WO2023000550A1 - 一种纤维素纳米晶粉体及其制备方法、应用 - Google Patents

一种纤维素纳米晶粉体及其制备方法、应用 Download PDF

Info

Publication number
WO2023000550A1
WO2023000550A1 PCT/CN2021/129803 CN2021129803W WO2023000550A1 WO 2023000550 A1 WO2023000550 A1 WO 2023000550A1 CN 2021129803 W CN2021129803 W CN 2021129803W WO 2023000550 A1 WO2023000550 A1 WO 2023000550A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
sodium
cellulose nanocrystal
preparation
optionally
Prior art date
Application number
PCT/CN2021/129803
Other languages
English (en)
French (fr)
Inventor
张建明
刘云霄
段咏欣
周立娟
卢云洁
刘欣然
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Priority to US18/047,314 priority Critical patent/US20230076982A1/en
Publication of WO2023000550A1 publication Critical patent/WO2023000550A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/02Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to polysaccharides

Definitions

  • the present application relates to the technical field of preparation of nanocomposite materials, in particular to a cellulose nanocrystal powder and a preparation method thereof.
  • Cellulose nanocrystals are one-dimensional rod-shaped nanomaterials derived from natural cellulose, with large specific surface area (250-500m 2 /g), low density (1.5-1.6g/cm 3 ), and excellent mechanical properties (tensile strength 7500MPa , elastic modulus of 100-140GPa) and other characteristics, it has potential application value in the preparation of lightweight and high-strength polymer-based nanocomposites.
  • dry cellulose nanocrystal powder is melt-blended with polymers, since the surface of cellulose nanocrystals is rich in hydroxyl groups, strong hydrogen bonding makes it impossible to disperse uniformly, so it is necessary to modify the surface of cellulose nanocrystals. sex.
  • cerium ammonium nitrate as an initiator to graft and modify aqueous phase polymers on the surface of cellulose nanocrystals is an efficient method.
  • Ceric ammonium nitrate can complex with C2 and C3 hydroxyl groups in cellulose, and single electron transfer occurs to generate free radicals on the surface of cellulose nanocrystals, so that chain initiation and chain growth are generated on the surface of cellulose nanocrystals, Thus it has a higher grafting rate and grafting efficiency.
  • cerium ammonium nitrate initiation system has the following problems: 1) cerium ammonium nitrate is easily hydrolyzed in water, and in order to inhibit its hydrolysis, a large amount of strong acid needs to be added to the system, which will undoubtedly cause certain acid pollution to the environment; 2) the current cerium nitrate Only petroleum-based polymers can be grafted in the ammonium-initiated system, which destroys the advantages of cellulose nanocrystals as bio-based materials.
  • Polyvinyl acetate is a polymer derived from renewable biological resources, and its monomer vinyl acetate can be synthesized by bioethanol. However, polyvinyl acetate is difficult to graft on the surface of cellulose nanocrystals.
  • cerium ammonium nitrate initiates monomer grafting to modify cellulose nanocrystals, it needs to be carried out in a strong acid environment, and some monomers are easily hydrolyzed in a strong acid environment and lose their polymerization ability.
  • the application provides a cellulose nanocrystalline powder and its preparation method and application. In this method, a very small amount of carboxylate is added to the initiation system of cerium ammonium nitrate, and the complexation of carboxylate and cerium ions inhibits the cerium The hydrolysis of ions in water plays the role of stabilizing cerium ions and ensuring the activity of initiating.
  • the embodiment of this application provides a preparation method of cellulose nanocrystalline powder, including the following steps:
  • step 2) Add carboxylate to the aqueous dispersion in step 1), and stir evenly;
  • step 2) Add monomers and cerium ammonium nitrate initiator to the system in step 2), react for 0.5-3 hours to obtain a precipitate, filter the precipitate with suction, wash, and dry to obtain cellulose nanocrystal powder.
  • the preparation method of the present application is universal and applicable to various vinyl monomers, especially applicable to polymer monomers that are easily hydrolyzed in a strong acid environment.
  • the cellulose nanocrystals in step 1) are selected from one or more of hydroxylated cellulose nanocrystals, sulfonated cellulose nanocrystals, formylated cellulose nanocrystals and carboxylated cellulose nanocrystals .
  • the concentration of the carboxylate in the reaction system is 0.01-0.6 mmol/L, optionally 0.15-0.4 mmol/L, optionally 0.16-0.19 mmol/L.
  • the carboxylate added in step 2) is selected from sodium malate, sodium oxalate, sodium acetate, sodium citrate, sodium humate, sodium succinate, disodium edetate, ethylene diamine tetraacetate, One or more of tetrasodium amine tetraacetate, sodium glutamate, sodium glycinate, sodium alanine, sodium valine, sodium leucine, sodium lactate, sodium tartrate, sodium carboxymethylcellulose and sodium alginate kind.
  • the monomer in step 3 is vinyl acetate monomer.
  • the mass ratio of vinyl acetate to cellulose nanocrystals is 1:1 ⁇ 10:1, optionally 4:1 ⁇ 8:1, optionally 4:1 ⁇ 6:1.
  • the mass ratio of the ammonium cerium nitrate initiator to the cellulose nanocrystal is 1:10 ⁇ 1:2, optionally 1:8 ⁇ 1:4, alternatively 1:5 ⁇ 1:4.
  • reaction temperature in step 3 is room temperature, which may be 5-40°C, optionally 15-30°C, and optionally 20-28°C.
  • a cellulose nanocrystal powder is provided, which is prepared by the method for preparing the cellulose nanocrystal powder.
  • the grafting rate of the polymer on the surface of the cellulose nanocrystal is 300%-600%, and the grafting efficiency is 80-99%.
  • the application is by adding a very small amount of carboxylate in the cerium ammonium nitrate-initiated cellulose nanocrystal graft polymer modification system, utilizing the complexation of carboxylate to the cerium ion that initiates in the cerium ammonium nitrate, The hydrolysis of cerium ions is inhibited, and the polymerization reaction initiated by ammonium cerium nitrate under acid-free conditions is realized, thereby realizing the polymerization of polyvinyl acetate monomer on the surface of cellulose nanocrystals.
  • the preparation method of the present application is not affected by the surface of cellulose nanocrystals.
  • the limitation of functional groups has universal applicability to cellulose nanocrystals with different surface functional groups.
  • the acid-free reaction conditions inhibit the chain transfer reaction in the hydrolysis and polymerization of vinyl acetate monomer, so that polyvinyl acetate can be synthesized in cerium nitrate High monomer conversion rate, grafting rate and grafting efficiency were achieved on the surface of cellulose nanocrystals in the ammonium aqueous phase initiation system.
  • the powder obtained after drying the cellulose nanocrystals grafted and modified by polyvinyl acetate can be thermally processed with the polymer to achieve uniform dispersion.
  • the cellulose nanocrystals of the present application will spontaneously precipitate from water during the modification process, which has the effect of self-purification, and there is no need to dialyze the cellulose nanocrystal suspension to remove impurities before modification.
  • the modification process is carried out in the water system, which is green and environmentally friendly.
  • cerium ammonium nitrate can initiate grafting of petroleum-based polymers, which destroys the advantages of cellulose nanocrystals as bio-based nanomaterials.
  • This application proposes a method for initiating the grafting of bio-based monomers to modify cellulose nanocrystals under acid-free conditions in aqueous phase.
  • a very small amount of carboxylate is added to the initiation system of ammonium cerium nitrate, and the hydrolysis of the cerium ion in water is inhibited through the complexation of the carboxylate and the cerium ion, thereby stabilizing the cerium ion and ensuring the initiation activity.
  • Fig. 1 is the photo of the cellulose nanocrystalline powder of the polyvinyl acetate graft modification prepared by the embodiment 1 of the present application;
  • Figure 2 is the infrared spectrum of the polyvinyl acetate graft-modified cellulose nanocrystals prepared in Example 1 and Comparative Example 1 of the present application. Among them, 1735 and 1238cm -1 are the absorption peaks of polyvinyl acetate ester group and COC respectively.
  • the amount of raw materials used and the process flow are the same as in Example 1, except that hydroxylated cellulose nanocrystals are used as the substrate to obtain white cellulose nanocrystal powder.
  • the conversion rate of vinyl acetate is 75%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nano crystal is 300%
  • the grafting efficiency is 80%.
  • the amount of raw materials used and the process flow are the same as those in Example 1, except that the formaldehyde-based cellulose nanocrystal is used as the substrate to obtain white cellulose nanocrystal powder.
  • the conversion rate of vinyl acetate is 82%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nano crystal is 360%
  • the grafting efficiency is 88%.
  • the amount of raw materials used and the process flow are the same as in Example 1, except that sodium malate is replaced by sodium citrate to obtain white cellulose nanocrystalline powder.
  • the conversion rate of vinyl acetate is 86%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nano crystal is 380%
  • the grafting efficiency is 88%.
  • the amount of raw materials used and the process flow are the same as in Example 1, except that sodium malate is replaced by sodium oxalate to obtain white cellulose nanocrystalline powder.
  • the conversion rate of vinyl acetate is 76%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nanocrystal is 270%
  • the grafting efficiency is 71%.
  • the amount of raw materials used and the process flow are the same as in Example 1, except that carboxylated cellulose nanocrystals are used as the substrate, wherein the carboxyl content of the carboxylated cellulose nanocrystal base is 0.2 mmol/g, and white cellulose nanocrystal powder is obtained.
  • the conversion rate of vinyl acetate is 82%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nanocrystal is 340%
  • the grafting efficiency is 83%.
  • the type, amount and process flow of the raw materials used are the same as in Example 1, except that sodium malate is not contained in the system, and the product is dried to obtain a hard block.
  • the conversion rate of vinyl acetate is 20%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nano crystal is 5%
  • the grafting efficiency is 5%.
  • the grafting rate is low, which further shows that when no carboxylate is added to the reaction system, when the pH is 7, the grafting rate will be low due to the hydrolysis of ammonium cerium nitrate.
  • the cellulose nanocrystals of the polyvinyl acetate graft modification made in Example 1 and Comparative Example 1 are detected, and the infrared spectrum is as shown in Figure 2, which shows that after adding sodium malate, the polyvinyl acetate is formed on the cellulose nanocrystals.
  • the crystal surface has a higher grafting rate.
  • the type, amount and process flow of the raw materials used are the same as in Example 1, except that the pH of the system is adjusted to 2, and the product is dried to obtain a lump.
  • the conversion rate of vinyl acetate is 10%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nano crystal is 5%
  • the grafting efficiency is 10%.
  • the grafting rate is low, indicating that vinyl acetate is easy to decompose under acidic conditions, and it is difficult to realize polymerization.
  • the amount of raw materials used and the process flow are the same as in Example 1, except that without adding sodium malate, carboxylated cellulose nanocrystals are used as the substrate, and the product is dried to obtain a hard block.
  • the conversion rate of vinyl acetate is 65%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nanocrystal is 26%
  • the grafting efficiency is 8%.
  • the grafting rate and grafting efficiency are low, indicating that the cerium ion stabilized by the small molecule carboxylate has a higher initiation ability, while the cerium ion stabilized by carboxylated cellulose nanocrystals is due to the large steric hindrance and mobility.
  • Weak factor M resulting in low grafting rate and grafting efficiency.
  • the amount of raw materials used and the process flow are the same as in Example 1, except that carboxylated cellulose nanocrystals are selected as the substrate and sodium malate is not added, wherein the carboxyl content of carboxylated cellulose nanocrystals is 1.2 mmol/g, and the product is dried Then get hard lumps.
  • the conversion rate of vinyl acetate is 20%
  • the grafting rate of polyvinyl acetate on the surface of cellulose nano crystal is 3%
  • the grafting efficiency is 3%.
  • This comparative example shows that when the carboxyl group content on the surface of carboxylated cellulose nanocrystals is high, the addition of cerium ammonium nitrate will cause ionic crosslinking of cellulose nanocrystals and precipitate out of water, which will affect the uniformity of grafting and the initiation of cerium ammonium nitrate. ability.
  • the present application can realize polymer grafting modification of cerium ammonium nitrate on the surface of cellulose nanocrystals with different surface functional groups under acid-free conditions.
  • the acid-free condition allows the bio-based monomer-vinyl acetate to undergo graft polymerization on the surface of cellulose nanocrystals, and has a high monomer conversion rate, grafting rate and grafting efficiency.
  • the powder obtained after drying the cellulose nanocrystals grafted and modified by polyvinyl acetate can be thermally processed with the polymer to achieve uniform dispersion.
  • a cellulose nanocrystal powder and its preparation method provided in the examples of the present application, 1) dispersing the cellulose nanocrystals in water, adjusting the pH to 7; 2) adding carboxylate to the aqueous dispersion in step 1) 3) Add monomers and cerium ammonium nitrate initiator to the system in step 2), react for 0.5-3 hours to obtain a precipitate, and filter the precipitate with suction, wash, and dry to obtain cellulose nanocrystalline powder .
  • the present application realizes that cerium ammonium nitrate initiates a polymerization reaction under acid-free conditions, thereby realizing the polymerization of polyvinyl acetate monomers on the surface of cellulose nanocrystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本申请实施例涉及一种纤维素纳米晶粉体及其制备方法、应用,涉及纳米材料领域,制备方法包括如下步骤:1)将纤维素纳米晶分散于水中,调节pH值至7;2)向步骤1)的水分散液中加入羧酸盐,搅拌均匀;3)向步骤2)的体系中加入单体和硝酸铈铵引发剂,反应0.5~3h,得沉淀,将沉淀进行抽滤、洗涤、干燥,得到纤维素纳米晶粉体。本申请通过在硝酸铈铵引发纤维素纳米晶接枝聚合物改性体系中外加极少量羧酸盐,利用羧酸盐对硝酸铈铵中起引发作用的铈离子的络合作用,抑制了铈离子的水解,实现了硝酸铈铵在无酸条件下引发聚合反应,从而实现聚醋酸乙烯酯单体在纤维素纳米晶表面的聚合,本申请的制备方法不受纤维素纳米晶表面官能团的限制。

Description

一种纤维素纳米晶粉体及其制备方法、应用
交叉引用
本申请要求在中国专利局提交的、申请号为202110810941.1、发明名称为“一种纤维素纳米晶粉体及其制备方法、应用”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及于纳米复合材料制备技术领域,特别涉及一种纤维素纳米晶粉体及其制备方法。
背景技术
公开于该背景技术部分的信息仅仅旨在增加对本申请的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
纤维素纳米晶是来源于天然纤维素的一维棒状纳米材料,具有比表面积大(250-500m 2/g),密度低(1.5-1.6g/cm 3),力学性能优异(拉伸强度7500MPa,弹性模量100-140GPa)等特点,在制备轻量化高强度聚合物基纳米复合材料方面有潜在的应用价值。然而,利用干燥的纤维素纳米晶粉体与聚合物熔融共混时,由于纤维素纳米晶表面含有丰富的羟基,强氢键作用使其无法均匀分散,因此需要对纤维素纳米晶进行表面改性。其中,以硝酸铈铵为引发剂,在纤维素纳米晶表面进行水相聚合物接枝改性是一种高效的方法。
硝酸铈铵可以与纤维素中C 2和C 3的羟基络合,发生单电子转移而在纤维素纳米晶表面产生自由基,使得链引发和链增长都是在纤维素纳米晶表面产生的,从而具有较高的接枝率和接枝效率。然而,硝酸铈铵引发体系存在以下问题:1)硝酸铈铵在水中易水解,为了抑制其水解,需要向体系中加入大量强酸,这无疑会对环境造成一定的酸污染;2)目前硝酸铈铵引发体系中可接枝的只有石油基的聚合物,这破坏了纤维素纳米晶作为生物基材料的优势。聚醋酸乙烯酯是来源于可再生生物资源的聚合物,其单体醋酸乙烯酯可通过生物乙醇合成。然而,聚醋酸乙烯酯难以接枝在纤维 素纳米晶表面。一方面,醋酸乙烯酯单体在强酸性环境下容易水解而失去聚合的能力。另一方面,聚合过程中产生的醋酸乙烯酯自由基的反应活性非常高,极易发生链转移和链终止反应。在酸性条件下醋酸乙烯酯水解产生的乙醛可以作为链转移剂进一步促进链转移,这无疑会大大降低聚醋酸乙烯酯在纤维素纳米晶表面的接枝率和接枝效率,使得纤维素纳米晶在粉体中发生不可逆团聚。
申请内容
申请目的
为解决现有技术中硝酸铈铵引发单体接枝改性纤维素纳米晶过程中,需要在强酸环境下进行,而某些单体在强酸性环境下容易水解而失去聚合能力的问题,本申请提供一种一种纤维素纳米晶粉体及其制备方法、应用,该方法在硝酸铈铵引发体系中加入极少量羧酸盐,通过羧酸盐与铈离子的络合作用,抑制了铈离子在水中的水解,起到了稳定铈离子、保证引发活性的作用。
解决方案
为实现本申请目的,本申请实施例提供了一种纤维素纳米晶粉体的制备方法,包括如下步骤:
1)将纤维素纳米晶分散于水中,调节pH值至7;
2)向步骤1)的水分散液中加入羧酸盐,搅拌均匀;
3)向步骤2)的体系中加入单体和硝酸铈铵引发剂,反应0.5~3h,得沉淀,将沉淀进行抽滤、洗涤、干燥,得到纤维素纳米晶粉体。
本申请的制备方法具有普适性,对多种乙烯基单体都适用,尤其适用在强酸环境中易水解的聚合物单体。
进一步地,所述步骤1)中纤维素纳米晶选自羟基化纤维素纳米晶、磺酸化纤维素纳米晶、醛基化纤维素纳米晶和羧基化纤维素纳米晶中的一种或几种。
进一步地,所述步骤2)中加入羧酸盐后,羧酸盐在反应体系中的浓度为0.01~0.6mmol/L,可选地为0.15~0.4mmol/L,可选地为0.16~0.19mmol/L。
进一步地,所述步骤2)加入的羧酸盐的选自苹果酸钠、草酸钠、乙酸钠、柠檬酸钠、腐殖酸钠、丁二酸钠、乙二胺四乙酸二钠、乙二胺四乙酸四钠、谷氨酸钠、甘氨酸钠、丙氨酸钠、缬氨酸钠、亮氨酸钠、乳酸钠、 酒石酸钠、羧甲基纤维素钠和海藻酸钠中的一种或几种。
进一步地,所述步骤3)中的单体为醋酸乙烯酯单体。
进一步地,所述醋酸乙烯酯与纤维素纳米晶的质量比为1:1~10:1,可选地为4:1~8:1,可选地为4:1~6:1。
进一步地,硝酸铈铵引发剂与纤维素纳米晶的质量比为1:10~1:2,可选地为1:8~1:4,可选地为1:5~1:4。
进一步地,所述步骤3)的反应温度为室温,可为5~40℃,可选地为15~30℃,可选地为20~28℃。
再一方面,提供一种纤维素纳米晶粉体,采用所述的纤维素纳米晶粉体的制备方法制备而成。
进一步地,聚合物在纤维素纳米晶表面的接枝率为300%~600%,接枝效率80~99%。
又一方面,提供一种所述的纤维素纳米晶疏水粉体在聚合物加工中的应用,在聚合物基体中均匀分散。
有益效果
(1)本申请通过在硝酸铈铵引发纤维素纳米晶接枝聚合物改性体系中外加极少量羧酸盐,利用羧酸盐对硝酸铈铵中起引发作用的铈离子的络合作用,抑制了铈离子的水解,实现了硝酸铈铵在无酸条件下引发聚合反应,从而实现聚醋酸乙烯酯单体在纤维素纳米晶表面的聚合,本申请的制备方法不受纤维素纳米晶表面官能团的限制,对不同表面官能团的纤维素纳米晶具有普适性。
(2)当单体为以生物基来源的醋酸乙烯酯为单体,无酸的反应条件抑制了醋酸乙烯酯单体水解和聚合过程中的链转移反应,使聚醋酸乙烯酯可以在硝酸铈铵水相引发体系中在纤维素纳米晶表面实现高单体转化率,接枝率和接枝效率。经聚醋酸乙烯酯接枝改性的纤维素纳米晶干燥后得到的粉体可以与聚合物进行热加工,并实现均匀分散。
(3)本申请的纤维素纳米晶在改性过程中会自发地从水中沉淀,具有自纯化的效果,无需在改性前对纤维素纳米晶悬浮液透析除杂。改性过程是在水体系中进行的,绿色环保。
(4)目前硝酸铈铵可引发接枝的都是石油基聚合物,破坏了纤维素纳米晶作为生物基纳米材料的优势。本申请提出了一种可在水相无酸条件下引发生物基单体接枝改性纤维素纳米晶的方法。该方法在硝酸铈铵引发体 系中加入极少量羧酸盐,通过羧酸盐与铈离子的络合作用,抑制了铈离子在水中的水解,起到了稳定铈离子、保证引发活性的作用。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
图1是本申请实施例1所制备的聚醋酸乙烯酯接枝改性的纤维素纳米晶粉体的照片;
图2是本申请实施例1和对比例1所制备的聚醋酸乙烯酯接枝改性的纤维素纳米晶的红外光谱。其中,1735和1238cm -1处分别为聚醋酸乙烯酯的酯基和C-O-C的吸收峰。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实施例中,对于本领域技术人员熟知的原料、元件、方法、手段等未作详细描述,以便于凸显本申请的主旨。
本申请的单体转化率、接枝率、接枝效率的计算方法如下:
Figure PCTCN2021129803-appb-000001
Figure PCTCN2021129803-appb-000002
Figure PCTCN2021129803-appb-000003
实施例1
将20mL 1%磺酸化纤维素纳米晶水悬浮液和7mg苹果酸钠加入到三口烧瓶中,调节pH=7。向体系中超声后加入0.05g硝酸铈铵和1g醋酸乙烯酯。充分搅拌后在25℃下反应2h后取出洗涤,置于鼓风干燥箱中干燥,得到白色纤维素纳米晶粉体。其中醋酸乙烯酯转化率为80%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率350%,接枝效率87%。获得的纤维素纳米晶粉体如图1所示。
实施例2
所用原料用量及工艺流程同实施例1,不同的是选用羟基化纤维素纳米晶为基底,得到白色纤维素纳米晶粉体。其中醋酸乙烯酯转化率为75%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率300%,接枝效率80%。
实施例3
所用原料用量及工艺流程同实施例1,不同的是选用醛基化纤维素纳米晶为基底,得到白色纤维素纳米晶粉体。其中醋酸乙烯酯转化率为82%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率360%,接枝效率88%。
实施例4
所用原料用量及工艺流程同实施例1,不同的是将苹果酸钠更换为柠檬酸钠,得到白色纤维素纳米晶粉体。其中醋酸乙烯酯转化率为86%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率380%,接枝效率88%。
实施例5
所用原料用量及工艺流程同实施例1,不同的是将苹果酸钠更换为草酸钠,得到白色纤维素纳米晶粉体。其中醋酸乙烯酯转化率为76%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率270%,接枝效率71%。
实施例6
所用原料用量及工艺流程同实施例1,不同的是选用羧基化纤维素纳米晶为基底,其中羧基化纤维素纳米晶基地的羧基含量为0.2mmol/g,得到白色纤维素纳米晶粉体。其中醋酸乙烯酯转化率为82%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率340%,接枝效率83%。
对比例1
所用原料种类、用量及工艺流程同实施例1,不同的是体系中不含苹果酸钠,产物经烘干后得到硬块。其中醋酸乙烯酯转化率为20%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率5%,接枝效率5%。
本对比例中接枝率较低,进一步说明在反应体系中不加入羧酸盐时,在pH为7时,因硝酸铈铵水解会导致接枝率较低。
将实施例1和对比例1所制的聚醋酸乙烯酯接枝改性的纤维素纳米晶进行检测,红外光谱如图2所示,表明外加苹果酸钠后,聚醋酸乙烯酯在纤维素纳米晶表面有更高的接枝率。
对比例2
所用原料种类、用量及工艺流程同实施例1,不同的是将体系的pH调为2,产物经烘干后得到硬块。其中醋酸乙烯酯转化率为10%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率5%,接枝效率10%。
本对比例中接枝率较低,说明醋酸乙烯酯在酸性条件下易分解,难以实现聚合。
对比例3
所用原料用量及工艺流程同实施例1,不同的是在不外加苹果酸钠的情况下,选用羧基化纤维素纳米晶为基底,产物经烘干后得到硬块。其中醋酸乙烯酯转化率65%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率26%,接枝效率8%。
本对比例中接枝率和接枝效率较低,说明小分子羧酸盐稳定的铈离子有更高的引发能力,而由羧基化纤维素纳米晶稳定的铈离子由于空间位阻大和运动能力弱的因M素,造成低接枝率和接枝效率。
对比例4
所用原料用量及工艺流程同实施例1,不同的是选用羧基化纤维素纳米晶为基底且不加入苹果酸钠,其中羧基化纤维素纳米晶的羧基含量为1.2mmol/g,产物经烘干后得到硬块。其中醋酸乙烯酯转化率20%,聚醋酸乙烯酯在纤维素纳米晶表面的接枝率3%,接枝效率3%。
本对比例说明,羧基化纤维素纳米晶表面羧基含量较高时,加入硝酸铈铵会使纤维素纳米晶发生离子交联并从水中沉淀出来,影响接枝的均匀性和硝酸铈铵的引发能力。
本申请可实现硝酸铈铵在无酸条件下在不同表面官能团的纤维素纳米晶表面进行聚合物接枝改性。无酸的条件使生物基单体—醋酸乙烯酯在纤维素纳米晶表面进行接枝聚合,并具有较高的单体转化率,接枝率和接枝效率。经聚醋酸乙烯酯接枝改性的纤维素纳米晶干燥后得到的粉体可以与聚合物进行热加工,并实现均匀分散。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
工业实用性
本申请实施例提供的一种纤维素纳米晶粉体及其制备方法,通过1)将纤维素纳米晶分散于水中,调节pH值至7;2)向步骤1)的水分散液中加入羧酸盐,搅拌均匀;3)向步骤2)的体系中加入单体和硝酸铈铵引发剂,反应0.5~3h,得沉淀,将沉淀进行抽滤、洗涤、干燥,得到纤维素纳米晶粉体。本申请实现了硝酸铈铵在无酸条件下引发聚合反应,从而实现聚醋酸乙烯酯单体在纤维素纳米晶表面的聚合。

Claims (10)

  1. 一种纤维素纳米晶粉体的制备方法,其特征在于,包括如下步骤:
    1)将纤维素纳米晶分散于水中,调节pH值至7;
    2)向步骤1)的水分散液中加入羧酸盐,搅拌均匀;
    3)向步骤2)的体系中加入单体和硝酸铈铵引发剂,反应0.5~3h,得沉淀,将沉淀进行抽滤、洗涤、干燥,得到纤维素纳米晶粉体。
  2. 根据权利要求1所述的纤维素纳米晶粉体的制备方法,其特征在于,所述步骤1)中纤维素纳米晶选自羟基化纤维素纳米晶、磺酸化纤维素纳米晶、醛基化纤维素纳米晶和羧基化纤维素纳米晶中的一种或几种。
  3. 根据权利要求1所述的纤维素纳米晶粉体的制备方法,其特征在于,所述步骤2)中加入羧酸盐后,羧酸盐在反应体系中的浓度为0.01~0.6mmol/L,可选地为0.15~0.4mmol/L,可选地为0.16~0.19mmol/L。
  4. 根据权利要求3所述的纤维素纳米晶粉体的制备方法,其特征在于,所述步骤2)加入的羧酸盐的选自苹果酸钠、草酸钠、乙酸钠、柠檬酸钠、腐殖酸钠、丁二酸钠、乙二胺四乙酸二钠、乙二胺四乙酸四钠、谷氨酸钠、甘氨酸钠、丙氨酸钠、缬氨酸钠、亮氨酸钠、乳酸钠、酒石酸钠、羧甲基纤维素钠和海藻酸钠中的一种或几种。
  5. 根据权利要求1所述的纤维素纳米晶粉体的制备方法,其特征在于,所述步骤3)中的单体为醋酸乙烯酯单体。
  6. 根据权利要求5所述的纤维素纳米晶粉体的制备方法,其特征在于,所述醋酸乙烯酯与纤维素纳米晶的质量比为1:1~10:1,可选地为4:1~8:1,可选地为4:1~6:1;
    和/或,所述硝酸铈铵引发剂与纤维素纳米晶的质量比为1:10~1:2,可选地为1:8~1:4,可选地为1:5~1:4。
  7. 根据权利要求1所述的纤维素纳米晶粉体的制备方法,其特征在于,所述步骤3)的反应温度为5~40℃,可选地为15~30℃,可选地为20~28℃。
  8. 一种纤维素纳米晶粉体,其特征在于,采用权利要求1至7任一所述的纤维素纳米晶粉体的制备方法制备而成。
  9. 根据权利要求8所述的纤维素纳米晶粉体,其特征在于,聚合物在纤 维素纳米晶表面的接枝率为300%~600%,接枝效率80~99%。
  10. 一种权利要求8所述的纤维素纳米晶疏水粉体在聚合物加工中的应用,其特征在于:在聚合物基体中均匀分散。
PCT/CN2021/129803 2021-07-19 2021-11-10 一种纤维素纳米晶粉体及其制备方法、应用 WO2023000550A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/047,314 US20230076982A1 (en) 2021-07-19 2022-10-18 Cellulose nanocrystal powder and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110810941.1 2021-07-19
CN202110810941.1A CN113402670B (zh) 2021-07-19 2021-07-19 一种纤维素纳米晶粉体及其制备方法、应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/047,314 Continuation US20230076982A1 (en) 2021-07-19 2022-10-18 Cellulose nanocrystal powder and preparation method and use thereof

Publications (1)

Publication Number Publication Date
WO2023000550A1 true WO2023000550A1 (zh) 2023-01-26

Family

ID=77686839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129803 WO2023000550A1 (zh) 2021-07-19 2021-11-10 一种纤维素纳米晶粉体及其制备方法、应用

Country Status (3)

Country Link
US (1) US20230076982A1 (zh)
CN (1) CN113402670B (zh)
WO (1) WO2023000550A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10755099B2 (en) * 2018-11-13 2020-08-25 Adobe Inc. Object detection in images
CN113402670B (zh) * 2021-07-19 2022-05-10 青岛科技大学 一种纤维素纳米晶粉体及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110201755A1 (en) * 2010-02-18 2011-08-18 Fpinnovations Thermoplastic nanocomposite material based on nanocrystalline cellulose (ncc)
CN104086709A (zh) * 2014-07-10 2014-10-08 浙江九本生物化学有限公司 一种髙支链型水溶性纤维素-丙烯酰胺接枝共聚物及其制备方法和应用
CN105111378A (zh) * 2015-09-29 2015-12-02 赵迎辉 一种阳离子聚合物接枝改性纳米结晶纤维素及其制备方法和应用
CN110885405A (zh) * 2019-11-25 2020-03-17 青岛科技大学 一种纤维素纳米晶疏水多孔粉体及其制备方法
CN113402670A (zh) * 2021-07-19 2021-09-17 青岛科技大学 一种纤维素纳米晶粉体及其制备方法、应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947051B (zh) * 2017-03-22 2019-08-13 青岛科技大学 一种聚氨酯接枝的纤维素纳米晶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110201755A1 (en) * 2010-02-18 2011-08-18 Fpinnovations Thermoplastic nanocomposite material based on nanocrystalline cellulose (ncc)
CN104086709A (zh) * 2014-07-10 2014-10-08 浙江九本生物化学有限公司 一种髙支链型水溶性纤维素-丙烯酰胺接枝共聚物及其制备方法和应用
CN105111378A (zh) * 2015-09-29 2015-12-02 赵迎辉 一种阳离子聚合物接枝改性纳米结晶纤维素及其制备方法和应用
CN110885405A (zh) * 2019-11-25 2020-03-17 青岛科技大学 一种纤维素纳米晶疏水多孔粉体及其制备方法
CN113402670A (zh) * 2021-07-19 2021-09-17 青岛科技大学 一种纤维素纳米晶粉体及其制备方法、应用

Also Published As

Publication number Publication date
CN113402670A (zh) 2021-09-17
CN113402670B (zh) 2022-05-10
US20230076982A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2023000550A1 (zh) 一种纤维素纳米晶粉体及其制备方法、应用
CN110885405B (zh) 一种纤维素纳米晶疏水多孔粉体及其制备方法
CN108276605B (zh) 一种利用巯基-烯点击反应制备无机晶须/poss杂化材料的方法
CN115073646B (zh) 一种高固含丁苯胶乳及其制备方法
CN110698942A (zh) 一种高阻隔性Ag-TiO2修饰聚丙烯酸抗菌涂料及其制法
CN110577223B (zh) 一种多孔碳纳米球的制备工艺
CN111229177A (zh) 一种聚-(苯乙烯-二乙烯苯-乙烯基咪唑)@Fe3O4水处理剂及其制备方法
CN111573801B (zh) 一种有机复合硫酸铝水处理药剂及其制备方法
CN110903432B (zh) 基于磁性纤维素纳米晶的光热响应药物缓释水凝胶的制备
CN115259328B (zh) 一种阳离子絮凝剂制备方法
CN108003272B (zh) 纳米纤维素/含氟聚丙烯酸酯无皂乳液的制备方法
CN113753905B (zh) 一种高分散白炭黑的制备方法
CN115475630A (zh) 一种Pt单原子催化剂及其制备方法
CN113953526A (zh) 一种超细钯粉的制备方法
CN110013833B (zh) 一种MgO/GQD/壳寡糖/PVA复合吸附膜的制备方法
CN111777859B (zh) 聚吡咯/溶菌酶复合材料及其制法和应用
WO2021253882A1 (zh) 一种双重亲水性聚乙烯超滤膜及其制备方法
CN110028611B (zh) 一种单分散壳核式聚苯乙烯微球及其制备方法
CN112371991A (zh) 一种丁二酰化壳聚糖包覆的单分散纳米银颗粒及其制备方法
CN108030947B (zh) 一种改性负氧离子粉的制备方法
CN110105509A (zh) 一种聚甲基丙烯酸甲酯与改性石墨烯复合材料及其制备方法
CN115569632B (zh) 一种磁性活性炭纤维吸附剂及其制备方法
CN114181261B (zh) 一种三价乙酸铑三聚体的制备方法
CN117819799B (zh) 一种高分子污泥调理剂及其制备方法
CN113716630B (zh) 一种二维手性氢氧化镍纳米片的制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950788

Country of ref document: EP

Kind code of ref document: A1