WO2023000564A1 - 一种冲击振动传感器信号的拾取方法 - Google Patents

一种冲击振动传感器信号的拾取方法 Download PDF

Info

Publication number
WO2023000564A1
WO2023000564A1 PCT/CN2021/132459 CN2021132459W WO2023000564A1 WO 2023000564 A1 WO2023000564 A1 WO 2023000564A1 CN 2021132459 W CN2021132459 W CN 2021132459W WO 2023000564 A1 WO2023000564 A1 WO 2023000564A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
maximum value
sampling
shock vibration
sampling data
Prior art date
Application number
PCT/CN2021/132459
Other languages
English (en)
French (fr)
Inventor
盛九朝
Original Assignee
苏州苏试试验集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏试试验集团股份有限公司 filed Critical 苏州苏试试验集团股份有限公司
Publication of WO2023000564A1 publication Critical patent/WO2023000564A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the technical field of vibration testing, in particular to a method for picking up shock vibration sensor signals.
  • the most important parameter in the impact test is the impact strength.
  • To accurately set the impact strength it is necessary to accurately pick up the signal generated by the shock vibration sensor.
  • the pick-up of the shock vibration signal is due to its own disturbance and external Under the interference of environmental noise and so on, the shock vibration signal cannot be picked up accurately. It needs to be picked up multiple times and judged according to the picking results, which greatly affects the quality and efficiency of the test.
  • the present invention provides a method for picking up the shock vibration sensor signal, which can accurately and real-time pick up the shock vibration signal under the condition of itself and external interference.
  • the technical solution adopted by the present invention to solve the above-mentioned technical problems is: a method for picking up the shock vibration sensor signal, the steps of the method for picking up are:
  • step S1 Sampling the vibration frequency through the shock vibration sensor to obtain a number of sampling data, and according to the determined response period, assign the number of sampling data to several response periods, and select a response period to enter step S2;
  • step S3 judging whether the maximum value is located in the middle position of several sampling data sampling times, if so, enter step S6, otherwise enter step S4;
  • step S4 Judging whether the sampling data meets the quantity and trend requirements, if it enters step S5, otherwise selects the sampling data of the next response cycle and returns to step S2;
  • step S5 Taking the effective value of the current sampling data as the starting point, move the position of the response cycle to regain a complete response cycle, and return to step S2;
  • step S4 the method for judging whether the sampling data meets the quantity and trend requirements in step S4 is as follows:
  • step S41 Find the number of data on the left side of the maximum value that is higher than the average value, and judge whether the number of data is less than N, if so, enter step S42, otherwise enter step S43;
  • step S42 Find the number of data on the right side of the maximum value that is higher than the average value, and judge whether the number of data is less than N, if so, select the sampling data of the next response cycle and return to step S2, otherwise enter step S44;
  • step S43 divide the sampling data on the left side of the maximum value into k parts on average, and add and sum the sampling data in each part to obtain k sum values, and judge whether the k sum values are monotonically increasing, if so, enter step S5, Otherwise, select the sampling data of the next response period and return to step S2;
  • step S44 divide the sampling data on the right side of the maximum value into k parts on average, and add and sum the sampling data in each part to obtain k sum values, and judge whether the k sum values are monotonically decreasing, if so, enter step S5, Otherwise, select the sampling data of the next response cycle and return to step S2.
  • N in the step S41 and the step S42 is 100.
  • the method for judging the monotonous increase on the left side of the maximum value in step S6 is to divide the sampled data in the response period into q parts on average, and add and sum the sampled data in each part to obtain q Sum value, select several sum values on the left side of the maximum value for judgment.
  • the method for judging the monotonous decrease on the right side of the maximum value in step S6 is to divide the sampled data in the response period into q parts on average, and add and sum the sampled data in each part to obtain q Sum value, select several sum values on the right side of the maximum value for judgment.
  • the sampled data is processed by a frequency domain processing method to determine whether the shock vibration signal is detected.
  • S76 Determine whether the counted frequency data is greater than 10% of all the frequency data. If yes, it means that an impact vibration signal is detected; otherwise, it means that no impact vibration signal is detected.
  • step S72 includes a real part and an imaginary part
  • the real part is:
  • the imaginary part is:
  • a (j) is frequency data
  • B j is complex data
  • the beneficial effect of the present invention is that the signal collected by the shock vibration sensor is processed in the time domain to obtain the shock vibration signal that meets the requirements, the accuracy is high, and the real-time signal collection is realized.
  • the results of time-domain processing are supplemented by evidence, which increases the reliability and accuracy of the collected signals.
  • Fig. 1 is a schematic flow chart of the time domain processing of the present invention
  • Fig. 2 is the schematic flow chart of sampling data quantity and trend judgment of the present invention
  • Fig. 3 is a schematic flowchart of frequency domain processing in the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components.
  • Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • technical features involved in the different embodiments of the present invention described below may be combined with each other as long as there is no conflict with each other.
  • the response time of impact vibration is 3-50 milliseconds, and the highest frequency response of impact vibration does not exceed 10k, which varies according to the impact table body and impact intensity, and is mostly low frequency.
  • the higher the sampling frequency the higher the frequency resolution
  • the higher the frequency response the following takes the frequency response of 10k as an example, the sampling frequency cannot be lower than 20k, otherwise the real signal spectrum information cannot be reflected.
  • the sampling frequency of the A/D chip is 100k
  • the sampling width is 16 bits
  • the sampling time is 10ms
  • the number of samples in the shock vibration response time is 1000 times, 2000 bytes of data
  • the data storage depth is 3 times the response time
  • the memory to be allocated is 6000 bytes
  • the time window is 10 milliseconds
  • a kind of pick-up method of shock vibration sensor signal as shown in Figure 1 the step of this pick-up method is,
  • step S1 Sampling the vibration frequency through the shock vibration sensor to obtain some sampled data, and according to the determined response period, distribute some sampled data to several response periods, select a response period, and when performing software processing, the After the sampling data in the response period are respectively assigned to the D[i] array, enter step S2.
  • step S3 judging whether the maximum value is located in the middle of the sampling time of some sampled data, that is, the quantity of the sampled data on the left side of Dmax is equal to the quantity of the sampled data on the right side, if so, it means that the sampled data basically meets the requirements and enters step S6 for further processing, otherwise It means that the sampled data does not meet the requirements and needs to be adjusted and enter step S4 for further processing.
  • step S41 Find the number of sampled data on the left side of the maximum value Dmax that is higher than the average value Dave, and determine whether the number of sampled data is less than N.
  • N is taken as 100. If so, it means that the sampled data on the left side of the maximum value Dmax does not meet the requirements. It is required to enter step S42 to judge the sampled data on the right side of the maximum value Dmax, if otherwise, the sampled data on the left side of the maximum value Dmax meets the requirements, and now enter step S43 to process the sampled data on the left side of the maximum value Dmax;
  • step S43 the sampled data on the left side of the maximum value Dmax is processed, and the sampled data on the left side of the maximum value Dmax is evenly divided into k parts, and the sampled data in each part are summed to obtain k sums, and According to the order of sampling time, judge whether the k sums are increasing monotonically. If so, it means that it meets the requirements and enters step S5 for further processing. Return to step S2 to re-operate;
  • step S44 the sampling data on the right side of the maximum value Dmax is processed, and the sampling data on the right side of the maximum value Dmax are divided into k parts on average, and the sampling data in each part are summed to obtain k sums, and According to the order of sampling time, judge whether the sums of k are monotonically decreasing. If so, it means that it meets the requirements and enters step S5 for further processing. Return to step S2 to re-operate.
  • step S5 adjust the position of the response period here, take the effective value of the current sampling data (the sampling data on the left side of the maximum value Dmax or the sampling data on the right side of the maximum value Dmax) as the starting point, move the position of the response period, and regain some For the response period, select the sampling data of the first response period after the shift and re-assign it to the D[i] array, then return to step S2 and re-operate.
  • the effective value of the current sampling data the sampling data on the left side of the maximum value Dmax or the sampling data on the right side of the maximum value Dmax
  • the sampling data in the response period is divided into q parts on average, and the sampling data in each part are added and summed to obtain q sums. Since the maximum value Dmax is located in the middle of the D[i] array, the maximum value The sum on the left side of Dmax is the same as the sum on the right side of the maximum value Dmax;
  • the sampling data of the next response cycle is selected and reassigned to D[ i] array and return to step S2 to re-operate.
  • the above method is the shock vibration signal obtained by processing in the time domain.
  • the frequency domain processing method is used to process the sampled data and determine whether the shock vibration signal is detected. To supplement the accuracy of the signal.
  • the frequency domain processing method is as follows:
  • the real part is the difference between the first number and the third number in the four frequency data divided by 2:
  • the imaginary part is the difference between the second number and the fourth number in the four frequency data divided by 2:
  • a (j) is frequency data
  • B j is complex data
  • the real data is
  • the signal is first picked up by the shock vibration sensor, and the signal is selected and the effective signal output is adjusted through time domain processing, so that the picked up signal has high accuracy and real-time performance; the picked up signal is processed by frequency domain
  • the further judgment of the signal further increases the accuracy and reliability of the signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种冲击振动传感器信号的拾取方法,包括:采样冲击振动信号,对冲击振动信号求平均值并找出最大值,判断最大值是否位于数据中间,若是判断最大值两侧数据单调递增或单调递减、增幅与减幅基本相同,则采集到合适数据,若否调整数据直至符合要求。采用时域的方式对冲击振动传感器采集的信号进行处理,得到符合要求的冲击振动信号,准确性较高,并且实现实时信号的采集,同时通过频域的方式进一步对时域处理的结果进行辅证,增加了采集信号的可靠性与准确性。

Description

一种冲击振动传感器信号的拾取方法 技术领域
本发明涉及振动试验技术领域,尤其是涉及一种冲击振动传感器信号的拾取方法。
背景技术
随着我国成为制造业大国,产品的可靠性越来越为世人所关注,好的产品上市前一般都要经过一系列严苛的试验,如风沙试验、盐雾试验、振动试验、冲击试验、温度试验等,以验证产品设计是否满足要求。
针对冲击试验设备,在冲击试验中最重要的参数为冲击强度,若要准确设置冲击强度,就必须精确拾取冲击振动传感器产生的信号,目前对于冲击振动信号的拾取由于其自身存在的扰动以及外界环境的噪音等干扰下,不能够准确的拾取冲击振动信号,需要进行多次拾取,并根据拾取结果进行判断,大大影响试验的质量与效率。
故需要提供一种在外界干扰情况下仍能准确拾取冲击振动信号的技术。
发明内容
为解决上问题,本发明提供一种冲击振动传感器信号的拾取方法,能够在自身以及外界干扰情况下准确且实时拾取冲击振动信号。
本发明解决上述技术问题所采用的技术方案是:一种冲击振动传感器信号的拾取方法,该拾取方法的步骤为,
S1、通过冲击振动传感器对振动频率进行采样,得到若干采样数据, 并根据已确定的响应周期,将若干采样数据分配至若干个响应周期内,选取一个响应周期进入步骤S2;
S2、对该响应周期内若干采样数据求平均值,同时找出若干采样数据中的最大值;
S3、判断最大值是否位于若干采样数据采样时间的中间位置,若是则进入步骤S6,若否则进入步骤S4;
S4、判断采样数据是否符合数量以及趋势要求,若是进入步骤S5,若否则选取下一个响应周期的采样数据返回步骤S2;
S5、以当前采样数据的有效值作为起点,移动响应周期的位置,重新获得一个完整响应周期,返回步骤S2;
S6、判断最大值左侧单调递增、最大值右侧单调递减以及单调递增数值与单调递交数值相同三者是否全部满足,若是则该响应周期内拾取的采样数据符合要求,若否则选取下一个响应周期的采样数据返回步骤S2。
进一步具体的,所述的步骤S4中判断采样数据是否符合数量以及趋势要求的方法为,
S41、查找最大值左侧高于平均值的数据个数,并判断该数据个数是否小于N个,若是则进入步骤S42,若否则进入步骤S43;
S42、查找最大值右侧高于平均值的数据个数,并判断该数据个数是否小于N个,若是则选取下一个响应周期的采样数据返回步骤S2,若否则进入步骤S44;
S43、将最大值左侧的采样数据平均分为k份,并将每份中的采样数据相加求和得到k个和值,并判断k个和值是否单调递增,若是则进入步骤S5,若否则选取下一个响应周期的采样数据返回步骤S2;
S44、将最大值右侧的采样数据平均分为k份,并将每份中的采样数据相加求和得到k个和值,并判断k个和值是否单调递减,若是则进入步骤S5,若否则选取下一个响应周期的采样数据返回步骤S2。
进一步具体的,所述的步骤S41与步骤S42中的N为100。
进一步具体的,所述的步骤S6中最大值左侧单调递增的判断方法为,将该响应周期内的采样数据平均分为q份,并将每份中的采样数据相加求和得到q个和值,选取最大值左侧的若干和值进行判断。
进一步具体的,所述的步骤S6中最大值右侧单调递减的判断方法为,将该响应周期内的采样数据平均分为q份,并将每份中的采样数据相加求和得到q个和值,选取最大值右侧的若干和值进行判断。
进一步具体的,在冲击振动信号拾取完成之后,通过频域处理的方法对采样数据进行处理判断是否检测到冲击振动信号。
进一步具体的,所述的频域处理的方法为,
S71、将所有的采样数据进行FFT运算,得到若干频率数据;
S72、对若干频率数据进行平方律检波,按照4个频率数据一组形式若干个复数数据;
S73、计算第一门限,将若干复数数据转换为实数数据并求和计算平均值,再根据实数数据与平均值计算均方差C σ
第一门限为C p=k·C σ,其中k=2;
S74、将所有频率数据与第一门限进行对比,选取小于第一门限的频率数据组成第二频率数据按照步骤S72-S73计算第二门限;
S75、将所有频率数据与第二门限进行对比,并统计大于第二门限的频率数据的个数;
S76、判断统计的频率数据的个数是否大于所有频率数据个数的10%,若是则说明检测到冲击振动信号,若否则说明未检测到冲击振动信号。
进一步具体的,所述的步骤S72中所述的复数数据包括实部与虚部,
实部为:
Figure PCTCN2021132459-appb-000001
虚部为:
Figure PCTCN2021132459-appb-000002
其中,A (j)为频率数据,B j为复数数据。
进一步具体的,所述的复数数据转换为实数数据的公式为:
Figure PCTCN2021132459-appb-000003
本发明的有益效果是:采用时域的方式对冲击振动传感器采集的信号进行处理,得到符合要求的冲击振动信号,准确性较高,并且实现实时信号的采集,同时通过频域的方式进一步对时域处理的结果进行辅证,增加了采集信号的可靠性与准确性。
附图说明
图1是本发明时域处理的流程示意图;
图2是本发明采样数据数量与趋势判断的流程示意图;
图3是本发明频域处理的流程示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定, 术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
冲击振动的响应时间为3~50毫秒,冲击振动的最高频响不超过10k,根据冲击台体和冲击强度的变化而变化,以低频居多,根据FFT原理,采样频率越高,频率分辨率越高,下面以频响10k为例,则采样频率不能低于20k,否则不能反映真实的信号频谱信息,若A/D芯片采样频率为100k,采样宽度为16位,采样时间为10ms,则冲击振动响应时间内采样次数为1000次,2000字节数据,设数据存储深度为3倍响应时间,则需分配的内存为6000个字节,设时间窗口为10毫秒,则整个内存数据对应3个冲击响应周期,
如图1所示一种冲击振动传感器信号的拾取方法,该拾取方法的步骤为,
S1、通过冲击振动传感器对振动频率进行采样,得到若干采样数据,并根据已确定的响应周期,将若干采样数据分配至若干个响应周期内,选取一个响应周期,在进行软件处理时,将该响应周期内的采样数据分别赋值至D[i]数组后,进入步骤S2。
S2、对该响应周期内若干采样数据,即D[i]数组内的采样数据求平均值Dave,同时找出D[i]数组中的最大值Dmax。
S3、判断最大值是否位于若干采样数据采样时间的中间位置,即Dmax左侧的采样数据的数量与右侧采样数据的数量相等,若是则说明采样数据基本符合要求进入步骤S6进一步处理,若否则说明采样数据不符合要求需要进行调整进入步骤S4做进一步处理。
S4、判断采样数据是否符合数量以及趋势要求,如图2所示具体的 数量要求以及趋势要求判断为:
S41、查找最大值Dmax左侧高于平均值Dave的采样数据个数,并判断该采样数据个数是否小于N个,此处N取100,若是则说明最大值Dmax左侧的采样数据不符合要求进入步骤S42对最大值Dmax右侧的采样数据进行判断,若否则说明最大值Dmax左侧的采样数据符合要求,此时进入步骤S43对最大值Dmax左侧的采样数据进行处理;
S42、查找最大值Dmax右侧高于平均值Dave的采样数据个数,并判断该采样数据个数是否小于N个,此处N取100,若是则说明最大值Dmax右侧的采样数据不符合要求,此时选取下一个响应周期的采样数据重新赋值至D[i]数组后返回步骤S2重新操作,若否则说明最大值Dmax右侧的采样数据符合要求,此时进入步骤S44对最大值Dmax右侧的采样数据进行处理;
S43、此处对最大值Dmax左侧的采样数据进行处理,将最大值Dmax左侧的采样数据平均分为k份,并将每份中的采样数据相加求和得到k个和值,并根据采样时间顺序判断k个和值是否单调递增,若是则说明符合要求进入步骤S5进一步处理,若否则说明不符合要求,此时选取下一个响应周期的采样数据重新赋值至D[i]数组后返回步骤S2重新操作;
S44、此处对最大值Dmax右侧的采样数据进行处理,将最大值Dmax右侧的采样数据平均分为k份,并将每份中的采样数据相加求和得到k个和值,并根据采样时间顺序判断k个和值是否单调递减,若是则说明符合要求进入步骤S5进一步处理,若否则说明不符合要求,此时选取下一个响应周期的采样数据重新赋值至D[i]数组后返回步骤S2重新操作。
S5、此处对响应周期的位置进行调整,以当前采样数据(最大值Dmax左侧的采样数据或者最大值Dmax右侧的采样数据)的有效值作为起点,移动响应周期的位置,重新获得若干响应周期,选取移动后的第一个响应周期的采样数据重新赋值至D[i]数组后返回步骤S2重新操作。
S6、判断最大值Dmax左侧单调递增、最大值Dmax右侧单调递减以 及单调递增数值与单调递减数值相同三者是否全部满足,
首先,将该响应周期内采样数据平均分为q份,并将每份中的采样数据相加求和得到q个和值,由于最大值Dmax位于D[i]数组的中间位置,所以最大值Dmax左侧的和值与最大值Dmax右侧的和值数量一致;
之后,选取最大值Dmax左侧的所有和值,根据采集时间顺序判断所有和值是否单调递增;
之后,选取最大值Dmax右侧的所有和值,根据采集时间顺序判断所有和值是否单调递减;
最后,求出最大值Dmax左侧递增的数值以及最大值Dmax右侧递减的数值进行比较,两者相差在5%以内,则说明符合要求;
上述三种状态都满足要求时,说明采样数据准确,可以使用;若上述三种状态有一个不满足要求,则说明采样数据不准确,此时选取下一个响应周期的采样数据重新赋值至D[i]数组后返回步骤S2重新操作。
上述方式为时域方式处理而得到的冲击振动信号,为了保证拾取的冲击振动信号更加准确,在上述步骤完成之后采用频域处理的方法对采样数据进行处理并判断是否检测到冲击振动信号,用以辅证信号的准确性。
如图3所示该频域处理的方法为:
S71、将采集到的该周期内D[i]数组内的所有采样数据进行FFT运算,得到若干频率数据组成A[i]数组,其中A[i]数组内频率数据的个数与D[i]数组内采样数据的个数一致。
S72、对A[i]数组内所有频率数据进行平方律检波,按照4个频率数据一组形式若干个复数数据,其中复数数据包括实部与虚部,
实部为四个频率数据中第一个数与第三个数的差除以2:
Figure PCTCN2021132459-appb-000004
虚部为四个频率数据中第二个数与第四个数的差除以2:
Figure PCTCN2021132459-appb-000005
其中,A (j)为频率数据,B j为复数数据。
S73、计算第一门限,
首先,将若干复数数据转换为实数数据(检波),
实数数据为
Figure PCTCN2021132459-appb-000006
并求和计算平均值,
平均值为
Figure PCTCN2021132459-appb-000007
再根据实数数据与平均值计算均方差C σ
均方差为
Figure PCTCN2021132459-appb-000008
第一门限为C p=k·C σ,其中k=2;
S74、将A[i]数组内所有频率数据与第一门限进行对比,选取小于第一门限的频率数据组成新的频率数据按照步骤S72-S73计算出第二门限;
S75、将A[i]数组内所有频率数据与第二门限进行对比,并统计大于第二门限的频率数据的个数;
S76、判断统计的频率数据的个数是否大于A[i]数组内所有频率数据个数的10%,若是则说明检测到冲击振动信号,若否则说明未检测到冲击振动信号。
若频域处理后显示未检测到信号,则选取下一个响应周期的采样数据重新赋值至D[i]数组后返回步骤S2重新操作。
综上,首先通过冲击振动传感器对信号进行拾取,并经过时域处理的方式对信号进行挑选并调整有效信号输出,使得拾取的信号准确性高,具有实时性;通过频域处理的方式对拾取的信号进一步判断,更加增加 了信号的准确性与可靠性。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

  1. 一种冲击振动传感器信号的拾取方法,其特征在于,该拾取方法的步骤为,
    S1、通过冲击振动传感器对振动频率进行采样,得到若干采样数据,并根据已确定的响应周期,将若干采样数据分配至若干个响应周期内,选取一个响应周期进入步骤S2;
    S2、对该响应周期内若干采样数据求平均值,同时找出若干采样数据中的最大值;
    S3、判断最大值是否位于若干采样数据采样时间的中间位置,若是则进入步骤S6,若否则进入步骤S4;
    S4、判断采样数据是否符合数量以及趋势要求,若是进入步骤S5,若否则选取下一个响应周期的采样数据返回步骤S2;
    S5、以当前采样数据的有效值作为起点,移动响应周期的位置,重新获得一个完整响应周期,返回步骤S2;
    S6、判断最大值左侧单调递增、最大值右侧单调递减以及单调递增数值与单调递交数值相同三者是否全部满足,若是则该响应周期内拾取的采样数据符合要求,若否则选取下一个响应周期的采样数据返回步骤S2。
  2. 根据权利要求1所述的冲击振动传感器信号的拾取方法,其特征在于,所述的步骤S4中判断采样数据是否符合数量以及趋势要求的方法为,
    S41、查找最大值左侧高于平均值的数据个数,并判断该数据个数是否小于N个,若是则进入步骤S42,若否则进入步骤S43;
    S42、查找最大值右侧高于平均值的数据个数,并判断该数据个数是否小于N个,若是则选取下一个响应周期的采样数据返回步骤S2,若否则进入步骤S44;
    S43、将最大值左侧的采样数据平均分为k份,并将每份中的采样数据相加求和得到k个和值,并判断k个和值是否单调递增,若是则进入步骤S5,若否则选取下一个响应周期的采样数据返回步骤S2;
    S44、将最大值右侧的采样数据平均分为k份,并将每份中的采样数据相加求和得到k个和值,并判断k个和值是否单调递减,若是则进入步骤S5,若否则选取下一个响应周期的采样数据返回步骤S2。
  3. 根据权利要求2所述的冲击振动传感器信号的拾取方法,其特征在于,所述的步骤S41与步骤S42中的N为100。
  4. 根据权利要求1所述的冲击振动传感器信号的拾取方法,其特征在于,所述的步骤S6中最大值左侧单调递增的判断方法为,将该响应周期内的采样数据平均分为q份,并将每份中的采样数据相加求和得到q个和值,选取最大值左侧的若干和值进行判断。
  5. 根据权利要求1所述的冲击振动传感器信号的拾取方法,其特征在于,所述的步骤S6中最大值右侧单调递减的判断方法为,将该响应周期内的采样数据平均分为q份,并将每份中的采样数据相加求和得到q个和值,选取最大值右侧的若干和值进行判断。
  6. 根据权利要求1所述的冲击振动传感器信号的拾取方法,其特征在于,在冲击振动信号拾取完成之后,通过频域处理的方法对采样数据进行处理判断是否检测到冲击振动信号。
  7. 根据权利要求6所述的冲击振动传感器信号的拾取方法,其特征在于,所述的频域处理的方法为,
    S71、将所有的采样数据进行FFT运算,得到若干频率数据;
    S72、对若干频率数据进行平方律检波,按照4个频率数据一组形式若干个复数数据;
    S73、计算第一门限,将若干复数数据转换为实数数据并求和计算平均值,再根据实数数据与平均值计算均方差C σ
    第一门限为C p=k·C σ,其中k=2;
    S74、将所有频率数据与第一门限进行对比,选取小于第一门限的频率数据组成第二频率数据按照步骤S72-S73计算第二门限;
    S75、将所有频率数据与第二门限进行对比,并统计大于第二门限的频率数据的个数;
    S76、判断统计的频率数据的个数是否大于所有频率数据个数的10%,若是则说明检测到冲击振动信号,若否则说明未检测到冲击振动信号。
  8. 根据权利要求7所述的冲击振动传感器信号的拾取方法,其特征在于,所述的步骤S72中所述的复数数据包括实部与虚部,
    实部为:
    Figure PCTCN2021132459-appb-100001
    虚部为:
    Figure PCTCN2021132459-appb-100002
    其中,A (j)为频率数据,B j为复数数据。
  9. 根据权利要求8所述的冲击振动传感器信号的拾取方法,其特征在于,所述的复数数据转换为实数数据的公式为:
    Figure PCTCN2021132459-appb-100003
PCT/CN2021/132459 2021-07-22 2021-11-23 一种冲击振动传感器信号的拾取方法 WO2023000564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110828847.9 2021-07-22
CN202110828847.9A CN113503961B (zh) 2021-07-22 2021-07-22 一种冲击振动传感器信号的拾取方法

Publications (1)

Publication Number Publication Date
WO2023000564A1 true WO2023000564A1 (zh) 2023-01-26

Family

ID=78013598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132459 WO2023000564A1 (zh) 2021-07-22 2021-11-23 一种冲击振动传感器信号的拾取方法

Country Status (2)

Country Link
CN (1) CN113503961B (zh)
WO (1) WO2023000564A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113503961B (zh) * 2021-07-22 2023-10-24 苏州苏试试验集团股份有限公司 一种冲击振动传感器信号的拾取方法
CN114324140B (zh) * 2021-12-15 2024-04-09 东风汽车集团股份有限公司 一种道路护栏损坏监测方法、装置及设备
CN114611549B (zh) * 2022-02-24 2023-08-22 中国电子科技集团公司第十研究所 时域冲击响应特征参数提取方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519579A (zh) * 2011-12-20 2012-06-27 华北电力大学 汽轮机碰磨故障检测方法
US20140090472A1 (en) * 2012-10-02 2014-04-03 Pruftechnik Dieter Busch Ag Device and method for evaluation of vibrations
CN104502103A (zh) * 2014-12-07 2015-04-08 北京工业大学 一种基于模糊支持向量机的轴承故障诊断方法
CN104729591A (zh) * 2015-01-16 2015-06-24 合肥工业大学 一种基于数据替换的涡街流量计抗低频强瞬态冲击振动的信号处理方法
CN106274983A (zh) * 2016-08-31 2017-01-04 唐智科技湖南发展有限公司 一种识别轨道交通车轮轮辋裂纹故障的机理诊断方法
CN110160765A (zh) * 2019-06-04 2019-08-23 安徽智寰科技有限公司 一种基于声音或振动信号的冲击特征识别方法及系统
CN112507769A (zh) * 2020-08-10 2021-03-16 北京化工大学 一种基于仿真传感器谐振增强特征的轴承故障诊断方法
CN113503961A (zh) * 2021-07-22 2021-10-15 苏州苏试试验集团股份有限公司 一种冲击振动传感器信号的拾取方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830844B2 (ja) * 1996-06-26 1998-12-02 四国日本電気ソフトウェア株式会社 魚のあたり検出方法および検出装置
CN105818088B (zh) * 2016-03-14 2017-09-08 郑州时享电子技术有限公司 冲击式紧固工具的冲击次数检测方法及装置
CN105890738B (zh) * 2016-03-31 2018-09-18 浙江工业大学 一种汇流旋涡冲击振动识别方法
JP6803277B2 (ja) * 2017-03-27 2020-12-23 アズビル株式会社 周期信号測定装置、周期信号測定方法およびサンプリング周期決定方法
CN109032961B (zh) * 2018-07-11 2019-10-01 中国科学院地质与地球物理研究所 一种井下振动冲击数据记录方法
CN110987438B (zh) * 2019-12-04 2021-12-28 国网福建省电力有限公司 水轮发电机变转速过程周期性振动冲击信号检测的方法
CN111964855A (zh) * 2019-12-31 2020-11-20 苏州苏试试验集团股份有限公司 一种用于电动振动台的漏磁自动控制方法
CN111947957A (zh) * 2020-08-17 2020-11-17 浙江中控技术股份有限公司 一种振动信号采样方法、装置、存储介质及电子设备
CN112378606B (zh) * 2020-10-10 2022-08-05 盐城工学院 一种随机振动与冲击信号的分离方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519579A (zh) * 2011-12-20 2012-06-27 华北电力大学 汽轮机碰磨故障检测方法
US20140090472A1 (en) * 2012-10-02 2014-04-03 Pruftechnik Dieter Busch Ag Device and method for evaluation of vibrations
CN104502103A (zh) * 2014-12-07 2015-04-08 北京工业大学 一种基于模糊支持向量机的轴承故障诊断方法
CN104729591A (zh) * 2015-01-16 2015-06-24 合肥工业大学 一种基于数据替换的涡街流量计抗低频强瞬态冲击振动的信号处理方法
CN106274983A (zh) * 2016-08-31 2017-01-04 唐智科技湖南发展有限公司 一种识别轨道交通车轮轮辋裂纹故障的机理诊断方法
CN110160765A (zh) * 2019-06-04 2019-08-23 安徽智寰科技有限公司 一种基于声音或振动信号的冲击特征识别方法及系统
CN112507769A (zh) * 2020-08-10 2021-03-16 北京化工大学 一种基于仿真传感器谐振增强特征的轴承故障诊断方法
CN113503961A (zh) * 2021-07-22 2021-10-15 苏州苏试试验集团股份有限公司 一种冲击振动传感器信号的拾取方法

Also Published As

Publication number Publication date
CN113503961A (zh) 2021-10-15
CN113503961B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2023000564A1 (zh) 一种冲击振动传感器信号的拾取方法
CN105872156B (zh) 一种回声时延跟踪方法及装置
CN100446208C (zh) 带有差分信号测量的测试系统
CN112147573A (zh) 一种基于csi的幅值和相位信息的无源定位方法
CN101609160B (zh) 一种抗背景噪音强的地震数据初至波自动拾取方法
CN106896407B (zh) 一种基于近似负熵的微地震信号初至拾取方法
CN108828548A (zh) 一种基于fmcw雷达的三参数融合数据集构建方法
CN105445699B (zh) 一种非视距误差消除的测距方法及系统
CN102043084B (zh) 一种检测避雷器阻性电流的检测方法
CN110780110A (zh) 一种基波电压过零点自动检测方法、系统及采样装置
CN110940933B (zh) 一种用于测量陡脉冲上升沿起始时刻的综合计算方法
CN111353131B (zh) 一种码载偏离度阈值计算的方法
CN110049534A (zh) WiFi接入点排序方法、装置、计算机设备及存储介质
CN110289926B (zh) 基于调制信号循环自相关函数对称峰值的频谱感知方法
CN117288316A (zh) 一种分布式无线同步组网的振动信号采集方法
CN109991519B (zh) 基于神经网络和无线传感阵列的局部放电测向方法及系统
CN115047065A (zh) 一种修正打声法中敲击力度影响的方法、装置和设备
CN111610428B (zh) 一种基于响应混叠性度量小波包分解算法的参数优化方法
CN116582814B (zh) 一种uwb测距误差计算方法
CN106618499B (zh) 跌倒检测设备、跌倒检测方法及装置
CN110365555A (zh) 音频延时测试方法、装置、电子设备及可读存储介质
CN115174638B (zh) 光伏板数据采集设备的组网方法及系统
CN112861067B (zh) 一种用于托卡马克等离子体密度测量的相位差检测方法
CN115729370A (zh) 经由超声波传感器实现的稳健的触摸感测
CN107957592A (zh) 一种地震波初至拾取方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE