WO2023000734A1 - 一种锂电池隔板 - Google Patents

一种锂电池隔板 Download PDF

Info

Publication number
WO2023000734A1
WO2023000734A1 PCT/CN2022/088047 CN2022088047W WO2023000734A1 WO 2023000734 A1 WO2023000734 A1 WO 2023000734A1 CN 2022088047 W CN2022088047 W CN 2022088047W WO 2023000734 A1 WO2023000734 A1 WO 2023000734A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
base film
battery separator
modified
lithium battery
Prior art date
Application number
PCT/CN2022/088047
Other languages
English (en)
French (fr)
Inventor
邱长泉
胡君
陈永乐
单华靖
虞少波
程跃
Original Assignee
无锡恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡恩捷新材料科技有限公司 filed Critical 无锡恩捷新材料科技有限公司
Publication of WO2023000734A1 publication Critical patent/WO2023000734A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field related to lithium-ion batteries, and in particular to a separator for lithium batteries.
  • lithium-ion battery As a new type of secondary battery, lithium-ion battery is a renewable energy source. It has the advantages of high working voltage, light weight and high energy density. It has been widely used in power tools, digital cameras, mobile phones, notebook computers and other fields. applications, and shows a strong development trend.
  • the diaphragm is used to isolate the positive and negative electrodes of the battery, prevent the positive and negative electrodes from being directly contacted and short-circuited, and at the same time require good lithium ion permeability, and shut down when the temperature of the battery is too high during operation. Ion channels for battery safety. Therefore, the separator plays a vital role in the safety of lithium-ion batteries.
  • Li-ion conductors have the characteristics of high conductivity, low activation energy and the most negative electrode potential.
  • Li 3 N with layered structure, Lisicon (Li 14 ZnGeO 4 ) with skeleton structure and solid solution based on LiTi 2 P 3 O 12 have been studied more.
  • inorganic lithium ion conductors have no practical value due to different conductivity, low decomposition voltage, and resistance to metal lithium corrosion.
  • the later discovered organic lithium ion conductors such as complexes of polymers (such as polyoxyethylene) and alkali metal salts (such as LiCF 3 SO 3 ) have lower electrical conductivity than inorganic lithium ion conductors, but they are easy to process into thin films, making up for it. With insufficient conductivity and good viscoelasticity, it has been widely used as a diaphragm material for high-energy lithium batteries for the manufacture of high-specific energy, high-capacity batteries and high-temperature fuel cells.
  • the separators that are widely used in lithium batteries are mainly polyolefin-based melt-stretched separators.
  • the shutdown effect of these materials helps to improve safety when the battery heats up.
  • traditional commercial PE/PP separators have poor wettability to electrolyte, poor liquid retention, low ionic conductivity, and severe heat shrinkage. These issues affect battery processing, cycle and rate performance, and safety at high temperatures. It has been widely used and studied to improve the heat resistance and mechanical properties of the separator by coating the polymer separator with ceramic slurry to improve the safety of the separator.
  • the present application expects to provide a lithium battery separator, which solves the shortcomings of the existing separators such as poor ionic conductivity and poor wettability, and at the same time enables the separator to have good adhesion and heat resistance.
  • the application provides a lithium battery separator, which may include a modified porous base film and a functional layer arranged on at least one surface of the modified porous base film;
  • the modified porous base film may include a base film main body and a lithium-conducting ion compound particle layer, at least one surface of the main body of the base film can be modified by corona pretreatment, and the lithium-conducting ion compound particle layer can be arranged on at least one surface of the main body of the base film that has been modified by corona pretreatment.
  • One surface; the functional layer may contain organic matter and is arranged on the particle layer of the lithium-conducting ion compound.
  • the thickness of the base film main body may be 10 ⁇ m to 15 ⁇ m, and the base film main body may be a PE base film.
  • the modified porous base membrane may have a thickness of 5 ⁇ m to 25 ⁇ m.
  • the thickness of the functional layer may be 1 ⁇ m to 4 ⁇ m.
  • the TD heat shrinkage of the lithium battery separator may be 0.1% to 0.7%, and the MD heat shrinkage may be 0.1% to 0.5%.
  • the interfacial adhesion of the lithium battery separator may be 15N/m to 25N/m.
  • the TD wetting distance of the lithium battery separator may be 3.0 cm to 5.5 cm, and the MD wetting distance may be 3.5 cm to 6.0 cm.
  • the ion conductivity of the lithium battery separator may be 2.0 ⁇ 10 -3 s/cm to 4.0 ⁇ 10 -3 s/cm.
  • the functional layer may further contain inorganic substances.
  • the weight part of the organic matter may be 5-80 parts, and the weight part of the inorganic matter may be 3-40 parts.
  • the lithium ion-conducting compound may include LiAlSi 2 O 6 , Li 2 FeSiO 4 , or LiFePO 4 .
  • the particle size of the lithium-conducting compound particles may be 5nm to 20nm.
  • the particle size of the lithium ion-conducting compound particles may be 10 nm to 20 nm.
  • the organic matter is polyvinylidene fluoride, and the molecular weight may be 100,000 to 1 million.
  • the inorganic substance may include alumina, boehmite, silica, titanium dioxide, barium sulfate, calcium carbonate, or calcium oxide.
  • the present application also provides a method for preparing the above-mentioned modified porous base membrane through the sol-gel-hydrothermal method, specifically: after the main body of the unmodified porous base membrane is subjected to corona pretreatment to modify its surface, The saturated aqueous solution water tank containing the lithium-conducting ion compound is dried in an oven after passing through the water, so that the lithium-conducting ion-compound particles are embedded in the modified surface of the base film main body to form a lithium-conducting ion-conducting compound particle layer, thereby obtaining the modified base film.
  • the present application also provides a method for preparing the above-mentioned lithium battery separator, the method comprising the steps of:
  • the obtaining the slurry further comprises mechanically stirring and mixing the inorganic substance and the organic solvent in proportion, and then mechanically stirring and mixing the completely dissolved organic substance solution and the uniformly mixed inorganic substance solution to obtain the slurry.
  • the speed of passing through the saturated aqueous solution tank containing the lithium-conducting ion-conducting compound is 3 m/min to 8 m/min.
  • the speed of passing through the saturated aqueous solution tank containing lithium-conducting ion-conducting compounds is 5 m/min.
  • the power of the corona pretreatment is 1.5kW to 3.5kW.
  • the power of the corona pretreatment is 2.5kW.
  • the organic solvent comprises N-methylpyrrolidone (NMP), dimethylacetamide (DMAC), acetone, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO) one or a combination of more.
  • NMP N-methylpyrrolidone
  • DMAC dimethylacetamide
  • DMF N,N-dimethylformamide
  • DMSO dimethylsulfoxide
  • the weight part of the organic matter is 5-80 parts, and the weight part of the organic solvent is 50-100 parts.
  • the weight part of the organic matter is 5-80 parts
  • the weight part of the inorganic matter is 3-40 parts
  • the weight part of the organic solvent is 50-100 parts.
  • the organic matter is polyvinylidene fluoride with a molecular weight of 100,000 to 1 million; in the slurry containing organic matter and inorganic matter, the solid content of polyvinylidene fluoride is 5wt% to 20wt%.
  • This application provides a lithium battery separator and its preparation method.
  • the small particle size particles of the lithium-conducting ion compound are embedded on the modified surface of the main body of the base film through the sol-gel-hydrothermal method, thereby greatly improving the performance of the separator.
  • Ionic conductivity greatly reducing the internal resistance of the electrochemical device using the diaphragm, greatly improving the cycle performance of the electrochemical device, and the diaphragm exhibits excellent electrochemical performance;
  • the application provides a lithium battery separator and a preparation method thereof, through the configuration of the modified base film, the wettability of the separator is also significantly improved, and the separator exhibits excellent physical and chemical properties;
  • This application provides a lithium battery separator and its preparation method, by coating the slurry containing organic matter on one or both sides of the modified base film, thereby reducing the thermal shrinkage rate of the separator and enhancing the adhesion , to improve the shortcomings of the poor wettability of the separator, and the separator exhibits excellent thermal properties and physical and chemical properties;
  • This application provides a lithium battery separator and a preparation method thereof. After corona pretreatment is performed on the surface of the main body of the base film, the particles of the lithium-conducting ion compound are embedded in the base film through a saturated aqueous solution containing the lithium-conducting compound. The modified surface of the main body forms a particle layer of lithium-conducting ion compounds, which produces an unexpected synergistic effect on the high ionic conductivity and high wettability of the separator.
  • Fig. 1 is the preparation method of the lithium battery separator structure provided by the present application.
  • Fig. 2 is a schematic structural diagram of a lithium battery separator in some embodiments of the present application.
  • Fig. 3 is a schematic diagram of the structure of lithium battery separators in other embodiments of the present application.
  • the specific embodiment of the present application provides a lithium battery separator, including a modified porous base film 3 and a functional layer 4 arranged on at least one surface of the modified porous base film 3;
  • the modified porous base film 3 includes a base Membrane main body 1 and lithium-conducting ion compound particle layer 2, at least one surface 11 of the base film main body 1 is modified by corona pretreatment, and the lithium-conducting ion compound particle layer 2 is arranged on the base film main body 1 At least one surface 11 modified by corona pretreatment;
  • the functional layer 4 contains organic matter and is arranged on the lithium-conducting ion compound particle layer 2 .
  • the TD heat shrinkage of the lithium battery separator is 0.1% to 0.7%, and the MD heat shrinkage is 0.1% to 0.5%.
  • the interfacial adhesion of the lithium battery separator is 15N/m to 25N/m.
  • the TD wetting distance of the lithium battery separator is 3.0 cm to 5.5 cm, and the MD wetting distance is 3.5 cm to 6.0 cm.
  • the ion conductivity of the lithium battery separator is 2.0 ⁇ 10 -3 s/cm to 4.0 ⁇ 10 -3 s/cm.
  • the main body of the base film is a PE base film
  • the PE base film can be various base films suitable for preparing lithium-ion battery separators in the art, for example, usually a linear low-density polyethylene base film.
  • the thickness of the main body of the base film is 10 ⁇ m to 15 ⁇ m.
  • the lithium ion-conducting compound includes LiAlSi 2 O 6 , Li 2 FeSiO 4 , or LiFePO 4 .
  • the particle diameter of the lithium ion-conducting compound particles is 5 nm to 20 nm.
  • the lithium ion-conducting compound particles have a particle diameter of 10 nm to 20 nm.
  • the functional layer further contains inorganic substances.
  • the weight part of the organic matter is 5 parts to 80 parts, and the weight part of the inorganic matter is 3 parts to 40 parts.
  • the organic matter is polyvinylidene fluoride with a molecular weight of 100,000 to 1,000,000.
  • the inorganic substance includes alumina, boehmite, silicon dioxide, titanium dioxide, barium sulfate, calcium carbonate, or calcium oxide.
  • the modified porous base membrane has a thickness of 5 ⁇ m to 25 ⁇ m, and the functional layer has a thickness of 1 ⁇ m to 4 ⁇ m.
  • the specific embodiment of the present application also provides a slurry for preparing a lithium battery separator functional layer, which includes the following components in parts by weight: 5 to 80 parts of organic matter; and 50 to 100 parts of organic solvent.
  • the organic matter is polyvinylidene fluoride, the molecular weight is 100,000 to 1 million, and the solid content is 5wt% to 20wt%.
  • the organic solvent is selected from one or more combinations of NMP, DMAC, acetone, DMF, and DMSO.
  • the slurry further includes the following components in parts by weight: 3 parts to 40 parts of inorganic substances.
  • the inorganic substance includes alumina, boehmite, silicon dioxide, titanium dioxide, barium sulfate, calcium carbonate, or calcium oxide.
  • the specific embodiment of the present application also provides a method for preparing lithium fast ion nanoconductors through the sol-gel-hydrothermal method and combining them with the above-mentioned porous base membrane main body.
  • the specific implementation method is: the unmodified porous base membrane After corona pretreatment to modify the surface of the main body, it is immersed in a solution containing nano-lithium conductive ions. After the solution completely infiltrates the main body of the base film, it is dried in an oven to obtain a conductive material embedded with small particle size lithium.
  • the modified base film 3 where the ionic compound is placed on the modified surface of the base film main body.
  • the specific embodiment of the present application also provides a method for preparing the above-mentioned lithium battery separator, the method comprising the following steps:
  • the main body 1 of the porous base film is subjected to corona pretreatment to modify the surface 11, then passes through the saturated aqueous solution water tank containing the lithium-conducting ion compound, and after passing through the water, it is dried in an oven, so that the particles of the lithium-conducting ion compound are embedded in the base film
  • the modified surface 11 of the main body 1 forms a lithium-conducting ion compound particle layer 2, thereby obtaining a modified porous base film 3;
  • the organic matter and the organic solvent are mechanically stirred, mixed and dissolved in proportion to obtain a slurry
  • the above slurry is coated on at least one surface of the modified porous base membrane 3 to form a functional layer 4 on the lithium ion-conducting compound particle layer 2 of the modified porous base membrane 3 .
  • the speed of passing through the water tank of the saturated aqueous solution containing the lithium-conducting ion compound is 3 m/min to 8 m/min.
  • the speed of passing through the saturated aqueous solution tank containing lithium-conducting ion-conducting compounds is 5 m/min.
  • the speed of passing through the saturated aqueous solution tank containing lithium-conducting ion compounds is too fast, the time for passing through the saturated aqueous solution tank containing lithium-conducting ion compounds is not enough, and the particles of lithium-conducting ion compounds are less embedded;
  • the compound particle mosaic layer is thicker, which slightly affects the ionic conductivity of the coating film.
  • the power of the corona pretreatment is 1.5kW to 3.5kW.
  • the power of the corona pretreatment is 2.5kW.
  • too high or too low power will cause the wettability and ionic conductivity of the final lithium battery separator product to increase less than expected.
  • Different corona power will affect the subsequent coating effect. If the corona power is too low (less than 1.5kW), the surface modification of the main body of the base film is not obvious, and the lithium ion-conducting compound particles cannot be better embedded in the base film. The surface of the main body becomes a particle layer of lithium-conducting ion compounds; and the corona power is too high (greater than 3.5kW), which will cause damage to the base film, causing subsequent coating leaks, affecting the performance of the coating film, or even not performing corona The test data of the basement membrane body.
  • the obtaining the slurry further comprises mechanically stirring and mixing the inorganic substance and the organic solvent in proportion, and then mechanically stirring and mixing the completely dissolved organic substance solution and the uniformly mixed inorganic substance solution to obtain the slurry.
  • the slurry is coated on one surface of the modified porous base membrane.
  • the slurry is coated on both surfaces of the modified porous base membrane.
  • the coating is obtained by coating the slurry, passing through water, and drying.
  • the water-passing step is to put the coating film into the water tank after coating, let the water in the water tank extract the solvent in the slurry, and then the slurry will solidify on the base film to form a coating.
  • the drying temperature is 50°C to 60°C.
  • the specific embodiment of the present application also provides the lithium ion battery separator prepared by the above method.
  • the specific embodiment of the present application also provides a lithium ion battery
  • the lithium ion battery includes a positive electrode, a negative electrode, an electrolyte and a separator, wherein the separator is a lithium battery separator of the present application.
  • the electrolyte is well known to those skilled in the art, and it usually consists of an electrolyte lithium salt and an organic solvent.
  • the electrolyte lithium salt adopts a dissociable lithium salt, for example, it can be selected from at least one of lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), and the organic solvent Can be selected from ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), vinylene carbonate (VC), etc. at least one of .
  • the positive electrode is prepared by coating the positive electrode material for the lithium ion battery, a conductive agent and a binder into a slurry and coating it on an aluminum foil.
  • the positive electrode material used includes any positive electrode material that can be used in lithium ion batteries, for example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium ferrous phosphate (LiFePO 4 ) etc. at least one.
  • the negative electrode is prepared by coating the negative electrode material used in the lithium ion battery, a conductive agent and a binder into a slurry and coating it on a copper foil.
  • the negative electrode material used includes any negative electrode material that can be used in lithium-ion batteries, for example, at least one of graphite, soft carbon, hard carbon, and the like.
  • the main improvement of the lithium-ion battery provided by the application is that a new lithium battery separator is adopted as a lithium-ion battery separator, and the arrangement (connection) of the positive electrode, the negative electrode, the battery separator and the electrolyte can be compared with the current one.
  • a new lithium battery separator is adopted as a lithium-ion battery separator, and the arrangement (connection) of the positive electrode, the negative electrode, the battery separator and the electrolyte can be compared with the current one.
  • the preparation method of the lithium-ion battery provided by the application includes sequentially stacking or winding the positive electrode, the separator and the negative electrode into a pole core, and then injecting an electrolyte into the pole core and sealing it, wherein the separator is the lithium battery separator of the present application. plate.
  • the materials or compositions of the positive electrode, the negative electrode, and the electrolyte are as described above, and will not be repeated here.
  • LiAlSi 2 O 6 after strong dispersion into gel by Al(ClO 4 ) 3 , Si(OC 2 H 5 ) 4 , C 2 H 5 OH, LiOH, etc., hydrothermal reaction at 120°C to form gel, dry and grind Tablets and solid-state reaction at high temperature to obtain nano-inorganic powder;
  • Li 2 FeSiO 4 was dissolved by CH 3 COOLi ⁇ 2H 2 O, C 6 H 5 FeO 7 ⁇ 5H 2 O, (C 2 H 5 O) 4 Si, C 6 H 8 O 7 ⁇ H 2 O at 80°C and Stir and reflux to obtain a gel, grind and press into tablets after drying, and perform a solid-state reaction at high temperature to obtain a powder.
  • PVDF Polyvinylidene fluoride
  • Alumina the appearance is white powder
  • Dimethylacetamide (DMAC), colorless and transparent liquid, low toxicity, flammable, can be mixed with organic solvents such as water, alcohol, ether, ester, benzene, chloroform and aromatic compounds.
  • Diaphragm ionic conductivity test Cut 4 circular diaphragm samples with a diameter of ⁇ 50mm, put them in the electrolyte, seal and soak for 1h. Put the 4 separator samples into the test mold in turn, use the electrochemical workstation to measure, and read the resistance values R1, R2, R3, and R4.
  • Lithium-ion battery internal resistance test AC voltage drop internal resistance measurement method, because the battery is actually equivalent to an active resistance, so a fixed frequency and a fixed current are applied to the battery (currently generally use 1KHZ frequency, 50mA small current ), and then sample its voltage, and then calculate the internal resistance of the battery through the operational amplifier circuit after a series of processing such as rectification and filtering.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m, and the functional layer 4 has a thickness of 2 ⁇ m, and this batch of separators is marked as A.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a three-layer coated lithium-ion battery diaphragm (as shown in Figure 3).
  • the thickness of the lithium-ion battery diaphragm is 16 ⁇ m, and one side
  • the thickness of the functional layer 4 is 2 ⁇ m, and this batch of separators is marked as B.
  • the specific method of coating with the gravure roll method is: pump the transparent colloidal PVDF solution onto the gravure roll, then the gravure roll rotates, and the material is brought to the gravure roll, and then Contact with the LiAlSi 2 O 6 particle layer 2 of the modified base film 3, the transparent colloidal PVDF solution can be applied to the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the transparent colloidal PVDF solution can be coated Coated on the LiAlSi 2 O 6 particle layer 2 on both sides of the base film main body 1, the coating speed is 30m/min, and after passing through the water, it is dried in a three-stage oven.
  • the functional layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a three-layer coated lithium-ion battery separator (as shown in Figure 3).
  • the lithium-ion battery separator The thickness is 16 ⁇ m, the thickness of the functional layer 4 on one side is 2 ⁇ m, and this batch of separators is marked as C.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m, and the functional layer The thickness of 4 is 2 ⁇ m, and this batch of diaphragms is marked as D1.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m, and the functional layer The thickness of 4 is 2 ⁇ m, and this batch of diaphragms is marked as D2.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m, and the functional layer The thickness of 4 is 2 ⁇ m, and this batch of separators is marked as D3.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m, and the functional layer The thickness of 4 is 2 ⁇ m, and this batch of separators is marked as D4.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m, and the functional layer The thickness of 4 is 2 ⁇ m, and this batch of separators is marked as E1.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m, and the functional layer 4 has a thickness of 2 ⁇ m, and this batch of separators is marked as E2.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m
  • the functional layer 4 has a thickness of 2 ⁇ m
  • this batch of separators is marked as E3.
  • the specific method of using the gravure roll method is: pump the composite slurry onto the gravure roll, then rotate the gravure roll, bring the material to the gravure roll, and then mix with the modified gravure roll.
  • the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 is contacted, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3), and the composite slurry is coated on the base film main body 1
  • the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • the oven temperatures of each level are 50°C, 60°C, and 55°C.
  • Layer 4 is formed on the LiAlSi 2 O 6 particle layer 2 of the modified base film 3 to obtain a double-layer coated lithium-ion battery diaphragm (as shown in Figure 2).
  • the thickness of the lithium-ion battery diaphragm is 14 ⁇ m
  • the functional layer 4 has a thickness of 2 ⁇ m
  • this batch of separators is marked as E4.
  • Adopt gravure roller coating method (the specific method of gravure roller coating is: pump the composite slurry onto the gravure roller, then rotate the gravure roller, bring the material to the gravure roller, and then mix with 12um
  • the PE base film can be contacted, and the composite slurry can be coated on the PE base film), the composite slurry is coated on one surface of the PE base film, the coating speed is 30m/min, and a three-stage oven is used after passing through the water Drying, the oven temperatures at each level are 50°C, 60°C, and 55°C respectively.
  • the functional layer is formed on the PE base film to obtain a double-layer coated lithium-ion battery separator.
  • the lithium-ion battery separator The thickness of the membrane is 14 ⁇ m, the thickness of the functional layer is 2 ⁇ m, and this batch of separators is marked as F1.
  • the specific method of gravure roll coating is: pump the composite slurry to On the gravure roll, then the gravure roll rotates, the material is brought to the gravure roll, and then contacts with the PE base film, the composite slurry can be applied to the modified surface of the base film), and the composite slurry is coated on On a modified surface of the PE base film, the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven. The temperatures of the ovens at each level are 50°C, 60°C, and 55°C.
  • a double-layer coated lithium-ion battery separator can be obtained on the PE base film.
  • the thickness of the lithium-ion battery separator is 14 ⁇ m, and the thickness of the functional layer is 2 ⁇ m.
  • This batch of separators is marked as F2.
  • the modified film after drying is coated by gravure roll (the specific method of coating by gravure roll is: the composite slurry is pumped onto the gravure roll, and then the gravure roll is rotated, and the material Take it to the gravure roller, and then contact with the PE base film with LiAlSi 2 O 6 particle layer, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer of the PE base film), and the composite slurry can be coated on On the LiAlSi 2 O 6 particle layer on one side of the PE base film, the coating speed is 30m/min. After passing through the water, it is dried in a three-stage oven.
  • gravure roll the specific method of coating by gravure roll is: the composite slurry is pumped onto the gravure roll, and then the gravure roll is rotated, and the material Take it to the gravure roller, and then contact with the PE base film with LiAlSi 2 O 6 particle layer, the composite slurry can be coated on the LiAlSi 2 O 6 particle layer of the
  • the functional layer is formed on the LiAlSi 2 O 6 particle layer of the PE base film to obtain a double-layer coated lithium-ion battery separator.
  • the thickness of the lithium-ion battery separator is 14 ⁇ m, and the thickness of the functional layer is 2 ⁇ m.
  • This batch of diaphragms is F3.
  • Adopt gravure roller coating method (the specific method of gravure roller coating is: pump the composite slurry onto the gravure roller, then rotate the gravure roller, bring the material to the gravure roller, and then mix with 12um
  • the composite slurry can be coated on the PE base film), the composite slurry is coated on the two surfaces of the PE base film, the coating speed is 30m/min, and the three-stage oven is used for drying , the oven temperatures at all levels are 50°C, 60°C, and 55°C respectively.
  • the functional layer is formed on the PE base film to obtain a double-layer coated lithium-ion battery separator.
  • the thickness of the lithium-ion battery separator is 16 ⁇ m
  • the thickness of the functional layer on one side is 2 ⁇ m
  • this batch of separators is marked as G1.
  • the specific method of coating with the gravure roll method is: pump the colloidal PVDF solution onto the gravure roll, then the gravure roll rotates, and the material is brought to the gravure roll, and then mixed with the gravure roll.
  • the thickness of the separator is 16 ⁇ m, the thickness of the functional layer on one side is 2 ⁇ m, and this batch of separators is marked as H.
  • Adopt conventional battery preparation methods known to those skilled in the art including stacking or winding the positive electrode, diaphragm, and negative electrode in sequence to form a pole core, then injecting electrolyte into the pole core and sealing it, and then shelving, forming, capacity inspection, etc. Process) to manufacture batteries, track and mark batteries with separators introduced in batches A, B, C, D1 ⁇ D4, E1 ⁇ E4, F1 ⁇ F3, G, and H.
  • the modified base film of the present application can make The wettability has been significantly improved, the ionic conductivity has been greatly improved, the internal resistance of the corresponding battery has been greatly reduced, and the cycle performance has been significantly improved.
  • Example 1 and Comparative Examples 1-1 to 1-4, 3-1 to 3-3 that the main body of the base film has been pretreated by corona but not by a saturated aqueous solution containing a lithium-conducting ion compound.
  • the water tank will cause the TD wetting distance of the diaphragm to increase by 0.7cm, the MD wetting distance to increase by 0.7cm, and the ion conductivity to increase by 0.13x10 -3 S/cm (compare comparative examples 3-1 and 3-2);
  • the main body of the basement membrane is not corona Pretreatment but passing through the saturated aqueous solution water tank containing lithium-conducting ion compounds will cause the TD wetting distance of the diaphragm to increase by 0.1cm, the MD wetting distance to increase by 0.2cm, and the ion conductivity to increase by 0.22x10-3 S/cm (compare Comparative Example 3-1 with 3-3);
  • the main body of the base film is pretreated by corona and passed through the saturated aqueous solution water tank containing lithium ion-conducting compounds, which will cause the TD wetting distance of the diaphragm to increase by 1.9cm, the MD wetting distance to increase by 2.2cm,
  • the main body of the basement membrane is pretreated with different power corona and passed through the saturated aqueous solution water tank containing lithium ion-conducting compounds, which will cause the wetting distance and ion conductivity of the diaphragm to increase to varying degrees. Too low power will lead to less than expected increase in wettability and ion conductivity (Comparative Example 1, Comparative Examples 1-1-1-4).
  • the main body of the basement membrane is corona pretreated and passed through the saturated aqueous solution tank containing lithium ion-conducting compounds at different speeds, which will cause the wetting distance and ion conductivity of the diaphragm to increase to varying degrees.
  • the best speed through the water tank is 3-8m/min ( Comparative Example 1, Comparative Examples 2-1 to 2-4).
  • corona power will affect the subsequent coating effect. If the corona power is too low (less than 1.5kW), the surface modification of the base film is not obvious, and the LiAlSi 2 O 6 particles cannot be embedded in the PE base film. The surface of the surface becomes a LiAlSi 2 O 6 particle layer, and the corona power is too high (greater than 3.5kW), which will cause damage to the base film, causing subsequent coating leaks, affecting the performance of the coating film, and even worse than that without corona Test data (compare comparative examples 1-4 and comparative examples 3-1). At the same time, the speed passing through the water tank also affects the final membrane performance.
  • the speed is too fast, the time for passing through the saturated aqueous solution water tank containing lithium-conducting ion compounds is not enough, and the LiAlSi 2 O 6 particles are less embedded. If the speed is too slow, the LiAlSi 2 O 6 particles will The thicker layer has a slight influence on the ionic conductivity of the coating film.
  • the separator of the present application has excellent physical and chemical properties, thermal properties and electrochemical properties, and has extremely high industrial application value.
  • the application provides a lithium battery separator, comprising a modified porous base film and a functional layer arranged on at least one surface of the modified porous base film;
  • the modified porous base film comprises a base film main body and a lithium-conducting ion compound Particle layer, at least one surface of the main body of the base film is modified by corona pretreatment, and the particle layer of the lithium-conducting ion compound is arranged on at least one surface of the main body of the base film that has been modified by corona pretreatment;
  • the functional layer contains organic matter and is arranged on the lithium-conducting ion compound particle layer.
  • the present application also discloses that lithium-containing ion-conducting compounds are prepared by sol-gel-hydrothermal method, and the small particle size particles of lithium-containing ion-conducting compounds are embedded in the modified surface of the base film main body, thereby solving the problem of existing separators.
  • the lithium battery separator of the present application is reproducible and can be used in a variety of industrial applications.
  • the lithium battery separator of the present application can be used in technical fields related to lithium ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

提供了一种锂电池隔板,包括改性多孔基膜(3)和设置在改性多孔基膜(3)至少一表面的功能层(4);改性多孔基膜(3)包含基膜主体(1)和锂导离子化合物颗粒层(2),基膜主体(1)的至少一表面(11)为经过电晕预处理改性过的,锂导离子化合物颗粒层(2)设置在基膜主体(1)的经过电晕预处理改性过的至少一表面(11);功能层(4)含有有机物且设置在锂导离子化合物颗粒层(2)。提供了通过sol-gel-水热法制备含锂导离子化合物,将含锂导离子化合物的小粒径颗粒嵌于基膜主体(1)的改性表面(11),从而解决现有隔膜离子电导率差、浸润性较差的缺点,同时涂覆的功能层使得锂电池隔板具有良好的粘接性和耐热性。

Description

一种锂电池隔板
相关申请的交叉引用
本申请要求于2021年07月20日提交中国国家知识产权局的申请号为202110818105.8、名称为“一种锂电池隔板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池相关的技术领域,且具体地涉及一种锂电池隔板。
背景技术
锂离子电池作为一种新型态的二次电池,且可再生能源,其具有工作电压高,质量轻,能量密度大等优点,在电动工具,数码相机,手机,笔记本电脑等领域得到了广泛的应用,并且显示出强大的发展趋势。
隔膜作为锂离子电池的关键组件之一,用于隔离电池的正负极,防止正负极直接接触而短路,同时要求具有良好的锂离子透过性,并且在电池工作时温度过高时关闭离子通道以保证电池安全。因此,隔膜在锂离子电池的安全方面,起着至关重要的作用。
锂离子导体具有高电导率、低活化能和电极电位最负等特点。研究得较多的有层状结构的Li 3N,骨架结构的Lisicon(Li 14ZnGeO 4)和以LiTi 2P 3O 12为基的固溶体等。但无机锂离子导体或因电导率不同、分解电压低、不耐金属锂腐蚀等,尚无实用价值。后来发现的聚合物(如聚氧乙烯)与碱金属盐(如LiCF 3SO 3)的络合物等有机锂离子导体,虽电导率比无机锂离子导体低,但易加工成薄膜,弥补了电导率不足的缺失,且具有很好的黏弹性,已广泛用作高能锂电池的隔膜材料,用于制造高比能、大容量电池和高温燃料电池。
目前正广泛应用于锂电池中的隔膜主要为聚烯烃类融熔拉伸隔膜,这些材料所拥有的关闭效应在电池发热时有助于安全性的提高。但是传统商用PE/PP隔膜对电解液的浸润性不好,保液性差,离子电导率较低,热收缩严重。这些问题会影响电池的加工,循环和倍率性能以及高温下的安全性。通过对聚合物隔膜进行陶瓷浆料涂布以提高隔膜的耐热性能和机械性能,提高隔膜的安全性已有广泛的应用和研究。但是通过改性基膜以提升对锂离子透过性的未有提及,因此,本领域需要一种既能提高电池安全性,同时有更好的离子电导率的锂电池隔板。
发明内容
有鉴于此,本申请期望提供一种锂电池隔板,解决现有隔膜离子电导率差、浸润性较差的缺点,同时使得隔离膜具有良好的粘接性和耐热性。
本申请提供一种锂电池隔板,可以包括改性多孔基膜和设置在所述改性多孔基膜至少一表面的功能层;所述改性多孔基膜可以包含基膜主体和锂导离子化合物颗粒层,所述基 膜主体的至少一表面可以为经过电晕预处理改性过的,所述锂导离子化合物颗粒层可以设置在基膜主体的经过电晕预处理改性过的至少一表面;所述功能层可以含有有机物且设置在锂导离子化合物颗粒层。通过本申请的技术方案,至少达到了以上所提到的目的。
可选地,所述基膜主体的厚度可以为10μm至15μm,以及,所述基膜主体可以为PE基膜。
可选地,所述改性多孔基膜的厚度可以为5μm至25μm。
可选地,所述功能层的厚度可以为1μm至4μm。
可选地,所述锂电池隔板的TD热收缩可以为0.1%至0.7%,MD热收缩可以为0.1%至0.5%。
可选地,所述锂电池隔板的界面粘接可以为15N/m至25N/m。
可选地,所述锂电池隔板的TD润湿距离可以为3.0cm至5.5cm,MD润湿距离可以为3.5cm至6.0cm。
可选地,所述锂电池隔板的离子导电率可以为2.0×10 -3s/cm至4.0×10 -3s/cm。
可选地,所述功能层可以更含有无机物。
可选地,在所述功能层中,有机物的重量份可以为5份至80份,无机物的重量份可以为3份至40份。
可选地,所述锂导离子化合物可以包括LiAlSi 2O 6、Li 2FeSiO 4、或LiFePO 4
可选地,所述锂导离子化合物颗粒的粒径可以为5nm至20nm。
可选地,所述锂导离子化合物颗粒的粒径可以为10nm至20nm。
可选地,所述有机物为聚偏氟乙烯,分子量可以为10至100万。
可选地,所述无机物可以包括三氧化铝、勃姆石、二氧化硅、二氧化钛、硫酸钡、碳酸钙、或氧化钙。
本申请还提供一种通过sol-gel-水热法来制备上述改性多孔基膜的方法,具体为:将未改性的多孔基膜主体经过电晕预处理使其表面改性后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理使锂导离子化合物颗粒镶嵌于基膜主体的改性表面形成锂导离子化合物颗粒层,藉此取得改性基膜。
本申请还提供一种制备上述锂电池隔板的方法,该方法包括如下步骤:
S1、将多孔基膜主体经过电晕预处理使其表面改性后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使锂导离子化合物颗粒镶嵌于基膜主体的改性表面形成锂导离子化合物颗粒层,藉此取得改性多孔基膜;
S2、将有机物与有机溶剂按比例机械搅拌混合溶解后得到浆料;
S3、将上述浆料涂覆在所述改性多孔基膜的至少一侧表面上,使形成功能层在改性多 孔基膜的锂导离子化合物颗粒层上。
可选地,所述得到浆料更包含将无机物与有机溶剂按比例机械搅拌混合均匀后,将溶解完全的有机物溶液与混合均匀的无机物溶液机械搅拌混合而得到浆料。
可选地,所述通过含锂导离子化合物的饱和水溶液水箱的速度为3m/min至8m/min。
可选地,所述通过含锂导离子化合物的饱和水溶液水箱的速度为5m/min。
可选地,所述电晕预处理的功率为1.5kW至3.5kW。
可选地,所述电晕预处理的功率为2.5kW。
可选地,所述有机溶剂包含N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAC)、丙酮、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)中的一种或多种的组合。
可选地,在所述浆料中,有机物的重量份为5份至80份,有机溶剂的重量份为50~100份。
可选地,在所述浆料中,有机物的重量份为5份至80份,无机物的重量份为3份至40份,有机溶剂的重量份为50至100份。
可选地,所述有机物为聚偏氟乙烯,分子量为10至100万;所述含有机物和无机物的浆料中,聚偏氟乙烯的固含量为5wt%至20wt%。
本申请至少包括下述有益效果:
1)本申请提供一种锂电池隔板及其制备方法,通过sol-gel-水热法将锂导离子化合物的小粒径颗粒嵌于基膜主体的改性表面上,从而大幅提升隔膜的离子电导率,大幅减小使用该隔膜的电化学装置的内阻,大幅提升电化学装置的循环性能,隔膜表现出优异的电化学性能;
2)本申请提供一种锂电池隔板及其制备方法,通过改性基膜的配置使隔膜的浸润性也明显有所改善,隔膜表现出优异的理化性能;
3)本申请提供一种锂电池隔板及其制备方法,通过将含有机物的浆料涂覆在改性基膜的一侧或两侧上,从而降低隔膜的热收缩率,增强粘结性,改善隔膜浸润性较差的缺点,隔膜表现出优异的热学性能和理化性能;
4)本申请提供一种锂电池隔板及其制备方法,通过对基膜主体的表面经过电晕预处理后,通过含锂导离子化合物的饱和水溶液水箱使锂导离子化合物颗粒镶嵌于基膜主体的改性表面形成锂导离子化合物颗粒层,从而对隔膜的高离子导电率及高浸润性等产生不可预料的协同性提升效应。
附图说明
图1为本申请提供的锂电池隔板结构的制备方法;
图2为本申请一些实施方式中的锂电池隔板结构示意图;
图3为本申请另一些实施方式中锂电池隔板结构示意图。
组件标号说明
1…基膜主体
11…改性表面
2…锂导离子化合物颗粒层
3…改性基膜
4…功能层。
具体实施方式
以下对本申请的具体实施方式结合附图进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本申请的具体实施方式提供一种锂电池隔板,包括改性多孔基膜3和设置在所述改性多孔基膜3至少一表面的功能层4;所述改性多孔基膜3包含基膜主体1和锂导离子化合物颗粒层2,所述基膜主体1的至少一表面11为经过电晕预处理改性过的,所述锂导离子化合物颗粒层2设置在基膜主体1的经过电晕预处理改性过的至少一表面11;所述功能层4含有有机物且设置在锂导离子化合物颗粒层2。
可选地,所述锂电池隔板的TD热收缩为0.1%至0.7%,MD热收缩为0.1%至0.5%。
可选地,所述锂电池隔板的界面粘接为15N/m至25N/m。
可选地,所述锂电池隔板的TD润湿距离为3.0cm至5.5cm,MD润湿距离为3.5cm至6.0cm。
可选地,所述锂电池隔板的离子导电率为2.0×10 -3s/cm至4.0×10 -3s/cm。
可选地,所述基膜主体为PE基膜,PE基膜可以为本领域各种适用于制备锂离子电池隔膜的基膜,例如,通常为线性低密度聚乙烯基膜。
可选地,所述基膜主体的厚度为10μm至15μm。
可选地,所述锂导离子化合物包括LiAlSi 2O 6、Li 2FeSiO 4、或LiFePO 4
可选地,所述锂导离子化合物颗粒的粒径为5nm至20nm。
可选地,所述锂导离子化合物颗粒的粒径为10nm至20nm。
可选地,所述功能层更含有无机物。
可选地,在所述功能层中,有机物的重量份为5份至80份,无机物的重量份为3份至 40份。
可选地,所述有机物为聚偏氟乙烯,分子量为10~100万。
可选地,所述无机物包括三氧化铝、勃姆石、二氧化硅、二氧化钛、硫酸钡、碳酸钙、或氧化钙。
可选地,所述改性多孔基膜的厚度为5μm至25μm,所述功能层的厚度为1μm至4μm。
本申请的具体实施方式还提供一种用于制备锂电池隔板功能层的浆料,重量份计,包括如下组分:有机物5份至80份;以及有机溶剂50至100份。
可选地,所述有机物为聚偏氟乙烯,分子量为10至100万,固含量为5wt%至20wt%。
可选地,所述有机溶剂选自NMP、DMAC、丙酮、DMF、DMSO中的一种或多种的组合。
可选地,所述浆料,重量份计,更包括以下组分:无机物3份至40份。
可选地,所述无机物包括三氧化铝、勃姆石、二氧化硅、二氧化钛、硫酸钡、碳酸钙、或氧化钙。
本申请的具体实施方式还提供一种通过sol-gel-水热法来制备锂快离子纳米导体,并与上述多孔基膜主体结合的方法,具体实施方法为:将未改性的多孔基膜主体经过电晕预处理使其表面改性后,浸润在含有纳米锂导离子的溶液中,待溶液对基膜主体进行完全浸润后,经过烘箱进行烘干处理,得到嵌入小粒径锂的导离子化合物于基膜主体的改性表面的改性基膜3。
本申请的具体实施方式还提供一种制备上述锂电池隔板的方法,该方法包括如下步骤:
S1、取得改性多孔基膜:
将多孔基膜主体1经过电晕预处理使其表面11改性后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使锂导离子化合物颗粒镶嵌于基膜主体1的改性表面11形成锂导离子化合物颗粒层2,藉此取得改性多孔基膜3;
S2、得到浆料:
将有机物与有机溶剂按比例机械搅拌混合溶解后得到浆料;
S3、形成功能层:
将上述浆料涂覆在所述改性多孔基膜3的至少一侧表面上,使形成功能层4在改性多孔基膜3的锂导离子化合物颗粒层2上。
可选地,所述通过含锂导离子化合物的饱和水溶液水箱的速度(即完全浸润再离开的速度)为3m/min至8m/min。
可选地,所述通过含锂导离子化合物的饱和水溶液水箱的速度为5m/min。
一般而言,通过含锂导离子化合物的饱和水溶液水箱的速度过快,经过含锂导离子化 合物的饱和水溶液水箱时间不够,锂导离子化合物颗粒镶嵌较少;反之通过速度过慢,锂导离子化合物颗粒镶嵌层较厚,对涂布膜离子电导率稍有影响。
可选地,所述电晕预处理的功率为1.5kW至3.5kW。
可选地,所述电晕预处理的功率为2.5kW。
一般而言,过高过低的功率都会导致最终锂电池隔板产品的浸润性和离子电导率增加不及预期。不同的电晕功率对后续的涂布效果有影响,电晕功率过低(小于1.5kW),对基膜主体的表面改性不明显,无法较好的使锂导离子化合物颗粒镶嵌于基膜主体的表面成为锂导离子化合物颗粒层;而电晕功率过高(大于3.5kW),会对基膜造成损伤,使后续涂布出现漏涂,影响涂布膜性能,甚至不及不进行电晕的基膜主体的测试数据。
可选地,所述得到浆料更包含将无机物与有机溶剂按比例机械搅拌混合均匀后,将溶解完全的有机物溶液与混合均匀的无机物溶液机械搅拌混合而得到浆料。
可选地,将浆料涂布于改性多孔基膜的一侧表面。
可选地,将浆料涂布于改性多孔基膜的二侧表面。
可选地,将浆料涂布、过水、烘干即得所述涂层。所述过水的步骤是将涂布膜涂好之后进过水箱,让水箱中的水将浆料中的溶剂萃取出来,然后浆料就会固化在基膜上形成涂层的方法。
可选地,所述烘干温度为50℃至60℃。
本申请的具体实施方式还提供由上述方法制备得到的锂离子电池隔膜。
此外,本申请的具体实施方式还提供一种锂离子电池,所述锂离子电池包括正极、负极、电解质和隔膜,其中,所述隔膜为本申请锂电池隔板。
所述电解液为本领域技术人员公知,其通常由电解液锂盐和有机溶剂组成。其中,电解液锂盐采用可离解的锂盐,例如,可以选自六氟磷酸锂(LiPF 6)、高氯酸锂(LiClO 4)、四氟硼酸锂(LiBF 4)等中的至少一种,有机溶剂可以选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)、碳酸亚乙烯酯(VC)等中的至少一种。
所述正极是由用于锂离子电池的正极材料、导电剂和粘结剂调成浆料涂布于铝箔上制成。所用的正极材料包括任意可用于锂离子电池的正极材料,例如,氧化钴锂(LiCoO 2)、氧化镍锂(LiNiO 2)、氧化锰锂(LiMn 2O 4)、磷酸亚铁锂(LiFePO 4)等中的至少一种。
所述负极是由用于锂离子电池的负极材料、导电剂和粘结剂调成浆料涂布于铜箔上制成。所用负极材料包括任意可用于锂离子电池的负极材料,例如,石墨、软碳、硬碳等中的至少一种。
本申请提供的锂离子电池的主要改进之处在于采用了一种新的锂电池隔板作为锂离子 电池隔膜,而正极、负极、电池隔膜和电解液的排布方式(连接方式)可以与现有技术相同,对此本领域技术人员均能知悉,在此不作赘述。
本申请提供的锂离子电池的制备方法包括将正极、隔膜和负极依次层叠或卷绕成极芯,然后往所述极芯中注入电解液并封口,其中,所述隔膜为本申请锂电池隔板。
其中,所述正极、负极和电解液的材质或组成如上文所描述,在此不作赘述。
以下将通过实施例对本申请进行详细描述。
以下实施例和对比例中,原料的物化参数如下:
LiAlSi 2O 6,通过Al(ClO 4) 3,Si(OC 2H 5) 4,C 2H 5OH,LiOH等经过强力分散成胶后,在120℃水热反应成凝胶,干燥后研磨压片并于高温下固相反应得到纳米无机粉体;
Li 2FeSiO 4,通过CH 3COOLi·2H 2O、C 6H 5FeO 7·5H 2O、(C 2H 5O) 4Si、C 6H 8O 7·H 2O在80℃溶解并搅拌回流得凝胶,干燥后研磨压片并于高温下固相反应得粉体。
聚偏氟乙烯(PVDF),外观为半透明或白色粉体或颗粒;
氧化铝,外观为白色粉体;
二甲基乙酰胺(DMAC),无色透明液体,低毒,可燃,能与水、醇、醚、酯、苯、三氯甲烷和芳香化合物等有机溶剂任意混合。
以上原料均可通过公开市场购买或通过现有技术方法制备。
在以下实施例和对比例中,性能参数按照如下方法测定:
(1)隔膜的热收缩测试:取膜面完整外观无异常的隔膜,切割为100*100mm的正方形,在四周做好标记后,放入烘箱在120℃条件下烘烤2h,取出隔膜,测量烘烤后隔膜的MD/TD方向标记的长度变化。
(2)隔膜界面粘接测试:取膜面完整外观无异常的隔膜,冲切成宽度为25mm,长度为100mm的样品,取两条冲切好的隔膜样品叠到一起,在热压机上以1MPa压力,温度100度,速度100mm/min的条件进行热压,并用拉力机测试两条粘结在一起隔膜的拉力(单位为N),粘结力=拉力/0.025(单位即为N/m)。
(3)隔膜润湿性能测试:取膜面完整外观无异常的隔膜,切割为100*100mm的正方形,将隔膜四周平整固定,中央悬空,取2μl电解液滴于隔膜中央,记录此时液滴在隔膜上沿MD/TD方向延展距离A,5min后,再次记录此时液滴在隔膜上沿MD/TD方向延展距离B,润湿距离=(B-A)/2。
(4)隔膜离子电导率测试:裁取4张直径φ50mm的圆形隔膜样品,置于电解液中,密封浸泡1h。将4张隔膜样品依次放入测试模具中,使用电化学工作站进行测量,读取阻值R1、R2、R3、R4。面电阻计算:以层数为横坐标,对应不同层数阻值为纵坐标作图,求出曲线的斜率A,试样面电阻值R=A·S,其中S为测试有效电极面积,测量隔膜的厚 度d,而隔膜离子电导率=d/R。
(5)锂离子电池内阻测试:交流压降内阻测量法,因为电池实际上等效于一个有源电阻,因此给电池施加一个固定频率和固定电流(目前一般使用1KHZ频率,50mA小电流),然后对其电压进行采样,经过整流、滤波等一系列处理后通过运放电路计算出该电池的内阻值。
(6)锂离子电池的循环性能测试:将锂离子电池在室温下0.5C倍率充电,0.5C倍率放电,依次进行500个循环,利用公式计算其容量保持率;容量保持率=(500个循环后电池的容量/循环前电池的室温容量)×100%。
实施例1
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率2.5kW的电晕预处理使其表面11改性,之后以速度5m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为A。
实施例2
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率2.5kW的电晕预处理使其表面11改性,之后以速度5m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵 打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1二侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到三层涂覆锂离子电池隔膜(如图3),所述的锂离子电池隔膜的厚度为16μm,单侧功能层4的厚度为2μm,标记该批隔膜为B。
实施例3
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状PVDF溶液。
2.取12um PE膜作为基膜主体1,经过功率2.5kW的电晕预处理使其表面11改性,之后以速度5m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将透明胶状PVDF溶液通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将透明胶状PVDF溶液涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将透明胶状PVDF溶液涂覆在基膜主体1二侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到三层涂覆锂离子电池隔膜(如图3),所述的锂离子电池隔膜的厚度为16μm,单侧功能层4的厚度为2μm,标记该批隔膜为C。
对比例1-1
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率0.5kW的电晕预处理使其表面11改性,之后以速度5m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆 料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为D1。
对比例1-2
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率1.5kW的电晕预处理使其表面11改性,之后以速度5m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为D2。
对比例1-3
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率为3.5kW的电晕预处理使其表面11改性,之后以速度5m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改 性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为D3。
对比例1-4
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率4kW的电晕预处理使其表面11改性,之后以速度5m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为D4。
对比例2-1
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率2.5kW的电晕预处理使其表面11改性,之后以速度1m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为E1。
对比例2-2
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率2.5kW的电晕预处理使其表面11改性,之后以速度3m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为E2。
对比例2-3
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率2.5kW的电晕预处理使其表面11改性,之后以速度8m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为E3。
对比例2-4
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶 液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE膜作为基膜主体1,经过功率2.5kW的电晕预处理使其表面11改性,之后以速度11m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于基膜主体1的改性表面11成为LiAlSi 2O 6颗粒层2并取得改性基膜3。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜3的LiAlSi 2O 6颗粒层2进行接触,即可将复合浆料涂到改性基膜3的LiAlSi 2O 6颗粒层2上),将复合浆料涂覆在基膜主体1一侧的LiAlSi 2O 6颗粒层2上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层4形成在改性基膜3的LiAlSi 2O 6颗粒层2上,即可得到双层涂覆锂离子电池隔膜(如图2),所述的锂离子电池隔膜的厚度为14μm,功能层4的厚度为2μm,标记该批隔膜为E4。
对比例3-1
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与12um PE基膜进行接触,即可将复合浆料涂到PE基膜上),将复合浆料涂覆在PE基膜的一表面上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层形成在PE基膜上,即可得到双层涂覆锂离子电池隔膜,所述的锂离子电池隔膜的厚度为14μm,功能层的厚度为2μm,标记该批隔膜为F1。
对比例3-2
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE基膜,经过功率2.5kW的电晕预处理使其表面改性,采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与PE基膜进行接触,即可将复合浆料涂到基膜的改性表面上),将复合浆料涂覆在PE基膜的一改性表面上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层形成在 PE基膜上,即可得到双层涂覆锂离子电池隔膜,所述的锂离子电池隔膜的厚度为14μm,功能层厚度为2μm,标记该批隔膜为F2。
对比例3-3
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um PE基膜并速度5m/min通过含有LiAlSi 2O 6的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使LiAlSi 2O 6颗粒镶嵌于PE基膜的表面成为LiAlSi 2O 6颗粒层。
3.将烘干后的改性膜,采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与具有LiAlSi 2O 6颗粒层的PE基膜进行接触,即可将复合浆料涂到PE基膜的LiAlSi 2O 6颗粒层上),将复合浆料涂覆在PE基膜一侧的LiAlSi 2O 6颗粒层上,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后干燥之后使功能层形成在PE基膜的LiAlSi 2O 6颗粒层上,即可得到双层涂覆锂离子电池隔膜,所述的锂离子电池隔膜的厚度为14μm,功能层厚度为2μm,标记该批隔膜为F3。
对比例4
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与12um PE基膜进行接触,即可将复合浆料涂到PE基膜上),将复合浆料涂覆在PE基膜的二表面上,涂布速度为30m/min,采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后使功能层形成在PE基膜上,即可得到双层涂覆锂离子电池隔膜,所述的锂离子电池隔膜的厚度为16μm,单侧功能层厚度为2μm,标记该批隔膜为G1。
对比例5
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状PVDF溶液。
2.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将胶状PVDF溶液通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与12um PE基膜进行接触,即可将胶状PVDF溶液涂到PE基膜上),将胶状PVDF浆料涂覆在PE基膜的二表面上,涂布速度为30m/min,采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃, 55℃,干燥之后使功能层形成在PE基膜上,即可得到双层涂覆锂离子电池隔膜,所述的锂离子电池隔膜的厚度为16μm,单侧功能层厚度为2μm,标记该批隔膜为H。
采用本领域技术人员知悉的电池常规制备方法(包括将正极、隔膜和负极依次层迭或卷绕成极芯,然后往所述极芯中注入电解液并封口,然后搁置、化成、容检等工序)来制造电池,跟踪并标记导入A、B、C、D1~D4、E1~E4、F1~F3、G、H批隔膜的电池。
根据前述性能参数测定方法对实施例1~3,对比例1-1~1-4、2-1~2-4、3-1~3-3、4、5中的隔膜进行测试,并记录结果如表1。
从A、B、C、D1~D4、E1~E4、F1~F3、G、H批隔膜的电池中每批挑选5只电池(分别标记为A.1~A.5、B.1~B.5、C.1~C.5、D1.1~D1.5、、D2.1~D2.5、D3.1~D3.5、D4.1~D4.5、E1.1~E1.5、E2.1~E2.5、E3.1~E3.5、E4.1~E4.5、F1.1~F1.5、F2.1~F2.5、F3.1~F3.5、G.1~G.5、H.1~H.5)做内阻及循环性能测试,并记录结果如表2。
表1、隔膜性能测试
Figure PCTCN2022088047-appb-000001
Figure PCTCN2022088047-appb-000002
表2、隔膜对应的电池性能测试
Figure PCTCN2022088047-appb-000003
Figure PCTCN2022088047-appb-000004
Figure PCTCN2022088047-appb-000005
Figure PCTCN2022088047-appb-000006
结合表1及表2,由实施例1、实施例2与实施例3以及由对比例3-1、对比例4与对比例5的对比中可以看出,涂覆功能层后,热收缩率大幅减小,表现出优异的热稳定性和粘接性能,可以使隔膜与极片复合后位置更加稳固,相应电池的安全性能大大增加。
结合表1及表2,由实施例1、实施例2、实施例3与对比例3-1、对比例4、对比例5依次对比中可以看出,经过本申请的改性基膜可使浸润性明显有所改善,离子电导率大幅提升,相应电池的内阻大幅减小,循环性能得到明显的提升。
此外,更进一步地由实施例1与对比例1-1~1-4、3-1~3-3可以看出,基膜主体经电晕预处理但未通过含锂导离子化合物的饱和水溶液水箱会导致隔膜的TD浸润距离增加0.7cm,MD浸润距离增加0.7cm,离子导电率增加0.13x10 -3S/cm(比较对比例3-1与3-2);基膜主体未经电晕预处理但通过含锂导离子化合物的饱和水溶液水箱会导致隔膜的TD浸润距离增加0.1cm,MD浸润距离增加0.2cm,离子导电率增加0.22x10 -3S/cm(比较对比例3-1与3-3);基膜主体经电晕预处理并通过含锂导离子化合物的饱和水溶液水箱会导致隔膜的TD浸润距离增加1.9cm,MD浸润距离增加2.2cm,离子导电率增加2.73x10 -3S/cm(比较实施例1与对比例3-1)。由此可知,基膜主体经电晕预处理并通过含锂导离子化合物的饱和水溶液水箱理论上会导致隔膜的TD浸润距离增加0.9cm(即0.7cm+0.2cm),MD浸润距离增加0.9cm(即0.7cm+0.2cm),离子导电率增加0.69x10 -3S/cm(即0.18x10 -3S/cm+0.51x10 -3S/cm)。 然而,经与实施例1比较后可知,理论上增加的TD浸润距离0.9cm远不及于实际上增加的1.9cm,理论上增加的MD浸润距离0.9cm远不及于实际上增加的2.2cm,理论上增加的离子导电率0.69x10 -3S/cm远不及于实际上增加的2.73x10 -3S/cm。这表示本申请透过将基膜主体的电晕预处理与通过含锂导离子化合物的饱和水溶液水箱的结合以对隔膜的高离子导电率及高浸润性等产生协同效应。
基膜主体经不同功率电晕预处理并通过含锂导离子化合物的饱和水溶液水箱会导致隔膜的浸润距离和离子电导率有不同程度增加,电晕的最佳功率为1.5~3.5kW,过高过低的功率都会导致浸润性和离子电导率增加不及预期(比较实施例1、对比例1-1~1-4)。基膜主体经电晕预处理并以不同速度通过含锂导离子化合物的饱和水溶液水箱会导致隔膜的浸润距离和离子电导率有不同程度增加,通过水箱的最佳速度为3~8m/min(比较实施例1、对比例2-1~2-4)。
不同的电晕功率对后续的涂布效果有影响,电晕功率过低(小于1.5kW),对基膜的表面改性不明显,无法较好的使LiAlSi 2O 6颗粒镶嵌于PE基膜的表面成为LiAlSi 2O 6颗粒层,而电晕功率过高(大于3.5kW),会对基膜造成损伤,使后续涂布出现漏涂,影响涂布膜性能,甚至不及不进行电晕的测试数据(比较对比例1-4和对比例3-1)。同时,经过水箱的速度也对最终膜性能产生影响,速度过快,经过含锂导离子化合物的饱和水溶液水箱时间不够,LiAlSi 2O 6颗粒镶嵌较少,速度过慢,LiAlSi 2O 6颗粒镶嵌层较厚,对涂布膜离子电导率稍有影响。
因此,本申请隔膜有优异的理化性能、热学性能及电化学性能,具有极高的产业利用价值。
以上涉及到公知常识的内容不作详细描述,本领域的技术人员能够理解。
以上所述仅为本申请的一些具体实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
工业实用性
本申请提供了一种锂电池隔板,包括改性多孔基膜和设置在所述改性多孔基膜至少一表面的功能层;所述改性多孔基膜包含基膜主体和锂导离子化合物颗粒层,所述基膜主体的至少一表面为经过电晕预处理改性过的,所述锂导离子化合物颗粒层设置在基膜主体的经过电晕预处理改性过的至少一表面;所述功能层含有有机物且设置在锂导离子化合物颗粒层。本发明本申请尚还公开提供了通过sol-gel-水热法制备含锂导离子化合物,将含锂导离子化合物的小粒径颗粒嵌于基膜主体的改性表面,从而解决现有隔膜离子电导率差、浸 润性较差的缺点,同时涂覆的功能层使得锂电池隔板具有良好的粘接性和耐热性。
此外,可以理解的是,本申请的锂电池隔板是可以重现的,并且可以用在多种工业应用中。例如,本申请的锂电池隔板可以用于锂离子电池相关的技术领域。

Claims (14)

  1. 一种锂电池隔板,其特征在于:
    包括改性多孔基膜和设置在所述改性多孔基膜至少一表面的功能层;所述改性多孔基膜包含基膜主体和锂导离子化合物颗粒层,所述基膜主体的至少一表面为经过电晕预处理改性过的,所述锂导离子化合物颗粒层设置在基膜主体的经过电晕预处理改性过的至少一表面;所述功能层含有有机物且设置在锂导离子化合物颗粒层;
    所述锂电池隔板是通过如下步骤制备的:
    S1、将多孔基膜主体经过电晕预处理使其表面改性后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,使锂导离子化合物颗粒镶嵌于基膜主体的改性表面形成锂导离子化合物颗粒层,藉此取得改性多孔基膜;
    S2、将有机物与有机溶剂按比例机械搅拌混合溶解后得到浆料;
    S3、将所述浆料涂覆在所述改性多孔基膜的至少一侧表面上,使形成功能层在改性多孔基膜的锂导离子化合物颗粒层上。
  2. 根据权利要求1所述的锂电池隔板,其特征在于:所述基膜主体的厚度为10μm至15μm,以及,所述基膜主体为PE基膜。
  3. 根据权利要求1或2所述的锂电池隔板,其特征在于:所述改性多孔基膜的厚度为5μm至25μm。
  4. 根据权利要求1至3中的任一项所述的锂电池隔板,其特征在于:所述功能层的厚度为1μm至4μm。
  5. 根据权利要求1至4中的任一项所述的锂电池隔板,其特征在于:所述锂电池隔板的TD热收缩为0.1%至0.7%,MD热收缩为0.1%至0.5%,界面粘接为15N/m至25N/m,TD润湿距离为3.0cm至5.5cm,MD润湿距离为3.5cm至6.0cm,离子导电率为2.0×10 -3s/cm至4.0×10 -3s/cm。
  6. 根据权利要求5所述的锂电池隔板,其特征在于:所述通过含锂导离子化合物的饱和水溶液水箱的速度为3m/min至8m/min,所述电晕预处理的功率为1.5kW至3.5kW。
  7. 根据权利要求1至6中的任一项所述的锂电池隔板,其特征在于:所述锂导离子化合物包括LiAlSi 2O 6、Li 2FeSiO 4、或LiFePO 4
  8. 根据权利要求1至7中的任一项所述的锂电池隔板,其特征在于:所述锂导离子化合物颗粒的粒径为5nm至20nm或者10nm至20nm。
  9. 根据权利要求1至8中的任一项所述的锂电池隔板,其特征在于:所述功能层更含有无机物;在所述功能层中,有机物的重量份为5份至80份,无机物的重量份为3份至40份。
  10. 根据权利要求9所述的锂电池隔板,其特征在于:所述得到浆料更包含将无机物与有机溶剂按比例机械搅拌混合均匀后,将溶解完全的有机物溶液与混合均匀的无机物溶液机械搅拌混合而得到浆料;在所述浆料中,有机物的重量份为5份至80份,有机溶剂的重量份为50至100份,无机物的重量份为3份至40份。
  11. 根据权利要求1至10中的任一项所述的锂电池隔板,其特征在于:在所述浆料中,有机物的重量份为5份至80份,有机溶剂的重量份为50至100份。
  12. 根据权利要求1至11中的任一项所述的锂电池隔板,其特征在于:所述有机溶剂包含N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAC)、丙酮、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)中的一种或多种的组合。
  13. 根据权利要求1至12中的任一项所述的锂电池隔板,其特征在于:所述有机物为聚偏氟乙烯,分子量为10至100万;在所述浆料中,聚偏氟乙烯的固含量为5wt%至20wt%。
  14. 根据权利要求9所述的锂电池隔板,其特征在于:所述无机物包括三氧化铝、勃姆石、二氧化硅、二氧化钛、硫酸钡、碳酸钙、或氧化钙。
PCT/CN2022/088047 2021-07-20 2022-04-21 一种锂电池隔板 WO2023000734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110818105.8 2021-07-20
CN202110818105.8A CN113540693A (zh) 2021-07-20 2021-07-20 一种锂电池隔板

Publications (1)

Publication Number Publication Date
WO2023000734A1 true WO2023000734A1 (zh) 2023-01-26

Family

ID=78100388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088047 WO2023000734A1 (zh) 2021-07-20 2022-04-21 一种锂电池隔板

Country Status (2)

Country Link
CN (1) CN113540693A (zh)
WO (1) WO2023000734A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540693A (zh) * 2021-07-20 2021-10-22 无锡恩捷新材料科技有限公司 一种锂电池隔板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977394A (zh) * 2012-12-14 2013-03-20 中国科学院上海硅酸盐研究所 多孔无机涂层/聚烯烃微孔隔膜的复合隔膜及其制备方法
CN109950451A (zh) * 2017-12-21 2019-06-28 宁德时代新能源科技股份有限公司 一种隔离膜,其制备方法及含有该隔离膜的电化学装置
CN111477820A (zh) * 2020-05-16 2020-07-31 深圳市劢全新材料科技有限责任公司 一种芳香族聚酯lcp复合隔膜及包含其的锂电池
CN111653712A (zh) * 2020-05-21 2020-09-11 上海恩捷新材料科技有限公司 一种电化学装置隔离膜及其制备方法
WO2020230825A1 (ja) * 2019-05-13 2020-11-19 旭化成株式会社 蓄電デバイス用セパレータ及び蓄電デバイス
CN113540693A (zh) * 2021-07-20 2021-10-22 无锡恩捷新材料科技有限公司 一种锂电池隔板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427130B2 (ja) * 1993-12-17 2003-07-14 藤森工業株式会社 偏光板又は位相差板貼付用粘着剤層の積層方法
DE19850826A1 (de) * 1998-11-04 2000-05-11 Basf Ag Als Separatoren in elektrochemischen Zellen geeignete Verbundkörper
CN105552284B (zh) * 2015-12-22 2018-11-06 沧州明珠隔膜科技有限公司 一种复合涂层锂离子电池隔膜及其制备方法
CN108878733B (zh) * 2017-05-11 2020-03-10 上海恩捷新材料科技股份有限公司 一种电化学装置隔离膜涂层及其制备方法和用途
CN109638202A (zh) * 2018-11-22 2019-04-16 溧阳天目先导电池材料科技有限公司 一种离子电子导体复合膜及其制备方法和锂电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102977394A (zh) * 2012-12-14 2013-03-20 中国科学院上海硅酸盐研究所 多孔无机涂层/聚烯烃微孔隔膜的复合隔膜及其制备方法
CN109950451A (zh) * 2017-12-21 2019-06-28 宁德时代新能源科技股份有限公司 一种隔离膜,其制备方法及含有该隔离膜的电化学装置
WO2020230825A1 (ja) * 2019-05-13 2020-11-19 旭化成株式会社 蓄電デバイス用セパレータ及び蓄電デバイス
CN111477820A (zh) * 2020-05-16 2020-07-31 深圳市劢全新材料科技有限责任公司 一种芳香族聚酯lcp复合隔膜及包含其的锂电池
CN111653712A (zh) * 2020-05-21 2020-09-11 上海恩捷新材料科技有限公司 一种电化学装置隔离膜及其制备方法
CN113540693A (zh) * 2021-07-20 2021-10-22 无锡恩捷新材料科技有限公司 一种锂电池隔板

Also Published As

Publication number Publication date
CN113540693A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2021232904A1 (zh) 一种电化学装置隔离膜及其制备方法
CN110581311B (zh) 一种复合固态电解质膜及其制备方法、固态电池
CN106887556B (zh) 一种有机无机复合改性隔膜及其制备方法和应用
US9401505B2 (en) Separator including coating layer of inorganic and organic mixture, and battery including the same
CN110071293B (zh) 电芯和电池、保液涂料和电池极片及其制备方法
CN105470515B (zh) 一种安全型锂离子动力电池正极及含有该正极的锂离子电池
CN111430788A (zh) 一种复合固态电解质膜、制备方法及固态锂电池
CN106654365A (zh) 基于固态聚合物电解质的复合凝胶聚合物电解质及其制备方法与应用
Yang et al. Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries
CN111725468B (zh) 一种二氧化硅无机纳米粒子增强聚烯烃隔膜及其应用
KR20160024776A (ko) 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN106803561B (zh) 一种功能化改性隔膜及其制备方法和应用
Zhao et al. Preparation of gel polymer electrolyte with high lithium ion transference number using GO as filler and application in lithium battery
Singh et al. Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application
CN108933277B (zh) 一种锂离子二次电池
WO2023000734A1 (zh) 一种锂电池隔板
CN109428038A (zh) 一种电池隔膜及其制备方法和锂离子电池
JP2024056010A (ja) セパレータ、それを含む二次電池および装置
Jin et al. High safety and long-life lithium batteries with low leakage and high wettability ceramic-polymer electrolyte
TWI620370B (zh) 全固態電池、固態電解質薄膜及製造方法
WO2023088133A1 (zh) 正极补锂添加剂及其制备方法与应用
CN114665146A (zh) 电化学装置、电子装置和制备负极极片的方法
Wang et al. Preparation of monodispersed ZrO2 nanoparticles and their applications in poly [(vinylidene fluoride)‐co‐hexafluoropropylene]‐based composite polymer electrolytes
CN114583094A (zh) 一种能够提高低温性能的锂离子电池及其制备方法
CN110783516A (zh) 锂离子电池隔膜、锂离子电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE