系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE