WO2023002685A1 - レーザ加工方法及びレーザ加工装置 - Google Patents

レーザ加工方法及びレーザ加工装置 Download PDF

Info

Publication number
WO2023002685A1
WO2023002685A1 PCT/JP2022/011504 JP2022011504W WO2023002685A1 WO 2023002685 A1 WO2023002685 A1 WO 2023002685A1 JP 2022011504 W JP2022011504 W JP 2022011504W WO 2023002685 A1 WO2023002685 A1 WO 2023002685A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical system
laser processing
processed
laser beams
Prior art date
Application number
PCT/JP2022/011504
Other languages
English (en)
French (fr)
Inventor
岳人 千賀
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to KR1020237042187A priority Critical patent/KR20240005060A/ko
Priority to CN202280035783.XA priority patent/CN117320835A/zh
Priority to EP22845625.7A priority patent/EP4360799A1/en
Publication of WO2023002685A1 publication Critical patent/WO2023002685A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved

Definitions

  • the present invention relates to a laser processing method and a laser processing apparatus.
  • steel plates have been used for industrial products such as transportation equipment, and spot welding is generally used to join steel plates together.
  • aluminum is known as one of the lightweight materials that can replace steel plates.
  • riveting is sometimes used to join aluminum materials to each other or to join aluminum materials to other materials.
  • riveting causes an increase in the number of parts at the joint and hinders weight reduction. In other words, when considering alternative materials for steel plates, it is also necessary to consider joining methods for the alternative materials.
  • the present inventors have studied forming a large number of fine grooves for filling the adhesive on the surface of the substrates to be bonded. Bonding strength and durability can be improved by increasing the surface area in contact with the adhesive. As a result of diligent research, the present inventor came up with the idea of using laser ablation to form fine grooves.
  • an object of the present invention is to provide a laser processing method and a laser processing apparatus capable of forming a large number of fine grooves on the surface of a base material.
  • a laser processing method emits pulsed laser light into space from a plurality of laser emission ends spaced apart from each other, making the plurality of laser beams incident on a condensing optical system that reduces the distance between the plurality of laser beams so that they do not intersect with each other on the surface to be processed; irradiating the surface to be processed with a plurality of the laser beams emitted from the condensing optical system to form a plurality of condensed spots that cause ablation, spaced apart from each other in a first direction;
  • the condensing optical system and the surface to be processed are relatively moved along the surface to be processed and in a second direction perpendicular to the first direction to simultaneously form a plurality of grooves on the surface to be processed.
  • the surface By concentrating and irradiating a high-energy laser beam to a small focused spot on the surface of the base material, the surface is locally heated, vaporized or sublimated, and holes are made in the base material.
  • This processing method is generally called laser ablation.
  • the groove can be formed. Forming grooves using a laser beam enables fine grooves to be formed more accurately than in general machining. Groove formation using a laser beam can be applied to various materials including aluminum.
  • the temperature rise has little effect on the material.
  • a high-power laser beam is continuously oscillated to irradiate a base material with high reflectance and high thermal conductivity, such as aluminum
  • high energy is imparted to the surface of the base material, causing the surface may melt and create debris.
  • a pulsed laser is used, the total amount of energy applied to the surface of the substrate can be suppressed while maintaining a high peak power density during the pulse, so surface melting and generation of debris can be suppressed.
  • a plurality of laser emitting ends spaced apart from each other means that the laser light emitting ends forming adjacent grooves are spaced apart from each other without contacting each other. show.
  • a plurality of grooves can be formed at narrow pitch intervals. By increasing the density of the grooves, it is possible to increase the surface area in contact with the adhesive.
  • a plurality of grooves can be formed at the same time, production efficiency applicable to mass production process can be realized.
  • the plurality of condensed spots are formed side by side in a third arrangement direction and a fourth arrangement direction, Both the third arrangement direction and the fourth arrangement direction may be directions different from the second direction.
  • a plurality of grooves can be formed at even narrower pitches, and the number of grooves that can be formed at the same time can be increased.
  • the incident angle ⁇ s between the optical axis of each of the plurality of laser beams incident on the surface to be processed and the normal to the surface may be 20 degrees or less. This makes it possible to form deep grooves with a suppressed inclination, increase the filling amount and filling properties of the adhesive, and maintain good adhesiveness. Further, since the groove depths formed by the laser beams are made uniform, the adhesive force is made uniform.
  • the condensing optical system includes a single condensing lens for entering the laser beam,
  • the focal length of the condenser lens may be less than 300 mm.
  • a plurality of grooves can be formed at a narrow pitch (for example, 100 ⁇ m or less).
  • At least one diffractive optical element that converts at least one of the laser beams into a plurality of branched laser beams may be arranged between the plurality of laser emitting ends and the condensing optical system.
  • the at least one diffractive optical element may convert a plurality of laser beams into a plurality of branched laser beams.
  • the at least one diffractive optical element may allow a plurality of the laser beams to enter the same diffractive optical element.
  • the laser emission end is an emission end of a fiber bundle in which a plurality of fibers are bundled;
  • the fibers may be arranged at the exit end so that the focused spot is formed at a predetermined position.
  • the laser emission end is an emission end of a fiber bundle in which a plurality of fibers are bundled;
  • the fibers may be arranged at the output end such that the third arrangement direction of the focused spots is the same as the first direction.
  • a beam shaping optical system corresponding to each of the plurality of laser emission ends may be arranged between the laser emission end and the condensing optical system.
  • the beam shaping optical system includes a beam expander that expands the beam diameter of each of the laser beams, and a converging optical system on the output side of the beam expander,
  • the beam diameter of the laser light may be gradually reduced while entering the condensing optical system.
  • the grooves can be narrowed by making it difficult for the laser beams condensed by the condensing optical system to intersect with each other.
  • the laser processing method described above may be performed at a plurality of locations spaced apart in the second direction on the same surface to be processed. This allows deeper grooves or more grooves to be formed, resulting in increased production efficiency.
  • the laser processing apparatus of the present invention includes a plurality of laser emitting ends which are spaced apart from each other and emit pulsed laser light into space, a condensing optical system that receives the laser beams emitted from the plurality of laser emitting ends and reduces the separation distance to such an extent that the plurality of laser beams do not cross each other on the surface to be processed; and a driving mechanism for relatively moving the condensing optical system and the surface to be processed in a second direction perpendicular to the first direction along the surface to be processed. irradiating the surface to be processed with a plurality of the laser beams to form a plurality of focused spots spaced apart from each other in the first direction; It is controlled to relatively move and simultaneously form a plurality of grooves on the surface to be processed.
  • the plurality of condensed spots are formed side by side in a third arrangement direction and a fourth arrangement direction, Both the third arrangement direction and the fourth arrangement direction may be directions different from the second direction.
  • At least one diffractive optical element that converts at least one of the laser beams into a plurality of branched laser beams may be arranged between the plurality of laser emitting ends and the condensing optical system.
  • the laser emission end is an emission end of a fiber bundle in which a plurality of fibers are bundled;
  • the fibers may be arranged at the exit end so that the focused spot is formed at a predetermined position.
  • the laser emission end is an emission end of a fiber bundle in which a plurality of fibers are bundled;
  • the fibers may be arranged at the output end such that the third arrangement direction of the focused spots is the same as the first direction.
  • a plurality of light sources outputting lasers having a peak power density of 100 kW/ cm2 or more, each connected to the plurality of laser emitting ends; Ablation may be caused in the focused spot.
  • FIG. 2 is a diagram showing the laser processing apparatus of FIG. 1 in more detail;
  • FIG. FIG. 2 is a diagram of the laser emitting end of the laser processing apparatus of the first embodiment viewed in the ⁇ Z direction from the beam expander side; It is the figure which looked at the surface of the base material in + Z direction from the position where the condensing lens is arranged.
  • Fig. 2 shows a cross-sectional view of laser light incident on a substrate; It is a figure which shows the modification of the laser processing apparatus of 1st embodiment.
  • FIG. 10 is a view of the laser emitting end of the modified example viewed in the ⁇ Z direction from the beam expander side; It is the figure which looked at the surface of the base material in + Z direction from the position where the condensing lens is arranged. It is the figure which looked at the surface of the substrate in the +Z direction from the position where the condensing lens is arranged in the first embodiment. It is a figure which shows the laser processing apparatus which is 2nd embodiment.
  • FIG. 4 is a view of the diffractive optical element viewed in the ⁇ Z direction from the condenser lens; It is a figure which shows the modification of the laser processing apparatus of 2nd embodiment.
  • FIG. 10 is a diagram of a modified diffractive optical element viewed in the ⁇ Z direction from a condenser lens; It is a figure which shows the 1st example which combines several laser processing apparatuses and performs laser processing. It is a figure which shows the 2nd example which combines several laser processing apparatuses and performs laser processing.
  • FIG. 1 is a diagram showing a laser processing apparatus 100 that is one embodiment of the present invention. The principle of the laser processing apparatus 100 will be described with reference to this figure.
  • the laser processing apparatus 100 includes a plurality of laser emitting ends 2e, a condensing optical system for receiving each laser beam L1 emitted from the laser emitting end 2e, a driving mechanism M1 for moving the substrate 10, and a control unit (non shown) and Each laser emitting end 2e is connected to a laser light source 3 that generates a pulsed laser beam, and emits a pulsed laser beam L1 into space from each laser emitting end 2e.
  • the optical axis Lc of each laser beam L1 is indicated by a dashed line.
  • many of the lights and structural members that exist in plurality are only partly denoted by reference numerals.
  • the laser emission end 2e refers to a point where the laser light emitted from the laser light source 3 is first radiated into space.
  • the laser light source 3 may include the light source itself, that is, the generating section that generates the laser light, and an amplifying section (for example, a fiber amplifier) that amplifies the laser light. If such an amplifier is present between the generation of the laser light and the irradiation of the substrate 10 , the amplifier and its upstream part are included in the laser light source 3 . Therefore, when the laser light source includes an amplifying section, the laser emission end 2e indicates a point where laser light after being amplified in the amplifying section is first radiated into space.
  • an amplifying section for example, a fiber amplifier
  • each of the plurality of laser light sources 3 has a peak power density of 100 kW/cm 2 or more, more preferably 1 MW/cm. It is preferable to output two or more lasers. Although it varies depending on various conditions such as the material of the substrate 10, the depth of the groove, and the repetition frequency of the pulse laser, when the peak power density is equal to or higher than the above values, the relative movement speed between the condensing optical system and the substrate 10 is It becomes easy to set to 125 mm/sec or more. A relative movement speed of 125 mm/sec means that it takes 4 minutes to laser process a base material of 30 m, for example.
  • the laser light sources 3 should each output a laser beam with a higher peak power density.
  • the wavelength of the laser output by the laser light source 3 is in the infrared region (for example, the wavelength is 1064 nm in the case of a fiber laser or YAG laser, and the wavelength is 10600 nm in the case of a CO2 laser).
  • the laser beams emitted from the laser emission end 2e are separated from each other in the X direction (first direction).
  • first direction first direction
  • three laser emitting ends 2e are arranged in a row along the X axis, but the laser emitting ends 2e may be arranged in two or more rows along the X axis, or four or more.
  • the laser emission ends 2e may be arranged, or may not be arranged along the X-axis. Details will be described later.
  • the substrate 10 has a surface to be processed 10a (hereinafter sometimes simply referred to as "surface 10a") at a position facing the condensing optical system.
  • the laser light travels in the +Z direction from the laser emission end 2e to the surface 10a, and an optical system that changes the traveling direction of the laser light entirely between the laser emission end 2e and the surface 10a. etc. (e.g. reflective optics).
  • an optical system for changing the traveling direction of the laser light may be provided between the laser emitting end 2e and the surface 10a.
  • the laser processing apparatus 100 incorporates an optical system capable of sequentially changing the traveling direction of the laser beam, and while relatively moving the condensing optical system and the surface 10a, the traveling direction of the laser beam according to the shape of the surface 10a. can be changed.
  • the laser processing apparatus 100 of this embodiment has a plurality of laser light sources 3 each connected to a plurality of laser emitting ends 2e. However, the laser processing apparatus 100 itself does not have to have the laser light source 3 . In that case, each laser emitting end 2 e is connected to a laser light source outside the laser processing apparatus 100 .
  • the base material 10 is not a component of the laser processing apparatus 100, it is shown in FIG. 1 for convenience of explanation. Similarly, the base material 10 may also be shown in laser processing apparatuses shown in other figures.
  • the base material 10 is not limited to an aluminum material.
  • the material of the base material 10 may be another metal material, or may be resin.
  • the surface 10a of the base material 10 is drawn as a plane parallel to the XY plane, but the shape of the surface 10a is not limited to this.
  • the surface 10a may include, for example, an inclined flat surface, a curved surface, an uneven surface, and the like.
  • the substrate 10 is shown in a plate shape (extending in the XY direction and thin in the Z direction), but is not necessarily limited to such a shape.
  • the substrate 10 may have, for example, a rod shape or a block shape, or may have a complicated three-dimensional shape partially having a plate shape, a rod shape, or a block shape.
  • a focused spot Ls is formed for each laser beam L1.
  • the focused spot Ls is locally heated by the energy of the laser beam, causing ablation. Since the condensed spot Ls instantaneously rises to several thousand degrees (° C.), the surface 10a at the condensed spot Ls evaporates or sublimates, forming a hole in the surface 10a.
  • the laser light output from the laser light source 3 is output in a pulse shape, the peak power (pulse energy per pulse width (time)) is high, and the energy is locally high enough to evaporate or sublimate the surface 10a. Apply to substrate 10 .
  • the laser light since the laser light is pulsed, the total amount of energy is small, and it is difficult for the laser light to heat a wide area of the substrate 10 to a high temperature. Therefore, unnecessary melting of the surface 10a and generation of debris can be suppressed, and the substrate 10 is less likely to be adversely affected by heat.
  • the condenser lens 1 (which is an embodiment of the condenser optical system, which will be described later in detail) and the surface 10a are moved along the surface 10a and in the Y direction perpendicular to the X direction. move relative to In this embodiment, the base material 10 is moved in the +Y direction (second direction) together with the stage 15 on which the base material 10 is placed while the condenser lens 1 is fixed. At this time, as shown in FIG. 2, the substrate 10 is moved while irradiating the surface 10a with the laser beam L1. Since the condenser lens 1 and the base material 10 only need to move relative to each other, the condenser lens 1 may be moved without moving the base material 10, or both the base material 10 and the condenser lens 1 may be moved. You can move it.
  • FIG. 2 is a diagram showing how laser light is irradiated. As shown in FIG. 2, a plurality of grooves are formed on the surface 10a by moving the substrate 10 while irradiating the surface 10a with a plurality of laser beams and scraping the surface 10a.
  • the condensing optical system reduces the distance between the laser beams L1 to irradiate the surface 10a.
  • the condensed spots Ls are made small and the condensed spots Ls are concentrated.
  • a plurality of grooves can be formed at narrow pitches. Since the gap between adjacent grooves is narrow, the surface area increases due to the formation of the grooves, and the bonding using the adhesive can be strengthened.
  • it is designed so that the plurality of laser beams L1 intersect each other on the surface 10a and the focused spots Ls do not overlap. This design does not prevent the laser beams L1 from intersecting each other on the optical path from the condensing optical system to the surface 10a.
  • the condensing optical system of this embodiment is composed of a single condensing lens 1 . All the laser beams L1 are caused to enter the same condenser lens 1. As shown in FIG. However, it is not limited to the form of a single condenser lens 1 . Condensing lenses may be arranged in series so that one laser beam passes through a plurality of condensing lenses in order. The condensing lenses may be arranged in parallel so that the condensing lenses into which the respective laser beams are incident are different.
  • a beam shaping optical system is arranged between the laser emission end 2e and the condenser lens 1 so as to correspond to each of the plurality of laser emission ends 2e.
  • a beam expander 7 is arranged as a beam shaping optical system.
  • the beam expander 7 is an optical system that expands the beam diameter emitted from the laser emission end 2e.
  • the laser light L1 emitted from the beam expander 7 through the condensing optical system may be collimated light (parallel light) or may be converged light.
  • the laser light L1 emitted from the beam expander 7 becomes convergent light, and the beam diameter is reduced.
  • the condensed point can be intentionally shifted from the surface 10a to further finely adjust the size and spacing of the condensed light spots Ls on the surface 10a.
  • FIG. 3 is a diagram showing the details of the laser processing apparatus 100. As shown in FIG. In FIG. 3, in order to make the drawing easier to see, the ray bundle (chain line) of each laser beam L1 shown in FIG. 1 is not shown, but only the optical axis Lc of each laser beam is shown.
  • Each of the plurality of laser light sources 3 has a light source section 3s and a fiber 3f that guides the laser light from the light source section 3s. A plurality of fibers 3f are bundled to form a fiber bundle.
  • the beam expander 7 is configured by combining two convex lens arrays.
  • the beam expander 7 may be constructed by combining a convex lens array and a concave lens array. An array of small individual lenses may be used instead of the lens array.
  • the beam shaping optical system may be positioned upstream of the laser emitting end 2e. In other words, the beam shaping optical system may be built into the laser light source 3 . Therefore, the beam shaping optical system is not an essential component for the laser processing apparatus 100 of this embodiment.
  • FIG. 4A is a view of the bundled laser emission end 2e in the -Z direction from the beam expander 7 side in the laser processing apparatus 100 of FIG.
  • FIG. 4A shows a plurality of laser emission ends 2e forming a fiber bundle and cores 3c from which laser light is emitted from the center of each laser emission end 2e.
  • the laser emission ends 2e of the fibers 3f are arranged along the W direction and the V direction.
  • the arrangement of such laser emission ends 2e is reflected in the arrangement of condensed spots Ls.
  • this embodiment does not have an optical system between the laser emission end 2e and the surface 10a for changing the traveling direction of the laser light as a whole.
  • the arrangement direction of the laser emission ends coincides with the arrangement direction of the focused spots.
  • the W direction corresponds to the third arrangement direction of the condensed spots
  • the V direction corresponds to the fourth arrangement direction of the condensed spots.
  • the laser emitting ends 2e arranged in the W direction and the V direction are expressed in the form of "2e (W, V)" based on the arrangement order of the laser emitting ends, for example, 2e (1, 1), 2e (2 , 1), 2e(10,1), 2e(1,3), 2e(1,5), (1,7), and 2e(10,7) are shown as in FIG. 4A.
  • the laser emission end 2e is formed such that the third and fourth arrangement directions (W direction and V direction in this embodiment) are different from the second direction (Y direction), which is the direction of relative movement. .
  • Y direction the direction of relative movement.
  • laser beams emitted from 2e(1,1), 2e(1,3), 2e(1,5), and (1,7), which are laser emitting ends 2e arranged in the V direction, the condensed spots Ls do not overlap each other and are located at different positions in the X direction. The effect of this will be described later.
  • the laser emitting ends 2e are arranged in a zigzag arrangement at the intersections of the lattice and the center of the lattice. Even in the staggered arrangement, the positions of the laser emission ends 2e in the X direction are all different. Therefore, a plurality of grooves can be formed with a narrower pitch.
  • the arrangement of the laser emitting ends 2e may be a grid-like arrangement in which the laser emitting ends 2e are arranged only at the intersections of the grid.
  • FIG. 4A 9 to 10 fibers are arranged along the W direction and 3 to 4 fibers are arranged along the V direction. It doesn't matter if it's less.
  • the number of fibers should be 100 or more, preferably 200 or more.
  • the width (dimension in the X direction) of the entire fiber bundle at the laser output end 2e may exhibit 20 mm or more, or 40 mm or more.
  • FIG. 4B is a diagram of the surface 10a viewed from the position where the condenser lens 1 is arranged. It shows a state in the middle of processing with a laser beam.
  • the laser light L1 emitted from each of the laser emission ends 2e forms a focused spot Ls.
  • the surface 10a is shaved by laser ablation at the focused spot Ls.
  • the trajectory of the focused spot Ls formed by relative movement in the Y direction appears as a groove Lg along the Y direction.
  • FIG. 4B virtually shows the laser emission end 2e that does not exist on the surface 10a.
  • 4A, 2e(1,1), 2e(2,1), 2e(10,1), 2e(1,3), 2e(1,5), (1) , 7), and 2e(10, 7) are respectively labeled and exemplified in FIG. 4B.
  • the laser emission end 2e shown in FIG. 4B is represented by assuming the condensed spot Ls as the core 3c at the laser emission end 2e and reducing the condensing lens 1 to a predetermined magnification.
  • FIG. 4B shows that the distance between adjacent grooves Lg can be made smaller than the fiber diameter by using the laser emitting ends 2e arranged so that the positions of the focused spots Ls are different in the X direction.
  • a plurality of laser emitting ends spaced apart from each other means, for example, adjacent grooves such as the laser emitting end 2e (1, 1) and the laser emitting end 2e (1, 3) It means that the emitting ends of the laser beams for forming the are arranged apart from each other without contacting each other.
  • the laser processing apparatus 100 should be designed so that the distance between adjacent grooves Lg is constant.
  • the pitch p1 of the grooves is the sum of the width of one groove (dimension of the groove in the X direction) and the distance between adjacent grooves Lg in the X direction.
  • the pitch p1 is preferably 100 ⁇ m or less, preferably 50 ⁇ m.
  • the width (dimension in the X direction) of the grooves Lg is also small.
  • the width of the groove Lg is preferably 50 ⁇ m or less, preferably 25 ⁇ m.
  • the groove pitch p1 can be reduced.
  • the pitch p1 can also be reduced by reducing the diameter of each fiber 3f constituting the laser emitting end 2e or by shortening the focal length of the condensing optical system. For example, if a condenser lens 1 with a focal length of 300 mm or less is used, it is easy to form the pitch p1 to 100 ⁇ m or less.
  • FIG. 5 shows a cross-sectional view along the optical axis Lc of the laser beam L1 when the laser beam L1 is incident on the base material 10.
  • the angle between the optical axis Lc of the laser beam L1 incident on the surface 10a and the normal line N10 of the surface 10a is defined as an incident angle ⁇ s.
  • the smaller the incident angle ⁇ s (the closer the incident angle of the laser beam L1 to the surface 10a is to 90 degrees), the deeper the groove can be formed with less inclination.
  • the incident angle ⁇ s of the laser beam L1 is preferably 20 degrees or less, preferably 10 degrees or less, and more preferably 7 degrees or less.
  • the condenser lens 1 When the condensing lens 1 is used in the condensing optical system as in the present embodiment, the incident angle ⁇ s of the laser light L1 passing through a position closer to the end of the condensing lens 1 increases. Therefore, it is preferable to design the condenser lens 1 so that the incident angle ⁇ s of the laser light L1 passing through the end of the condenser lens 1, which tends to have a large incident angle ⁇ s, satisfies the numerical range described above.
  • the design for reducing the incident angle ⁇ s may be, for example, the focal length of the condenser lens 1 set to a specified value or more (for example, 100 mm or more).
  • the laser light may be condensed before incidence or the numerical aperture of the condensing lens 1 may be increased so that the laser light L1 does not enter the end of the condensing lens 1 .
  • a condenser optical system that combines a plurality of lenses may be used to condense a plurality of laser beams while maintaining a state in which the incident angle ⁇ s is kept as small as possible.
  • Fig. 6 shows a modification of the laser processing device.
  • the laser processing apparatus 150 includes a beam expander 7 as a beam shaping optical system, and a converging optical system 8 on the output side of the beam expander 7 and corresponding to each of the plurality of laser output ends 2e.
  • the converging optical system 8 converges the laser light L1 and causes the laser light L1 having a reduced beam diameter to enter the condensing lens 1 .
  • the laser light L1 emitted from the beam expander 7 may be divergent light instead of collimated light (parallel light) or convergent light. Note that other components of the laser processing device 150 are the same as those of the laser processing device 100 .
  • FIG. 7A shows a modified example of the laser emitting end 2e of the laser processing device.
  • FIG. 7A is a view of the bundled laser emitting end 2e viewed in the -Z direction from the beam expander 7 side.
  • the laser emitting end 2e of the fiber 3f is arranged along the W2 direction and the V direction.
  • the W2 direction and the V direction are directions different from the second direction (Y direction), which is the direction of relative movement.
  • Y direction the second direction
  • the W2 direction is the same direction as the X direction.
  • the laser emission end 2e(1,1), the laser emission end 2e(2,1), and the laser emission end 2e(10,1) arranged in the W2 direction are all positioned in the Y direction. are the same.
  • FIG. 7B is a diagram of the surface 10a viewed from the position where the condenser lens 1 is arranged in the laser processing apparatus having the laser emitting end 2e of FIG. 7A.
  • FIG. 7B virtually shows a laser emission end 2e that does not exist on the surface 10a.
  • the laser emission end 2e(1,1), the laser emission end 2e(2,1), and the laser emission end 2e(10,1) are denoted by reference numerals. is shown in FIG. 7B.
  • FIG. 7A is a view of the surface 10a of the base material 10 viewed in the +Z direction from the position where the condenser lens 1 is arranged with respect to the laser emission end in the first embodiment, which is the same as FIG. 4B.
  • the groove formation start position (the end position of the groove in the Y direction) differs between 2e(1,1) to 2e(10,1). If the groove formation start position is different, a blank area A1 (the area surrounded by the dashed line in FIG. 8) where no groove is formed is generated.
  • FIG. 7B since the laser emitting ends 2e(1,1) to 2e(10,1) are arranged in the W2 direction parallel to the X direction, a blank area A1 in which no groove is formed is generated. and the groove start positions are aligned. As a result, it is possible to reduce the blank area where no groove is formed and improve the bonding strength of the adhesive. However, even with the arrangement of the laser emitting ends 2e in FIG. 8, if the laser beam emission start timing can be varied depending on the laser emitting ends 2e, the starting positions of the grooves can be aligned.
  • the laser processing apparatus 100 has a drive mechanism M1 and a controller (not shown) that controls lighting of the light source. Furthermore, the controller may control a condensing optical system such as the condensing lens 1, a beam shaping optical system, a converging optical system, and the like. The controller is not an essential component for the laser processing apparatus 100 .
  • the laser processing apparatus 100 may be controlled by a control unit outside the laser processing apparatus 100, or may be controlled by an operator.
  • FIG. 9 is a diagram showing a laser processing apparatus 200 according to the second embodiment.
  • the second embodiment will be mainly described with respect to the differences from the first embodiment. Matters not shown below are the same as in the first embodiment. The same applies to the third embodiment.
  • a diffractive optical element (DOE) 9 that converts a laser beam into a plurality of branched laser beams is arranged between the plurality of laser emitting ends 2e and the condenser lens 1.
  • the diffractive optical element 9 is composed of a single optical element, and all the laser beams emitted from the plurality of laser emitting ends 2e are made incident on the diffractive optical element 9, which is a single optical element.
  • each laser beam is represented only by an optical axis for easy viewing of the drawings.
  • Each laser beam including the optical axis Lc1 is incident on the diffractive optical element 9 from the position Li, is converted into a plurality of branched laser beams inside the diffractive optical element 9, and is converted into a plurality of branched laser beams including the optical axis Lc3 at the position Lo emitted from
  • FIG. 10 is a diagram of the diffractive optical element 9 viewed in the -Z direction from the condenser lens 1 side.
  • the position Li at which each laser beam is incident is on the rear surface side of the diffractive optical element 9 shown in FIG.
  • a single laser beam incident from the position Li is converted into nine branched laser beams, and the branched laser beams are emitted from nine positions Lo within the periphery Ln of the position Li.
  • the number of split lasers split from one laser beam is not particularly limited. However, since the laser power is reduced by the number of branches, it is preferable to branch one laser beam into 25 or less, preferably 16 or less, more preferably 9 or less, from one laser beam. .
  • laser beams are incident so that positions Li are spaced apart in the X direction (first direction), and branched laser beams are respectively emitted.
  • a plurality of groups of branched lasers are formed in the X direction (first direction).
  • the positions Lo of the branched laser beams emitted from the diffractive optical element 9 are arranged along the W direction and the V direction orthogonal to the W direction.
  • This embodiment does not have an optical system between the laser emission end 2e and the surface 10a for changing the traveling direction of the laser light as a whole.
  • the arrangement direction of the branched laser beams coincides with the arrangement direction of the focused spots.
  • the W direction corresponds to the third arrangement direction of the condensed spots
  • the V direction corresponds to the fourth arrangement direction of the condensed spots.
  • the emission position Lo of the branched laser light is arranged at an angle with respect to the X direction and the Y direction.
  • a line h1 represents a reference line extending in the Y direction from the position Lo.
  • the reference line h1 does not overlap another reference line h1. This indicates that the positions Lo in the X direction are all different. It is preferable that the intervals between the reference lines h1 and the adjacent reference lines h1 are constant (that is, exhibit a constant pitch).
  • the reference line h1 overlaps the trajectory of the focused spot Ls formed by relative movement as shown in FIG. 4B, that is, the groove. . This indicates that even when the diffractive optical element 9 is used, a plurality of grooves can be formed at narrow intervals by slanting the position Lo of the branched laser beam.
  • FIG. 11 shows a laser processing device 250 that is a modification of the laser processing device 200.
  • the diffractive optical elements 11 have the same number as the number of laser emitting ends 2e, and are provided corresponding to each of the plurality of laser emitting ends 2e. Since the diffractive optical element 11 used in this modification is smaller than a single diffractive optical element, there is an advantage that the layout design of the laser processing apparatus has a high degree of freedom.
  • the number of diffractive optical elements may be two or more and less than the number of laser emitting ends 2e.
  • FIG. 12 is a diagram of the diffractive optical element 11 viewed from the -Z direction.
  • the position Li at which each laser beam is incident is on the back side of the diffractive optical element 11 shown in FIG.
  • One laser beam incident from position Li is converted into nine branched laser beams, and the branched laser beams are emitted from nine positions Lo of the same diffractive optical element 11 .
  • the disc-shaped diffractive optical elements 11 are arranged in a zigzag manner as shown in FIG.
  • the shape and layout of the diffractive optical element 11 are not limited to this.
  • the positions Lo of the laser beams emitted from the diffractive optical element 11 are arranged along the W direction (third arrangement direction) and the V direction (fourth arrangement direction). 11 is designed.
  • a line h1 represents a reference line extending in the Y direction from the position Lo.
  • the reference line h1 does not overlap another reference line h1. It is preferable that the intervals between the reference lines h1 and the adjacent reference lines h1 are constant (that is, exhibit a constant pitch).
  • ⁇ Third embodiment> 13A and 13B illustrate an embodiment in which laser processing is performed by combining a plurality of laser processing apparatuses.
  • laser processing is performed by individual laser processing apparatuses at a plurality of locations spaced apart in the Y direction (second direction) on the same surface 10a.
  • Each laser processing apparatus may have a control unit, and the control units may communicate with each other to perform laser processing in cooperation with each other.
  • each laser processing apparatus may have a shared control unit, the shared control unit may control each laser processing apparatus, and the laser processing apparatuses may perform cooperative laser processing.
  • the laser beam L2 is irradiated from the second laser processing device so as to overlap with the grooves formed by irradiating the surface 10a with the laser beam L1 from the first laser processing device. This makes it possible to dig deep trenches.
  • the grooves formed by irradiating the laser beam L1 on the surface 10a from the first laser processing device are slightly shifted in the X direction, and the laser beam from the second laser processing device L2 is being irradiated. As a result, more grooves can be formed with one relative movement.
  • the focused spots are arranged in two different directions, but in these embodiments, the focused spots may be arranged in only one direction, and the focused spots may be arranged in They may be in a non-arranged state (that is, they are not aligned to form a line).
  • Reference Signs List 1 condenser lens 2e: laser emission end 3: laser light source 3c: core 3f: fiber 3s: light source unit 7: beam expander 8: converging optical system 9: diffractive optical element 10: base material 10a: (of base material) Surface to be processed 11: Diffractive optical element 15: Stages 100, 150, 200, 250: Laser processing devices L1, L2: Laser beams Lc, Lc1, Lc3: Optical axis Lg: Groove Ls: Focused spot M1: Driving mechanism

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

基材の表面に微細な溝を多数形成できる、レーザ加工方法及びレーザ加工装置を提供する。本発明のレーザ加工方法及びレーザ加工装置は、互いに離間して配置された複数のレーザ出射端から、それぞれ、パルス状のレーザ光を空間中に出射し、複数の前記レーザ光が被加工面において互いに交わらない程度に離間間隔を縮小する集光光学系に、複数の前記レーザ光を入射し、前記集光光学系から出射した複数の前記レーザ光を前記被加工面に照射して、アブレーションを生じさせる複数の集光スポットを、第一方向に関して互いに離間して形成し、前記集光光学系と前記被加工面とを、前記被加工面に沿い、且つ、前記第一方向に直交する第二方向に相対移動させて、前記被加工面に複数の溝を同時に形成する。

Description

レーザ加工方法及びレーザ加工装置
 本発明は、レーザ加工方法及びレーザ加工装置に関する。
 従来、輸送機器等の工業製品には鋼板が使用されており、鋼板同士の接合をするには、スポット溶接を行うことが一般的である。
 近年、持続可能な開発目標(SDGs)にて、様々な産業分野においてエネルギーの効率的な利用が要請されている。輸送機器等の工業製品についても例外ではなく、輸送機器等の軽量化が求められている。そのため、従来の鋼板に代わる、軽量な素材を使用するための研究開発が行われている。
 例えば、鋼板に代わる軽量素材の一つとして、アルミニウム材が知られている。ところが、アルミニウム材はスポット溶接に適していないため、アルミニウム材同士又はアルミニウム材と他の材料との接合には、リベット接合を行うこともある。しかしながら、リベット接合は、接合部分における部品点数の増加を招いたり、軽量化を妨げたりする要因となる。つまり、鋼板の代替材料を検討する際には、当該代替材料の接合方法も検討する必要がある。
 昨今、多様な素材を接合する方法として、接着剤を用いた接合方法が注目されている。接着剤は、溶接と異なり、母材の材質や厚みに影響されずに接合できる。例えば、溶接では適切な接合が難しい、電気抵抗が低い母材や薄い母材であっても、接着剤を用いて適切に接合できる利点がある。
 また、接着剤を用いた接合を行う際、接着力を高めるために、接合面に、接着剤を充填するための溝を配置することが行われている(特許文献1参照)。
特開2011-7250号公報
 接着剤を用いた接合では、その接合強度や耐久性の向上が課題となっている。よって、本発明者は、接合する基材の表面に、接着剤を充填するための微細な溝を多数形成することを検討した。接着剤に接する表面積を増やすことで、接合強度及び耐久性を向上できる。本発明者の鋭意研究の結果、微細な溝の形成にレーザアブレーションを利用することを着想した。
 そこで、基材の表面に微細な溝を多数形成できる、レーザ加工方法及びレーザ加工装置を提供することを課題とする。
 本発明の、レーザ加工方法は、互いに離間して配置された複数のレーザ出射端から、それぞれ、パルス状のレーザ光を空間中に出射し、
 複数の前記レーザ光が被加工面において互いに交わらない程度に離間間隔を縮小する集光光学系に、複数の前記レーザ光を入射し、
 前記集光光学系から出射した複数の前記レーザ光を前記被加工面に照射して、アブレーションを生じさせる複数の集光スポットを、第一方向に関して互いに離間して形成し、
 前記集光光学系と前記被加工面とを、前記被加工面に沿い、且つ、前記第一方向に直交する第二方向に相対移動させて、前記被加工面に複数の溝を同時に形成する。
 高エネルギーのレーザ光を、基材の表面の小さな面積の集光スポットに集中して照射することにより、表面を局所的に熱し、蒸発又は昇華させて、基材に穴を開ける。この加工方法は、一般的に、レーザアブレーションと言われる。また、アブレーションにより穴を開けながら基材を相対移動させるから、溝を形成できる。レーザ光を使用して溝を形成すると、一般的な機械加工に比べて精確に微細な溝を形成できる。そして、レーザ光を使用した溝形成は、アルミニウム材を含む様々な素材に対して適用できる。
 また、パルス状のレーザ光を使用しているため、温度上昇による素材への影響が少ない。例えば、アルミニウム材のような反射率が高く熱伝導率の高い基材に対し、高出力のレーザ光を連続発振させて基材に照射すると、高エネルギーが基材の表面に付与されて、表面が溶融したり、デブリが発生したりすることがある。しかしながら、パルス状のレーザを使用すると、パルス時のピークパワー密度を高く維持したまま、基材の表面に付与する総エネルギー量を抑えられるため、表面の溶融やデブリの発生を抑制できる。
 詳細は後述するが、「互いに離間して配置された複数のレーザ出射端」とは、隣り合う溝を形成するレーザ光の出射端が、互いに接触せずに離間して配置されていることを表す。そして、本発明は、レーザ光の離間間隔を縮小する集光光学系を経た複数の光を表面に照射するから、複数の溝を狭ピッチ間隔で形成できる。溝の密度が高まることにより、接着剤に接する表面積をより増やすことができる。また、同時に複数の溝を形成できるため、量産プロセスに適用可能な生産効率を実現できる。
 複数の前記集光スポットは、第三配列方向及び第四配列方向に並んで形成され、
 前記第三配列方向及び第四配列方向は、いずれも、前記第二方向とは異なる方向であっても構わない。これにより、複数の溝をさらに狭ピッチ間隔で形成できるとともに、同時に形成できる溝の数を増やすことができる。
 前記被加工面に入射する複数の前記レーザ光の各光軸が、前記表面の法線との間になす入射角θsが20度以下でも構わない。これにより、傾斜を抑えた深い溝を形成でき、接着剤の充填量及び充填性を高めて、接着性を良好に保つ。また、各レーザ光により形成される溝深さの均一化が進むため、接着力の均一化につながる。
 前記集光光学系は、前記レーザ光を入射する、単一の集光レンズを備え、
 前記集光レンズの焦点距離は300mm未満であっても構わない。これにより、複数の溝を狭ピッチ(例えば、100μm以下)に形成できる。
 複数の前記レーザ出射端と前記集光光学系との間に、前記レーザ光の少なくとも一つを複数の分岐レーザ光に変換する回折光学素子が少なくとも一つ配置されても構わない。
 前記少なくとも一つの回折光学素子は、複数の前記レーザ光を、それぞれ、複数の分岐レーザ光に変換しても構わない。
 前記少なくとも一つの回折光学素子は、複数の前記レーザ光を同じ回折光学素子に入射しても構わない。
 前記レーザ出射端は複数のファイバが束ねられたファイババンドルの出射端であり、
 前記集光スポットが所定の位置に形成されるように、前記出射端において前記ファイバが配列しても構わない。
 前記レーザ出射端は複数のファイバが束ねられたファイババンドルの出射端であり、
 前記集光スポットの前記第三配列方向が前記第一方向と同じ方向となるように、前記出射端において前記ファイバを配列しても構わない。詳細は後述するが、これにより、溝形成開始位置を揃えることができ、溝の形成されない余白領域を小さくできる。
 前記レーザ出射端と前記集光光学系との間に、複数の前記レーザ出射端のそれぞれに対応するビーム整形光学系を配置しても構わない。
 前記ビーム整形光学系は、前記レーザ光それぞれのビーム径を拡大するビームエクスパンダと、前記ビームエクスパンダの出射側に収束光学系とを備え、
 前記レーザ光のビーム径を徐々に縮小させながら前記集光光学系に入射しても構わない。集光光学系で集光された各レーザ光を互いに交わりにくくして、溝を細くできる。
 同一の前記被加工面の、前記第二方向に離間した複数個所において、上記に記載のレーザ加工方法をそれぞれ行っても構わない。これにより、より深い溝、またはより多くの溝を形成でき、その結果、生産効率を高めることができる。
 本発明のレーザ加工装置は、互いに離間して配置され、それぞれパルス状のレーザ光を空間中に出射する、複数のレーザ出射端と、
 複数の前記レーザ出射端から出射された前記レーザ光を入射して、複数の前記レーザ光が被加工面において互いに交わらない程度に離間間隔を縮小する集光光学系と、
 前記集光光学系と前記被加工面とを、前記被加工面に沿い、且つ、第一方向に直交する第二方向に相対移動させる駆動機構と、を備え
 前記集光光学系から出射された複数の前記レーザ光を前記被加工面に照射して、前記第一方向に関して互いに離間する、複数の集光スポットを形成しながら、前記駆動機構で前記集光光学系と前記被加工面とを相対移動させて、前記被加工面に複数の溝を同時に形成するように制御される。
 複数の前記集光スポットは、第三配列方向及び第四配列方向に並んで形成され、
 前記第三配列方向及び第四配列方向は、いずれも、前記第二方向とは異なる方向であっても構わない。
 複数の前記レーザ出射端と前記集光光学系との間に、前記レーザ光の少なくとも一つを複数の分岐レーザ光に変換する回折光学素子が、少なくとも一つ配置されても構わない。
 前記レーザ出射端は複数のファイバが束ねられたファイババンドルの出射端であり、
 前記集光スポットが所定の位置に形成されるように、前記出射端において前記ファイバが配列していても構わない。
 前記レーザ出射端は複数のファイバが束ねられたファイババンドルの出射端であり、
 前記集光スポットの前記第三配列方向が前記第一方向と同じ方向となるように、前記出射端において前記ファイバが配列していても構わない。
 前記複数のレーザ出射端にそれぞれ接続された、ピークパワー密度が100kW/cm以上のレーザを出力する複数の光源、を備え、
 前記集光スポットにアブレーションを生じさせても構わない。
 これにより、基材の表面に微細な溝を多数形成できる、レーザ加工方法及びレーザ加工装置を提供できる。
第一実施形態のレーザ加工装置を示す図である。 レーザ光を照射する様子を示す図である。 図1のレーザ加工装置をより詳細に示す図である。 第一実施形態のレーザ加工装置におけるレーザ出射端をビームエクスパンダ側から-Z方向に見た図である。 集光レンズが配置されている位置から+Z方向に基材の表面を見た図である。 レーザ光が基材に入射する断面図を示している。 第一実施形態のレーザ加工装置の変形例を示す図である。 変形例のレーザ出射端をビームエクスパンダ側から-Z方向に見た図である。 集光レンズが配置されている位置から+Z方向に基材の表面を見た図である。 第一実施形態において集光レンズが配置されている位置から+Z方向に基材の表面を見た図である。 第二実施形態であるレーザ加工装置を示す図である。 集光レンズから回折光学素子を-Z方向に見た図である。 第二実施形態のレーザ加工装置の変形例を示す図である。 集光レンズから変形例の回折光学素子を-Z方向に見た図である。 複数のレーザ加工装置を組み合わせてレーザ加工をする第一例を示す図である。 複数のレーザ加工装置を組み合わせてレーザ加工をする第二例を示す図である。
 レーザ加工装置の実施形態につき、図面を参照して説明する。なお、以下の各図面は模式的に図示されたものであり、図面上の寸法比は必ずしも実際の寸法比と一致しておらず、各図面間においても寸法比は必ずしも一致していない。
 以下において、各図面は、XYZ座標系を参照しながら説明される。本明細書において、方向を表現する際に、正負の向きを区別する場合には、「+X方向」、「-X方向」のように、正負の符号を付して記載される。正負の向きを区別せずに方向を表現する場合には、単に「X方向」と記載される。すなわち、本明細書において、単に「X方向」と記載されている場合には、「+X方向」と「-X方向」の双方が含まれる。Y方向及びZ方向についても同様である。以下に述べる実施形態では、X方向及びY方向に沿うXY平面は、基材表面に沿う面であり、Z方向は基材表面に対する法線方向を表す。
<第一実施形態>
[レーザ加工装置の概要]
 図1は、本発明の一実施形態であるレーザ加工装置100を示す図である。当図を参照しながら、レーザ加工装置100の原理について説明する。
 レーザ加工装置100は、複数のレーザ出射端2eと、レーザ出射端2eから出射された各レーザ光L1を入射する集光光学系と、基材10を移動させる駆動機構M1と、制御部(不図示)と、を有する。各レーザ出射端2eは、それぞれ、パルス状のレーザ光を生成するレーザ光源3に接続されており、各レーザ出射端2eからパルス状のレーザ光L1を空間中に出射する。各レーザ光L1の光軸Lcは、破線で示されている。なお、図を見やすくするために、各図面において、複数存在する光や構成部材の多くは、その一部にしか符号を付していない。
 レーザ出射端2eは、レーザ光源3から出射されたレーザ光が、最初に空間中に放射される箇所を指す。レーザ光源3には、光源自体、すなわち、レーザ光を生成する生成部の他に、レーザ光を増幅する増幅部(例えば、ファイバアンプ)を含んでいても構わない。レーザ光が生成されてから基材10に照射されるまでの間にこのような増幅部が存在する場合、当該増幅部とその上流はレーザ光源3に含まれる。よって、レーザ光源が増幅部を含む場合には、レーザ出射端2eは、増幅部において増幅された後のレーザ光が、最初に空間中に放射される箇所を指す。
 基材10の被加工面10aでアブレーションを生じさせ得るエネルギーを基材10に付与するために、複数のレーザ光源3は、それぞれ、ピークパワー密度が100kW/cm以上、より好ましくは1MW/cm以上のレーザを出力するとよい。基材10の材質、溝深さ、及びパルスレーザの繰り返し周波数等の諸条件によっても異なるが、上記数値以上のピークパワー密度を有する場合、集光光学系と基材10との相対移動速度を125mm/sec以上に設定することが容易となる。125mm/secの相対移動速度は、例えば30mの基材のレーザ加工に要する時間が4分であることを表している。つまり、量産プロセスに適用可能な生産効率を実現できることを示唆している。なお、回折光学素子でレーザ光を分岐させる場合には(第二実施形態で詳述する)、レーザ光源3は、それぞれ、よりピークパワー密度の高いレーザを出力するとよい。レーザ光源3が出力するレーザの波長は、赤外域の波長(例えば、ファイバレーザ又はYAGレーザの場合、波長は1064nm、COレーザの場合、波長は10600nm)である。
 レーザ出射端2eから出射される各レーザ光は、X方向(第一方向)に互いに離間している。図1では、3つのレーザ出射端2eがX軸に沿って一列に配列されているが、レーザ出射端2eがX軸に沿って二列以上に配列されてもよいし、または4つ以上のレーザ出射端2eが配列されてもよいし、X軸に沿って配列されなくてもよい。詳細は後述する。
 基材10は、前記集光光学系に対向する位置に、被加工面10a(以降、単に「表面10a」と称する場合がある。)を有する。本実施形態では、レーザ出射端2eから表面10aまで、+Z方向にレーザ光が進行しており、レーザ出射端2eと表面10aとの間に、レーザ光の進行方向を全体的に変更する光学系など(例えば、反射光学系)を有していない。しかしながら、レーザ出射端2eと表面10aとの間に、レーザ光の進行方向を変更する光学系を有していても構わない。また、レーザ加工装置100に、レーザ光の進行方向を逐次変更可能な光学系を組み込んで、集光光学系と表面10aとを相対移動させながら、表面10aの形状に応じてレーザ光の進行方向を変更しても構わない。
 本実施形態のレーザ加工装置100は、それぞれ複数のレーザ出射端2eに接続される、複数のレーザ光源3を有している。しかしながら、レーザ加工装置100自体が、レーザ光源3を有していなくても構わない。その場合には、各レーザ出射端2eを、レーザ加工装置100の外部のレーザ光源に接続する。
 基材10はレーザ加工装置100の構成要素ではないが、説明の都合上、図1に示している。同様に、他の図に示すレーザ加工装置においても、基材10を示すことがある。基材10は、アルミニウム材に限定されない。基材10の材質は他の金属材料でも構わないし、樹脂であっても構わない。
 各図面において、基材10の表面10aはXY平面に平行な面として描かれているが、表面10aの形状はこれに限定されない。表面10aは、例えば、傾斜した平面、曲面及び凹凸を有する面などを含んでいても構わない。各図面において、基材10は板状(XY方向に延び、Z方向に薄い形状)に示されているが、必ずしもこのような形状に限定されない。基材10は、例えば、棒状又はブロック形状を呈しても構わないし、板状、棒状又はブロック状を部分的に有する複雑な立体形状を呈しても構わない。
 複数のレーザ光L1を基材10の表面10aに照射すると、レーザ光L1ごとに集光スポットLsが形成される。レーザ光のエネルギーにより集光スポットLsが局所的に熱せられ、アブレーションを生じさせる。集光スポットLsでは、瞬間的に数千度(℃)まで上昇するため、集光スポットLsにおける表面10aが蒸発又は昇華し、表面10aに穴を開ける。
 レーザ光源3から出力されるレーザ光はパルス状に出力されるため、ピークパワー(パルス幅(時間)あたりのパルスエネルギー)が高く、局所的には、表面10aが蒸発又は昇華するほどのエネルギーを基材10に与える。しかしながら、パルス状のため総エネルギー量は小さく、レーザ光が基材10の幅広い領域を高温にすることは困難である。そのため、表面10aの不必要な溶融やデブリの発生を抑制できるとともに、基材10に熱による悪影響を与えにくい。
 駆動機構M1を使用して、集光レンズ1(詳細は後述するが、集光光学系の一実施形態である)と表面10aとを、表面10aに沿い、且つ、X方向に直交するY方向に相対移動させる。本実施形態では、集光レンズ1を固定したまま、基材10を、基材10を載置するステージ15とともに、+Y方向(第二方向)に移動させる。このとき、図2に示されるように、レーザ光L1を表面10aに照射しながら基材10を移動させる。なお、集光レンズ1と基材10が相対移動すればよいため、基材10を移動させずに集光レンズ1を移動させてもよく、または、基材10と集光レンズ1の両方を移動させてもよい。
 図2は、レーザ光を照射する様子を示す図である。図2に示されるように、複数のレーザ光を表面10aに照射しつつ、表面10aを削りながら基材10が移動することにより、表面10aに複数の溝が形成される。
 集光光学系は、各レーザ光L1の離間間隔を縮小して、表面10aに照射させる。これにより、集光スポットLsを小さくするとともに、各集光スポットLsを密集させる。その結果、複数の溝を狭ピッチに形成できる。隣り合う溝同士の間隔が狭いため、溝の形成により表面積が増えて、接着剤を用いた接合を強固にできる。ただし、複数のレーザ光L1が表面10aにおいて互いに交わって集光スポットLsが重ならないように設計される。なお、この設計は、集光光学系から表面10aに到達するまでの光路において、各レーザ光L1が互いに交わることを妨げるものではない。
 図1に示されるように、本実施形態の集光光学系は、単一の集光レンズ1から構成される。そして、全てのレーザ光L1を同じ集光レンズ1に入射させている。しかしながら、単一の集光レンズ1の形態に限らない。一つのレーザ光が複数の集光レンズを順に通過するように、集光レンズを直列配置してもよい。各レーザ光が入射する集光レンズが異なるように、集光レンズを並列配置してもよい。
 本実施形態では、レーザ出射端2eと集光レンズ1との間に、複数のレーザ出射端2eのそれぞれに対応するように、ビーム整形光学系を配置している。本実施形態では、ビーム整形光学系としてビームエクスパンダ7が配置されている。ビームエクスパンダ7は、レーザ出射端2eから出射したビーム径を拡大する光学系である。ビームエクスパンダ7を使用することで、集光光学系の入射面において各レーザ光の離間間隔を所望の値にすることができる。その結果、表面10aにおける集光スポットLsの大きさと離間間隔を調整できる。
 集光光学系を経たビームエクスパンダ7を出射したレーザ光L1は、コリメート光(平行光)となるようにしてもよいし、または、収束光となるようにしてもよい。図1に示されたレーザ加工装置100では、ビームエクスパンダ7を出射したレーザ光L1は、収束光となり、ビーム径が縮小されている。収束光にすることにより、集光点を表面10aから意図的にずらして、表面10aにおける集光スポットLsの大きさ及び離間間隔をさらに微調整できる。
[レーザ加工装置の詳細]
 図3はレーザ加工装置100を詳細に示す図である。図3では、図を見やすくするために、図1で示した各レーザ光L1の光線束(一点鎖線)を示さず、各レーザ光の光軸Lcのみを示している。複数のレーザ光源3は、それぞれ、光源部3sと、光源部3sからのレーザ光を導光するファイバ3fと、を有する。複数のファイバ3fは束ねられて、ファイババンドルを構成する。
 本実施形態では、ビームエクスパンダ7は、2枚の凸レンズアレイを組み合わせて構成されている。しかしながら、ビームエクスパンダ7を、凸レンズアレイと凹レンズアレイとを組み合わせて構成しても構わない。レンズアレイに代えて、小さな個別のレンズを並べても構わない。また、ビーム整形光学系が、レーザ出射端2eの上流側に位置しても構わない。言い換えると、ビーム整形光学系が、レーザ光源3に内蔵されても構わない。よって、ビーム整形光学系は、本実施形態のレーザ加工装置100にとって、必須の構成要素ではない。
 図4Aは、図3のレーザ加工装置100において、バンドルされたレーザ出射端2eを、ビームエクスパンダ7側から-Z方向に見た図である。図4Aには、ファイババンドルを構成する複数のレーザ出射端2eと、各レーザ出射端2eの中央にレーザ光が出射されるコア3cと、が示されている。ファイバ3fのレーザ出射端2eは、W方向とV方向とに沿って配列されている。斯かるレーザ出射端2eの配列は、集光スポットLsの配列に反映される。上述したように、本実施形態は、レーザ出射端2eと表面10aとの間に、レーザ光の進行方向を全体的に変更する光学系を有していない。この場合には、レーザ出射端の配列方向が集光スポットの配列方向に一致する。本実施形態において、W方向は、集光スポットの第三配列方向に対応し、V方向は集光スポットの第四配列方向に対応する。
 W方向とV方向に配列される各レーザ出射端2eを、各レーザ出射端の配置順に基づき「2e(W,V)」の形式で表すと、例えば、2e(1,1)、2e(2,1)、2e(10,1)、2e(1,3)、2e(1,5)、(1,7)、及び2e(10,7)は、図4Aのように示される。
 第三配列方向及び第四配列方向(本実施形態ではW方向とV方向)が、相対移動方向である第二方向(Y方向)とは異なる方向となるように、レーザ出射端2eを形成する。これにより、V方向に配列されたレーザ出射端2eである、2e(1,1)、2e(1,3)、2e(1,5)、及び(1,7)から出射された各レーザ光の集光スポットLsは、互いに重なることなく、X方向に関して位置が異なることになる。これによる効果については後述する。
本実施形態では、レーザ出射端2eの配列は、格子の交点と格子の中央とに配列した千鳥状の配列が採用されている。千鳥状の配列であっても、レーザ出射端2eのX方向における位置は全て異なっている。よって、複数の溝をより狭ピッチに形成できる。レーザ出射端2eの配列を、格子の交点のみにレーザ出射端2eを配列した、格子状配列にしても構わない。
 図4Aでは、W方向に沿って9~10個のファイバが、V方向に沿って3~4個のファイバが配列されているが、ファイバの配列数はとくに限定されず、図4Aより多くても少なくても構わない。量産プロセスに適用可能な生産効率を有するレーザ加工装置を設計するには、通常、ファイバの数は図4Aよりも多い方が好ましい。例えば、ファイバの数を100本以上にするとよく、好ましくは200本以上にするとよい。レーザ出射端2eにおけるファイババンドル全体の幅(X方向における寸法)は、20mm以上、または40mm以上を呈することがある。
 図4Bは、集光レンズ1が配置されている位置から表面10aを見た図である。レーザ光で加工している途中の様子を示している。レーザ出射端2eのそれぞれから出射されたレーザ光L1が集光スポットLsを形成している。上述したように、集光スポットLsではレーザアブレーションにより表面10aが削られる。その結果、Y方向へ相対移動してできる集光スポットLsの軌跡は、Y方向に沿う溝Lgとして表れる。
 このとき、レーザ出射端2eのX方向における位置は全て異なっているため、各レーザ光によって形成される集光スポットLsのX方向における位置は全て異なることになる。その結果、各レーザ光によって形成される溝LgのX方向における位置も全て異なるものとなる。
 図4Bには、表面10aには存在しないレーザ出射端2eが、仮想的に示されている。図4Aに示されたレーザ出射端2eのうち、2e(1,1)、2e(2,1)、2e(10,1)、2e(1,3)、2e(1,5)、(1,7)、及び2e(10,7)については、それぞれ符号を付して図4Bに例示する。図4Bに示されたレーザ出射端2eは、集光スポットLsをレーザ出射端2eにおけるコア3cと見立てて、集光レンズ1の分だけ所定の倍率に縮小することによって表されている。図4Bは、集光スポットLsがX方向に関して位置が異なるように配列させたレーザ出射端2eを使用することにより、隣り合う溝Lgと溝Lgとの間隔を、ファイバ径よりも小さくできることを表している。本明細書において、「互いに離間して配置された複数のレーザ出射端」とは、例えば、レーザ出射端2e(1,1)とレーザ出射端2e(1,3)のように、隣り合う溝を形成するためのレーザ光の出射端が、互いに接触せずに離間して配置されていることを表す。
 隣り合う溝Lgと溝Lgとの間隔が一定となるように、レーザ加工装置100を設計するとよい。溝のピッチp1は、一本の溝幅(溝のX方向の寸法)と、隣り合う溝Lgと溝LgとのX方向における間隔との和である。ピッチp1は、100μm以下であるとよく、好ましくは、50μmであるとよい。ピッチp1が小さいほど、溝の密度を高めて表面積を増やすことができる。ピッチp1を小さくするには、溝Lgの幅(X方向の寸法)も小さい方が好ましい。溝Lgの幅は、50μm以下であるとよく、好ましくは25μmであるとよい。
 レーザ出射端2eを上述のように配列することで、溝のピッチp1を小さくできる。しかしながら、ピッチp1は、レーザ出射端2eを構成する各ファイバ3fの小径化や、集光光学系の焦点距離の短縮化によっても小さくできる。例えば、焦点距離が300mm以下の集光レンズ1を使用すると、ピッチp1を100μm以下に形成しやすい。
 図5は、レーザ光L1が基材10に入射するときの、レーザ光L1の光軸Lcに沿う断面図を示している。表面10aに入射するレーザ光L1の光軸Lcが、表面10aの法線N10との間になす角を、入射角θsとする。入射角θsが小さくなるほど(表面10aに対するレーザ光L1の入射角が90度に近づくほど)、傾斜を抑えた深い溝を形成できる。その結果、溝に充填される接着剤の量及び充填性を高めて、接着性を良好に保つことができる。また、各レーザ光により形成される溝深さの均一化が進むため、接着力の均一化につながる。レーザ光L1の入射角θsを20度以下にするとよく、好ましくは10度以下にするとよく、より好ましくは7度以下にするとよい。
 本実施形態のように、集光光学系に集光レンズ1を使用すると、集光レンズ1の端に近い位置を通過するレーザ光L1ほど、入射角θsが大きくなる。そのため、入射角θsが大きくなりやすい、集光レンズ1の最も端を通るレーザ光L1の入射角θsが、上述の数値範囲を満たすように、集光レンズ1を設計するとよい。入射角θsを小さくする設計とは、例えば、集光レンズ1の焦点距離を規定値以上(例えば、100mm以上)にしてもよい。例えば、集光レンズ1の端にレーザ光L1を入射させないように、入射前にレーザ光を集光させるか、集光レンズ1の開口数を大きくしてもよい。例えば、単一の集光レンズ1に代えて、複数のレンズを組み合わせた集光光学系にして、入射角θsをできるだけ小さくした状態を維持しつつ、複数のレーザ光を集光してもよい。
 図6はレーザ加工装置の変形例を示している。レーザ加工装置150は、ビーム整形光学系として、ビームエクスパンダ7と、ビームエクスパンダ7の出射側に、複数のレーザ出射端2eのそれぞれに対応する収束光学系8と、を備える。収束光学系8により、レーザ光L1を収束させて、ビーム径を縮小したレーザ光L1を集光レンズ1に入射させる。これにより、集光点を表面10aから意図的にずらして、表面10aにおける集光スポットLsの大きさ及び隣り合う集光スポットLsの離間間隔を微調整できる。ビーム整形光学系が収束光学系8を有する場合には、ビームエクスパンダ7を出射したレーザ光L1が、コリメート光(平行光)又は収束光ではなく、発散光であっても構わない。なお、レーザ加工装置150の他の構成要素は、レーザ加工装置100と同様である。
 図7Aはレーザ加工装置のレーザ出射端2eの変形例を示している。図7Aは、バンドルされたレーザ出射端2eを、ビームエクスパンダ7側から-Z方向に見た図である。ファイバ3fのレーザ出射端2eは、W2方向とV方向とに沿って配列されている。W2方向とV方向は、相対移動方向である第二方向(Y方向)とは異なる方向である。これにより、レーザ出射端2eのX方向における位置は全て異なる。
 本変形例では、W2方向がX方向と同じ方向である。例えば、図7Aにおいて、W2方向に並ぶ、レーザ出射端2e(1,1)、レーザ出射端2e(2,1)及びレーザ出射端2e(10,1)は、いずれも、Y方向に関する位置が同じである。
 図7Bは、図7Aのレーザ出射端2eを有するレーザ加工装置において、集光レンズ1が配置されている位置から表面10aを見た図である。図7Bには、表面10aには存在しないレーザ出射端2eが、仮想的に示されている。図7Aに示されたレーザ出射端2eのうち、レーザ出射端2e(1,1)、レーザ出射端2e(2,1)及びレーザ出射端2e(10,1)については、それぞれ符号を付して図7Bに示す。
 図7Aに示したレーザ出射端2eの効果を、図7B及び図8を参照しながら説明する。図8は、図4Bと同じ、第一実施形態におけるレーザ出射端について集光レンズ1が配置されている位置から+Z方向に基材10の表面10aを見た図である。図8では、レーザ出射端2eがW方向に配列するから、2e(1,1)~2e(10,1)の間で溝の形成開始位置(溝のY方向端部位置)が異なる。溝の形成開始位置が異なると、溝の形成されない余白領域A1(図8において一点鎖線で囲われた領域)が発生する。
 これに対し、図7Bは、レーザ出射端2e(1,1)~2e(10,1)は、X方向に平行なW2方向に配列しているため、溝の形成されない余白領域A1が発生せず、溝の開始位置が揃っている。その結果、溝の形成されない余白領域を小さくして、接着剤による接合力を向上できる。ただし、図8におけるレーザ出射端2eの配置であったとしても、レーザ光の出射開始タイミングをレーザ出射端2eによって異ならせることができる場合には、溝の開始位置を揃えることができる。
 レーザ加工装置100は、駆動機構M1及び光源の点灯を制御する制御部(不図示)を有する。さらに、制御部は、集光レンズ1等の集光光学系、ビーム整形光学系及び収束光学系等を制御しても構わない。制御部は、レーザ加工装置100にとって必須の構成ではない。例えば、レーザ加工装置100の外にある制御部によって、レーザ加工装置100が制御されても構わないし、操作者によって制御されても構わない。
<第二実施形態>
 図9は、第二実施形態であるレーザ加工装置200を示す図である。以下に示す事項については、第二実施形態が第一実施形態と異なる部分を中心に説明する。以下に示していない事項は、第一実施形態と同様である。第三実施形態についても同様である。
 複数のレーザ出射端2eと集光レンズ1との間に、レーザ光を複数の分岐レーザ光に変換する回折光学素子(DOE)9が配置されている。本実施形態では、回折光学素子9は単一の光学素子からなり、複数のレーザ出射端2eから出射された全てのレーザ光を単一の光学素子である回折光学素子9に入射させている。なお、図を見やすくするため、図9及び後述する図11では、各レーザ光は光軸のみで表されている。光軸Lc1を含む各レーザ光は、位置Liから回折光学素子9に入射し、回折光学素子9の内部で複数の分岐レーザ光に変換され、光軸Lc3を含む各分岐レーザ光として、位置Loから出射する。
 図10は、回折光学素子9を集光レンズ1側から-Z方向に見た図である。各レーザ光が入射する位置Liは、図10で示される回折光学素子9の裏面側にある。位置Liから入射した一本のレーザ光が9本の分岐レーザ光に変換され、分岐レーザ光が、位置Liの周辺Ln内にある、9つの位置Loから出射する。1本のレーザ光から分岐する分岐レーザの数は特に限定されない。しかしながら、数多く分岐するとその分だけレーザパワーが低下するため、1本のレーザ光から、25本以下に分岐するとよく、好ましくは16本以下に分岐するとよく、より好ましくは9本以下に分岐するとよい。図10では、位置LiがX方向(第一方向)に離間するようにレーザ光を入射させて、それぞれ分岐レーザを出射するよう構成されており、具体的には、1本のレーザ光から9本に分岐された分岐レーザの群が、X方向(第一方向)において複数形成されている。
 回折光学素子9から出射する分岐レーザ光の位置Loは、W方向と、W方向に直交するV方向とに沿って配列されている。本実施形態は、レーザ出射端2eと表面10aとの間に、レーザ光の進行方向を全体的に変更する光学系を有していない。この場合には、分岐レーザ光の配列方向が集光スポットの配列方向に一致する。本実施形態において、W方向は集光スポットの第三配列方向に対応し、V方向は集光スポットの第四配列方向に対応する。
 分岐レーザ光の出射位置Loは、X方向及びY方向に対して傾斜配置されている。線h1は、位置LoからそれぞれY方向に延ばした基準線を表している。基準線h1は、他の基準線h1と重ならない。これは、位置LoのX方向における位置が、全て異なっていることを示している。基準線h1と隣り合う基準線h1との間隔が一定である(すなわち、一定のピッチを呈する)とよい。基準線h1が基材10に投影されると仮定するならば、基準線h1は、図4Bで示されるような相対移動してできた集光スポットLsの軌跡、すなわち、溝に重なることになる。これは、回折光学素子9を使用した場合においても、分岐レーザ光の位置Loを傾斜配置することにより、複数の溝を狭ピッチ間隔で形成できることを示している。
 図11はレーザ加工装置200の変形例のレーザ加工装置250を示している。レーザ加工装置250において、回折光学素子11は、レーザ出射端2eの数と同じ数を有し、複数のレーザ出射端2eのそれぞれに対応して設けられている。この変形例に使用される回折光学素子11は、単一の回折光学素子に比べて小型であるため、レーザ加工装置のレイアウト設計の自由度が高いという利点がある。さらなる変形例として、回折光学素子は、2つ以上を有し、かつ、レーザ出射端2eの数よりも少ない数を有しても構わない。
 図12は、回折光学素子11を-Z方向から見た図である。各レーザ光が入射する位置Liは、図12で示される回折光学素子11の裏面側にある。位置Liから入射した一本のレーザ光が9本の分岐レーザ光に変換され、分岐レーザ光が同じ回折光学素子11の9つの位置Loから出射する。複数の回折光学素子11をX方向に互いに接近して配置するため、レーザ加工装置250では、図12に示すように円板形状の回折光学素子11を千鳥状に配置している。ただし、回折光学素子11の形状及びレイアウトはこれに限定されない。
 図10と同様に、回折光学素子11から出射するレーザ光の位置Loは、W方向(第三配列方向)とV方向(第四配列方向)とに沿って配列されるように、回折光学素子11は設計されている。線h1は、位置LoからそれぞれY方向に延ばした基準線を表している。基準線h1は、他の基準線h1と重ならない。基準線h1と隣り合う基準線h1との間隔が一定である(すなわち、一定のピッチを呈する)とよい。
<第三実施形態>
 図13A及び図13Bは、複数のレーザ加工装置を組み合わせてレーザ加工をする実施形態を例示している。いずれの図も、同一の表面10aの、Y方向(第二方向)に離間した複数個所において、個々のレーザ加工装置でレーザ加工を行っている。個々のレーザ加工装置はそれぞれ制御部を有し、各制御部が通信することで、各レーザ加工装置が連携したレーザ加工を行っても構わない。または、個々のレーザ加工装置が共有する制御部を有し、当該共有する制御部が各レーザ加工装置を制御して、各レーザ加工装置が連携したレーザ加工を行っても構わない。
 図13Aの第一例では、第一のレーザ加工装置から表面10aにレーザ光L1を照射して形成された溝と重なるように、第二のレーザ加工装置からレーザ光L2を照射している。これにより溝を深掘りすることができる。
 図13Bの第二例では、第一のレーザ加工装置から表面10aにレーザ光L1を照射して形成された溝に対して、X方向に僅かにずらして、第二のレーザ加工装置からレーザ光L2を照射している。これにより、一回の相対移動で、より多くの溝を形成できる。
 以上で各実施形態とその変形例を説明した。しかしながら、本発明は、上記した各実施形態及び変形例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、上記の各実施形態に種々の変更又は改良を加えたりすることができる。また、各実施形態又は変形例を組み合わせても構わない。
 第一実施形態及び第二実施形態では集光スポットが異なる二つの方向に配列されているが、これらの実施形態において、集光スポットは一方向のみに配列されても構わないし、集光スポットは配列していない(即ち、並んで列を形成しない)状態でも構わない。
1   :集光レンズ
2e  :レーザ出射端
3   :レーザ光源
3c  :コア
3f  :ファイバ
3s  :光源部
7   :ビームエクスパンダ
8   :収束光学系
9   :回折光学素子
10  :基材
10a :(基材の)被加工面
11  :回折光学素子
15  :ステージ
100,150,200,250 :レーザ加工装置
L1,L2  :レーザ光
Lc、Lc1,Lc3  :光軸
Lg  :溝
Ls  :集光スポット
M1  :駆動機構
 

Claims (18)

  1.  互いに離間して配置された複数のレーザ出射端から、それぞれ、パルス状のレーザ光を空間中に出射し、
     複数の前記レーザ光が被加工面において互いに交わらない程度に離間間隔を縮小する集光光学系に、複数の前記レーザ光を入射し、
     前記集光光学系から出射した複数の前記レーザ光を前記被加工面に照射して、アブレーションを生じさせる複数の集光スポットを、第一方向に関して互いに離間して形成し、
     前記集光光学系と前記被加工面とを、前記被加工面に沿い、且つ、前記第一方向に直交する第二方向に相対移動させて、前記被加工面に複数の溝を同時に形成することを特徴とする、レーザ加工方法。
  2.  複数の前記集光スポットは、第三配列方向及び第四配列方向に並んで形成され、
     前記第三配列方向及び第四配列方向は、いずれも、前記第二方向とは異なる方向であることを特徴とする、請求項1に記載のレーザ加工方法。
  3.  前記被加工面に入射する複数の前記レーザ光の各光軸が、前記被加工面の法線との間になす入射角θsは、それぞれ20度以下であることを特徴とする、請求項1に記載のレーザ加工方法。
  4.  前記集光光学系は、前記レーザ光を入射する、単一の集光レンズを備え、
     前記集光レンズの焦点距離は300mm未満であることを特徴とする、請求項1に記載のレーザ加工方法。
  5.  複数の前記レーザ出射端と前記集光光学系との間に、前記レーザ光の少なくとも一つを複数の分岐レーザ光に変換する回折光学素子が少なくとも一つ配置されることを特徴とする、請求項1~4のいずれか一項に記載のレーザ加工方法。
  6.  前記少なくとも一つの回折光学素子は、複数の前記レーザ光を、それぞれ、複数の分岐レーザ光に変換することを特徴とする、請求項5に記載のレーザ加工方法。
  7.  前記少なくとも一つの回折光学素子は、複数の前記レーザ光を同じ回折光学素子に入射することを特徴とする、請求項5に記載のレーザ加工方法。
  8.  前記レーザ出射端は複数のファイバが束ねられたファイババンドルの出射端であり、
     前記集光スポットが所定の位置に形成されるように、前記出射端において前記ファイバが配列していることを特徴とする、請求項1~4のいずれか一項に記載のレーザ加工方法。
  9.  前記レーザ出射端は複数のファイバが束ねられたファイババンドルの出射端であり、
     前記集光スポットの前記第三配列方向が前記第一方向と同じ方向となるように、前記出射端において前記ファイバが配列していることを特徴とする、請求項2に記載のレーザ加工方法。
  10.  前記レーザ出射端と前記集光光学系との間に、複数の前記レーザ出射端のそれぞれに対応するビーム整形光学系を配置することを特徴とする、請求項8に記載のレーザ加工方法。
  11.  前記ビーム整形光学系は、前記レーザ光それぞれのビーム径を拡大するビームエクスパンダと、前記ビームエクスパンダの出射側に収束光学系とを備え、
     前記レーザ光のビーム径を徐々に縮小させながら前記集光光学系に入射することを特徴とする、請求項10に記載のレーザ加工方法。
  12.  同一の前記被加工面の、前記第二方向に離間した複数個所において、請求項1~4のいずれか一項に記載のレーザ加工方法をそれぞれ行うことを特徴とする、レーザ加工方法。
  13.  互いに離間して配置され、それぞれパルス状のレーザ光を空間中に出射する、複数のレーザ出射端と、
     複数の前記レーザ出射端から出射された前記レーザ光を入射して、複数の前記レーザ光が被加工面において互いに交わらない程度に離間間隔を縮小する集光光学系と、
     前記集光光学系と前記被加工面とを、前記被加工面に沿い、且つ、第一方向に直交する第二方向に相対移動させる駆動機構と、を備え
     前記集光光学系から出射された複数の前記レーザ光を前記被加工面に照射して、前記第一方向に関して互いに離間する、複数の集光スポットを形成しながら、前記駆動機構で前記集光光学系と前記被加工面とを相対移動させて、前記被加工面に複数の溝を同時に形成するように制御されることを特徴とする、レーザ加工装置。
  14.  複数の前記集光スポットは、第三配列方向及び第四配列方向に並んで形成され、
     前記第三配列方向及び第四配列方向は、いずれも、前記第二方向とは異なる方向であることを特徴とする、請求項13に記載のレーザ加工装置。
  15.  複数の前記レーザ出射端と前記集光光学系との間に、前記レーザ光の少なくとも一つを複数の分岐レーザ光に変換する回折光学素子が、少なくとも一つ配置されることを特徴とする、請求項13又は14に記載のレーザ加工装置。
  16.  前記レーザ出射端は複数のファイバが束ねられたファイババンドルの出射端であり、
     前記集光スポットが所定の位置に形成されるように、前記出射端において前記ファイバが配列していることを特徴とする、請求項13又は14に記載のレーザ加工装置。
  17.  前記レーザ出射端は複数のファイバが束ねられたファイババンドルの出射端であり、
     前記集光スポットの前記第三配列方向が前記第一方向と同じ方向となるように、前記出射端において前記ファイバが配列していることを特徴とする、請求項14に記載のレーザ加工装置。
  18.  前記複数のレーザ出射端にそれぞれ接続された、ピークパワー密度が100kW/cm以上のレーザを出力する複数の光源、を備え、
     前記集光スポットにアブレーションを生じさせることを特徴とする、請求項13又は14に記載のレーザ加工装置。
     
PCT/JP2022/011504 2021-07-20 2022-03-15 レーザ加工方法及びレーザ加工装置 WO2023002685A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237042187A KR20240005060A (ko) 2021-07-20 2022-03-15 레이저 가공 방법 및 레이저 가공 장치
CN202280035783.XA CN117320835A (zh) 2021-07-20 2022-03-15 激光加工方法及激光加工装置
EP22845625.7A EP4360799A1 (en) 2021-07-20 2022-03-15 Laser machining method and laser machining device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-119330 2021-07-20
JP2021119330A JP2023015520A (ja) 2021-07-20 2021-07-20 レーザ加工方法及びレーザ加工装置

Publications (1)

Publication Number Publication Date
WO2023002685A1 true WO2023002685A1 (ja) 2023-01-26

Family

ID=84979897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011504 WO2023002685A1 (ja) 2021-07-20 2022-03-15 レーザ加工方法及びレーザ加工装置

Country Status (5)

Country Link
EP (1) EP4360799A1 (ja)
JP (1) JP2023015520A (ja)
KR (1) KR20240005060A (ja)
CN (1) CN117320835A (ja)
WO (1) WO2023002685A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084579A (ja) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd 磁気テープ加工装置
JP2008247038A (ja) * 2008-05-24 2008-10-16 Lemi Ltd 脆性材料のフルカット割断方法
JP2011007250A (ja) 2009-06-25 2011-01-13 Mazda Motor Corp 金属製板材の接合構造
JP2011067873A (ja) * 2010-12-06 2011-04-07 Mitsuboshi Diamond Industrial Co Ltd レーザ光によるライン加工方法およびレーザ加工装置
WO2019082310A1 (ja) * 2017-10-25 2019-05-02 株式会社ニコン 加工装置、及び、移動体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084579A (ja) * 1999-09-10 2001-03-30 Fuji Photo Film Co Ltd 磁気テープ加工装置
JP2008247038A (ja) * 2008-05-24 2008-10-16 Lemi Ltd 脆性材料のフルカット割断方法
JP2011007250A (ja) 2009-06-25 2011-01-13 Mazda Motor Corp 金属製板材の接合構造
JP2011067873A (ja) * 2010-12-06 2011-04-07 Mitsuboshi Diamond Industrial Co Ltd レーザ光によるライン加工方法およびレーザ加工装置
WO2019082310A1 (ja) * 2017-10-25 2019-05-02 株式会社ニコン 加工装置、及び、移動体の製造方法

Also Published As

Publication number Publication date
JP2023015520A (ja) 2023-02-01
KR20240005060A (ko) 2024-01-11
EP4360799A1 (en) 2024-05-01
CN117320835A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
US10821555B2 (en) Method and device for the laser-based working of two-dimensional, crystalline substrates, in particular semiconductor substrates
Schulz et al. Manufacturing with novel high-power diode lasers
JP5379384B2 (ja) レーザによる透明基板の加工方法および装置
CN109641315A (zh) 激光加工方法以及一种利用多区段聚焦透镜切割或裁切晶圆之系统
JP5308431B2 (ja) レーザ光によるライン加工方法およびレーザ加工装置
JP2024020355A (ja) レーザー送達アドレス指定可能アレイのための用途、方法、及びシステム
JP2009544470A (ja) 一定でない速度でのレーザー処理のためのシステム及び方法
US20210086295A1 (en) Welding method and welding apparatus
JP2009255163A (ja) レーザ加工方法
JP5145598B2 (ja) レーザ加工方法及それに使用する装置
JP5286485B2 (ja) レーザ加工装置及びレーザ加工方法
WO2023002685A1 (ja) レーザ加工方法及びレーザ加工装置
JP4740556B2 (ja) レーザ光によるライン加工方法およびレーザ加工装置。
JP4739616B2 (ja) 亜鉛メッキ鋼板の重ねレーザ溶接方法および装置
US20230001508A1 (en) Welding method and welding apparatus
JP2007063606A (ja) 半導体レーザを用いた焼入れ方法および焼入れ装置
JP2004337881A (ja) レーザ加工方法およびレーザ加工装置
WO2020241275A1 (ja) 加工方法および加工装置
JP2005238291A (ja) レーザ加工方法及びレーザ加工装置
JP2020192543A (ja) 加工方法および加工装置
JP5420172B2 (ja) レーザ装置
WO2022003858A1 (ja) レーザ加工装置
WO2023176541A1 (ja) レーザ加工装置
US20230023739A1 (en) Welding method and welding apparatus
JP2019193944A (ja) レーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845625

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035783.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237042187

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042187

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022845625

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022845625

Country of ref document: EP

Effective date: 20240124

NENP Non-entry into the national phase

Ref country code: DE