WO2021232904A1 - 一种电化学装置隔离膜及其制备方法 - Google Patents

一种电化学装置隔离膜及其制备方法 Download PDF

Info

Publication number
WO2021232904A1
WO2021232904A1 PCT/CN2021/080286 CN2021080286W WO2021232904A1 WO 2021232904 A1 WO2021232904 A1 WO 2021232904A1 CN 2021080286 W CN2021080286 W CN 2021080286W WO 2021232904 A1 WO2021232904 A1 WO 2021232904A1
Authority
WO
WIPO (PCT)
Prior art keywords
base film
lithium
porous base
electrochemical device
organic
Prior art date
Application number
PCT/CN2021/080286
Other languages
English (en)
French (fr)
Inventor
程跃
陈永乐
史新宇
胡君
虞少波
Original Assignee
上海恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技有限公司 filed Critical 上海恩捷新材料科技有限公司
Priority to US17/926,345 priority Critical patent/US20230187781A1/en
Priority to EP21807985.3A priority patent/EP4156399A1/en
Priority to JP2022571259A priority patent/JP2023526525A/ja
Priority to KR1020227041432A priority patent/KR20230005911A/ko
Publication of WO2021232904A1 publication Critical patent/WO2021232904A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to an electrochemical device isolation membrane and a preparation method thereof.
  • lithium-ion battery As a new kind of secondary clean and renewable energy, lithium-ion battery has the advantages of high working voltage, light weight and high energy density. It has been widely used in power tools, digital cameras, mobile phones, notebook computers and other fields. , And shows a strong development trend.
  • the separator is used to isolate the positive and negative electrodes of the battery to prevent the positive and negative electrodes from directly contacting and short-circuiting. At the same time, it is required to have good lithium ion permeability and shut down when the battery temperature is too high. Ion channels to ensure battery safety. Therefore, the separator plays a vital role in the safety of lithium-ion batteries.
  • Lithium ion conductors have the characteristics of high conductivity, low activation energy and the most negative electrode potential. Many researches include layered Li 3 N, framework Lisicon (Li 14 ZnGeO 4 ), and LiTi 2 P 3 O 12 based solid solutions. However, inorganic lithium ion conductors have no practical value due to their different electrical conductivity, low decomposition voltage, and inability to resist metal lithium corrosion.
  • organic lithium ion conductors such as complexes of polymers (such as polyoxyethylene) and alkali metal salts (such as LiCF 3 SO 3 ), although the conductivity is lower than that of inorganic lithium ion conductors, they are easy to process into thin films and make up for The lack of electrical conductivity and good viscoelasticity have been widely used as a separator material for high-energy lithium batteries for the manufacture of high-energy, large-capacity batteries and high-temperature fuel cells.
  • polymers such as polyoxyethylene
  • alkali metal salts such as LiCF 3 SO 3
  • the separators that are widely used in lithium batteries are mainly polyolefin-based melt-stretched separators.
  • the shut-off effect of these materials contributes to the improvement of safety when the battery heats up.
  • traditional commercial PE/PP diaphragms have poor wettability to electrolyte, poor liquid retention, low ion conductivity, and severe thermal shrinkage. These problems will affect battery processing, cycle and rate performance, and safety at high temperatures.
  • ceramic slurry By coating the polymer diaphragm with ceramic slurry to improve the heat resistance and mechanical properties of the diaphragm, and to improve the safety of the diaphragm, there have been extensive applications and researches.
  • there is no mention of improving the permeability of lithium ions by modifying the base film. Therefore, there is a need in the art for an electrochemical device isolation film that can not only improve battery safety, but also has better ion conductivity.
  • the present invention expects to provide an electrochemical device isolation membrane and a preparation method thereof, which can solve the disadvantages of poor ion conductivity and poor wettability of existing membranes, and at the same time make the isolation membrane have good adhesion and heat resistance. .
  • the present invention provides an electrochemical device isolation membrane, comprising a modified porous base membrane and a functional layer provided on at least one side surface of the modified porous base membrane; the functional layer contains a slurry of organic and inorganic compounds;
  • the modified porous base film contains particles containing lithium ion conducting compounds.
  • the lithium ion conductive compound includes LiAlSi 2 O 6 , Li 2 FeSiO 4 , and LiFePO 4 .
  • the particle size of the lithium-containing ion conducting compound is 5-20 nm.
  • the particle size of the lithium-containing ion conducting compound is 10-20 nm.
  • the raw material composition mass parts are: 5 parts to 80 parts of organic polymers, 3 parts to 40 parts of inorganics, and 50 parts to 100 parts of organic solvents.
  • the organic polymer is polyvinylidene fluoride with a molecular weight of 100,000 to 1 million; in the slurry containing organic and inorganic compounds, the solid content of the polyvinylidene fluoride is 5-20 wt% .
  • the inorganic substance includes alumina trioxide, boehmite, silica, titanium dioxide, barium sulfate, calcium carbonate, and calcium oxide.
  • the organic solvent is selected from N-methylpyrrolidone (NMP), dimethylacetamide (DMAC), acetone, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO) ) In one or more combinations.
  • NMP N-methylpyrrolidone
  • DMAC dimethylacetamide
  • DMF N,N-dimethylformamide
  • DMSO dimethylsulfoxide
  • the present invention also provides a method for preparing the above-mentioned modified porous base film by the sol-gel-hydrothermal method, which is specifically: after the unmodified porous base film is subjected to corona pretreatment, pass the lithium-containing conductive ion compound After passing the water, the saturated aqueous solution tank is dried in an oven, and the modified porous base film containing lithium-containing ion conducting compound particles is obtained after drying.
  • the speed of passing through the saturated aqueous solution water tank containing the lithium conductive compound is 5 m/min.
  • the present invention also provides a method for preparing the isolation membrane of the electrochemical device, the method includes the following steps:
  • the unmodified porous base film After the unmodified porous base film is subjected to corona pretreatment, it is passed through a water tank containing a saturated aqueous solution of a lithium conductive compound, and after the water is passed through an oven for drying treatment, the modified porous base film is obtained after drying;
  • the organic matter is polymerized and the organic solvent is mechanically stirred and mixed in proportion to dissolve, the inorganic matter and the organic solvent are mechanically stirred and mixed uniformly in proportion, and the completely dissolved organic solution is mechanically stirred and mixed with the well-mixed inorganic matter to obtain the slurry;
  • the present invention provides an electrochemical device isolation membrane and a preparation method thereof.
  • the lithium-containing ion-conducting compound is produced by the sol-gel-hydrothermal method, and small particles of the lithium-containing ion-conducting compound are embedded in the base film of the isolation membrane. , Thereby greatly improving the ionic conductivity of the diaphragm, greatly reducing the internal resistance of the electrochemical device using the diaphragm, greatly improving its cycle performance, and the diaphragm exhibiting excellent electrochemical performance;
  • the present invention provides an electrochemical device isolation membrane and a preparation method thereof. After the base membrane is modified, the wettability is also significantly improved, and the membrane exhibits excellent physical and chemical properties;
  • the present invention provides an electrochemical device isolation membrane and a preparation method thereof, by coating a slurry containing organic and inorganic compounds on one or both sides of a modified base membrane, thereby reducing the separation of the membrane.
  • the heat shrinkage rate enhances the cohesiveness and improves the shortcomings of poor wettability of the diaphragm.
  • the diaphragm exhibits excellent thermal and physical and chemical properties.
  • Figure 1 is a method for preparing the battery isolation membrane structure provided by the present invention
  • FIG. 2 is a schematic diagram of the structure of an electrochemical device isolation membrane in some embodiments of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the isolation membrane of the electrochemical device in other embodiments of the present invention.
  • the present invention provides an electrochemical device isolation membrane, comprising a modified porous base film 100 and a functional layer 101 provided on at least one side surface of the modified porous base film 100; the functional layer 101 contains a slurry of organic and inorganic compounds. Material; The modified porous base film 100 contains particles containing lithium ion conducting compounds.
  • the lithium ion conductive compound includes LiAlSi 2 O 6 , Li 2 FeSiO 4 , and LiFePO 4 .
  • the particle size of the lithium-containing conductive compound is 5-20 nm.
  • the particle size of the lithium-containing conductive compound is 10-20 nm.
  • the present invention also provides a slurry for preparing a functional layer of a lithium ion battery diaphragm, in parts by weight, comprising the following components:
  • the organic polymer is polyvinylidene fluoride with a molecular weight of 100,000 to 1 million; and a solid content of 5-20 wt%.
  • the inorganic substance includes alumina trioxide, boehmite, silica, titanium dioxide, barium sulfate, calcium carbonate, and calcium oxide.
  • the organic solvent is selected from one or a combination of NMP, DMAC, acetone, DMF, and DMSO.
  • the base film is a PE base film
  • the PE base film may be various base films suitable for preparing lithium ion battery separators in the field, for example, a linear low-density polyethylene base film is usually .
  • the thickness of the base film is 5-25 ⁇ m, and the thickness of the functional layer is 1-4 ⁇ m.
  • the present invention also provides a method for preparing lithium fast ion nanoconductors by sol-gel-hydrothermal method and modifying the above-mentioned porous base film.
  • the specific implementation method is: the unmodified porous base film is subjected to corona pretreatment. After the treatment, it is immersed in a solution containing nano-lithium conductive ions, and after the solution completely infiltrates the base film, the base film is dried in an oven to obtain a modified base film 100 with a small particle size lithium ion conductive compound embedded.
  • the speed of passing through the saturated aqueous solution water tank of the lithium-containing conductive compound (that is, the speed of completely infiltrating and then leaving) is 5 m/min.
  • the present invention also provides a method for preparing the isolation membrane of the electrochemical device, the method includes the following steps:
  • the unmodified porous base film After the unmodified porous base film is subjected to corona pretreatment, it is passed through a water tank containing a saturated aqueous solution of a lithium conductive compound, and after the water is passed through an oven for drying treatment, the modified porous base film 100 is obtained after drying;
  • the organic matter is polymerized and the organic solvent is mechanically stirred and mixed in proportion to dissolve, the inorganic matter and the organic solvent are mechanically stirred and mixed uniformly in proportion, and the completely dissolved organic solution is mechanically stirred and mixed with the well-mixed inorganic matter to obtain the slurry;
  • the slurry is coated on one side of the base film.
  • the slurry is coated on both sides of the base film.
  • the coating is obtained by coating the slurry, passing water, and drying.
  • the water-passing step is a method in which the coating film is coated and passed through a water tank, and the water in the water tank is allowed to extract the solvent in the slurry, and then the slurry will solidify on the base film to form a coating.
  • the drying temperature is 50-60°C.
  • the invention also provides a lithium ion battery diaphragm prepared by the above method.
  • the present invention also provides a lithium ion battery, which includes a positive electrode, a negative electrode, an electrolyte, and a separator, wherein the separator is the separator for the electrochemical device of the present invention.
  • the electrolyte is well known to those skilled in the art, and it is usually composed of electrolyte lithium salt and organic solvent.
  • the electrolyte lithium salt adopts a dissociable lithium salt, for example, it can be selected from at least one of lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), etc.
  • organic solvents Can be selected from ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC), vinylene carbonate (VC), etc. At least one of.
  • the positive electrode is prepared by preparing a slurry of a positive electrode material for a lithium ion battery, a conductive agent, and a binder, and coating it on an aluminum foil.
  • the positive electrode material used includes any positive electrode material that can be used in lithium ion batteries, for example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium iron phosphate (LiFePO 4 ) At least one of.
  • the negative electrode is prepared by preparing a slurry of negative electrode materials for lithium ion batteries, conductive agents and binders and coating them on copper foil.
  • the negative electrode material used includes any negative electrode material that can be used in lithium ion batteries, for example, at least one of graphite, soft carbon, hard carbon, and the like.
  • the main improvement of the lithium ion battery provided by the present invention lies in the adoption of a new lithium ion battery separator, and the arrangement (connection method) of the positive electrode, the negative electrode, the battery separator and the electrolyte can be the same as the prior art. Those skilled in the art can know this, and will not be repeated here.
  • the method for preparing a lithium ion battery provided by the present invention includes stacking or winding a positive electrode, a separator, and a negative electrode into a pole core in sequence, and then injecting electrolyte into the pole core and sealing, wherein the separator is an electrochemical device of the present invention Isolation film.
  • LiAlSi 2 O 6 is strongly dispersed into gel by Al(ClO 4 ) 3 , Si(OC 2 H 5 ) 4 , C 2 H 5 OH, LiOH, etc., then hydrothermally reacts at 120°C to form a gel, and is ground after drying Tableting and solid-phase reaction at high temperature to obtain nano-inorganic powder;
  • Li 2 FeSiO 4 is dissolved by CH 3 COOLi ⁇ 2H 2 O, C 6 H 5 FeO 7 ⁇ 5H 2 O, (C 2 H 5 O) 4 Si, C 6 H 8 O 7 ⁇ H 2 O at 80°C Stir and reflux to obtain a gel, after drying, grinding and tableting, and solid-phase reaction at high temperature to obtain a powder.
  • PVDF Polyvinylidene fluoride
  • Alumina the appearance is white powder
  • Dimethylacetamide (DMAC), a colorless transparent liquid, low toxicity, flammable, can be mixed with organic solvents such as water, alcohol, ether, ester, benzene, chloroform and aromatic compounds.
  • the above raw materials can be purchased from the open market or prepared by prior art methods.
  • the performance parameters are determined according to the following methods:
  • Diaphragm heat shrinkage test Take a diaphragm with a complete film surface and no abnormal appearance, cut it into a 100*100mm square, mark the surroundings, put it in an oven and bake at 120°C for 2h, take out the diaphragm, and measure The length of the mark in the MD/TD direction of the separator changes after baking.
  • Lithium-ion battery internal resistance test AC voltage drop internal resistance measurement method, because the battery is actually equivalent to an active resistance, so a fixed frequency and a fixed current are applied to the battery (currently 1KHZ frequency, 50mA small current is generally used ), and then sample its voltage. After a series of processing such as rectification and filtering, the internal resistance of the battery is calculated through the operational amplifier circuit.
  • the specific method of coating using the gravure roll method is: pump the composite slurry onto the gravure roll, and then rotate the gravure roll to bring the material to the gravure roll, and then change it
  • the composite slurry can be applied to the modified base film 100 by contacting the flexible base film 100), and the composite slurry can be coated on one side of the modified base film 100 at a coating speed of 30m/min.
  • a three-stage oven is used for drying. The temperature of each oven is 50°C, 60°C, and 55°C. After drying, a double-layer coated lithium-ion battery separator can be obtained (as shown in Figure 3).
  • the coated lithium-ion battery The thickness of the diaphragm is 14 ⁇ m, and the thickness of the coating layer is 2 ⁇ m. Mark this batch of diaphragms as A.
  • the specific method of coating using the gravure roll method is: pump the composite slurry onto the gravure roll, and then rotate the gravure roll to bring the material to the gravure roll, and then change it
  • the composite slurry can be applied to the modified base film 100 by contacting the flexible base film 100), and the composite slurry can be coated on both sides of the modified base film 100 at a coating speed of 30m/min and a three-level Drying in an oven, each oven temperature is 50°C, 60°C, 55°C, after drying, a three-layer coated lithium ion battery separator can be obtained (as shown in Figure 2), the thickness of the coated lithium ion battery separator It is 16 ⁇ m, and the thickness of the coating on both sides is 2 ⁇ m. Mark this batch of separators as B.
  • the specific method of coating using the gravure roll method is: pump the colloidal PVDF solution onto the gravure roll, and then rotate the gravure roll to bring the material to the gravure roll, and then mix it with
  • the colloidal PVDF solution can be applied to the modified base film 100
  • the colloidal PVDF slurry can be coated on both sides of the modified base film 100 at a coating speed of 30m/min .
  • the temperature of each oven is 50°C, 60°C, 55°C
  • a three-layer coated lithium ion battery separator can be obtained (as shown in Figure 2), the coated lithium ion
  • the thickness of the battery separator is 16 ⁇ m, and the thickness of the coating on both sides is 2 ⁇ m. Mark this batch of separators as C.
  • Adopt the gravure roller coating method (the specific method of coating by the gravure roller method is: pump the composite slurry onto the gravure roller, and then rotate the gravure roller to bring the material to the gravure roller, and then with the base When the film is in contact, the composite slurry can be coated on the base film), and the composite slurry is coated on one side of the base film at a coating speed of 30m/min. After passing the water, a three-stage oven is used for drying. The temperature of the secondary oven is 50°C, 60°C, 55°C. After drying, a double-layer coated lithium ion battery separator can be obtained. The thickness of the coated lithium ion battery separator is 14 ⁇ m and the coating thickness is 2 ⁇ m. Batch diaphragm is D.
  • Adopt the gravure roller coating method (the specific method of coating by the gravure roller method is: pump the composite slurry onto the gravure roller, and then rotate the gravure roller to bring the material to the gravure roller, and then with the base
  • the composite slurry can be coated on the base film
  • the composite slurry is coated on both sides of the base film
  • the coating speed is 30m/min
  • the three-stage oven is used for drying.
  • Respectively 50 °C, 60 °C, 55 °C, after drying, a double-layer coated lithium ion battery separator can be obtained.
  • the thickness of the coated lithium ion battery separator is 16 ⁇ m, and the thickness of the coating on both sides is 2 ⁇ m. Mark this batch
  • the diaphragm is E.
  • Adopt the gravure roll coating method (the specific method of coating using the gravure roll method is: pump the colloidal PVDF solution onto the gravure roll, and then rotate the gravure roll to bring the material to the gravure roll, and then mix it with
  • the colloidal PVDF solution can be applied to the base film
  • the colloidal PVDF slurry is coated on both sides of the base film at a coating speed of 30m/min, and a three-stage oven is used for drying.
  • the temperature of each oven is 50°C, 60°C, 55°C.
  • a double-layer coated lithium ion battery separator can be obtained.
  • the thickness of the coated lithium ion battery separator is 16 ⁇ m, and the thickness of the coating on both sides is 2 ⁇ m. , Mark this batch of diaphragms as F.
  • the separator of the present invention has excellent physical and chemical properties, thermal properties and electrochemical properties, and has extremely high industrial value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种电化学装置隔离膜,包括改性多孔基膜和设置在改性多孔基膜至少一侧表面的功能层;所述功能层含有机物和无机物复合物的浆料;所述改性多孔基膜中含有含锂导离子化合物的颗粒。本发明通过sol-gel-水热法制备含锂导离子化合物,将含锂导离子化合物的小粒径颗粒嵌于隔离膜基膜中,从而解决现有隔膜离子电导率差、浸润性较差的缺点,同时涂覆的功能层使得隔离膜具有良好的粘接性和耐热性。

Description

一种电化学装置隔离膜及其制备方法 技术领域
本发明涉及锂离子电池技术领域,具体涉及一种电化学装置隔离膜及其制备方法。
背景技术
锂离子电池作为一种新的二次清洁,且可再生能源,其具有工作电压高,质量轻,能量密度大等优点,在电动工具,数码相机,手机,笔记本电脑等领域得到了广泛的应用,并且显示出强大的发展趋势。
隔膜作为锂离子电池的关键组件之一,用于隔离电池的正负极,防止正负极直接接触而短路,同时要求具有良好的锂离子透过性,并且在电池工作时温度过高时关闭离子通道以保证电池安全。因此,隔膜在锂离子电池的安全方面,起着至关重要的作用。
锂离子导体具有高电导率、低活化能和电极电位最负等特点。研究得较多的有层状结构的Li 3N,骨架结构的Lisicon(Li 14ZnGeO 4)和以LiTi 2P 3O 12为基的固溶体等。但无机锂离子导体或因电导率不同、分解电压低、不耐金属锂腐蚀等,尚无实用价值。后来发现的聚合物(如聚氧乙烯)与碱金属盐(如LiCF 3SO 3)的络合物等有机锂离子导体,虽电导率比无机锂离子导体低,但易加工成薄膜,弥补了电导率的不足,且具有很好的黏弹性,已广泛用作高能锂电池的隔膜材料,用于制造高比能、大容量电池和高温燃料电池。
目前正广泛应用于锂电池中的隔膜主要为聚烯烃类融熔拉伸隔 膜,这些材料所拥有的关闭效应在电池发热时有助于安全性的提高。但是传统商用PE/PP隔膜对电解液的浸润性不好,保液性差,离子电导率较低,热收缩严重。这些问题会影响电池的加工,循环和倍率性能以及高温下的安全性。通过对聚合物隔膜进行陶瓷浆料涂布以提高隔膜的耐热性能和机械性能,提高隔膜的安全性已有广泛的应用和研究。但是通过改性基膜以提升对锂离子透过性的未有提及,因此,本领域需要一种既能提高电池安全性,同时有更好的离子电导率的电化学装置隔离膜。
发明内容
有鉴于此,本发明期望提供一种电化学装置隔离膜及其制备方法,解决现有隔膜离子电导率差、浸润性较差的缺点,同时使得隔离膜具有良好的粘接性和耐热性。
为达到上述目的,本发明的技术方案是这样实现的:
本发明提供一种电化学装置隔离膜,包括改性多孔基膜和设置在改性多孔基膜至少一侧表面的功能层;所述功能层含有机物和无机物复合物的浆料;所述改性多孔基膜中含有含锂导离子化合物的颗粒。
进一步地,所述锂导离子化合物包括LiAlSi 2O 6、Li 2FeSiO 4、LiFePO 4
进一步地,所述含锂导离子化合物的颗粒粒径为5-20nm。
更进一步地,所述含锂导离子化合物的颗粒粒径为10-20nm。
进一步地,所述含有机物和无机物复合物的浆料,其原料组成质量份数为:有机聚合物5份~80份,无机物3份~40份,有机溶剂 50~100份。
更进一步地,所述有机聚合物为聚偏氟乙烯,分子量为10-100万;所述含有机物和无机物复合物的浆料中,所述聚偏氟乙烯的固含量为5-20wt%。
更进一步地,所述无机物包括三氧化铝、勃姆石、二氧化硅、二氧化钛、硫酸钡、碳酸钙、氧化钙。
更进一步地,所述有机溶剂选自N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAC)、丙酮、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)中的一种或多种的组合。
本发明还提供了一种通过sol-gel-水热法来制备上述改性多孔基膜的方法,具体为:将未改性的多孔基膜经过电晕预处理后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,干燥之后得到含有含锂导离子化合物颗粒的所述改性多孔基膜。
进一步地,所述通过含锂导离子化合物的饱和水溶液水箱的速度为5m/min。
本发明还提供了一种制备上述电化学装置隔离膜的方法,该方法包括如下步骤:
S1、制备所述改性多孔基膜;
将未改性的多孔基膜经过电晕预处理后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,干燥之后即得到所述改性多孔基膜;
S2、制备所述含有机物和无机物复合物的浆料;
将有机物聚合与有机溶剂按比例机械搅拌混合溶解,将无机物与有机溶剂按比例机械搅拌混合均匀,将溶解完全的有机溶液与混合均匀无机物机械搅拌混合后得到所述浆料;
S3、将上述浆料涂覆在所述改性多孔基膜的至少一侧表面上,形成功能层。
本发明有益效果如下:
1)本发明提供一种电化学装置隔离膜及其制备方法,通过sol-gel-水热法制造含锂导离子化合物,将含锂导离子化合物的小粒径颗粒嵌于隔离膜基膜中,从而大幅提升了隔膜的离子电导率,大幅减小使用该隔膜的电化学装置的内阻,大幅提升了其循环性能,隔膜表现出优异的电化学性能;
2)本发明提供一种电化学装置隔离膜及其制备方法,通过改性基膜后,浸润性也明显有所改善,隔膜表现出优异的理化性能;
3)本发明提供一种电化学装置隔离膜及其制备方法,通过将含有机物和无机物复合物的浆料涂覆在改性基膜的一侧或两侧上,从而减小了隔膜的热收缩率,增强了粘结性,改善了隔膜浸润性较差的缺点,隔膜表现出优异的热学性能和理化性能。
附图说明
图1为本发明提供的电池隔离膜结构的制备方法;
图2为本发明一些实施方式中的电化学装置隔离膜结构示意图;
图3为本发明另一些实施方式中电化学装置隔离膜结构示意图。
元件标号说明
100       改性多孔基膜
101       功能层
S1~S3    步骤1~步骤3
具体实施方式
以下对本发明的具体实施方式结合附图进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明提供一种电化学装置隔离膜,包括改性多孔基膜100和设置在改性多孔基膜100至少一侧表面的功能层101;所述功能层101含有机物和无机物复合物的浆料;所述改性多孔基膜100中含有含锂导离子化合物的颗粒。
具体地,所述锂导离子化合物包括LiAlSi 2O 6、Li 2FeSiO 4、LiFePO 4
具体地,所述含锂导离子化合物的颗粒粒径为5-20nm。
优选的,所述含锂导离子化合物的颗粒粒径为10-20nm。
本发明还提供一种用于制备锂离子电池隔膜功能层的浆料,重量份计,包括如下组分:
有机聚合物5份~80份;
无机物3份~40份;
有机溶剂50~100份。
具体地,所述有机聚合物为聚偏氟乙烯,分子量为10-100万;固含量为5-20wt%。
优选的,所述无机物包括三氧化铝、勃姆石、二氧化硅、二氧化钛、硫酸钡、碳酸钙、氧化钙。
优选的,所述有机溶剂选自NMP、DMAC、丙酮、DMF、DMSO中的一种或多种的组合。
在本发明一些实施方式中,所述基膜为PE基膜,所述PE基膜可以为本领域各种适用于制备锂离子电池隔膜的基膜,例如,通常为线性低密度聚乙烯基膜。
在本发明一些实施方式中,所述基膜的厚度为5-25μm,所述功能层的厚度为1-4μm。
本发明还提供了一种通过sol-gel-水热法来制备锂快离子纳米导体,并改性上述多孔基膜的方法,具体实施方法为:将未改性的多孔基膜经过电晕预处理后,浸润在含有纳米锂导离子的溶液中,待溶液对基膜进行完全浸润后,经过烘箱进行烘干处理,得到嵌入小粒径锂的导离子化合物的改性基膜100。
具体地,所述通过含锂导离子化合物的饱和水溶液水箱的速度(即完全浸润再离开的速度)为5m/min。
本发明还提供了一种制备上述电化学装置隔离膜的方法,该方法包括如下步骤:
S1、制备所述改性多孔基膜100;
将未改性的多孔基膜经过电晕预处理后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,干燥之后即得到所述改性多孔基膜100;
S2、制备所述含有机物和无机物复合物的浆料;
将有机物聚合与有机溶剂按比例机械搅拌混合溶解,将无机物与有机溶剂按比例机械搅拌混合均匀,将溶解完全的有机溶液与混合均匀无机物机械搅拌混合后得到所述浆料;
S3、将上述浆料涂覆在所述改性多孔基膜的至少一侧表面上,形成功能层101。
在本发明一些实施方式中,将浆料涂布于基膜的一侧。
在本发明一些实施方式中,将浆料涂布于基膜的两侧。
在本发明一些实施方式中,将浆料涂布、过水、烘干即得所述涂层。所述过水的步骤是将涂布膜涂好之后进过水箱,让水箱中的水将浆料中的溶剂萃取出来,然后浆料就会固化在基膜上形成涂层的方法。
优选的,所述烘干温度为50-60℃。
本发明还提供了由上述方法制备得到的锂离子电池隔膜。
此外,本发明还提供了一种锂离子电池,所述锂离子电池包括正极、负极、电解质和隔膜,其中,所述隔膜为本发明电化学装置隔离膜。
所述电解液为本领域技术人员公知,其通常由电解液锂盐和有机 溶剂组成。其中,电解液锂盐采用可离解的锂盐,例如,可以选自六氟磷酸锂(LiPF 6)、高氯酸锂(LiClO 4)、四氟硼酸锂(LiBF 4)等中的至少一种,有机溶剂可以选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)、碳酸亚乙烯酯(VC)等中的至少一种。
所述正极是由用于锂离子电池的正极材料、导电剂和粘结剂调成浆料涂布于铝箔上制成。所用的正极材料包括任意可用于锂离子电池的正极材料,例如,氧化钴锂(LiCoO 2)、氧化镍锂(LiNiO 2)、氧化锰锂(LiMn 2O 4)、磷酸亚铁锂(LiFePO 4)等中的至少一种。
所述负极是由用于锂离子电池的负极材料、导电剂和粘结剂调成浆料涂布于铜箔上制成。所用负极材料包括任意可用于锂离子电池的负极材料,例如,石墨、软碳、硬碳等中的至少一种。
本发明提供的锂离子电池的主要改进之处在于采用了一种新的锂离子电池隔膜,而正极、负极、电池隔膜和电解液的排布方式(连接方式)可以与现有技术相同,对此本领域技术人员均能知悉,在此不作赘述。
本发明提供的锂离子电池的制备方法包括将正极、隔膜和负极依次层叠或卷绕成极芯,然后往所述极芯中注入电解液并封口,其中,所述隔膜为本发明电化学装置隔离膜。
其中,所述正极、负极和电解液的材质或组成已经在上文中有所描述,在此不作赘述。
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中,原料的物化参数如下:
LiAlSi 2O 6,通过Al(ClO 4) 3,Si(OC 2H 5) 4,C 2H 5OH,LiOH等经过强力分散成胶后,在120℃水热反应成凝胶,干燥后研磨压片并于高温下固相反应得到纳米无机粉体;
Li 2FeSiO 4,通过CH 3COOLi·2H 2O、C 6H 5FeO 7·5H 2O、(C 2H 5O) 4Si、C 6H 8O 7·H 2O在80℃溶解并搅拌回流得凝胶,干燥后研磨压片并于高温下固相反应得粉体。
聚偏氟乙烯(PVDF),外观为半透明或白色粉体或颗粒;
氧化铝,外观为白色粉体;
二甲基乙酰胺(DMAC),无色透明液体,低毒,可燃,能与水、醇、醚、酯、苯、三氯甲烷和芳香化合物等有机溶剂任意混合。
以上原料均可通过公开市场购买或通过现有技术方法制备。
在以下实施例和对比例中,性能参数按照如下方法测定:
(1)隔膜的热收缩测试:取膜面完整外观无异常的隔膜,切割为100*100mm的正方形,在四周做好标记后,放入烘箱在120℃条件下烘烤2h,取出隔膜,测量烘烤后隔膜的MD/TD方向标记的长度变化。
(2)隔膜界面粘接测试:取膜面完整外观无异常的隔膜,冲切成宽度为25mm,长度为100mm的样品,取两条冲切好的隔膜样品叠到一起,在热压机上以1MPa压力,温度100度,速度100mm/min的条件进行热压,并用拉力机测试两条粘结在一起隔膜的拉力(单位为N),粘结力=拉力/0.025(单位即为N/m)。
(3)隔膜润湿性能测试:取膜面完整外观无异常的隔膜,切割为100*100mm的正方形,将隔膜四周平整固定,中央悬空,取2μl电解液滴于隔膜中央,记录此时液滴在隔膜上沿MD/TD方向延展距离A,5min后,再次记录此时液滴在隔膜上沿MD/TD方向延展距离B,润湿距离=(B-A)/2。
(4)隔膜离子电导率测试:裁取4张直径φ50mm的圆形隔膜样品,置于电解液中,密封浸泡1h。将4张隔膜样品依次放入测试模具中,使用电化学工作站进行测量,读取阻值R1、R2、R3、R4。面电阻计算:以层数为横坐标,对应不同层数阻值为纵坐标作图,求出曲线的斜率A,试样面电阻值R=A·S,其中S为测试有效电极面积,测量隔膜的厚度D,而隔膜离子电导率=D/R。
(5)锂离子电池内阻测试:交流压降内阻测量法,因为电池实际上等效于一个有源电阻,因此给电池施加一个固定频率和固定电流(目前一般使用1KHZ频率,50mA小电流),然后对其电压进行采样,经过整流、滤波等一系列处理后通过运放电路计算出该电池的内阻值。
(6)锂离子电池的循环性能测试:将锂离子电池在室温下0.5C倍率充电,0.5C倍率放电,依次进行500个循环,利用公式计算其容量保持率;容量保持率=(500个循环后电池的容量/循环前电池的室温容量)×100%。
实施例1
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中 机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um的PE基膜,经过电晕预处理后,通过含有LiAlSi 2O 6的饱和水溶液水箱,速度为5m/min,过水之后经过烘箱进行烘干处理,干燥之后得到改性处理后的基膜100。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜100进行接触,即可将复合浆料涂到改性基膜100上),将复合浆料涂覆在改性基膜100的一侧,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后即可得到双层涂覆锂离子电池隔膜(如图3),所述涂覆的锂离子电池隔膜的厚度为14μm,涂层厚度为2μm,标记该批隔膜为A。
实施例2
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.取12um的PE基膜,经过电晕预处理后,通过含有LiAlSi 2O 6的饱和水溶液水箱,速度为5m/min,过水之后经过烘箱进行烘干处理,干燥之后得到改性处理后的基膜100。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜100进行接触,即可将复合浆料涂到改性 基膜100上),将复合浆料涂覆在改性基膜100的双侧,涂布速度为30m/min,采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后即可得到三层涂覆锂离子电池隔膜(如图2),所述涂覆的锂离子电池隔膜的厚度为16μm,双侧涂层厚度为2μm,标记该批隔膜为B。
实施例3
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状PVDF溶液。
2.取12um的PE基膜,经过电晕预处理后,通过含有LiAlSi 2O 6的饱和水溶液水箱,速度为5m/min,过水之后经过烘箱进行烘干处理,干燥之后得到改性处理后的基膜100。
3.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将胶状PVDF溶液通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与改性基膜100进行接触,即可将胶状PVDF溶液涂到改性基膜100上),将胶状PVDF浆料涂覆在改性基膜100的双侧,涂布速度为30m/min,采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后即可得到三层涂覆锂离子电池隔膜(如图2),所述涂覆的锂离子电池隔膜的厚度为16μm,双侧涂层厚度为2μm,标记该批隔膜为C。
对比例1
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与基膜进行接触,即可将复合浆料涂到基膜上),将复合浆料涂覆在基膜的一侧,涂布速度为30m/min,过水之后采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后即可得到双层涂覆锂离子电池隔膜,所述涂覆的锂离子电池隔膜的厚度为14μm,涂层厚度为2μm,标记该批隔膜为D。
对比例2
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状溶液a,取0.3kg氧化铝粉末到2.7kg DMAC溶液中机械搅拌至完全分散得溶液b,将a与b进行充分的搅拌,搅拌均匀之后得到复合浆料。
2.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法为:将复合浆料通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与基膜进行接触,即可将复合浆料涂到基膜上),将复合浆料涂覆在基膜的双侧,涂布速度为30m/min,采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后即可得到双层涂覆锂离子电池隔膜,所述涂覆的锂离子电池隔膜的厚度为16μm,双侧涂层厚度为2μm,标记该批隔膜为E。
对比例3
1.取0.7kg聚偏氟乙烯到6.3kg DMAC溶液中机械搅拌至完全溶解,得到透明胶状PVDF溶液。
2.采用凹版辊涂布方式(采用凹版辊方式进行涂布的具体方法 为:将胶状PVDF溶液通过泵打到凹版辊上,然后凹版辊进行转动,将料带到凹版辊上,再与基膜进行接触,即可将胶状PVDF溶液涂到基膜上),将胶状PVDF浆料涂覆在基膜的双侧,涂布速度为30m/min,采用三级烘箱进行烘干,各级烘箱温度分别为50℃,60℃,55℃,干燥之后即可得到双层涂覆锂离子电池隔膜,所述涂覆的锂离子电池隔膜的厚度为16μm,双侧涂层厚度为2μm,标记该批隔膜为F。
采用本领域技术人员知悉的电池常规制备方法(包括将正极、隔膜和负极依次层叠或卷绕成极芯,然后往所述极芯中注入电解液并封口,然后搁置、化成、容检等工序)来制造电池,跟踪并标记导入A、B、C、D、E、F批隔膜的电池。
根据前述性能参数测定方法对实施例1~3,对比例1~3中的隔膜进行测试,并记录结果如表1。
从A、B、C、D、E、F批隔膜的电池中每批挑选5只电池(分别标记为A1~A5、B1~B5、C1~C5、D1~D5、E1~E5、F1~F5)做内阻及循环性能测试,并记录结果如表2。
表1 6批隔膜性能测试
Figure PCTCN2021080286-appb-000001
Figure PCTCN2021080286-appb-000002
表2 6批隔膜对应的电池性能测试
Figure PCTCN2021080286-appb-000003
Figure PCTCN2021080286-appb-000004
结合表1及表2,由实施例1、实施例2与实施例3以及由对比例1、对比例2与对比例3的对比中可以看出,涂覆本发明功能层后,热收缩率大幅减小,表现出优异的热稳定性和粘接性能,可以使隔膜 与极片复合后位置更加稳固,相应电池的安全性能大大增加。此外,浸润性有所改善,离子电导率也有所提升,相应电池的内阻略低,循环性能有所提升。
结合表1及表2,由实施例1、实施例2、实施例3与对比例1、对比例2、对比例3依次对比中可以看出,经过本发明改性基膜后,浸润性明显有所改善,离子电导率大幅提升,相应电池的内阻大幅减小,循环性能得到了明显的提升。
因此,本发明隔膜有优异的理化性能、热学性能及电化学性能,具有极高的产业利用价值。
以上涉及到公知常识的内容不作详细描述,本领域的技术人员能够理解。
以上所述仅为本发明的一些具体实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种电化学装置隔离膜,其特征在于:包括改性多孔基膜和设置在改性多孔基膜至少一侧表面的功能层;所述功能层含有机物和无机物复合物的浆料;所述改性多孔基膜中含有含锂导离子化合物的颗粒。
  2. 根据权利要求1所述的一种电化学装置隔离膜,其特征在于:所述锂导离子化合物包括LiAlSi 2O 6、Li 2FeSiO 4、LiFePO 4
  3. 根据权利要求1所述的一种电化学装置隔离膜,其特征在于:所述含锂导离子化合物的颗粒粒径为5-20nm。
  4. 根据权利要求1所述的一种电化学装置隔离膜,其特征在于:所述含有机物和无机物复合物的浆料,其原料组成质量份数为:有机聚合物5份~80份,无机物3份~40份,有机溶剂50~100份。
  5. 根据权利要求4所述的一种电化学装置隔离膜,其特征在于:所述有机聚合物为聚偏氟乙烯,分子量为10-100万;所述含有机物和无机物复合物的浆料中,所述聚偏氟乙烯的固含量为5-20wt%。
  6. 根据权利要求4所述的一种电化学装置隔离膜,其特征在于:所述无机物包括三氧化铝、勃姆石、二氧化硅、二氧化钛、硫酸钡、碳酸钙、氧化钙。
  7. 根据权利要求4所述的一种电化学装置隔离膜,其特征在于:所述有机溶剂选自N-甲基吡咯烷酮、二甲基乙酰胺、丙酮、N,N-二甲基甲酰胺、二甲基亚砜中的一种或多种的组合。
  8. 一种制备如权利要求1~3中改性多孔基膜的方法,其特征在于:将未改性的多孔基膜经过电晕预处理后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,干燥之后得到含有含锂导离子化合物颗粒的所述改性多孔基膜。
  9. 根据权利要求8所述的一种改性多孔基膜的方法,其特征在于:所述通过含锂导离子化合物的饱和水溶液水箱的速度为5m/min。
  10. 一种制备如权利要求1~7的电化学装置隔离膜的方法,其特征在于,该方法包括如下步骤:
    S1、制备所述改性多孔基膜;
    将未改性的多孔基膜经过电晕预处理后,通过含锂导离子化合物的饱和水溶液水箱,过水之后经过烘箱进行烘干处理,干燥之后即得到所述改性多孔基膜;
    S2、制备所述含有机物和无机物复合物的浆料;
    将有机物聚合与有机溶剂按比例机械搅拌混合溶解,将无机物与有机溶剂按比例机械搅拌混合均匀,将溶解完全的有机溶液与混合均匀无机物机械搅拌混合后得到所述浆料;
    S3、将上述浆料涂覆在所述改性多孔基膜的至少一侧表面上,形成功能层。
PCT/CN2021/080286 2020-05-21 2021-03-11 一种电化学装置隔离膜及其制备方法 WO2021232904A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/926,345 US20230187781A1 (en) 2020-05-21 2021-03-11 Isolating membrane of electrochemical device and preparation method therefor
EP21807985.3A EP4156399A1 (en) 2020-05-21 2021-03-11 Isolating membrane of electrochemical device and preparation method therefor
JP2022571259A JP2023526525A (ja) 2020-05-21 2021-03-11 電気化学装置のセパレータ及びその作製方法
KR1020227041432A KR20230005911A (ko) 2020-05-21 2021-03-11 전기화학 장치 격리막 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010434825.X 2020-05-21
CN202010434825.XA CN111653712B (zh) 2020-05-21 2020-05-21 一种电化学装置隔离膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2021232904A1 true WO2021232904A1 (zh) 2021-11-25

Family

ID=72349573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080286 WO2021232904A1 (zh) 2020-05-21 2021-03-11 一种电化学装置隔离膜及其制备方法

Country Status (6)

Country Link
US (1) US20230187781A1 (zh)
EP (1) EP4156399A1 (zh)
JP (1) JP2023526525A (zh)
KR (1) KR20230005911A (zh)
CN (1) CN111653712B (zh)
WO (1) WO2021232904A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101891A (zh) * 2022-07-19 2022-09-23 中材锂膜有限公司 一种锂离子电池隔膜的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653712B (zh) * 2020-05-21 2021-09-28 上海恩捷新材料科技有限公司 一种电化学装置隔离膜及其制备方法
CN113540693A (zh) * 2021-07-20 2021-10-22 无锡恩捷新材料科技有限公司 一种锂电池隔板
CN114843708B (zh) * 2022-07-04 2022-10-11 中材锂膜(宁乡)有限公司 一种多孔隔膜、其制备方法及电化学装置
CN118040237A (zh) * 2022-11-04 2024-05-14 中材锂膜(宁乡)有限公司 一种低内阻陶瓷涂覆隔膜及其制备方法、锂离子电池
CN115832612A (zh) * 2023-02-14 2023-03-21 溧阳月泉电能源有限公司 一种电池隔膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331843A (zh) * 1998-11-04 2002-01-16 Basf公司 用作电化学电池中分离器的复合体
CN104638215A (zh) * 2013-08-21 2015-05-20 通用汽车环球科技运作有限责任公司 锂基电池的柔性膜和涂覆电极
CN108878733A (zh) * 2017-05-11 2018-11-23 上海恩捷新材料科技股份有限公司 一种电化学装置隔离膜涂层及其制备方法和用途
CN109638202A (zh) * 2018-11-22 2019-04-16 溧阳天目先导电池材料科技有限公司 一种离子电子导体复合膜及其制备方法和锂电池
CN111653712A (zh) * 2020-05-21 2020-09-11 上海恩捷新材料科技有限公司 一种电化学装置隔离膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097647B (zh) * 2009-12-09 2014-03-26 微宏动力系统(湖州)有限公司 锂离子电池
KR102526758B1 (ko) * 2018-01-09 2023-04-27 삼성전자주식회사 복합막, 이를 포함한 음극 구조체 및 리튬전지, 및 복합막 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331843A (zh) * 1998-11-04 2002-01-16 Basf公司 用作电化学电池中分离器的复合体
CN104638215A (zh) * 2013-08-21 2015-05-20 通用汽车环球科技运作有限责任公司 锂基电池的柔性膜和涂覆电极
CN108878733A (zh) * 2017-05-11 2018-11-23 上海恩捷新材料科技股份有限公司 一种电化学装置隔离膜涂层及其制备方法和用途
CN109638202A (zh) * 2018-11-22 2019-04-16 溧阳天目先导电池材料科技有限公司 一种离子电子导体复合膜及其制备方法和锂电池
CN111653712A (zh) * 2020-05-21 2020-09-11 上海恩捷新材料科技有限公司 一种电化学装置隔离膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101891A (zh) * 2022-07-19 2022-09-23 中材锂膜有限公司 一种锂离子电池隔膜的制备方法
CN115101891B (zh) * 2022-07-19 2024-03-05 中材锂膜有限公司 一种锂离子电池隔膜的制备方法

Also Published As

Publication number Publication date
CN111653712B (zh) 2021-09-28
US20230187781A1 (en) 2023-06-15
JP2023526525A (ja) 2023-06-21
KR20230005911A (ko) 2023-01-10
EP4156399A1 (en) 2023-03-29
CN111653712A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2021232904A1 (zh) 一种电化学装置隔离膜及其制备方法
CN106887556B (zh) 一种有机无机复合改性隔膜及其制备方法和应用
US9401505B2 (en) Separator including coating layer of inorganic and organic mixture, and battery including the same
US9412988B2 (en) Separator including coating layer of inorganic and organic mixture, and battery including the same
CN104425788B (zh) 一种锂离子电池隔膜及其制备方法和含有该隔膜的锂离子电池
CN111430788A (zh) 一种复合固态电解质膜、制备方法及固态锂电池
CN106654365A (zh) 基于固态聚合物电解质的复合凝胶聚合物电解质及其制备方法与应用
CN113273005B (zh) 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物
US20130224553A1 (en) Separator including coating layer and battery including the same
Zhao et al. Preparation of gel polymer electrolyte with high lithium ion transference number using GO as filler and application in lithium battery
WO2021088718A1 (zh) 二次电池及含有该二次电池的电池模组、电池包、装置
Singh et al. Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application
CN108933277B (zh) 一种锂离子二次电池
WO2023155604A1 (zh) 复合隔膜及电化学装置
CN109428038B (zh) 一种电池隔膜及其制备方法和锂离子电池
WO2023184230A1 (zh) 一种正极及使用其的电化学装置及电子装置
WO2023000734A1 (zh) 一种锂电池隔板
CN103268955A (zh) 一种复合凝胶聚合物电解质及其制备方法与应用
Tan et al. Electrospun Polyacrylonitrile/Polyvinylidene Fluoride/Boehmite Separator and Gel Polymer Electrolyte Polyethylene Oxide/Polyvinylidene Fluoride‐hexafluoropropylene/Lithium Bis (trifluoromethanesulfonyl) imide/Boehmite Composite Separator Are Used for Fast Charging
WO2023098646A1 (zh) 一种隔膜和含有该隔膜的电池
CN114171849B (zh) 一种核壳结构复合隔膜及其制备方法
CN114583104A (zh) 一种正极片和电池
CN101359748B (zh) 一种锂离子二次电池及其制备方法
WO2024031518A1 (zh) 电极浆料、极片、二次电池及用电装置
CN109428037B (zh) 一种电池隔膜及其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571259

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227041432

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021807985

Country of ref document: EP

Effective date: 20221221